Actual source code: mkl_cpardiso.c

petsc-3.6.4 2016-04-12
Report Typos and Errors
  1: #if defined(PETSC_HAVE_LIBMKL_INTEL_ILP64)
  2: #define MKL_ILP64
  3: #endif

  5: #include <../src/mat/impls/aij/seq/aij.h>                       /*I "petscmat.h" I*/
  6: #include <../src/mat/impls/aij/mpi/mpiaij.h>

  8: #include <stdio.h>
  9: #include <stdlib.h>
 10: #include <math.h>
 11: #include <mkl.h>
 12: #include <mkl_cluster_sparse_solver.h>

 14: /*
 15:  *  Possible mkl_cpardiso phases that controls the execution of the solver.
 16:  *  For more information check mkl_cpardiso manual.
 17:  */
 18: #define JOB_ANALYSIS 11
 19: #define JOB_ANALYSIS_NUMERICAL_FACTORIZATION 12
 20: #define JOB_ANALYSIS_NUMERICAL_FACTORIZATION_SOLVE_ITERATIVE_REFINEMENT 13
 21: #define JOB_NUMERICAL_FACTORIZATION 22
 22: #define JOB_NUMERICAL_FACTORIZATION_SOLVE_ITERATIVE_REFINEMENT 23
 23: #define JOB_SOLVE_ITERATIVE_REFINEMENT 33
 24: #define JOB_SOLVE_FORWARD_SUBSTITUTION 331
 25: #define JOB_SOLVE_DIAGONAL_SUBSTITUTION 332
 26: #define JOB_SOLVE_BACKWARD_SUBSTITUTION 333
 27: #define JOB_RELEASE_OF_LU_MEMORY 0
 28: #define JOB_RELEASE_OF_ALL_MEMORY -1

 30: #define IPARM_SIZE 64
 31: #define INT_TYPE MKL_INT

 33: static const char *Err_MSG_CPardiso(int errNo){
 34:   switch (errNo) {
 35:     case -1:
 36:       return "input inconsistent"; break;
 37:     case -2:
 38:       return "not enough memory"; break;
 39:     case -3:
 40:       return "reordering problem"; break;
 41:     case -4:
 42:       return "zero pivot, numerical factorization or iterative refinement problem"; break;
 43:     case -5:
 44:       return "unclassified (internal) error"; break;
 45:     case -6:
 46:       return "preordering failed (matrix types 11, 13 only)"; break;
 47:     case -7:
 48:       return "diagonal matrix problem"; break;
 49:     case -8:
 50:       return "32-bit integer overflow problem"; break;
 51:     case -9:
 52:       return "not enough memory for OOC"; break;
 53:     case -10:
 54:       return "problems with opening OOC temporary files"; break;
 55:     case -11:
 56:       return "read/write problems with the OOC data file"; break;
 57:     default :
 58:       return "unknown error";
 59:   }
 60: }

 62: /*
 63:  *  Internal data structure.
 64:  *  For more information check mkl_cpardiso manual.
 65:  */

 67: typedef struct {

 69:   /* Configuration vector */
 70:   INT_TYPE     iparm[IPARM_SIZE];

 72:   /*
 73:    * Internal mkl_cpardiso memory location.
 74:    * After the first call to mkl_cpardiso do not modify pt, as that could cause a serious memory leak.
 75:    */
 76:   void         *pt[IPARM_SIZE];

 78:   MPI_Comm     comm_mkl_cpardiso;

 80:   /* Basic mkl_cpardiso info*/
 81:   INT_TYPE     phase, maxfct, mnum, mtype, n, nrhs, msglvl, err;

 83:   /* Matrix structure */
 84:   PetscScalar  *a;

 86:   INT_TYPE     *ia, *ja;

 88:   /* Number of non-zero elements */
 89:   INT_TYPE     nz;

 91:   /* Row permutaton vector*/
 92:   INT_TYPE     *perm;

 94:   /* Define is matrix preserve sparce structure. */
 95:   MatStructure matstruc;

 97:   PetscErrorCode (*ConvertToTriples)(Mat, MatReuse, PetscInt*, PetscInt**, PetscInt**, PetscScalar**);

 99:   /* True if mkl_cpardiso function have been used. */
100:   PetscBool CleanUp;
101: } Mat_MKL_CPARDISO;

103: /*
104:  * Copy the elements of matrix A.
105:  * Input:
106:  *   - Mat A: MATSEQAIJ matrix
107:  *   - int shift: matrix index.
108:  *     - 0 for c representation
109:  *     - 1 for fortran representation
110:  *   - MatReuse reuse:
111:  *     - MAT_INITIAL_MATRIX: Create a new aij representation
112:  *     - MAT_REUSE_MATRIX: Reuse all aij representation and just change values
113:  * Output:
114:  *   - int *nnz: Number of nonzero-elements.
115:  *   - int **r pointer to i index
116:  *   - int **c pointer to j elements
117:  *   - MATRIXTYPE **v: Non-zero elements
118:  */
121: PetscErrorCode MatCopy_seqaij_seqaij_MKL_CPARDISO(Mat A, MatReuse reuse, PetscInt *nnz, PetscInt **r, PetscInt **c, PetscScalar **v)
122: {
123:   Mat_SeqAIJ *aa=(Mat_SeqAIJ*)A->data;

