Actual source code: ts.c
petsc-3.6.1 2015-08-06
2: #include <petsc/private/tsimpl.h> /*I "petscts.h" I*/
3: #include <petscdmshell.h>
4: #include <petscdmda.h>
5: #include <petscviewer.h>
6: #include <petscdraw.h>
8: /* Logging support */
9: PetscClassId TS_CLASSID, DMTS_CLASSID;
10: PetscLogEvent TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;
12: const char *const TSExactFinalTimeOptions[] = {"STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",0};
14: struct _n_TSMonitorDrawCtx {
15: PetscViewer viewer;
16: PetscDrawAxis axis;
17: Vec initialsolution;
18: PetscBool showinitial;
19: PetscInt howoften; /* when > 0 uses step % howoften, when negative only final solution plotted */
20: PetscBool showtimestepandtime;
21: int color;
22: };
26: /*@
27: TSSetFromOptions - Sets various TS parameters from user options.
29: Collective on TS
31: Input Parameter:
32: . ts - the TS context obtained from TSCreate()
34: Options Database Keys:
35: + -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSGL, TSSSP
36: . -ts_save_trajectory - checkpoint the solution at each time-step
37: . -ts_max_steps <maxsteps> - maximum number of time-steps to take
38: . -ts_final_time <time> - maximum time to compute to
39: . -ts_dt <dt> - initial time step
40: . -ts_exact_final_time <stepover,interpolate,matchstep> whether to stop at the exact given final time and how to compute the solution at that ti,e
41: . -ts_max_snes_failures <maxfailures> - Maximum number of nonlinear solve failures allowed
42: . -ts_max_reject <maxrejects> - Maximum number of step rejections before step fails
43: . -ts_error_if_step_fails <true,false> - Error if no step succeeds
44: . -ts_rtol <rtol> - relative tolerance for local truncation error
45: . -ts_atol <atol> Absolute tolerance for local truncation error
46: . -ts_adjoint_solve <yes,no> After solving the ODE/DAE solve the adjoint problem (requires -ts_save_trajectory)
47: . -ts_fd_color - Use finite differences with coloring to compute IJacobian
48: . -ts_monitor - print information at each timestep
49: . -ts_monitor_lg_timestep - Monitor timestep size graphically
50: . -ts_monitor_lg_solution - Monitor solution graphically
51: . -ts_monitor_lg_error - Monitor error graphically
52: . -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
53: . -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
54: . -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
55: . -ts_monitor_draw_solution - Monitor solution graphically
56: . -ts_monitor_draw_solution_phase <xleft,yleft,xright,yright> - Monitor solution graphically with phase diagram, requires problem with exactly 2 degrees of freedom
57: . -ts_monitor_draw_error - Monitor error graphically, requires use to have provided TSSetSolutionFunction()
58: . -ts_monitor_solution_binary <filename> - Save each solution to a binary file
59: . -ts_monitor_solution_vtk <filename.vts> - Save each time step to a binary file, use filename-%%03D.vts
60: - -ts_monitor_envelope - determine maximum and minimum value of each component of the solution over the solution time
62: Developer Note: We should unify all the -ts_monitor options in the way that -xxx_view has been unified
64: Level: beginner
66: .keywords: TS, timestep, set, options, database
68: .seealso: TSGetType()
69: @*/
70: PetscErrorCode TSSetFromOptions(TS ts)
71: {
72: PetscBool opt,flg,tflg;
73: PetscErrorCode ierr;
74: PetscViewer monviewer;
75: char monfilename[PETSC_MAX_PATH_LEN];
76: SNES snes;
77: TSAdapt adapt;
78: PetscReal time_step;
79: TSExactFinalTimeOption eftopt;
80: char dir[16];
81: const char *defaultType;
82: char typeName[256];
86: PetscObjectOptionsBegin((PetscObject)ts);
87: if (((PetscObject)ts)->type_name) defaultType = ((PetscObject)ts)->type_name;
88: else defaultType = TSEULER;
90: TSRegisterAll();
91: PetscOptionsFList("-ts_type", "TS method"," TSSetType", TSList, defaultType, typeName, 256, &opt);
92: if (opt) {
93: TSSetType(ts, typeName);
94: } else {
95: TSSetType(ts, defaultType);
96: }
98: /* Handle generic TS options */
