Actual source code: matnest.c
petsc-3.6.4 2016-04-12
2: #include <../src/mat/impls/nest/matnestimpl.h> /*I "petscmat.h" I*/
3: #include <petscsf.h>
5: static PetscErrorCode MatSetUp_NestIS_Private(Mat,PetscInt,const IS[],PetscInt,const IS[]);
6: static PetscErrorCode MatCreateVecs_Nest(Mat A,Vec *right,Vec *left);
8: /* private functions */
11: static PetscErrorCode MatNestGetSizes_Private(Mat A,PetscInt *m,PetscInt *n,PetscInt *M,PetscInt *N)
12: {
13: Mat_Nest *bA = (Mat_Nest*)A->data;
14: PetscInt i,j;
18: *m = *n = *M = *N = 0;
19: for (i=0; i<bA->nr; i++) { /* rows */
20: PetscInt sm,sM;
21: ISGetLocalSize(bA->isglobal.row[i],&sm);
22: ISGetSize(bA->isglobal.row[i],&sM);
23: *m += sm;
24: *M += sM;
25: }
26: for (j=0; j<bA->nc; j++) { /* cols */
27: PetscInt sn,sN;
28: ISGetLocalSize(bA->isglobal.col[j],&sn);
29: ISGetSize(bA->isglobal.col[j],&sN);
30: *n += sn;
31: *N += sN;
32: }
33: return(0);
34: }
36: /* operations */
39: static PetscErrorCode MatMult_Nest(Mat A,Vec x,Vec y)
40: {
41: Mat_Nest *bA = (Mat_Nest*)A->data;
42: Vec *bx = bA->right,*by = bA->left;
43: PetscInt i,j,nr = bA->nr,nc = bA->nc;
47: for (i=0; i<nr; i++) {VecGetSubVector(y,bA->isglobal.row[i],&by[i]);}
48: for (i=0; i<nc; i++) {VecGetSubVector(x,bA->isglobal.col[i],&bx[i]);}
49: for (i=0; i<nr; i++) {
50: VecZeroEntries(by[i]);
51: for (j=0; j<nc; j++) {
52: if (!bA->m[i][j]) continue;
53: /* y[i] <- y[i] + A[i][j] * x[j] */
54: MatMultAdd(bA->m[i][j],bx[j],by[i],by[i]);
55: }
56: }
57: for (i=0; i<nr; i++) {VecRestoreSubVector(y,bA->isglobal.row[i],&by[i]);}
58: for (i=0; i<nc; i++) {VecRestoreSubVector(x,bA->isglobal.col[i],&bx[i]);}
59: return(0);
60: }
64: static PetscErrorCode MatMultAdd_Nest(Mat A,Vec x,Vec y,Vec z)
65: {
66: Mat_Nest *bA = (Mat_Nest*)A->data;
67: Vec *bx = bA->right,*bz = bA->left;
68: PetscInt i,j,nr = bA->nr,nc = bA->nc;
72: for (i=0; i<nr; i++) {VecGetSubVector(z,bA->isglobal.row[i],&bz[i]);}
73: for (i=0; i<nc; i++) {VecGetSubVector(x,bA->isglobal.col[i],&bx[i]);}
74: for (i=0; i<nr; i++) {
75: if (y != z) {
76: Vec by;
77: VecGetSubVector(y,bA->isglobal.row[i],&by);
78: VecCopy(by,bz[i]);
79: VecRestoreSubVector(y,bA->isglobal.row[i],&by);
80: }
81: for (j=0; j<nc; j++) {
82: if (!bA->m[i][j]) continue;
83: /* y[i] <- y[i] + A[i][j] * x[j] */
84: MatMultAdd(bA->m[i][j],bx[j],bz[i],bz[i]);
85: }
86: }
87: for (i=0; i<nr; i++) {VecRestoreSubVector(z,bA->isglobal.row[i],&bz[i]);}
88: for (i=0; i<nc; i++) {VecRestoreSubVector(x,bA->isglobal.col[i],&bx[i]);}
89: return(0);
90: }
94: static PetscErrorCode MatMultTranspose_Nest(Mat A,Vec x,Vec y)
95: {
96: Mat_Nest *bA = (Mat_Nest*)A->data;
97: Vec *bx = bA->left,*by = bA->right;
98: PetscInt i,j,nr = bA->nr,nc = bA->nc;
102: for (i=0; i<nr; i++) {VecGetSubVector(x,bA->isglobal.row[i],&bx[i]);}
103: for (i=0; i<nc; i++) {VecGetSubVector(y,bA->isglobal.col[i],&by[i]);}
104: for (j=0; j<nc; j++) {
105: VecZeroEntries(by[j]);
106: for (i=0; i<nr; i++) {
107: if (!bA->m[i][j]) continue;
108: /* y[j] <- y[j] + (A[i][j])^T * x[i] */
109: MatMultTransposeAdd(bA->m[i][j],bx[i],by[j],by[j]);
110: }
111: }
112: for (i=0; i<nr; i++) {VecRestoreSubVector(x,bA->isglobal.row[i],&bx[i]);}
113: for (i=0; i<nc; i++) {VecRestoreSubVector(y,bA->isglobal.col[i],&by[i]);}
114: return(0);
115: }
119: static PetscErrorCode MatMultTransposeAdd_Nest(Mat A,Vec x,Vec y,Vec z)
120: {
121: Mat_Nest *bA = (Mat_Nest*)A->data;
122: Vec *bx = bA->left,*bz = bA->right;
123: PetscInt i,j,nr = bA->nr,nc = bA->nc;
127: for (i=0; i<nr; i++) {VecGetSubVector(x,bA->isglobal.row[i],&bx[i]);}
128: for (i=0; i<nc; i++) {VecGetSubVector(z,bA->isglobal.col[i],&bz[i]);}
129: for (j=0; j<nc; j++) {
130: if (y != z) {
131: Vec by;
132: VecGetSubVector(y,bA->isglobal.col[j],&by);
133: VecCopy(by,bz[j]);
134: VecRestoreSubVector(y,bA->isglobal.col[j],&by);
135: }
136: for (i=0; i<nr; i++) {
137: if (!bA->m[i][j]) continue;
138: /* z[j] <- y[j] + (A[i][j])^T * x[i] */
139: MatMultTransposeAdd(bA->m[i][j],bx[i],bz[j],bz[j]);
140: }
141: }
142: for (i=0; i<nr; i++) {VecRestoreSubVector(x,bA->isglobal.row[i],&bx[i]);}
143: for (i=0; i<nc; i++) {VecRestoreSubVector(z,bA->isglobal.col[i],&bz[i]);}
144: return(0);
145: }
149: static PetscErrorCode MatNestDestroyISList(PetscInt n,IS **list)
150: {
152: IS *lst = *list;
153: PetscInt i;
156: if (!lst) return(0);
157: for (i=0; i<n; i++) if (lst[i]) {ISDestroy(&lst[i]);}
158: PetscFree(lst);
159: *list = NULL;
160: return(0);
161: }
165: static PetscErrorCode MatDestroy_Nest(Mat A)
166: {
167: Mat_Nest *vs = (Mat_Nest*)A->data;
168: PetscInt i,j;
172: /* release the matrices and the place holders */
173: MatNestDestroyISList(vs->nr,&vs->isglobal.row);
174: MatNestDestroyISList(vs->nc,&vs->isglobal.col);
175: MatNestDestroyISList(vs->nr,&vs->islocal.row);
176: MatNestDestroyISList(vs->nc,&vs->islocal.col);
178: PetscFree(vs->row_len);
179: PetscFree(vs->col_len);
181: PetscFree2(vs->left,vs->right);
183: /* release the matrices and the place holders */
184: if (vs->m) {
185: for (i=0; i<vs->nr; i++) {
186: for (j=0; j<vs->nc; j++) {
187: MatDestroy(&vs->m[i][j]);
188: }
189: PetscFree(vs->m[i]);
190: }
191: PetscFree(vs->m);
192: }
193: PetscFree(A->data);
195: PetscObjectComposeFunction((PetscObject)A,"MatNestGetSubMat_C",0);
196: PetscObjectComposeFunction((PetscObject)A,"MatNestSetSubMat_C",0);
197: PetscObjectComposeFunction((PetscObject)A,"MatNestGetSubMats_C",0);
198: PetscObjectComposeFunction((PetscObject)A,"MatNestGetSize_C",0);
199: PetscObjectComposeFunction((PetscObject)A,"MatNestGetISs_C",0);
200: PetscObjectComposeFunction((PetscObject)A,"MatNestGetLocalISs_C",0);
201: PetscObjectComposeFunction((PetscObject)A,"MatNestSetVecType_C",0);
202: PetscObjectComposeFunction((PetscObject)A,"MatNestSetSubMats_C",0);
203: return(0);
204: }
208: static PetscErrorCode MatAssemblyBegin_Nest(Mat A,MatAssemblyType type)
209: {
210: Mat_Nest *vs = (Mat_Nest*)A->data;
211: PetscInt i,j;
215: for (i=0; i<vs->nr; i++) {
216: for (j=0; j<vs->nc; j++) {
217: if (vs->m[i][j]) {
218: MatAssemblyBegin(vs->m[i][j],type);
219: if (!vs->splitassembly) {
220: /* Note: split assembly will fail if the same block appears more than once (even indirectly through a nested
221: * sub-block). This could be fixed by adding a flag to Mat so that there was a way to check if a Mat was
222: * already performing an assembly, but the result would by more complicated and appears to offer less
223: * potential for diagnostics and correctness checking. Split assembly should be fixed once there is an
224: * interface for libraries to make asynchronous progress in "user-defined non-blocking collectives".