126:   *v=aa->a;
127:   if (reuse == MAT_INITIAL_MATRIX) {
128:     *r   = (INT_TYPE*)aa->i;
129:     *c   = (INT_TYPE*)aa->j;
130:     *nnz = aa->nz;
131:   }
132:   return(0);
133: }

137: PetscErrorCode MatConvertToTriples_mpiaij_mpiaij_MKL_CPARDISO(Mat A, MatReuse reuse, PetscInt *nnz, PetscInt **r, PetscInt **c, PetscScalar **v)
138: {
139:   const PetscInt    *ai, *aj, *bi, *bj,*garray,m=A->rmap->n,*ajj,*bjj;
140:   PetscErrorCode    ierr;
141:   PetscInt          rstart,nz,i,j,jj,irow,countA,countB;
142:   PetscInt          *row,*col;
143:   const PetscScalar *av, *bv,*v1,*v2;
144:   PetscScalar       *val;
145:   Mat_MPIAIJ        *mat = (Mat_MPIAIJ*)A->data;
146:   Mat_SeqAIJ        *aa  = (Mat_SeqAIJ*)(mat->A)->data;
147:   Mat_SeqAIJ        *bb  = (Mat_SeqAIJ*)(mat->B)->data;
148:   PetscInt          nn, colA_start,jB,jcol;

151:   ai=aa->i; aj=aa->j; bi=bb->i; bj=bb->j; rstart= A->rmap->rstart;
152:   av=aa->a; bv=bb->a;

154:   garray = mat->garray;

156:   if (reuse == MAT_INITIAL_MATRIX) {
157:     nz   = aa->nz + bb->nz;
158:     *nnz = nz;
159:     PetscMalloc((nz*(sizeof(PetscInt)+sizeof(PetscScalar)) + (m+1)*sizeof(PetscInt)), &row);
160:     col  = row + m + 1;
161:     val  = (PetscScalar*)(col + nz);
162:     *r = row; *c = col; *v = val;
163:     row[0] = 0;
164:   } else {
165:     row = *r; col = *c; val = *v;
166:   }

168:   nz = 0;
169:   for (i=0; i<m; i++) {
170:     row[i] = nz;
171:     countA     = ai[i+1] - ai[i];
172:     countB     = bi[i+1] - bi[i];
173:     ajj        = aj + ai[i]; /* ptr to the beginning of this row */
174:     bjj        = bj + bi[i];

176:     /* B part, smaller col index */
177:     colA_start = rstart + ajj[0]; /* the smallest global col index of A */
178:     jB         = 0;
179:     for (j=0; j<countB; j++) {
180:       jcol = garray[bjj[j]];
181:       if (jcol > colA_start) {
182:         jB = j;
183:         break;
184:       }
185:       col[nz]   = jcol;
186:       val[nz++] = *bv++;
187:       if (j==countB-1) jB = countB;
188:     }

190:     /* A part */
191:     for (j=0; j<countA; j++) {
192:       col[nz]   = rstart + ajj[j];
193:       val[nz++] = *av++;
194:     }

196:     /* B part, larger col index */
197:     for (j=jB; j<countB; j++) {
198:       col[nz]   = garray[bjj[j]];
199:       val[nz++] = *bv++;
200:     }
201:   }
202:   row[m] = nz;

204:   return(0);
205: }

207: /*
208:  * Free memory for Mat_MKL_CPARDISO structure and pointers to objects.
209:  */
212: PetscErrorCode MatDestroy_MKL_CPARDISO(Mat A)
213: {
214:   Mat_MKL_CPARDISO *mat_mkl_cpardiso=(Mat_MKL_CPARDISO*)A->spptr;
215:   PetscErrorCode   ierr;

218:   /* Terminate instance, deallocate memories */
219:   if (mat_mkl_cpardiso->CleanUp) {
220:     mat_mkl_cpardiso->phase = JOB_RELEASE_OF_ALL_MEMORY;

222:     cluster_sparse_solver (
223:       mat_mkl_cpardiso->pt,
224:       &mat_mkl_cpardiso->maxfct,
225:       &mat_mkl_cpardiso->mnum,
226:       &mat_mkl_cpardiso->mtype,
227:       &mat_mkl_cpardiso->phase,
228:       &mat_mkl_cpardiso->n,
229:       NULL,
230:       NULL,
231:       NULL,
232:       mat_mkl_cpardiso->perm,
233:       &mat_mkl_cpardiso->nrhs,
234:       mat_mkl_cpardiso->iparm,
235:       &mat_mkl_cpardiso->msglvl,
236:       NULL,
237:       NULL,
238:       &mat_mkl_cpardiso->comm_mkl_cpardiso,
239:       &mat_mkl_cpardiso->err);
240:   }
241:   PetscFree(A->spptr);
242:   MPI_Comm_free(&(mat_mkl_cpardiso->comm_mkl_cpardiso));