99: if (ts->trajectory) tflg = PETSC_TRUE;
100: else tflg = PETSC_FALSE;
101: PetscOptionsBool("-ts_save_trajectory","Save the solution at each timestep","TSSetSaveTrajectory",tflg,&tflg,NULL);
102: if (tflg) {TSSetSaveTrajectory(ts);}
103: if (ts->adjoint_solve) tflg = PETSC_TRUE;
104: else tflg = PETSC_FALSE;
105: PetscOptionsBool("-ts_adjoint_solve","Solve the adjoint problem immediately after solving the forward problem","",tflg,&tflg,&flg);
106: if (flg) {
107: TSSetSaveTrajectory(ts);
108: ts->adjoint_solve = tflg;
109: }
110: PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetDuration",ts->max_steps,&ts->max_steps,NULL);
111: PetscOptionsReal("-ts_final_time","Time to run to","TSSetDuration",ts->max_time,&ts->max_time,NULL);
112: PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
113: PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
114: if (flg) {
115: TSSetTimeStep(ts,time_step);
116: }
117: PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
118: if (flg) {TSSetExactFinalTime(ts,eftopt);}
119: PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
120: PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
121: PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
122: PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
123: PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);
125: #if defined(PETSC_HAVE_SAWS)
126: {
127: PetscBool set;
128: flg = PETSC_FALSE;
129: PetscOptionsBool("-ts_saws_block","Block for SAWs memory snooper at end of TSSolve","PetscObjectSAWsBlock",((PetscObject)ts)->amspublishblock,&flg,&set);
130: if (set) {
131: PetscObjectSAWsSetBlock((PetscObject)ts,flg);
132: }
133: }
134: #endif
136: /* Monitor options */
137: PetscOptionsString("-ts_monitor","Monitor timestep size","TSMonitorDefault","stdout",monfilename,PETSC_MAX_PATH_LEN,&flg);
138: if (flg) {
139: PetscViewerASCIIOpen(PetscObjectComm((PetscObject)ts),monfilename,&monviewer);
140: TSMonitorSet(ts,TSMonitorDefault,monviewer,(PetscErrorCode (*)(void**))PetscViewerDestroy);
141: }
142: PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
143: if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}
145: PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
146: if (opt) {
147: TSMonitorLGCtx ctx;
148: PetscInt howoften = 1;
150: PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
151: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
152: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
153: }
154: PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
155: if (opt) {
156: TSMonitorLGCtx ctx;
157: PetscInt howoften = 1;
159: PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
160: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
161: TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
162: }
163: PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
164: if (opt) {
165: TSMonitorLGCtx ctx;
166: PetscInt howoften = 1;
168: PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
169: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
170: TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
171: }
172: PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
173: if (opt) {
174: TSMonitorLGCtx ctx;
175: PetscInt howoften = 1;
177: PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
178: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
179: TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
180: }
181: PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
182: if (opt) {
183: TSMonitorLGCtx ctx;
184: PetscInt howoften = 1;
186: PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
187: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
188: TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
189: }
190: PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
191: if (opt) {
192: TSMonitorSPEigCtx ctx;
193: PetscInt howoften = 1;
195: PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
196: TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
197: TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
198: }
199: opt = PETSC_FALSE;
