Actual source code: aspin.c
petsc-3.6.4 2016-04-12
1: #include <petsc/private/snesimpl.h> /*I "petscsnes.h" I*/
2: #include <petscdm.h>
6: PetscErrorCode MatMultASPIN(Mat m,Vec X,Vec Y)
7: {
9: void *ctx;
10: SNES snes;
11: PetscInt n,i;
12: VecScatter *oscatter;
13: SNES *subsnes;
14: PetscBool match;
15: MPI_Comm comm;
16: KSP ksp;
17: Vec *x,*b;
18: Vec W;
19: SNES npc;
20: Mat subJ,subpJ;
23: MatShellGetContext(m,&ctx);
24: snes = (SNES)ctx;
25: SNESGetNPC(snes,&npc);
26: SNESGetFunction(npc,&W,NULL,NULL);
27: PetscObjectTypeCompare((PetscObject)npc,SNESNASM,&match);
28: if (!match) {
29: PetscObjectGetComm((PetscObject)snes,&comm);
30: SETERRQ(comm,PETSC_ERR_ARG_WRONGSTATE,"MatMultASPIN requires that the nonlinear preconditioner be Nonlinear additive Schwarz");
31: }
32: SNESNASMGetSubdomains(npc,&n,&subsnes,NULL,&oscatter,NULL);
33: SNESNASMGetSubdomainVecs(npc,&n,&x,&b,NULL,NULL);
35: VecSet(Y,0);
36: MatMult(npc->jacobian_pre,X,W);
38: for (i=0;i<n;i++) {
39: VecScatterBegin(oscatter[i],W,b[i],INSERT_VALUES,SCATTER_FORWARD);
40: }
41: for (i=0;i<n;i++) {
42: VecScatterEnd(oscatter[i],W,b[i],INSERT_VALUES,SCATTER_FORWARD);
43: VecSet(x[i],0.);
44: SNESGetJacobian(subsnes[i],&subJ,&subpJ,NULL,NULL);
45: SNESGetKSP(subsnes[i],&ksp);
46: KSPSetOperators(ksp,subJ,subpJ);
47: KSPSolve(ksp,b[i],x[i]);
48: VecScatterBegin(oscatter[i],x[i],Y,ADD_VALUES,SCATTER_REVERSE);
49: }
50: for (i=0;i<n;i++) {
51: VecScatterEnd(oscatter[i],x[i],Y,ADD_VALUES,SCATTER_REVERSE);
52: }
53: return(0);
54: }
58: PetscErrorCode SNESDestroy_ASPIN(SNES snes)
59: {
63: SNESDestroy(&snes->pc);
64: /* reset NEWTONLS and free the data */
65: SNESReset(snes);
66: PetscFree(snes->data);
67: return(0);
68: }
72: /* -------------------------------------------------------------------------- */
73: /*MC
74: SNESASPIN - Helper SNES type for Additive-Schwarz Preconditioned Inexact Newton
76: Options Database:
77: + -npc_snes_ - options prefix of the nonlinear subdomain solver (must be of type NASM)
78: . -npc_sub_snes_ - options prefix of the subdomain nonlinear solves
79: . -npc_sub_ksp_ - options prefix of the subdomain Krylov solver
80: - -npc_sub_pc_ - options prefix of the subdomain preconditioner
82: Notes: This routine sets up an instance of NETWONLS with nonlinear left preconditioning. It differs from other
83: similar functionality in SNES as it creates a linear shell matrix that corresponds to the product:
85: \sum_{i=0}^{N_b}J_b({X^b_{converged}})^{-1}J(X + \sum_{i=0}^{N_b}(X^b_{converged} - X^b))
87: which is the ASPIN preconditioned matrix. Similar solvers may be constructed by having matrix-free differencing of
88: nonlinear solves per linear iteration, but this is far more efficient when subdomain sparse-direct preconditioner
89: factorizations are reused on each application of J_b^{-1}.
91: Level: intermediate
93: .seealso: SNESCreate(), SNES, SNESSetType(), SNESNEWTONLS, SNESNASM, SNESGetNPC(), SNESGetNPCSide()
95: M*/
96: PETSC_EXTERN PetscErrorCode SNESCreate_ASPIN(SNES snes)
97: {
99: SNES npc;
100: KSP ksp;
101: PC pc;
102: Mat aspinmat;
103: Vec F;
104: PetscInt n;
105: SNESLineSearch linesearch;
108: /* set up the solver */
109: SNESSetType(snes,SNESNEWTONLS);
110: SNESSetNPCSide(snes,PC_LEFT);
111: SNESSetFunctionType(snes,SNES_FUNCTION_PRECONDITIONED);
112: SNESGetNPC(snes,&npc);
113: SNESSetType(npc,SNESNASM);
114: SNESNASMSetType(npc,PC_ASM_BASIC);
115: SNESNASMSetComputeFinalJacobian(npc,PETSC_TRUE);
116: SNESGetKSP(snes,&ksp);
117: KSPGetPC(ksp,&pc);
118: PCSetType(pc,PCNONE);
119: SNESGetLineSearch(snes,&linesearch);
120: SNESLineSearchSetType(linesearch,SNESLINESEARCHBT);
122: /* set up the shell matrix */
123: SNESGetFunction(snes,&F,NULL,NULL);
124: VecGetLocalSize(F,&n);
125: MatCreateShell(PetscObjectComm((PetscObject)snes),n,n,PETSC_DECIDE,PETSC_DECIDE,snes,&aspinmat);
126: MatSetType(aspinmat,MATSHELL);
127: MatShellSetOperation(aspinmat,MATOP_MULT,(void(*)(void))MatMultASPIN);
128: SNESSetJacobian(snes,aspinmat,NULL,NULL,NULL);
129: MatDestroy(&aspinmat);
131: snes->ops->destroy = SNESDestroy_ASPIN;
133: return(0);
134: }