244:   /* clear composed functions */
245:   PetscObjectComposeFunction((PetscObject)A,"MatFactorGetSolverPackage_C",NULL);
246:   PetscObjectComposeFunction((PetscObject)A,"MatMkl_CPardisoSetCntl_C",NULL);
247:   return(0);
248: }

250: /*
251:  * Computes Ax = b
252:  */
255: PetscErrorCode MatSolve_MKL_CPARDISO(Mat A,Vec b,Vec x)
256: {
257:   Mat_MKL_CPARDISO   *mat_mkl_cpardiso=(Mat_MKL_CPARDISO*)(A)->spptr;
258:   PetscErrorCode    ierr;
259:   PetscScalar       *xarray;
260:   const PetscScalar *barray;

263:   mat_mkl_cpardiso->nrhs = 1;
264:   VecGetArray(x,&xarray);
265:   VecGetArrayRead(b,&barray);

267:   /* solve phase */
268:   /*-------------*/
269:   mat_mkl_cpardiso->phase = JOB_SOLVE_ITERATIVE_REFINEMENT;
270:   cluster_sparse_solver (
271:     mat_mkl_cpardiso->pt,
272:     &mat_mkl_cpardiso->maxfct,
273:     &mat_mkl_cpardiso->mnum,
274:     &mat_mkl_cpardiso->mtype,
275:     &mat_mkl_cpardiso->phase,
276:     &mat_mkl_cpardiso->n,
277:     mat_mkl_cpardiso->a,
278:     mat_mkl_cpardiso->ia,
279:     mat_mkl_cpardiso->ja,
280:     mat_mkl_cpardiso->perm,
281:     &mat_mkl_cpardiso->nrhs,
282:     mat_mkl_cpardiso->iparm,
283:     &mat_mkl_cpardiso->msglvl,
284:     (void*)barray,
285:     (void*)xarray,
286:     &mat_mkl_cpardiso->comm_mkl_cpardiso,
287:     &mat_mkl_cpardiso->err);

289:   if (mat_mkl_cpardiso->err < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MKL_CPARDISO: err=%d, msg = \"%s\". Please check manual\n",mat_mkl_cpardiso->err,Err_MSG_CPardiso(mat_mkl_cpardiso->err));

291:   VecRestoreArray(x,&xarray);
292:   VecRestoreArrayRead(b,&barray);
293:   mat_mkl_cpardiso->CleanUp = PETSC_TRUE;
294:   return(0);
295: }

299: PetscErrorCode MatSolveTranspose_MKL_CPARDISO(Mat A,Vec b,Vec x)
300: {
301:   Mat_MKL_CPARDISO *mat_mkl_cpardiso=(Mat_MKL_CPARDISO*)A->spptr;
302:   PetscErrorCode   ierr;

305: #if defined(PETSC_USE_COMPLEX)
306:   mat_mkl_cpardiso->iparm[12 - 1] = 1;
307: #else
308:   mat_mkl_cpardiso->iparm[12 - 1] = 2;
309: #endif
310:   MatSolve_MKL_CPARDISO(A,b,x);
311:   mat_mkl_cpardiso->iparm[12 - 1] = 0;
312:   return(0);
313: }

317: PetscErrorCode MatMatSolve_MKL_CPARDISO(Mat A,Mat B,Mat X)
318: {
319:   Mat_MKL_CPARDISO  *mat_mkl_cpardiso=(Mat_MKL_CPARDISO*)(A)->spptr;
320:   PetscErrorCode    ierr;
321:   PetscScalar       *barray, *xarray;
322:   PetscBool         flg;

325:   PetscObjectTypeCompare((PetscObject)B,MATSEQDENSE,&flg);
326:   if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Matrix B must be MATSEQDENSE matrix");
327:   PetscObjectTypeCompare((PetscObject)X,MATSEQDENSE,&flg);
328:   if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Matrix X must be MATSEQDENSE matrix");

330:   MatGetSize(B,NULL,(PetscInt*)&mat_mkl_cpardiso->nrhs);

332:   if(mat_mkl_cpardiso->nrhs > 0){
333:     MatDenseGetArray(B,&barray);
334:     MatDenseGetArray(X,&xarray);

336:     /* solve phase */
337:     /*-------------*/
338:     mat_mkl_cpardiso->phase = JOB_SOLVE_ITERATIVE_REFINEMENT;
339:     cluster_sparse_solver (
340:       mat_mkl_cpardiso->pt,
341:       &mat_mkl_cpardiso->maxfct,
342:       &mat_mkl_cpardiso->mnum,
343:       &mat_mkl_cpardiso->mtype,
344:       &mat_mkl_cpardiso->phase,
345:       &mat_mkl_cpardiso->n,
346:       mat_mkl_cpardiso->a,
347:       mat_mkl_cpardiso->ia,
348:       mat_mkl_cpardiso->ja,
349:       mat_mkl_cpardiso->perm,
350:       &mat_mkl_cpardiso->nrhs,
351:       mat_mkl_cpardiso->iparm,
352:       &mat_mkl_cpardiso->msglvl,
353:       (void*)barray,
354:       (void*)xarray,
355:       &mat_mkl_cpardiso->comm_mkl_cpardiso,
356:       &mat_mkl_cpardiso->err);
357:     if (mat_mkl_cpardiso->err < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MKL_CPARDISO: err=%d, msg = \"%s\". Please check manual\n",mat_mkl_cpardiso->err,Err_MSG_CPardiso(mat_mkl_cpardiso->err));
358:   }
359:   mat_mkl_cpardiso->CleanUp = PETSC_TRUE;
360:   return(0);

