Actual source code: fdaij.c

petsc-3.6.4 2016-04-12
Report Typos and Errors
  2: #include <../src/mat/impls/aij/seq/aij.h>
  3: #include <../src/mat/impls/baij/seq/baij.h>
  4: #include <petsc/private/isimpl.h>

  6: /*
  7:     This routine is shared by SeqAIJ and SeqBAIJ matrices,
  8:     since it operators only on the nonzero structure of the elements or blocks.
  9: */
 12: PetscErrorCode MatFDColoringCreate_SeqXAIJ(Mat mat,ISColoring iscoloring,MatFDColoring c)
 13: {
 15:   PetscInt       bs,nis=iscoloring->n,m=mat->rmap->n;
 16:   PetscBool      isBAIJ;

 19:   /* set default brows and bcols for speedup inserting the dense matrix into sparse Jacobian */
 20:   MatGetBlockSize(mat,&bs);
 21:   PetscObjectTypeCompare((PetscObject)mat,MATSEQBAIJ,&isBAIJ);
 22:   if (isBAIJ) {
 23:     c->brows = m;
 24:     c->bcols = 1;
 25:   } else { /* seqaij matrix */
 26:     /* bcols is chosen s.t. dy-array takes 50% of memory space as mat */
 27:     Mat_SeqAIJ *spA = (Mat_SeqAIJ*)mat->data;
 28:     PetscReal  mem;
 29:     PetscInt   nz,brows,bcols;

 31:     bs    = 1; /* only bs=1 is supported for SeqAIJ matrix */

 33:     nz    = spA->nz;
 34:     mem   = nz*(sizeof(PetscScalar) + sizeof(PetscInt)) + 3*m*sizeof(PetscInt);
 35:     bcols = (PetscInt)(0.5*mem /(m*sizeof(PetscScalar)));
 36:     brows = 1000/bcols;
 37:     if (bcols > nis) bcols = nis;
 38:     if (brows == 0 || brows > m) brows = m;
 39:     c->brows = brows;
 40:     c->bcols = bcols;
 41:   }

 43:   c->M       = mat->rmap->N/bs;   /* set total rows, columns and local rows */
 44:   c->N       = mat->cmap->N/bs;
 45:   c->m       = mat->rmap->N/bs;
 46:   c->rstart  = 0;
 47:   c->ncolors = nis;
 48:   c->ctype   = IS_COLORING_GHOSTED;
 49:   return(0);
 50: }

 52: /*
 53:  Reorder Jentry such that blocked brows*bols of entries from dense matrix are inserted into Jacobian for improved cache performance
 54:    Input Parameters:
 55: +  mat - the matrix containing the nonzero structure of the Jacobian
 56: .  color - the coloring context
 57: -  nz - number of local non-zeros in mat
 58: */
 61: PetscErrorCode MatFDColoringSetUpBlocked_AIJ_Private(Mat mat,MatFDColoring c,PetscInt nz)
 62: {
 64:   PetscInt       i,j,nrows,nbcols,brows=c->brows,bcols=c->bcols,mbs=c->m,nis=c->ncolors;
 65:   PetscInt       *color_start,*row_start,*nrows_new,nz_new,row_end;

 68:   if (brows < 1 || brows > mbs) brows = mbs;
 69:   PetscMalloc2(bcols+1,&color_start,bcols,&row_start);
 70:   PetscMalloc1(nis,&nrows_new);
 71:   PetscMalloc1(bcols*mat->rmap->n,&c->dy);
 72:   PetscLogObjectMemory((PetscObject)c,bcols*mat->rmap->n*sizeof(PetscScalar));

 74:   nz_new = 0;
 75:   nbcols = 0;
 76:   color_start[bcols] = 0;

 78:   if (c->htype[0] == 'd') { /* ----  c->htype == 'ds', use MatEntry --------*/
 79:     MatEntry       *Jentry_new,*Jentry=c->matentry;
 80:     PetscMalloc1(nz,&Jentry_new);
 81:     for (i=0; i<nis; i+=bcols) { /* loop over colors */
 82:       if (i + bcols > nis) {
 83:         color_start[nis - i] = color_start[bcols];
 84:         bcols                = nis - i;
 85:       }

 87:       color_start[0] = color_start[bcols];
 88:       for (j=0; j<bcols; j++) {
 89:         color_start[j+1] = c->nrows[i+j] + color_start[j];
 90:         row_start[j]     = 0;
 91:       }

 93:       row_end = brows;
 94:       if (row_end > mbs) row_end = mbs;