225: */
226: MatAssemblyEnd(vs->m[i][j],type);
227: }
228: }
229: }
230: }
231: return(0);
232: }
236: static PetscErrorCode MatAssemblyEnd_Nest(Mat A, MatAssemblyType type)
237: {
238: Mat_Nest *vs = (Mat_Nest*)A->data;
239: PetscInt i,j;
243: for (i=0; i<vs->nr; i++) {
244: for (j=0; j<vs->nc; j++) {
245: if (vs->m[i][j]) {
246: if (vs->splitassembly) {
247: MatAssemblyEnd(vs->m[i][j],type);
248: }
249: }
250: }
251: }
252: return(0);
253: }
257: static PetscErrorCode MatNestFindNonzeroSubMatRow(Mat A,PetscInt row,Mat *B)
258: {
260: Mat_Nest *vs = (Mat_Nest*)A->data;
261: PetscInt j;
262: Mat sub;
265: sub = (row < vs->nc) ? vs->m[row][row] : (Mat)NULL; /* Prefer to find on the diagonal */
266: for (j=0; !sub && j<vs->nc; j++) sub = vs->m[row][j];
267: if (sub) {MatSetUp(sub);} /* Ensure that the sizes are available */
268: *B = sub;
269: return(0);
270: }
274: static PetscErrorCode MatNestFindNonzeroSubMatCol(Mat A,PetscInt col,Mat *B)
275: {
277: Mat_Nest *vs = (Mat_Nest*)A->data;
278: PetscInt i;
279: Mat sub;
282: sub = (col < vs->nr) ? vs->m[col][col] : (Mat)NULL; /* Prefer to find on the diagonal */
283: for (i=0; !sub && i<vs->nr; i++) sub = vs->m[i][col];
284: if (sub) {MatSetUp(sub);} /* Ensure that the sizes are available */
285: *B = sub;
286: return(0);
287: }
291: static PetscErrorCode MatNestFindIS(Mat A,PetscInt n,const IS list[],IS is,PetscInt *found)
292: {
294: PetscInt i;
295: PetscBool flg;
301: *found = -1;
302: for (i=0; i<n; i++) {
303: if (!list[i]) continue;
304: ISEqual(list[i],is,&flg);
305: if (flg) {
306: *found = i;
307: return(0);
308: }
309: }
310: SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"Could not find index set");
311: return(0);
312: }
316: /* Get a block row as a new MatNest */
317: static PetscErrorCode MatNestGetRow(Mat A,PetscInt row,Mat *B)
318: {
319: Mat_Nest *vs = (Mat_Nest*)A->data;
320: char keyname[256];
324: *B = NULL;
325: PetscSNPrintf(keyname,sizeof(keyname),"NestRow_%D",row);
326: PetscObjectQuery((PetscObject)A,keyname,(PetscObject*)B);
327: if (*B) return(0);
329: MatCreateNest(PetscObjectComm((PetscObject)A),1,NULL,vs->nc,vs->isglobal.col,vs->m[row],B);
331: (*B)->assembled = A->assembled;
333: PetscObjectCompose((PetscObject)A,keyname,(PetscObject)*B);
334: PetscObjectDereference((PetscObject)*B); /* Leave the only remaining reference in the composition */
335: return(0);
336: }
340: static PetscErrorCode MatNestFindSubMat(Mat A,struct MatNestISPair *is,IS isrow,IS iscol,Mat *B)
341: {
342: Mat_Nest *vs = (Mat_Nest*)A->data;
344: PetscInt row,col;
345: PetscBool same,isFullCol,isFullColGlobal;
348: /* Check if full column space. This is a hack */
349: isFullCol = PETSC_FALSE;
350: PetscObjectTypeCompare((PetscObject)iscol,ISSTRIDE,&same);
351: if (same) {
352: PetscInt n,first,step,i,an,am,afirst,astep;
353: ISStrideGetInfo(iscol,&first,&step);
354: ISGetLocalSize(iscol,&n);
355: isFullCol = PETSC_TRUE;
356: for (i=0,an=A->cmap->rstart; i<vs->nc; i++) {
357: ISStrideGetInfo(is->col[i],&afirst,&astep);
358: ISGetLocalSize(is->col[i],&am);
359: if (afirst != an || astep != step) isFullCol = PETSC_FALSE;
360: an += am;
361: }
362: if (an != A->cmap->rstart+n) isFullCol = PETSC_FALSE;
363: }
364: MPI_Allreduce(&isFullCol,&isFullColGlobal,1,MPIU_BOOL,MPI_LAND,PetscObjectComm((PetscObject)iscol));
366: if (isFullColGlobal) {
367: PetscInt row;
368: MatNestFindIS(A,vs->nr,is->row,isrow,&row);
369: MatNestGetRow(A,row,B);
370: } else {
371: MatNestFindIS(A,vs->nr,is->row,isrow,&row);
372: MatNestFindIS(A,vs->nc,is->col,iscol,&col);
373: *B = vs->m[row][col];
374: }
375: return(0);
376: }
380: static PetscErrorCode MatGetSubMatrix_Nest(Mat A,IS isrow,IS iscol,MatReuse reuse,Mat *B)
381: {
383: Mat_Nest *vs = (Mat_Nest*)A->data;
384: Mat sub;
387: MatNestFindSubMat(A,&vs->isglobal,isrow,iscol,&sub);
388: switch (reuse) {
389: case MAT_INITIAL_MATRIX:
390: if (sub) { PetscObjectReference((PetscObject)sub); }
391: *B = sub;
392: break;
393: case MAT_REUSE_MATRIX:
394: if (sub != *B) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Submatrix was not used before in this call");
395: break;
396: case MAT_IGNORE_MATRIX: /* Nothing to do */
397: break;
398: }
399: return(0);
400: }
404: PetscErrorCode MatGetLocalSubMatrix_Nest(Mat A,IS isrow,IS iscol,Mat *B)
405: {
407: Mat_Nest *vs = (Mat_Nest*)A->data;
408: Mat sub;
411: MatNestFindSubMat(A,&vs->islocal,isrow,iscol,&sub);
412: /* We allow the submatrix to be NULL, perhaps it would be better for the user to return an empty matrix instead */
413: if (sub) {PetscObjectReference((PetscObject)sub);}
414: *B = sub;
415: return(0);
416: }
420: static PetscErrorCode MatRestoreLocalSubMatrix_Nest(Mat A,IS isrow,IS iscol,Mat *B)
421: {
423: Mat_Nest *vs = (Mat_Nest*)A->data;
424: Mat sub;
427: MatNestFindSubMat(A,&vs->islocal,isrow,iscol,&sub);
428: if (*B != sub) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Local submatrix has not been gotten");
429: if (sub) {
430: if (((PetscObject)sub)->refct <= 1) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Local submatrix has had reference count decremented too many times");
431: MatDestroy(B);
432: }
433: return(0);
434: }
438: static PetscErrorCode MatGetDiagonal_Nest(Mat A,Vec v)
439: {
440: Mat_Nest *bA = (Mat_Nest*)A->data;
441: PetscInt i;
445: for (i=0; i<bA->nr; i++) {