362: }

364: /*
365:  * LU Decomposition
366:  */
369: PetscErrorCode MatFactorNumeric_MKL_CPARDISO(Mat F,Mat A,const MatFactorInfo *info)
370: {
371:   Mat_MKL_CPARDISO *mat_mkl_cpardiso=(Mat_MKL_CPARDISO*)(F)->spptr;
372:   PetscErrorCode   ierr;

374:   /* numerical factorization phase */
375:   /*-------------------------------*/

378:   mat_mkl_cpardiso->matstruc = SAME_NONZERO_PATTERN;
379:   (*mat_mkl_cpardiso->ConvertToTriples)(A, MAT_REUSE_MATRIX,&mat_mkl_cpardiso->nz,&mat_mkl_cpardiso->ia,&mat_mkl_cpardiso->ja,&mat_mkl_cpardiso->a);

381:   /* numerical factorization phase */
382:   /*-------------------------------*/
383:   mat_mkl_cpardiso->phase = JOB_NUMERICAL_FACTORIZATION;
384:   cluster_sparse_solver (
385:     mat_mkl_cpardiso->pt,
386:     &mat_mkl_cpardiso->maxfct,
387:     &mat_mkl_cpardiso->mnum,
388:     &mat_mkl_cpardiso->mtype,
389:     &mat_mkl_cpardiso->phase,
390:     &mat_mkl_cpardiso->n,
391:     mat_mkl_cpardiso->a,
392:     mat_mkl_cpardiso->ia,
393:     mat_mkl_cpardiso->ja,
394:     mat_mkl_cpardiso->perm,
395:     &mat_mkl_cpardiso->nrhs,
396:     mat_mkl_cpardiso->iparm,
397:     &mat_mkl_cpardiso->msglvl,
398:     NULL,
399:     NULL,
400:     &mat_mkl_cpardiso->comm_mkl_cpardiso,
401:     &mat_mkl_cpardiso->err);
402:   if (mat_mkl_cpardiso->err < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MKL_CPARDISO: err=%d, msg = \"%s\". Please check manual\n",mat_mkl_cpardiso->err,Err_MSG_CPardiso(mat_mkl_cpardiso->err));

404:   mat_mkl_cpardiso->matstruc = SAME_NONZERO_PATTERN;
405:   mat_mkl_cpardiso->CleanUp  = PETSC_TRUE;
406:   return(0);
407: }

409: /* Sets mkl_cpardiso options from the options database */
412: PetscErrorCode PetscSetMKL_CPARDISOFromOptions(Mat F, Mat A)
413: {
414:   Mat_MKL_CPARDISO    *mat_mkl_cpardiso = (Mat_MKL_CPARDISO*)F->spptr;
415:   PetscErrorCode      ierr;
416:   PetscInt            icntl;
417:   PetscBool           flg;
418:   int                 pt[IPARM_SIZE], threads;

421:   PetscOptionsBegin(PetscObjectComm((PetscObject)A),((PetscObject)A)->prefix,"MKL_CPARDISO Options","Mat");
422:   PetscOptionsInt("-mat_mkl_cpardiso_65",
423:     "Number of threads to use",
424:     "None",
425:     threads,
426:     &threads,
427:     &flg);
428:   if (flg) mkl_set_num_threads(threads);

430:   PetscOptionsInt("-mat_mkl_cpardiso_66",
431:     "Maximum number of factors with identical sparsity structure that must be kept in memory at the same time",
432:     "None",
433:      mat_mkl_cpardiso->maxfct,
434:     &icntl,
435:     &flg);
436:   if (flg) mat_mkl_cpardiso->maxfct = icntl;

438:   PetscOptionsInt("-mat_mkl_cpardiso_67",
439:     "Indicates the actual matrix for the solution phase",
440:     "None",
441:     mat_mkl_cpardiso->mnum,
442:     &icntl,
443:     &flg);
444:   if (flg) mat_mkl_cpardiso->mnum = icntl;

446:   PetscOptionsInt("-mat_mkl_cpardiso_68",
447:     "Message level information",
448:     "None",
449:     mat_mkl_cpardiso->msglvl,
450:     &icntl,
451:     &flg);
452:   if (flg) mat_mkl_cpardiso->msglvl = icntl;