 96:       while (row_end <= mbs) {   /* loop over block rows */
 97:         for (j=0; j<bcols; j++) {       /* loop over block columns */
 98:           nrows = c->nrows[i+j];
 99:           nz    = color_start[j];
100:           while (row_start[j] < nrows) {
101:             if (Jentry[nz].row >= row_end) {
102:               color_start[j] = nz;
103:               break;
104:             } else { /* copy Jentry[nz] to Jentry_new[nz_new] */
105:               Jentry_new[nz_new].row     = Jentry[nz].row + j*mbs; /* index in dy-array */
106:               Jentry_new[nz_new].col     = Jentry[nz].col;
107:               Jentry_new[nz_new].valaddr = Jentry[nz].valaddr;
108:               nz_new++; nz++; row_start[j]++;
109:             }
110:           }
111:         }
112:         if (row_end == mbs) break;
113:         row_end += brows;
114:         if (row_end > mbs) row_end = mbs;
115:       }
116:       nrows_new[nbcols++] = nz_new;
117:     }
118:     PetscFree(Jentry);
119:     c->matentry = Jentry_new;
120:   } else { /* ---------  c->htype == 'wp', use MatEntry2 ------------------*/
121:     MatEntry2      *Jentry2_new,*Jentry2=c->matentry2;
122:     PetscMalloc1(nz,&Jentry2_new);
123:     for (i=0; i<nis; i+=bcols) { /* loop over colors */
124:       if (i + bcols > nis) {
125:         color_start[nis - i] = color_start[bcols];
126:         bcols                = nis - i;
127:       }

129:       color_start[0] = color_start[bcols];
130:       for (j=0; j<bcols; j++) {
131:         color_start[j+1] = c->nrows[i+j] + color_start[j];
132:         row_start[j]     = 0;
133:       }

135:       row_end = brows;
136:       if (row_end > mbs) row_end = mbs;

138:       while (row_end <= mbs) {   /* loop over block rows */
139:         for (j=0; j<bcols; j++) {       /* loop over block columns */
140:           nrows = c->nrows[i+j];
141:           nz    = color_start[j];
142:           while (row_start[j] < nrows) {
143:             if (Jentry2[nz].row >= row_end) {
144:               color_start[j] = nz;
145:               break;
146:             } else { /* copy Jentry2[nz] to Jentry2_new[nz_new] */
147:               Jentry2_new[nz_new].row     = Jentry2[nz].row + j*mbs; /* index in dy-array */
148:               Jentry2_new[nz_new].valaddr = Jentry2[nz].valaddr;
149:               nz_new++; nz++; row_start[j]++;
150:             }
151:           }
152:         }
153:         if (row_end == mbs) break;
154:         row_end += brows;
155:         if (row_end > mbs) row_end = mbs;
156:       }
157:       nrows_new[nbcols++] = nz_new;
158:     }
159:     PetscFree(Jentry2);
160:     c->matentry2 = Jentry2_new;
161:   } /* ---------------------------------------------*/

163:   PetscFree2(color_start,row_start);

165:   for (i=nbcols-1; i>0; i--) nrows_new[i] -= nrows_new[i-1];
166:   PetscFree(c->nrows);
167:   c->nrows = nrows_new;
168:   return(0);
169: }

173: PetscErrorCode MatFDColoringSetUp_SeqXAIJ(Mat mat,ISColoring iscoloring,MatFDColoring c)
174: {
176:   PetscInt       i,n,nrows,mbs=c->m,j,k,m,ncols,col,nis=iscoloring->n,*rowhit,bs,bs2,*spidx,nz;
177:   const PetscInt *is,*row,*ci,*cj;
178:   IS             *isa;
179:   PetscBool      isBAIJ;
180:   PetscScalar    *A_val,**valaddrhit;
181:   MatEntry       *Jentry;
182:   MatEntry2      *Jentry2;

185:   ISColoringGetIS(iscoloring,PETSC_IGNORE,&isa);

187:   MatGetBlockSize(mat,&bs);
188:   PetscObjectTypeCompare((PetscObject)mat,MATSEQBAIJ,&isBAIJ);
189:   if (isBAIJ) {
190:     Mat_SeqBAIJ *spA = (Mat_SeqBAIJ*)mat->data;
191:     A_val = spA->a;
192:     nz    = spA->nz;
193:   } else {
194:     Mat_SeqAIJ  *spA = (Mat_SeqAIJ*)mat->data;
195:     A_val = spA->a;
196:     nz    = spA->nz;
197:     bs    = 1; /* only bs=1 is supported for SeqAIJ matrix */
198:   }

200:   PetscMalloc1(nis,&c->ncolumns);
201:   PetscMalloc1(nis,&c->columns);
202:   PetscMalloc1(nis,&c->nrows);
203:   PetscLogObjectMemory((PetscObject)c,3*nis*sizeof(PetscInt));