200: PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
201: if (opt) {
202: TSMonitorDrawCtx ctx;
203: PetscInt howoften = 1;
205: PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
206: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
207: TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
208: }
209: opt = PETSC_FALSE;
210: PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
211: if (opt) {
212: TSMonitorDrawCtx ctx;
213: PetscReal bounds[4];
214: PetscInt n = 4;
215: PetscDraw draw;
217: PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
218: if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
219: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,1,&ctx);
220: PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
221: PetscDrawClear(draw);
222: PetscDrawAxisCreate(draw,&ctx->axis);
223: PetscDrawAxisSetLimits(ctx->axis,bounds[0],bounds[2],bounds[1],bounds[3]);
224: PetscDrawAxisSetLabels(ctx->axis,"Phase Diagram","Variable 1","Variable 2");
225: PetscDrawAxisDraw(ctx->axis);
226: /* PetscDrawSetCoordinates(draw,bounds[0],bounds[1],bounds[2],bounds[3]); */
227: TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
228: }
229: opt = PETSC_FALSE;
230: PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
231: if (opt) {
232: TSMonitorDrawCtx ctx;
233: PetscInt howoften = 1;
235: PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
236: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
237: TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
238: }
239: opt = PETSC_FALSE;
240: PetscOptionsString("-ts_monitor_solution_binary","Save each solution to a binary file","TSMonitorSolutionBinary",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
241: if (flg) {
242: PetscViewer ctx;
243: if (monfilename[0]) {
244: PetscViewerBinaryOpen(PetscObjectComm((PetscObject)ts),monfilename,FILE_MODE_WRITE,&ctx);
245: TSMonitorSet(ts,TSMonitorSolutionBinary,ctx,(PetscErrorCode (*)(void**))PetscViewerDestroy);
246: } else {
247: ctx = PETSC_VIEWER_BINARY_(PetscObjectComm((PetscObject)ts));
248: TSMonitorSet(ts,TSMonitorSolutionBinary,ctx,(PetscErrorCode (*)(void**))NULL);
249: }
250: }
251: opt = PETSC_FALSE;
252: PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
253: if (flg) {
254: const char *ptr,*ptr2;
255: char *filetemplate;
256: if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
257: /* Do some cursory validation of the input. */
258: PetscStrstr(monfilename,"%",(char**)&ptr);
259: if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
260: for (ptr++; ptr && *ptr; ptr++) {
261: PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
262: if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
263: if (ptr2) break;
264: }
265: PetscStrallocpy(monfilename,&filetemplate);
266: TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
267: }
269: PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,16,&flg);
270: if (flg) {
271: TSMonitorDMDARayCtx *rayctx;
272: int ray = 0;
273: DMDADirection ddir;
274: DM da;
275: PetscMPIInt rank;
277: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
278: if (dir[0] == 'x') ddir = DMDA_X;
279: else if (dir[0] == 'y') ddir = DMDA_Y;
280: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
281: sscanf(dir+2,"%d",&ray);
283: PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %D\n",dir[0],ray);
284: PetscNew(&rayctx);
285: TSGetDM(ts,&da);
286: DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
287: MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
288: if (!rank) {
289: PetscViewerDrawOpen(PETSC_COMM_SELF,0,0,0,0,600,300,&rayctx->viewer);
290: }
291: rayctx->lgctx = NULL;
292: TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
293: }
294: PetscOptionsString("-ts_monitor_lg_dmda_ray","Display a ray of the solution","None","x=0",dir,16,&flg);
295: if (flg) {
296: TSMonitorDMDARayCtx *rayctx;
297: int ray = 0;
298: DMDADirection ddir;
299: DM da;
300: PetscInt howoften = 1;
302: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Malformed ray %s", dir);
303: if (dir[0] == 'x') ddir = DMDA_X;