446: Vec bv;
447: VecGetSubVector(v,bA->isglobal.row[i],&bv);
448: if (bA->m[i][i]) {
449: MatGetDiagonal(bA->m[i][i],bv);
450: } else {
451: VecSet(bv,0.0);
452: }
453: VecRestoreSubVector(v,bA->isglobal.row[i],&bv);
454: }
455: return(0);
456: }
460: static PetscErrorCode MatDiagonalScale_Nest(Mat A,Vec l,Vec r)
461: {
462: Mat_Nest *bA = (Mat_Nest*)A->data;
463: Vec bl,*br;
464: PetscInt i,j;
468: PetscCalloc1(bA->nc,&br);
469: if (r) {
470: for (j=0; j<bA->nc; j++) {VecGetSubVector(r,bA->isglobal.col[j],&br[j]);}
471: }
472: bl = NULL;
473: for (i=0; i<bA->nr; i++) {
474: if (l) {
475: VecGetSubVector(l,bA->isglobal.row[i],&bl);
476: }
477: for (j=0; j<bA->nc; j++) {
478: if (bA->m[i][j]) {
479: MatDiagonalScale(bA->m[i][j],bl,br[j]);
480: }
481: }
482: if (l) {
483: VecRestoreSubVector(l,bA->isglobal.row[i],&bl);
484: }
485: }
486: if (r) {
487: for (j=0; j<bA->nc; j++) {VecRestoreSubVector(r,bA->isglobal.col[j],&br[j]);}
488: }
489: PetscFree(br);
490: return(0);
491: }
495: static PetscErrorCode MatScale_Nest(Mat A,PetscScalar a)
496: {
497: Mat_Nest *bA = (Mat_Nest*)A->data;
498: PetscInt i,j;
502: for (i=0; i<bA->nr; i++) {
503: for (j=0; j<bA->nc; j++) {
504: if (bA->m[i][j]) {
505: MatScale(bA->m[i][j],a);
506: }
507: }
508: }
509: return(0);
510: }
514: static PetscErrorCode MatShift_Nest(Mat A,PetscScalar a)
515: {
516: Mat_Nest *bA = (Mat_Nest*)A->data;
517: PetscInt i;
521: for (i=0; i<bA->nr; i++) {
522: if (!bA->m[i][i]) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"No support for shifting an empty diagonal block, insert a matrix in block (%D,%D)",i,i);
523: MatShift(bA->m[i][i],a);
524: }
525: return(0);
526: }
530: static PetscErrorCode MatCreateVecs_Nest(Mat A,Vec *right,Vec *left)
531: {
532: Mat_Nest *bA = (Mat_Nest*)A->data;
533: Vec *L,*R;
534: MPI_Comm comm;
535: PetscInt i,j;
539: PetscObjectGetComm((PetscObject)A,&comm);
540: if (right) {
541: /* allocate R */
542: PetscMalloc1(bA->nc, &R);
543: /* Create the right vectors */
544: for (j=0; j<bA->nc; j++) {
545: for (i=0; i<bA->nr; i++) {
546: if (bA->m[i][j]) {
547: MatCreateVecs(bA->m[i][j],&R[j],NULL);
548: break;
549: }
550: }
551: if (i==bA->nr) {
552: /* have an empty column */
553: SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Mat(Nest) contains a null column.");
554: }
555: }
556: VecCreateNest(comm,bA->nc,bA->isglobal.col,R,right);
557: /* hand back control to the nest vector */
558: for (j=0; j<bA->nc; j++) {
559: VecDestroy(&R[j]);
560: }
561: PetscFree(R);
562: }
564: if (left) {
565: /* allocate L */
566: PetscMalloc1(bA->nr, &L);
567: /* Create the left vectors */
568: for (i=0; i<bA->nr; i++) {
569: for (j=0; j<bA->nc; j++) {
570: if (bA->m[i][j]) {
571: MatCreateVecs(bA->m[i][j],NULL,&L[i]);
572: break;
573: }
574: }
575: if (j==bA->nc) {
576: /* have an empty row */
577: SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Mat(Nest) contains a null row.");
578: }
579: }
581: VecCreateNest(comm,bA->nr,bA->isglobal.row,L,left);
582: for (i=0; i<bA->nr; i++) {
583: VecDestroy(&L[i]);
584: }
586: PetscFree(L);
587: }
588: return(0);
589: }
593: static PetscErrorCode MatView_Nest(Mat A,PetscViewer viewer)
594: {
595: Mat_Nest *bA = (Mat_Nest*)A->data;
596: PetscBool isascii;
597: PetscInt i,j;
601: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii);
602: if (isascii) {
604: PetscViewerASCIIPrintf(viewer,"Matrix object: \n");
605: PetscViewerASCIIPushTab(viewer); /* push0 */
606: PetscViewerASCIIPrintf(viewer, "type=nest, rows=%d, cols=%d \n",bA->nr,bA->nc);
608: PetscViewerASCIIPrintf(viewer,"MatNest structure: \n");
609: for (i=0; i<bA->nr; i++) {
610: for (j=0; j<bA->nc; j++) {
611: MatType type;
612: char name[256] = "",prefix[256] = "";
613: PetscInt NR,NC;
614: PetscBool isNest = PETSC_FALSE;
616: if (!bA->m[i][j]) {
617: PetscViewerASCIIPrintf(viewer, "(%D,%D) : NULL \n",i,j);
618: continue;
619: }
620: MatGetSize(bA->m[i][j],&NR,&NC);
621: MatGetType(bA->m[i][j], &type);
622: if (((PetscObject)bA->m[i][j])->name) {PetscSNPrintf(name,sizeof(name),"name=\"%s\", ",((PetscObject)bA->m[i][j])->name);}
623: if (((PetscObject)bA->m[i][j])->prefix) {PetscSNPrintf(prefix,sizeof(prefix),"prefix=\"%s\", ",((PetscObject)bA->m[i][j])->prefix);}
624: PetscObjectTypeCompare((PetscObject)bA->m[i][j],MATNEST,&isNest);
626: PetscViewerASCIIPrintf(viewer,"(%D,%D) : %s%stype=%s, rows=%D, cols=%D \n",i,j,name,prefix,type,NR,NC);
628: if (isNest) {
629: PetscViewerASCIIPushTab(viewer); /* push1 */
630: MatView(bA->m[i][j],viewer);
631: PetscViewerASCIIPopTab(viewer); /* pop1 */
632: }
633: }
634: }
635: PetscViewerASCIIPopTab(viewer); /* pop0 */
636: }
637: return(0);
638: }
642: static PetscErrorCode MatZeroEntries_Nest(Mat A)
643: {
644: Mat_Nest *bA = (Mat_Nest*)A->data;
645: PetscInt i,j;
649: for (i=0; i<bA->nr; i++) {
650: for (j=0; j<bA->nc; j++) {
651: if (!bA->m[i][j]) continue;
652: MatZeroEntries(bA->m[i][j]);
653: }
654: }
655: return(0);
656: }
660: static PetscErrorCode MatCopy_Nest(Mat A,Mat B,MatStructure str)
661: {
662: Mat_Nest *bA = (Mat_Nest*)A->data,*bB = (Mat_Nest*)B->data;
663: PetscInt i,j,nr = bA->nr,nc = bA->nc;
667: if (nr != bB->nr || nc != bB->nc) SETERRQ4(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"Cannot copy a Mat_Nest of block size (%D,%D) to a Mat_Nest of block size (%D,%D)",bB->nr,bB->nc,nr,nc);