454:   PetscOptionsInt("-mat_mkl_cpardiso_69",
455:     "Defines the matrix type",
456:     "None",
457:     mat_mkl_cpardiso->mtype,
458:     &icntl,
459:     &flg);
460:   if(flg){
461:     mat_mkl_cpardiso->mtype = icntl;
462: #if defined(PETSC_USE_REAL_SINGLE)
463:     mat_mkl_cpardiso->iparm[27] = 1;
464: #else
465:     mat_mkl_cpardiso->iparm[27] = 0;
466: #endif
467:     mat_mkl_cpardiso->iparm[34] = 1;
468:   }
469:   PetscOptionsInt("-mat_mkl_cpardiso_1",
470:     "Use default values",
471:     "None",
472:     mat_mkl_cpardiso->iparm[0],
473:     &icntl,
474:     &flg);

476:   if(flg && icntl != 0){
477:     PetscOptionsInt("-mat_mkl_cpardiso_2",
478:       "Fill-in reducing ordering for the input matrix",
479:       "None",
480:       mat_mkl_cpardiso->iparm[1],
481:       &icntl,
482:       &flg);
483:     if (flg) mat_mkl_cpardiso->iparm[1] = icntl;

485:     PetscOptionsInt("-mat_mkl_cpardiso_4",
486:       "Preconditioned CGS/CG",
487:       "None",
488:       mat_mkl_cpardiso->iparm[3],
489:       &icntl,
490:       &flg);
491:     if (flg) mat_mkl_cpardiso->iparm[3] = icntl;

493:     PetscOptionsInt("-mat_mkl_cpardiso_5",
494:       "User permutation",
495:       "None",
496:       mat_mkl_cpardiso->iparm[4],
497:       &icntl,
498:       &flg);
499:     if (flg) mat_mkl_cpardiso->iparm[4] = icntl;

501:     PetscOptionsInt("-mat_mkl_cpardiso_6",
502:       "Write solution on x",
503:       "None",
504:       mat_mkl_cpardiso->iparm[5],
505:       &icntl,
506:       &flg);
507:     if (flg) mat_mkl_cpardiso->iparm[5] = icntl;

509:     PetscOptionsInt("-mat_mkl_cpardiso_8",
510:       "Iterative refinement step",
511:       "None",
512:       mat_mkl_cpardiso->iparm[7],
513:       &icntl,
514:       &flg);
515:     if (flg) mat_mkl_cpardiso->iparm[7] = icntl;

517:     PetscOptionsInt("-mat_mkl_cpardiso_10",
518:       "Pivoting perturbation",
519:       "None",
520:       mat_mkl_cpardiso->iparm[9],
521:       &icntl,
522:       &flg);
523:     if (flg) mat_mkl_cpardiso->iparm[9] = icntl;

525:     PetscOptionsInt("-mat_mkl_cpardiso_11",
526:       "Scaling vectors",
527:       "None",
528:       mat_mkl_cpardiso->iparm[10],
529:       &icntl,
530:       &flg);
531:     if (flg) mat_mkl_cpardiso->iparm[10] = icntl;

533:     PetscOptionsInt("-mat_mkl_cpardiso_12",
534:       "Solve with transposed or conjugate transposed matrix A",
535:       "None",
536:       mat_mkl_cpardiso->iparm[11],
537:       &icntl,
538:       &flg);
539:     if (flg) mat_mkl_cpardiso->iparm[11] = icntl;

541:     PetscOptionsInt("-mat_mkl_cpardiso_13",
542:       "Improved accuracy using (non-) symmetric weighted matching",
543:       "None",
544:       mat_mkl_cpardiso->iparm[12],
545:       &icntl,
546:       &flg);
547:     if (flg) mat_mkl_cpardiso->iparm[12] = icntl;

549:     PetscOptionsInt("-mat_mkl_cpardiso_18",
550:       "Numbers of non-zero elements",
551:       "None",
552:       mat_mkl_cpardiso->iparm[17],
553:       &icntl,
554:       &flg);
555:     if (flg) mat_mkl_cpardiso->iparm[17] = icntl;

557:     PetscOptionsInt("-mat_mkl_cpardiso_19",
558:       "Report number of floating point operations",
559:       "None",
560:       mat_mkl_cpardiso->iparm[18],
561:       &icntl,
562:       &flg);
563:     if (flg) mat_mkl_cpardiso->iparm[18] = icntl;

565:     PetscOptionsInt("-mat_mkl_cpardiso_21",
566:       "Pivoting for symmetric indefinite matrices",
567:       "None",
568:       mat_mkl_cpardiso->iparm[20],
569:       &icntl,
570:       &flg);
571:     if (flg) mat_mkl_cpardiso->iparm[20] = icntl;

573:     PetscOptionsInt("-mat_mkl_cpardiso_24",
574:       "Parallel factorization control",
575:       "None",
576:       mat_mkl_cpardiso->iparm[23],
577:       &icntl,
578:       &flg);
579:     if (flg) mat_mkl_cpardiso->iparm[23] = icntl;