205:   if (c->htype[0] == 'd') {
206:     PetscMalloc1(nz,&Jentry);
207:     PetscLogObjectMemory((PetscObject)c,nz*sizeof(MatEntry));
208:     c->matentry = Jentry;
209:   } else if (c->htype[0] == 'w') {
210:     PetscMalloc1(nz,&Jentry2);
211:     PetscLogObjectMemory((PetscObject)c,nz*sizeof(MatEntry2));
212:     c->matentry2 = Jentry2;
213:   } else SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"htype is not supported");

215:   if (isBAIJ) {
216:     MatGetColumnIJ_SeqBAIJ_Color(mat,0,PETSC_FALSE,PETSC_FALSE,&ncols,&ci,&cj,&spidx,NULL);
217:   } else {
218:     MatGetColumnIJ_SeqAIJ_Color(mat,0,PETSC_FALSE,PETSC_FALSE,&ncols,&ci,&cj,&spidx,NULL);
219:   }

221:   PetscMalloc2(c->m,&rowhit,c->m,&valaddrhit);
222:   PetscMemzero(rowhit,c->m*sizeof(PetscInt));

224:   nz = 0;
225:   for (i=0; i<nis; i++) { /* loop over colors */
226:     ISGetLocalSize(isa[i],&n);
227:     ISGetIndices(isa[i],&is);

229:     c->ncolumns[i] = n;
230:     if (n) {
231:       PetscMalloc1(n,&c->columns[i]);
232:       PetscLogObjectMemory((PetscObject)c,n*sizeof(PetscInt));
233:       PetscMemcpy(c->columns[i],is,n*sizeof(PetscInt));
234:     } else {
235:       c->columns[i] = 0;
236:     }

238:     /* fast, crude version requires O(N*N) work */
239:     bs2   = bs*bs;
240:     nrows = 0;
241:     for (j=0; j<n; j++) {  /* loop over columns */
242:       col    = is[j];
243:       row    = cj + ci[col];
244:       m      = ci[col+1] - ci[col];
245:       nrows += m;
246:       for (k=0; k<m; k++) {  /* loop over columns marking them in rowhit */
247:         rowhit[*row]       = col + 1;
248:         valaddrhit[*row++] = &A_val[bs2*spidx[ci[col] + k]];
249:       }
250:     }
251:     c->nrows[i] = nrows; /* total num of rows for this color */

253:     if (c->htype[0] == 'd') {
254:       for (j=0; j<mbs; j++) { /* loop over rows */
255:         if (rowhit[j]) {
256:           Jentry[nz].row     = j;              /* local row index */
257:           Jentry[nz].col     = rowhit[j] - 1;  /* local column index */
258:           Jentry[nz].valaddr = valaddrhit[j];  /* address of mat value for this entry */
259:           nz++;
260:           rowhit[j] = 0.0;                     /* zero rowhit for reuse */
261:         }
262:       }
263:     }  else { /* c->htype == 'wp' */
264:       for (j=0; j<mbs; j++) { /* loop over rows */
265:         if (rowhit[j]) {
266:           Jentry2[nz].row     = j;              /* local row index */
267:           Jentry2[nz].valaddr = valaddrhit[j];  /* address of mat value for this entry */
268:           nz++;
269:           rowhit[j] = 0.0;                     /* zero rowhit for reuse */
270:         }
271:       }
272:     }
273:     ISRestoreIndices(isa[i],&is);
274:   }

276:   if (c->bcols > 1) {  /* reorder Jentry for faster MatFDColoringApply() */
277:     MatFDColoringSetUpBlocked_AIJ_Private(mat,c,nz);
278:   }

280:   if (isBAIJ) {
281:     MatRestoreColumnIJ_SeqBAIJ_Color(mat,0,PETSC_FALSE,PETSC_FALSE,&ncols,&ci,&cj,&spidx,NULL);
282:     PetscMalloc1(bs*mat->rmap->n,&c->dy);
283:     PetscLogObjectMemory((PetscObject)c,bs*mat->rmap->n*sizeof(PetscScalar));
284:   } else {
285:     MatRestoreColumnIJ_SeqAIJ_Color(mat,0,PETSC_FALSE,PETSC_FALSE,&ncols,&ci,&cj,&spidx,NULL);
286:   }
287:   PetscFree2(rowhit,valaddrhit);
288:   ISColoringRestoreIS(iscoloring,&isa);

290:   VecCreateGhost(PetscObjectComm((PetscObject)mat),mat->rmap->n,PETSC_DETERMINE,0,NULL,&c->vscale);
291:   PetscInfo3(c,"ncolors %D, brows %D and bcols %D are used.\n",c->ncolors,c->brows,c->bcols);
292:   return(0);
293: }