668: for (i=0; i<nr; i++) {
669: for (j=0; j<nc; j++) {
670: if (bA->m[i][j] && bB->m[i][j]) {
671: MatCopy(bA->m[i][j],bB->m[i][j],str);
672: } else if (bA->m[i][j] || bB->m[i][j]) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"Matrix block does not exist at %D,%D",i,j);
673: }
674: }
675: return(0);
676: }
680: static PetscErrorCode MatDuplicate_Nest(Mat A,MatDuplicateOption op,Mat *B)
681: {
682: Mat_Nest *bA = (Mat_Nest*)A->data;
683: Mat *b;
684: PetscInt i,j,nr = bA->nr,nc = bA->nc;
688: PetscMalloc1(nr*nc,&b);
689: for (i=0; i<nr; i++) {
690: for (j=0; j<nc; j++) {
691: if (bA->m[i][j]) {
692: MatDuplicate(bA->m[i][j],op,&b[i*nc+j]);
693: } else {
694: b[i*nc+j] = NULL;
695: }
696: }
697: }
698: MatCreateNest(PetscObjectComm((PetscObject)A),nr,bA->isglobal.row,nc,bA->isglobal.col,b,B);
699: /* Give the new MatNest exclusive ownership */
700: for (i=0; i<nr*nc; i++) {
701: MatDestroy(&b[i]);
702: }
703: PetscFree(b);
705: MatAssemblyBegin(*B,MAT_FINAL_ASSEMBLY);
706: MatAssemblyEnd(*B,MAT_FINAL_ASSEMBLY);
707: return(0);
708: }
710: /* nest api */
713: PetscErrorCode MatNestGetSubMat_Nest(Mat A,PetscInt idxm,PetscInt jdxm,Mat *mat)
714: {
715: Mat_Nest *bA = (Mat_Nest*)A->data;
718: if (idxm >= bA->nr) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_OUTOFRANGE,"Row too large: row %D max %D",idxm,bA->nr-1);
719: if (jdxm >= bA->nc) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_OUTOFRANGE,"Col too large: row %D max %D",jdxm,bA->nc-1);
720: *mat = bA->m[idxm][jdxm];
721: return(0);
722: }
726: /*@
727: MatNestGetSubMat - Returns a single, sub-matrix from a nest matrix.
729: Not collective
731: Input Parameters:
732: + A - nest matrix
733: . idxm - index of the matrix within the nest matrix
734: - jdxm - index of the matrix within the nest matrix
736: Output Parameter:
737: . sub - matrix at index idxm,jdxm within the nest matrix
739: Level: developer
741: .seealso: MatNestGetSize(), MatNestGetSubMats()
742: @*/
743: PetscErrorCode MatNestGetSubMat(Mat A,PetscInt idxm,PetscInt jdxm,Mat *sub)
744: {
748: PetscUseMethod(A,"MatNestGetSubMat_C",(Mat,PetscInt,PetscInt,Mat*),(A,idxm,jdxm,sub));
749: return(0);
750: }
754: PetscErrorCode MatNestSetSubMat_Nest(Mat A,PetscInt idxm,PetscInt jdxm,Mat mat)
755: {
756: Mat_Nest *bA = (Mat_Nest*)A->data;
757: PetscInt m,n,M,N,mi,ni,Mi,Ni;
761: if (idxm >= bA->nr) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_OUTOFRANGE,"Row too large: row %D max %D",idxm,bA->nr-1);
762: if (jdxm >= bA->nc) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_OUTOFRANGE,"Col too large: row %D max %D",jdxm,bA->nc-1);
763: MatGetLocalSize(mat,&m,&n);
764: MatGetSize(mat,&M,&N);
765: ISGetLocalSize(bA->isglobal.row[idxm],&mi);
766: ISGetSize(bA->isglobal.row[idxm],&Mi);
767: ISGetLocalSize(bA->isglobal.col[jdxm],&ni);
768: ISGetSize(bA->isglobal.col[jdxm],&Ni);
769: if (M != Mi || N != Ni) SETERRQ4(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_INCOMP,"Submatrix dimension (%D,%D) incompatible with nest block (%D,%D)",M,N,Mi,Ni);
770: if (m != mi || n != ni) SETERRQ4(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_INCOMP,"Submatrix local dimension (%D,%D) incompatible with nest block (%D,%D)",m,n,mi,ni);
772: PetscObjectReference((PetscObject)mat);
773: MatDestroy(&bA->m[idxm][jdxm]);
774: bA->m[idxm][jdxm] = mat;
775: return(0);
776: }
780: /*@
781: MatNestSetSubMat - Set a single submatrix in the nest matrix.
783: Logically collective on the submatrix communicator
785: Input Parameters:
786: + A - nest matrix
787: . idxm - index of the matrix within the nest matrix
788: . jdxm - index of the matrix within the nest matrix
789: - sub - matrix at index idxm,jdxm within the nest matrix
791: Notes:
792: The new submatrix must have the same size and communicator as that block of the nest.
794: This increments the reference count of the submatrix.
796: Level: developer
798: .seealso: MatNestSetSubMats(), MatNestGetSubMat()
799: @*/
800: PetscErrorCode MatNestSetSubMat(Mat A,PetscInt idxm,PetscInt jdxm,Mat sub)
801: {
805: PetscUseMethod(A,"MatNestSetSubMat_C",(Mat,PetscInt,PetscInt,Mat),(A,idxm,jdxm,sub));
806: return(0);
807: }
811: PetscErrorCode MatNestGetSubMats_Nest(Mat A,PetscInt *M,PetscInt *N,Mat ***mat)
812: {
813: Mat_Nest *bA = (Mat_Nest*)A->data;
816: if (M) *M = bA->nr;
817: if (N) *N = bA->nc;
818: if (mat) *mat = bA->m;
819: return(0);
820: }
824: /*@C
825: MatNestGetSubMats - Returns the entire two dimensional array of matrices defining a nest matrix.
827: Not collective
829: Input Parameters:
830: . A - nest matrix
832: Output Parameter:
833: + M - number of rows in the nest matrix
834: . N - number of cols in the nest matrix
835: - mat - 2d array of matrices
837: Notes:
839: The user should not free the array mat.
841: Level: developer
843: .seealso: MatNestGetSize(), MatNestGetSubMat()
844: @*/
845: PetscErrorCode MatNestGetSubMats(Mat A,PetscInt *M,PetscInt *N,Mat ***mat)
846: {
850: PetscUseMethod(A,"MatNestGetSubMats_C",(Mat,PetscInt*,PetscInt*,Mat***),(A,M,N,mat));
851: return(0);
852: }
856: PetscErrorCode MatNestGetSize_Nest(Mat A,PetscInt *M,PetscInt *N)
857: {
858: Mat_Nest *bA = (Mat_Nest*)A->data;
861: if (M) *M = bA->nr;
862: if (N) *N = bA->nc;
863: return(0);
864: }
868: /*@
869: MatNestGetSize - Returns the size of the nest matrix.