581:     PetscOptionsInt("-mat_mkl_cpardiso_25",
582:       "Parallel forward/backward solve control",
583:       "None",
584:       mat_mkl_cpardiso->iparm[24],
585:       &icntl,
586:       &flg);
587:     if (flg) mat_mkl_cpardiso->iparm[24] = icntl;

589:     PetscOptionsInt("-mat_mkl_cpardiso_27",
590:       "Matrix checker",
591:       "None",
592:       mat_mkl_cpardiso->iparm[26],
593:       &icntl,
594:       &flg);
595:     if (flg) mat_mkl_cpardiso->iparm[26] = icntl;

597:     PetscOptionsInt("-mat_mkl_cpardiso_31",
598:       "Partial solve and computing selected components of the solution vectors",
599:       "None",
600:       mat_mkl_cpardiso->iparm[30],
601:       &icntl,
602:       &flg);
603:     if (flg) mat_mkl_cpardiso->iparm[30] = icntl;

605:     PetscOptionsInt("-mat_mkl_cpardiso_34",
606:       "Optimal number of threads for conditional numerical reproducibility (CNR) mode",
607:       "None",
608:       mat_mkl_cpardiso->iparm[33],
609:       &icntl,
610:       &flg);
611:     if (flg) mat_mkl_cpardiso->iparm[33] = icntl;

613:     PetscOptionsInt("-mat_mkl_cpardiso_60",
614:       "Intel MKL_CPARDISO mode",
615:       "None",
616:       mat_mkl_cpardiso->iparm[59],
617:       &icntl,
618:       &flg);
619:     if (flg) mat_mkl_cpardiso->iparm[59] = icntl;
620:   }

622:   PetscOptionsEnd();
623:   return(0);
624: }

628: PetscErrorCode PetscInitialize_MKL_CPARDISO(Mat A, Mat_MKL_CPARDISO *mat_mkl_cpardiso)
629: {
630:   PetscErrorCode  ierr;
631:   PetscInt        i;
632:   PetscMPIInt     size;


636:   MPI_Comm_dup(PetscObjectComm((PetscObject)A),&(mat_mkl_cpardiso->comm_mkl_cpardiso));
637:   MPI_Comm_size(mat_mkl_cpardiso->comm_mkl_cpardiso, &size);

639:   mat_mkl_cpardiso->CleanUp = PETSC_FALSE;
640:   mat_mkl_cpardiso->maxfct = 1;
641:   mat_mkl_cpardiso->mnum = 1;
642:   mat_mkl_cpardiso->n = A->rmap->N;
643:   mat_mkl_cpardiso->msglvl = 0;
644:   mat_mkl_cpardiso->nrhs = 1;
645:   mat_mkl_cpardiso->err = 0;
646:   mat_mkl_cpardiso->phase = -1;
647: #if defined(PETSC_USE_COMPLEX)
648:   mat_mkl_cpardiso->mtype = 13;
649: #else
650:   mat_mkl_cpardiso->mtype = 11;
651: #endif

653: #if defined(PETSC_USE_REAL_SINGLE)
654:   mat_mkl_cpardiso->iparm[27] = 1;
655: #else
656:   mat_mkl_cpardiso->iparm[27] = 0;
657: #endif

659:   mat_mkl_cpardiso->iparm[34] = 1;  /* C style */

661:   mat_mkl_cpardiso->iparm[ 0] =  1; /* Solver default parameters overriden with provided by iparm */
662:   mat_mkl_cpardiso->iparm[ 1] =  2; /* Use METIS for fill-in reordering */
663:   mat_mkl_cpardiso->iparm[ 5] =  0; /* Write solution into x */
664:   mat_mkl_cpardiso->iparm[ 7] =  2; /* Max number of iterative refinement steps */
665:   mat_mkl_cpardiso->iparm[ 9] = 13; /* Perturb the pivot elements with 1E-13 */
666:   mat_mkl_cpardiso->iparm[10] =  1; /* Use nonsymmetric permutation and scaling MPS */
667:   mat_mkl_cpardiso->iparm[12] =  1; /* Switch on Maximum Weighted Matching algorithm (default for non-symmetric) */
668:   mat_mkl_cpardiso->iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */
669:   mat_mkl_cpardiso->iparm[18] = -1; /* Output: Mflops for LU factorization */
670:   mat_mkl_cpardiso->iparm[26] =  1; /* Check input data for correctness */

672:   mat_mkl_cpardiso->iparm[39] = 0;
673:   if (size > 1) {
674:     mat_mkl_cpardiso->iparm[39] = 2;
675:     mat_mkl_cpardiso->iparm[40] = A->rmap->rstart;
676:     mat_mkl_cpardiso->iparm[41] = A->rmap->rend-1;
677:   }
678:   mat_mkl_cpardiso->perm = 0;
679:   return(0);
680: }

682: /*
683:  * Symbolic decomposition. Mkl_Pardiso analysis phase.
684:  */
687: PetscErrorCode MatLUFactorSymbolic_AIJMKL_CPARDISO(Mat F,Mat A,IS r,IS c,const MatFactorInfo *info)
688: {
689:   Mat_MKL_CPARDISO *mat_mkl_cpardiso = (Mat_MKL_CPARDISO*)F->spptr;
690:   PetscErrorCode  ierr;

693:   mat_mkl_cpardiso->matstruc = DIFFERENT_NONZERO_PATTERN;

695:   /* Set MKL_CPARDISO options from the options database */
696:   PetscSetMKL_CPARDISOFromOptions(F,A);

698:   (*mat_mkl_cpardiso->ConvertToTriples)(A,MAT_INITIAL_MATRIX,&mat_mkl_cpardiso->nz,&mat_mkl_cpardiso->ia,&mat_mkl_cpardiso->ja,&mat_mkl_cpardiso->a);

700:   mat_mkl_cpardiso->n = A->rmap->N;

702:   /* analysis phase */
703:   /*----------------*/
704:   mat_mkl_cpardiso->phase = JOB_ANALYSIS;

706:   cluster_sparse_solver (
707:     mat_mkl_cpardiso->pt,
708:     &mat_mkl_cpardiso->maxfct,
709:     &mat_mkl_cpardiso->mnum,
710:     &mat_mkl_cpardiso->mtype,
711:     &mat_mkl_cpardiso->phase,
712:     &mat_mkl_cpardiso->n,
713:     mat_mkl_cpardiso->a,
714:     mat_mkl_cpardiso->ia,
715:     mat_mkl_cpardiso->ja,
716:     mat_mkl_cpardiso->perm,
717:     &mat_mkl_cpardiso->nrhs,
718:     mat_mkl_cpardiso->iparm,
719:     &mat_mkl_cpardiso->msglvl,
720:     NULL,
721:     NULL,
722:     &mat_mkl_cpardiso->comm_mkl_cpardiso,
723:     &mat_mkl_cpardiso->err);

725:   if (mat_mkl_cpardiso->err < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MKL_CPARDISO: err=%d, msg = \"%s\". Please check manual\n",mat_mkl_cpardiso->err,Err_MSG_CPardiso(mat_mkl_cpardiso->err));

727:   mat_mkl_cpardiso->CleanUp = PETSC_TRUE;
728:   F->ops->lufactornumeric = MatFactorNumeric_MKL_CPARDISO;
729:   F->ops->solve           = MatSolve_MKL_CPARDISO;
730:   F->ops->solvetranspose  = MatSolveTranspose_MKL_CPARDISO;
731:   F->ops->matsolve        = MatMatSolve_MKL_CPARDISO;
732:   return(0);
733: }

737: PetscErrorCode MatView_MKL_CPARDISO(Mat A, PetscViewer viewer)
738: {
739:   PetscErrorCode    ierr;
740:   PetscBool         iascii;
741:   PetscViewerFormat format;
742:   Mat_MKL_CPARDISO  *mat_mkl_cpardiso=(Mat_MKL_CPARDISO*)A->spptr;
743:   PetscInt          i;

746:   /* check if matrix is mkl_cpardiso type */
747:   if (A->ops->solve != MatSolve_MKL_CPARDISO) return(0);

749:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
750:   if (iascii) {
751:     PetscViewerGetFormat(viewer,&format);
752:     if (format == PETSC_VIEWER_ASCII_INFO) {
753:       PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO run parameters:\n");
754:       PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO phase:             %d \n",mat_mkl_cpardiso->phase);
755:       for(i = 1; i <= 64; i++){
756:         PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO iparm[%d]:     %d \n",i, mat_mkl_cpardiso->iparm[i - 1]);
757:       }
758:       PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO maxfct:     %d \n", mat_mkl_cpardiso->maxfct);
759:       PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO mnum:     %d \n", mat_mkl_cpardiso->mnum);
760:       PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO mtype:     %d \n", mat_mkl_cpardiso->mtype);
761:       PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO n:     %d \n", mat_mkl_cpardiso->n);
762:       PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO nrhs:     %d \n", mat_mkl_cpardiso->nrhs);
763:       PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO msglvl:     %d \n", mat_mkl_cpardiso->msglvl);
764:     }
765:   }
766:   return(0);
767: }

771: PetscErrorCode MatGetInfo_MKL_CPARDISO(Mat A, MatInfoType flag, MatInfo *info)
772: {
773:   Mat_MKL_CPARDISO *mat_mkl_cpardiso =(Mat_MKL_CPARDISO*)A->spptr;

776:   info->block_size        = 1.0;
777:   info->nz_allocated      = mat_mkl_cpardiso->nz + 0.0;
778:   info->nz_unneeded       = 0.0;
779:   info->assemblies        = 0.0;
780:   info->mallocs           = 0.0;
781:   info->memory            = 0.0;
782:   info->fill_ratio_given  = 0;
783:   info->fill_ratio_needed = 0;
784:   info->factor_mallocs    = 0;
785:   return(0);
786: }

790: PetscErrorCode MatMkl_CPardisoSetCntl_MKL_CPARDISO(Mat F,PetscInt icntl,PetscInt ival)
791: {
792:   Mat_MKL_CPARDISO *mat_mkl_cpardiso =(Mat_MKL_CPARDISO*)F->spptr;