871: Not collective
873: Input Parameters:
874: . A - nest matrix
876: Output Parameter:
877: + M - number of rows in the nested mat
878: - N - number of cols in the nested mat
880: Notes:
882: Level: developer
884: .seealso: MatNestGetSubMat(), MatNestGetSubMats()
885: @*/
886: PetscErrorCode MatNestGetSize(Mat A,PetscInt *M,PetscInt *N)
887: {
891: PetscUseMethod(A,"MatNestGetSize_C",(Mat,PetscInt*,PetscInt*),(A,M,N));
892: return(0);
893: }
897: static PetscErrorCode MatNestGetISs_Nest(Mat A,IS rows[],IS cols[])
898: {
899: Mat_Nest *vs = (Mat_Nest*)A->data;
900: PetscInt i;
903: if (rows) for (i=0; i<vs->nr; i++) rows[i] = vs->isglobal.row[i];
904: if (cols) for (i=0; i<vs->nc; i++) cols[i] = vs->isglobal.col[i];
905: return(0);
906: }
910: /*@C
911: MatNestGetISs - Returns the index sets partitioning the row and column spaces
913: Not collective
915: Input Parameters:
916: . A - nest matrix
918: Output Parameter:
919: + rows - array of row index sets
920: - cols - array of column index sets
922: Level: advanced
924: Notes:
925: The user must have allocated arrays of the correct size. The reference count is not increased on the returned ISs.
927: .seealso: MatNestGetSubMat(), MatNestGetSubMats(), MatNestGetSize(), MatNestGetLocalISs()
928: @*/
929: PetscErrorCode MatNestGetISs(Mat A,IS rows[],IS cols[])
930: {
935: PetscUseMethod(A,"MatNestGetISs_C",(Mat,IS[],IS[]),(A,rows,cols));
936: return(0);
937: }
941: static PetscErrorCode MatNestGetLocalISs_Nest(Mat A,IS rows[],IS cols[])
942: {
943: Mat_Nest *vs = (Mat_Nest*)A->data;
944: PetscInt i;
947: if (rows) for (i=0; i<vs->nr; i++) rows[i] = vs->islocal.row[i];
948: if (cols) for (i=0; i<vs->nc; i++) cols[i] = vs->islocal.col[i];
949: return(0);
950: }
954: /*@C
955: MatNestGetLocalISs - Returns the index sets partitioning the row and column spaces
957: Not collective
959: Input Parameters:
960: . A - nest matrix
962: Output Parameter:
963: + rows - array of row index sets (or NULL to ignore)
964: - cols - array of column index sets (or NULL to ignore)
966: Level: advanced
968: Notes:
969: The user must have allocated arrays of the correct size. The reference count is not increased on the returned ISs.
971: .seealso: MatNestGetSubMat(), MatNestGetSubMats(), MatNestGetSize(), MatNestGetISs()
972: @*/
973: PetscErrorCode MatNestGetLocalISs(Mat A,IS rows[],IS cols[])
974: {
979: PetscUseMethod(A,"MatNestGetLocalISs_C",(Mat,IS[],IS[]),(A,rows,cols));
980: return(0);
981: }
985: PetscErrorCode MatNestSetVecType_Nest(Mat A,VecType vtype)
986: {
988: PetscBool flg;
991: PetscStrcmp(vtype,VECNEST,&flg);
992: /* In reality, this only distinguishes VECNEST and "other" */
993: if (flg) A->ops->getvecs = MatCreateVecs_Nest;
994: else A->ops->getvecs = (PetscErrorCode (*)(Mat,Vec*,Vec*)) 0;
995: return(0);
996: }
1000: /*@C
1001: MatNestSetVecType - Sets the type of Vec returned by MatCreateVecs()
1003: Not collective
1005: Input Parameters:
1006: + A - nest matrix
1007: - vtype - type to use for creating vectors
1009: Notes:
1011: Level: developer
1013: .seealso: MatCreateVecs()
1014: @*/
1015: PetscErrorCode MatNestSetVecType(Mat A,VecType vtype)
1016: {
1020: PetscTryMethod(A,"MatNestSetVecType_C",(Mat,VecType),(A,vtype));
1021: return(0);
1022: }
1026: PetscErrorCode MatNestSetSubMats_Nest(Mat A,PetscInt nr,const IS is_row[],PetscInt nc,const IS is_col[],const Mat a[])
1027: {
1028: Mat_Nest *s = (Mat_Nest*)A->data;
1029: PetscInt i,j,m,n,M,N;
1033: s->nr = nr;
1034: s->nc = nc;
1036: /* Create space for submatrices */
1037: PetscMalloc1(nr,&s->m);
1038: for (i=0; i<nr; i++) {
1039: PetscMalloc1(nc,&s->m[i]);
1040: }
1041: for (i=0; i<nr; i++) {
1042: for (j=0; j<nc; j++) {
1043: s->m[i][j] = a[i*nc+j];
1044: if (a[i*nc+j]) {
1045: PetscObjectReference((PetscObject)a[i*nc+j]);
1046: }
1047: }
1048: }
1050: MatSetUp_NestIS_Private(A,nr,is_row,nc,is_col);
1052: PetscMalloc1(nr,&s->row_len);
1053: PetscMalloc1(nc,&s->col_len);
1054: for (i=0; i<nr; i++) s->row_len[i]=-1;
1055: for (j=0; j<nc; j++) s->col_len[j]=-1;
1057: MatNestGetSizes_Private(A,&m,&n,&M,&N);
1059: PetscLayoutSetSize(A->rmap,M);
1060: PetscLayoutSetLocalSize(A->rmap,m);
1061: PetscLayoutSetSize(A->cmap,N);
1062: PetscLayoutSetLocalSize(A->cmap,n);
1064: PetscLayoutSetUp(A->rmap);
1065: PetscLayoutSetUp(A->cmap);
1067: PetscCalloc2(nr,&s->left,nc,&s->right);
1068: return(0);
1069: }
1073: /*@
1074: MatNestSetSubMats - Sets the nested submatrices
1076: Collective on Mat
1078: Input Parameter:
1079: + N - nested matrix
1080: . nr - number of nested row blocks
1081: . is_row - index sets for each nested row block, or NULL to make contiguous
1082: . nc - number of nested column blocks
1083: . is_col - index sets for each nested column block, or NULL to make contiguous
1084: - a - row-aligned array of nr*nc submatrices, empty submatrices can be passed using NULL
1086: Level: advanced
1088: .seealso: MatCreateNest(), MATNEST
1089: @*/
1090: PetscErrorCode MatNestSetSubMats(Mat A,PetscInt nr,const IS is_row[],PetscInt nc,const IS is_col[],const Mat a[])
1091: {
1093: PetscInt i;
1097: if (nr < 0) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_OUTOFRANGE,"Number of rows cannot be negative");
1098: if (nr && is_row) {
1101: }
1102: if (nc < 0) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_OUTOFRANGE,"Number of columns cannot be negative");
1103: if (nc && is_col) {
1106: }
1108: PetscUseMethod(A,"MatNestSetSubMats_C",(Mat,PetscInt,const IS[],PetscInt,const IS[],const Mat[]),(A,nr,is_row,nc,is_col,a));
1109: return(0);
1110: }
1114: static PetscErrorCode MatNestCreateAggregateL2G_Private(Mat A,PetscInt n,const IS islocal[],const IS isglobal[],PetscBool colflg,ISLocalToGlobalMapping *ltog)
1115: {
1117: PetscBool flg;
1118: PetscInt i,j,m,mi,*ix;
1121: for (i=0,m=0,flg=PETSC_FALSE; i<n; i++) {
1122: if (islocal[i]) {
1123: ISGetSize(islocal[i],&mi);
1124: flg = PETSC_TRUE; /* We found a non-trivial entry */
1125: } else {
1126: ISGetSize(isglobal[i],&mi);
1127: }
1128: m += mi;
1129: }
1130: if (flg) {
1131: PetscMalloc1(m,&ix);
1132: for (i=0,n=0; i<n; i++) {
1133: ISLocalToGlobalMapping smap = NULL;
1134: VecScatter scat;
1135: IS isreq;
1136: Vec lvec,gvec;
1137: union {char padding[sizeof(PetscScalar)]; PetscInt integer;} *x;
1138: Mat sub;
1140: if (sizeof(*x) != sizeof(PetscScalar)) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"No support when scalars smaller than integers");
1141: if (colflg) {
1142: MatNestFindNonzeroSubMatRow(A,i,&sub);
1143: } else {
1144: MatNestFindNonzeroSubMatCol(A,i,&sub);
1145: }
1146: if (sub) {MatGetLocalToGlobalMapping(sub,&smap,NULL);}
1147: if (islocal[i]) {
1148: ISGetSize(islocal[i],&mi);
1149: } else {
1150: ISGetSize(isglobal[i],&mi);
1151: }
1152: for (j=0; j<mi; j++) ix[m+j] = j;
1153: if (smap) {ISLocalToGlobalMappingApply(smap,mi,ix+m,ix+m);}
1154: /*
1155: Now we need to extract the monolithic global indices that correspond to the given split global indices.
1156: In many/most cases, we only want MatGetLocalSubMatrix() to work, in which case we only need to know the size of the local spaces.
1157: The approach here is ugly because it uses VecScatter to move indices.
1158: */
1159: VecCreateSeq(PETSC_COMM_SELF,mi,&lvec);
1160: VecCreateMPI(((PetscObject)isglobal[i])->comm,mi,PETSC_DECIDE,&gvec);
1161: ISCreateGeneral(((PetscObject)isglobal[i])->comm,mi,ix+m,PETSC_COPY_VALUES,&isreq);
1162: VecScatterCreate(gvec,isreq,lvec,NULL,&scat);
1163: VecGetArray(gvec,(PetscScalar**)&x);
1164: for (j=0; j<mi; j++) x[j].integer = ix[m+j];
1165: VecRestoreArray(gvec,(PetscScalar**)&x);
1166: VecScatterBegin(scat,gvec,lvec,INSERT_VALUES,SCATTER_FORWARD);
1167: VecScatterEnd(scat,gvec,lvec,INSERT_VALUES,SCATTER_FORWARD);
1168: VecGetArray(lvec,(PetscScalar**)&x);
1169: for (j=0; j<mi; j++) ix[m+j] = x[j].integer;
1170: VecRestoreArray(lvec,(PetscScalar**)&x);
1171: VecDestroy(&lvec);
1172: VecDestroy(&gvec);
1173: ISDestroy(&isreq);
1174: VecScatterDestroy(&scat);
1175: m += mi;
1176: }
1177: ISLocalToGlobalMappingCreate(PetscObjectComm((PetscObject)A),1,m,ix,PETSC_OWN_POINTER,ltog);
1178: } else {
1179: *ltog = NULL;
1180: }
1181: return(0);
1182: }
1185: /* If an IS was provided, there is nothing Nest needs to do, otherwise Nest will build a strided IS */
1186: /*
1187: nprocessors = NP
1188: Nest x^T = ((g_0,g_1,...g_nprocs-1), (h_0,h_1,...h_NP-1))
1189: proc 0: => (g_0,h_0,)
1190: proc 1: => (g_1,h_1,)
1191: ...
1192: proc nprocs-1: => (g_NP-1,h_NP-1,)
1194: proc 0: proc 1: proc nprocs-1:
1195: is[0] = (0,1,2,...,nlocal(g_0)-1) (0,1,...,nlocal(g_1)-1) (0,1,...,nlocal(g_NP-1))
1197: proc 0:
1198: is[1] = (nlocal(g_0),nlocal(g_0)+1,...,nlocal(g_0)+nlocal(h_0)-1)
1199: proc 1:
1200: is[1] = (nlocal(g_1),nlocal(g_1)+1,...,nlocal(g_1)+nlocal(h_1)-1)
1202: proc NP-1:
1203: is[1] = (nlocal(g_NP-1),nlocal(g_NP-1)+1,...,nlocal(g_NP-1)+nlocal(h_NP-1)-1)
1204: */
1207: static PetscErrorCode MatSetUp_NestIS_Private(Mat A,PetscInt nr,const IS is_row[],PetscInt nc,const IS is_col[])
1208: {
1209: Mat_Nest *vs = (Mat_Nest*)A->data;
1210: PetscInt i,j,offset,n,nsum,bs;
1212: Mat sub = NULL;
1215: PetscMalloc1(nr,&vs->isglobal.row);
1216: PetscMalloc1(nc,&vs->isglobal.col);
1217: if (is_row) { /* valid IS is passed in */
1218: /* refs on is[] are incremeneted */
1219: for (i=0; i<vs->nr; i++) {
1220: PetscObjectReference((PetscObject)is_row[i]);
1222: vs->isglobal.row[i] = is_row[i];
1223: }
1224: } else { /* Create the ISs by inspecting sizes of a submatrix in each row */
1225: nsum = 0;
1226: for (i=0; i<vs->nr; i++) { /* Add up the local sizes to compute the aggregate offset */
1227: MatNestFindNonzeroSubMatRow(A,i,&sub);
1228: if (!sub) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"No nonzero submatrix in row %D",i);
1229: MatGetLocalSize(sub,&n,NULL);
1230: if (n < 0) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Sizes have not yet been set for submatrix");
1231: nsum += n;
1232: }
1233: MPI_Scan(&nsum,&offset,1,MPIU_INT,MPI_SUM,PetscObjectComm((PetscObject)A));
1234: offset -= nsum;
1235: for (i=0; i<vs->nr; i++) {
1236: MatNestFindNonzeroSubMatRow(A,i,&sub);
1237: MatGetLocalSize(sub,&n,NULL);
1238: MatGetBlockSize(sub,&bs);
1239: ISCreateStride(PetscObjectComm((PetscObject)sub),n,offset,1,&vs->isglobal.row[i]);
1240: ISSetBlockSize(vs->isglobal.row[i],bs);
1241: offset += n;
1242: }
1243: }
1245: if (is_col) { /* valid IS is passed in */
1246: /* refs on is[] are incremeneted */
1247: for (j=0; j<vs->nc; j++) {
1248: PetscObjectReference((PetscObject)is_col[j]);
1250: vs->isglobal.col[j] = is_col[j];
1251: }
1252: } else { /* Create the ISs by inspecting sizes of a submatrix in each column */
1253: offset = A->cmap->rstart;
1254: nsum = 0;
1255: for (j=0; j<vs->nc; j++) {
1256: MatNestFindNonzeroSubMatCol(A,j,&sub);
1257: if (!sub) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"No nonzero submatrix in column %D",i);
1258: MatGetLocalSize(sub,NULL,&n);
1259: if (n < 0) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Sizes have not yet been set for submatrix");
1260: nsum += n;
1261: }
1262: MPI_Scan(&nsum,&offset,1,MPIU_INT,MPI_SUM,PetscObjectComm((PetscObject)A));
1263: offset -= nsum;
1264: for (j=0; j<vs->nc; j++) {
1265: MatNestFindNonzeroSubMatCol(A,j,&sub);
1266: MatGetLocalSize(sub,NULL,&n);
1267: MatGetBlockSize(sub,&bs);
1268: ISCreateStride(PetscObjectComm((PetscObject)sub),n,offset,1,&vs->isglobal.col[j]);
1269: ISSetBlockSize(vs->isglobal.col[j],bs);
1270: offset += n;
1271: }
1272: }
1274: /* Set up the local ISs */
1275: PetscMalloc1(vs->nr,&vs->islocal.row);
1276: PetscMalloc1(vs->nc,&vs->islocal.col);
1277: for (i=0,offset=0; i<vs->nr; i++) {
1278: IS isloc;
1279: ISLocalToGlobalMapping rmap = NULL;
1280: PetscInt nlocal,bs;
1281: MatNestFindNonzeroSubMatRow(A,i,&sub);
1282: if (sub) {MatGetLocalToGlobalMapping(sub,&rmap,NULL);}
1283: if (rmap) {
1284: MatGetBlockSize(sub,&bs);
1285: ISLocalToGlobalMappingGetSize(rmap,&nlocal);
1286: ISCreateStride(PETSC_COMM_SELF,nlocal,offset,1,&isloc);
1287: ISSetBlockSize(isloc,bs);
1288: } else {
1289: nlocal = 0;
1290: isloc = NULL;
1291: }