795:   if(icntl <= 64){
796:     mat_mkl_cpardiso->iparm[icntl - 1] = ival;
797:   } else {
798:     if(icntl == 65)
799:       mkl_set_num_threads((int)ival);
800:     else if(icntl == 66)
801:       mat_mkl_cpardiso->maxfct = ival;
802:     else if(icntl == 67)
803:       mat_mkl_cpardiso->mnum = ival;
804:     else if(icntl == 68)
805:       mat_mkl_cpardiso->msglvl = ival;
806:     else if(icntl == 69){
807:       int pt[IPARM_SIZE];
808:       mat_mkl_cpardiso->mtype = ival;
809: #if defined(PETSC_USE_REAL_SINGLE)
810:       mat_mkl_cpardiso->iparm[27] = 1;
811: #else
812:       mat_mkl_cpardiso->iparm[27] = 0;
813: #endif
814:       mat_mkl_cpardiso->iparm[34] = 1;
815:     }
816:   }
817:   return(0);
818: }

822: /*@
823:   MatMkl_CPardisoSetCntl - Set Mkl_Pardiso parameters

825:    Logically Collective on Mat

827:    Input Parameters:
828: +  F - the factored matrix obtained by calling MatGetFactor()
829: .  icntl - index of Mkl_Pardiso parameter
830: -  ival - value of Mkl_Pardiso parameter

832:   Options Database:
833: .   -mat_mkl_cpardiso_<icntl> <ival>

835:    Level: beginner

837:    References: Mkl_Pardiso Users' Guide

839: .seealso: MatGetFactor()
840: @*/
841: PetscErrorCode MatMkl_CPardisoSetCntl(Mat F,PetscInt icntl,PetscInt ival)
842: {

846:   PetscTryMethod(F,"MatMkl_CPardisoSetCntl_C",(Mat,PetscInt,PetscInt),(F,icntl,ival));
847:   return(0);
848: }

852: static PetscErrorCode MatFactorGetSolverPackage_mkl_cpardiso(Mat A, const MatSolverPackage *type)
853: {
855:   *type = MATSOLVERMKL_CPARDISO;
856:   return(0);
857: }

859: /* MatGetFactor for MPI AIJ matrices */
862: PETSC_EXTERN PetscErrorCode MatGetFactor_mpiaij_mkl_cpardiso(Mat A,MatFactorType ftype,Mat *F)
863: {
864:   Mat              B;
865:   PetscErrorCode   ierr;
866:   Mat_MKL_CPARDISO *mat_mkl_cpardiso;
867:   PetscBool        isSeqAIJ;

870:   /* Create the factorization matrix */

872:   PetscObjectTypeCompare((PetscObject)A,MATSEQAIJ,&isSeqAIJ);
873:   MatCreate(PetscObjectComm((PetscObject)A),&B);
874:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
875:   MatSetType(B,((PetscObject)A)->type_name);

877:   PetscNewLog(B,&mat_mkl_cpardiso);

879:   if (isSeqAIJ) {
880:     MatSeqAIJSetPreallocation(B,0,NULL);
881:   mat_mkl_cpardiso->ConvertToTriples = MatCopy_seqaij_seqaij_MKL_CPARDISO;
882:   } else {
883:     mat_mkl_cpardiso->ConvertToTriples = MatConvertToTriples_mpiaij_mpiaij_MKL_CPARDISO;
884:     MatMPIAIJSetPreallocation(B,0,NULL,0,NULL);
885:   }

887:   B->ops->lufactorsymbolic = MatLUFactorSymbolic_AIJMKL_CPARDISO;
888:   B->ops->destroy = MatDestroy_MKL_CPARDISO;

890:   B->ops->view    = MatView_MKL_CPARDISO;
891:   B->ops->getinfo = MatGetInfo_MKL_CPARDISO;

893:   B->factortype   = ftype;
894:   B->assembled    = PETSC_TRUE;           /* required by -ksp_view */

896:   B->spptr = mat_mkl_cpardiso;

898:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverPackage_C",MatFactorGetSolverPackage_mkl_cpardiso);
899:   PetscObjectComposeFunction((PetscObject)B,"MatMkl_CPardisoSetCntl_C",MatMkl_CPardisoSetCntl_MKL_CPARDISO);
900:   PetscInitialize_MKL_CPARDISO(A, mat_mkl_cpardiso);

902:   *F = B;
903:   return(0);
904: }

908: PETSC_EXTERN PetscErrorCode MatSolverPackageRegister_MKL_CPardiso(void)
909: {
911: 
913:   MatSolverPackageRegister(MATSOLVERMKL_CPARDISO,MATMPIAIJ,MAT_FACTOR_LU,MatGetFactor_mpiaij_mkl_cpardiso);
914:   MatSolverPackageRegister(MATSOLVERMKL_CPARDISO,MATSEQAIJ,MAT_FACTOR_LU,MatGetFactor_mpiaij_mkl_cpardiso);
915:   return(0);
916: }