1292: vs->islocal.row[i] = isloc;
1293: offset += nlocal;
1294: }
1295: for (i=0,offset=0; i<vs->nc; i++) {
1296: IS isloc;
1297: ISLocalToGlobalMapping cmap = NULL;
1298: PetscInt nlocal,bs;
1299: MatNestFindNonzeroSubMatCol(A,i,&sub);
1300: if (sub) {MatGetLocalToGlobalMapping(sub,NULL,&cmap);}
1301: if (cmap) {
1302: MatGetBlockSize(sub,&bs);
1303: ISLocalToGlobalMappingGetSize(cmap,&nlocal);
1304: ISCreateStride(PETSC_COMM_SELF,nlocal,offset,1,&isloc);
1305: ISSetBlockSize(isloc,bs);
1306: } else {
1307: nlocal = 0;
1308: isloc = NULL;
1309: }
1310: vs->islocal.col[i] = isloc;
1311: offset += nlocal;
1312: }
1314: /* Set up the aggregate ISLocalToGlobalMapping */
1315: {
1316: ISLocalToGlobalMapping rmap,cmap;
1317: MatNestCreateAggregateL2G_Private(A,vs->nr,vs->islocal.row,vs->isglobal.row,PETSC_FALSE,&rmap);
1318: MatNestCreateAggregateL2G_Private(A,vs->nc,vs->islocal.col,vs->isglobal.col,PETSC_TRUE,&cmap);
1319: if (rmap && cmap) {MatSetLocalToGlobalMapping(A,rmap,cmap);}
1320: ISLocalToGlobalMappingDestroy(&rmap);
1321: ISLocalToGlobalMappingDestroy(&cmap);
1322: }
1324: #if defined(PETSC_USE_DEBUG)
1325: for (i=0; i<vs->nr; i++) {
1326: for (j=0; j<vs->nc; j++) {
1327: PetscInt m,n,M,N,mi,ni,Mi,Ni;
1328: Mat B = vs->m[i][j];
1329: if (!B) continue;
1330: MatGetSize(B,&M,&N);
1331: MatGetLocalSize(B,&m,&n);
1332: ISGetSize(vs->isglobal.row[i],&Mi);
1333: ISGetSize(vs->isglobal.col[j],&Ni);
1334: ISGetLocalSize(vs->isglobal.row[i],&mi);
1335: ISGetLocalSize(vs->isglobal.col[j],&ni);
1336: if (M != Mi || N != Ni) SETERRQ6(PetscObjectComm((PetscObject)sub),PETSC_ERR_ARG_INCOMP,"Global sizes (%D,%D) of nested submatrix (%D,%D) do not agree with space defined by index sets (%D,%D)",M,N,i,j,Mi,Ni);
1337: if (m != mi || n != ni) SETERRQ6(PetscObjectComm((PetscObject)sub),PETSC_ERR_ARG_INCOMP,"Local sizes (%D,%D) of nested submatrix (%D,%D) do not agree with space defined by index sets (%D,%D)",m,n,i,j,mi,ni);
1338: }
1339: }
1340: #endif
1342: /* Set A->assembled if all non-null blocks are currently assembled */
1343: for (i=0; i<vs->nr; i++) {
1344: for (j=0; j<vs->nc; j++) {
1345: if (vs->m[i][j] && !vs->m[i][j]->assembled) return(0);
1346: }
1347: }
1348: A->assembled = PETSC_TRUE;
1349: return(0);
1350: }
1354: /*@C
1355: MatCreateNest - Creates a new matrix containing several nested submatrices, each stored separately
1357: Collective on Mat
1359: Input Parameter:
1360: + comm - Communicator for the new Mat
1361: . nr - number of nested row blocks
1362: . is_row - index sets for each nested row block, or NULL to make contiguous
1363: . nc - number of nested column blocks
1364: . is_col - index sets for each nested column block, or NULL to make contiguous
1365: - a - row-aligned array of nr*nc submatrices, empty submatrices can be passed using NULL
1367: Output Parameter:
1368: . B - new matrix
1370: Level: advanced
1372: .seealso: MatCreate(), VecCreateNest(), DMCreateMatrix(), MATNEST
1373: @*/
1374: PetscErrorCode MatCreateNest(MPI_Comm comm,PetscInt nr,const IS is_row[],PetscInt nc,const IS is_col[],const Mat a[],Mat *B)
1375: {
1376: Mat A;
1380: *B = 0;
1381: MatCreate(comm,&A);
1382: MatSetType(A,MATNEST);
1383: MatSetUp(A);
1384: MatNestSetSubMats(A,nr,is_row,nc,is_col,a);
1385: *B = A;
1386: return(0);
1387: }
1391: PETSC_EXTERN PetscErrorCode MatConvert_Nest_AIJ(Mat A,MatType newtype,MatReuse reuse,Mat *newmat)
1392: {
1394: Mat_Nest *nest = (Mat_Nest*)A->data;
1395: PetscInt m,n,M,N,i,j,k,*dnnz,*onnz,rstart;
1396: Mat C;
1399: MatGetSize(A,&M,&N);
1400: MatGetLocalSize(A,&m,&n);
1401: switch (reuse) {
1402: case MAT_INITIAL_MATRIX:
1403: MatCreate(PetscObjectComm((PetscObject)A),&C);
1404: MatSetType(C,newtype);
1405: MatSetSizes(C,m,n,M,N);
1406: *newmat = C;
1407: break;
1408: case MAT_REUSE_MATRIX:
1409: C = *newmat;
1410: break;
1411: default: SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"MatReuse");
1412: }
1414: /* Preallocation */
1415: PetscMalloc1(2*m,&dnnz);
1416: onnz = dnnz + m;
1417: for (k=0; k<m; k++) {
1418: dnnz[k] = 0;
1419: onnz[k] = 0;
1420: }
1421: for (j=0; j<nest->nc; ++j) {
1422: IS bNis;
1423: PetscInt bN;
1424: const PetscInt *bNindices;
1425: /* Using global column indices and ISAllGather() is not scalable. */
1426: ISAllGather(nest->isglobal.col[j], &bNis);
1427: ISGetSize(bNis, &bN);
1428: ISGetIndices(bNis,&bNindices);
1429: for (i=0; i<nest->nr; ++i) {
1430: PetscSF bmsf;
1431: PetscSFNode *bmedges;
1432: Mat B;
1433: PetscInt bm, *bmdnnz, br;
1434: const PetscInt *bmindices;
1435: B = nest->m[i][j];
1436: if (!B) continue;
1437: ISGetLocalSize(nest->isglobal.row[i],&bm);
1438: ISGetIndices(nest->isglobal.row[i],&bmindices);
1439: PetscSFCreate(PetscObjectComm((PetscObject)A), &bmsf);
1440: PetscMalloc1(bm,&bmedges);
1441: PetscMalloc1(2*bm,&bmdnnz);
1442: for (k = 0; k < 2*bm; ++k) bmdnnz[k] = 0;
1443: /*
1444: Locate the owners for all of the locally-owned global row indices for this row block.
1445: These determine the roots of PetscSF used to communicate preallocation data to row owners.
1446: The roots correspond to the dnnz and onnz entries; thus, there are two roots per row.
1447: */
1448: MatGetOwnershipRange(B,&rstart,NULL);
1449: for (br = 0; br < bm; ++br) {
1450: PetscInt row = bmindices[br], rowowner = 0, brncols, col, colowner = 0;
1451: const PetscInt *brcols;
1452: PetscInt rowrel = 0; /* row's relative index on its owner rank */
1453: PetscInt rowownerm; /* local row size on row's owning rank. */
1454: PetscLayoutFindOwnerIndex(A->rmap,row,&rowowner,&rowrel);
1456: rowownerm = A->rmap->range[rowowner+1]-A->rmap->range[rowowner];
1458: bmedges[br].rank = rowowner; bmedges[br].index = rowrel; /* edge from bmdnnz to dnnz */
1459: bmedges[br].rank = rowowner; bmedges[br].index = rowrel+rowownerm; /* edge from bmonnz to onnz */
1460: /* Now actually compute the data -- bmdnnz and bmonnz by looking at the global columns in the br row of this block. */
1461: /* Note that this is not a pessimistic bound only because we assume the index sets embedding the blocks do not overlap. */
1462: MatGetRow(B,br+rstart,&brncols,&brcols,NULL);
1463: for (k=0; k<brncols; k++) {
1464: col = bNindices[brcols[k]];
1465: PetscLayoutFindOwnerIndex(A->cmap,col,&colowner,NULL);
1466: if (colowner == rowowner) bmdnnz[br]++;
1467: else onnz[br]++;
1468: }
1469: MatRestoreRow(B,br+rstart,&brncols,&brcols,NULL);
1470: }
1471: ISRestoreIndices(nest->isglobal.row[i],&bmindices);
1472: /* bsf will have to take care of disposing of bedges. */
1473: PetscSFSetGraph(bmsf,m,bm,NULL,PETSC_COPY_VALUES,bmedges,PETSC_OWN_POINTER);
1474: PetscSFReduceBegin(bmsf,MPIU_INT,bmdnnz,dnnz,MPIU_SUM);
1475: PetscSFReduceEnd(bmsf,MPIU_INT,bmdnnz,dnnz,MPIU_SUM);
1476: PetscFree(bmdnnz);
1477: PetscSFDestroy(&bmsf);
1478: }
1479: ISRestoreIndices(bNis,&bNindices);
1480: ISDestroy(&bNis);
1481: }
1482: /* dnnz is not correct */
1483: MatSeqAIJSetPreallocation(C,0,dnnz);
1484: MatMPIAIJSetPreallocation(C,0,dnnz,0,onnz);
1485: PetscFree(dnnz);
1487: /* Fill by row */
1488: for (j=0; j<nest->nc; ++j) {
1489: /* Using global column indices and ISAllGather() is not scalable. */
1490: IS bNis;
1491: PetscInt bN;
1492: const PetscInt *bNindices;
1493: ISAllGather(nest->isglobal.col[j], &bNis);
1494: ISGetSize(bNis,&bN);
1495: ISGetIndices(bNis,&bNindices);
1496: for (i=0; i<nest->nr; ++i) {
1497: Mat B;
1498: PetscInt bm, br;
1499: const PetscInt *bmindices;
1500: B = nest->m[i][j];
1501: if (!B) continue;
1502: ISGetLocalSize(nest->isglobal.row[i],&bm);
1503: ISGetIndices(nest->isglobal.row[i],&bmindices);
1504: MatGetOwnershipRange(B,&rstart,NULL);
1505: for (br = 0; br < bm; ++br) {
1506: PetscInt row = bmindices[br], brncols, *cols;
1507: const PetscInt *brcols;
1508: const PetscScalar *brcoldata;
1509: MatGetRow(B,br+rstart,&brncols,&brcols,&brcoldata);
1510: PetscMalloc1(brncols,&cols);
1511: for (k=0; k<brncols; k++) cols[k] = bNindices[brcols[k]];
1512: /*
1513: Nest blocks are required to be nonoverlapping -- otherwise nest and monolithic index layouts wouldn't match.
1514: Thus, we could use INSERT_VALUES, but I prefer ADD_VALUES.
1515: */
1516: MatSetValues(C,1,&row,brncols,cols,brcoldata,ADD_VALUES);
1517: MatRestoreRow(B,br+rstart,&brncols,&brcols,&brcoldata);
1518: PetscFree(cols);
1519: }
1520: ISRestoreIndices(nest->isglobal.row[i],&bmindices);
1521: }
1522: ISRestoreIndices(bNis,&bNindices);
1523: ISDestroy(&bNis);
1524: }
1525: MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
1526: MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);
1527: return(0);
1528: }
1530: /*MC
1531: MATNEST - MATNEST = "nest" - Matrix type consisting of nested submatrices, each stored separately.
1533: Level: intermediate
1535: Notes:
1536: This matrix type permits scalable use of PCFieldSplit and avoids the large memory costs of extracting submatrices.
1537: It allows the use of symmetric and block formats for parts of multi-physics simulations.
1538: It is usually used with DMComposite and DMCreateMatrix()
1540: .seealso: MatCreate(), MatType, MatCreateNest()
1541: M*/
1544: PETSC_EXTERN PetscErrorCode MatCreate_Nest(Mat A)
1545: {
1546: Mat_Nest *s;
1550: PetscNewLog(A,&s);
1551: A->data = (void*)s;
1553: s->nr = -1;
1554: s->nc = -1;
1555: s->m = NULL;
1556: s->splitassembly = PETSC_FALSE;
1558: PetscMemzero(A->ops,sizeof(*A->ops));
1560: A->ops->mult = MatMult_Nest;
1561: A->ops->multadd = MatMultAdd_Nest;
1562: A->ops->multtranspose = MatMultTranspose_Nest;
1563: A->ops->multtransposeadd = MatMultTransposeAdd_Nest;
1564: A->ops->assemblybegin = MatAssemblyBegin_Nest;
1565: A->ops->assemblyend = MatAssemblyEnd_Nest;
1566: A->ops->zeroentries = MatZeroEntries_Nest;
1567: A->ops->copy = MatCopy_Nest;
1568: A->ops->duplicate = MatDuplicate_Nest;
1569: A->ops->getsubmatrix = MatGetSubMatrix_Nest;
1570: A->ops->destroy = MatDestroy_Nest;
1571: A->ops->view = MatView_Nest;
1572: A->ops->getvecs = 0; /* Use VECNEST by calling MatNestSetVecType(A,VECNEST) */
1573: A->ops->getlocalsubmatrix = MatGetLocalSubMatrix_Nest;
1574: A->ops->restorelocalsubmatrix = MatRestoreLocalSubMatrix_Nest;
1575: A->ops->getdiagonal = MatGetDiagonal_Nest;
1576: A->ops->diagonalscale = MatDiagonalScale_Nest;
1577: A->ops->scale = MatScale_Nest;
1578: A->ops->shift = MatShift_Nest;
1580: A->spptr = 0;
1581: A->assembled = PETSC_FALSE;
1583: /* expose Nest api's */
1584: PetscObjectComposeFunction((PetscObject)A,"MatNestGetSubMat_C", MatNestGetSubMat_Nest);
1585: PetscObjectComposeFunction((PetscObject)A,"MatNestSetSubMat_C", MatNestSetSubMat_Nest);
1586: PetscObjectComposeFunction((PetscObject)A,"MatNestGetSubMats_C", MatNestGetSubMats_Nest);
1587: PetscObjectComposeFunction((PetscObject)A,"MatNestGetSize_C", MatNestGetSize_Nest);
1588: PetscObjectComposeFunction((PetscObject)A,"MatNestGetISs_C", MatNestGetISs_Nest);
1589: PetscObjectComposeFunction((PetscObject)A,"MatNestGetLocalISs_C", MatNestGetLocalISs_Nest);
1590: PetscObjectComposeFunction((PetscObject)A,"MatNestSetVecType_C", MatNestSetVecType_Nest);
1591: PetscObjectComposeFunction((PetscObject)A,"MatNestSetSubMats_C", MatNestSetSubMats_Nest);
1592: PetscObjectComposeFunction((PetscObject)A,"MatConvert_nest_aij_C",MatConvert_Nest_AIJ);
1594: PetscObjectChangeTypeName((PetscObject)A,MATNEST);
1595: return(0);
1596: }