304: else if (dir[0] == 'y') ddir = DMDA_Y;
305: else SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Unknown ray direction %s", dir);
306: sscanf(dir+2, "%d", &ray);
308: PetscInfo2(((PetscObject) ts),"Displaying LG DMDA ray %c = %D\n", dir[0], ray);
309: PetscNew(&rayctx);
310: TSGetDM(ts, &da);
311: DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter);
312: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&rayctx->lgctx);
313: TSMonitorSet(ts, TSMonitorLGDMDARay, rayctx, TSMonitorDMDARayDestroy);
314: }
316: PetscOptionsName("-ts_monitor_envelope","Monitor maximum and minimum value of each component of the solution","TSMonitorEnvelope",&opt);
317: if (opt) {
318: TSMonitorEnvelopeCtx ctx;
320: TSMonitorEnvelopeCtxCreate(ts,&ctx);
321: TSMonitorSet(ts,TSMonitorEnvelope,ctx,(PetscErrorCode (*)(void**))TSMonitorEnvelopeCtxDestroy);
322: }
324: flg = PETSC_FALSE;
325: PetscOptionsBool("-ts_fd_color", "Use finite differences with coloring to compute IJacobian", "TSComputeJacobianDefaultColor", flg, &flg, NULL);
326: if (flg) {
327: DM dm;
328: DMTS tdm;
330: TSGetDM(ts, &dm);
331: DMGetDMTS(dm, &tdm);
332: tdm->ijacobianctx = NULL;
333: TSSetIJacobian(ts, NULL, NULL, TSComputeIJacobianDefaultColor, 0);
334: PetscInfo(ts, "Setting default finite difference coloring Jacobian matrix\n");
335: }
337: /*
338: This code is all wrong. One is creating objects inside the TSSetFromOptions() so if run with the options gui
339: will bleed memory. Also one is using a PetscOptionsBegin() inside a PetscOptionsBegin()
340: */
341: TSGetAdapt(ts,&adapt);
342: TSAdaptSetFromOptions(PetscOptionsObject,adapt);
344: /* Handle specific TS options */
345: if (ts->ops->setfromoptions) {
346: (*ts->ops->setfromoptions)(PetscOptionsObject,ts);
347: }
348: PetscOptionsEnd();
350: /* process any options handlers added with PetscObjectAddOptionsHandler() */
351: PetscObjectProcessOptionsHandlers((PetscObject)ts);
353: if (ts->trajectory) {
354: TSTrajectorySetFromOptions(ts->trajectory);
355: }
357: TSGetSNES(ts,&snes);
358: if (snes) {
359: if (ts->problem_type == TS_LINEAR) {SNESSetType(snes,SNESKSPONLY);}
360: SNESSetFromOptions(ts->snes);
361: }
362: return(0);
363: }
367: /*@
368: TSSetSaveTrajectory - Causes the TS to save its solutions as it iterates forward in time in a TSTrajectory object
370: Collective on TS
372: Input Parameters:
373: . ts - the TS context obtained from TSCreate()
376: Level: intermediate
378: .seealso: TSGetTrajectory(), TSAdjointSolve()
380: .keywords: TS, set, checkpoint,
381: @*/
382: PetscErrorCode TSSetSaveTrajectory(TS ts)
383: {
388: if (!ts->trajectory) {
389: TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
390: TSTrajectorySetType(ts->trajectory,TSTRAJECTORYBASIC);
391: }
392: return(0);
393: }
397: /*@
398: TSComputeRHSJacobian - Computes the Jacobian matrix that has been
399: set with TSSetRHSJacobian().
401: Collective on TS and Vec
403: Input Parameters:
404: + ts - the TS context
405: . t - current timestep
406: - U - input vector
408: Output Parameters:
409: + A - Jacobian matrix
410: . B - optional preconditioning matrix
411: - flag - flag indicating matrix structure
413: Notes:
414: Most users should not need to explicitly call this routine, as it
415: is used internally within the nonlinear solvers.
417: See KSPSetOperators() for important information about setting the
418: flag parameter.
420: Level: developer
422: .keywords: SNES, compute, Jacobian, matrix
424: .seealso: TSSetRHSJacobian(), KSPSetOperators()
425: @*/
426: PetscErrorCode TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat A,Mat B)
427: {
429: PetscObjectState Ustate;
430: DM dm;
431: DMTS tsdm;
432: TSRHSJacobian rhsjacobianfunc;
433: void *ctx;
434: TSIJacobian ijacobianfunc;
435: TSRHSFunction rhsfunction;
441: TSGetDM(ts,&dm);
442: DMGetDMTS(dm,&tsdm);
443: DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
444: DMTSGetIJacobian(dm,&ijacobianfunc,NULL);
445: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
446: PetscObjectStateGet((PetscObject)U,&Ustate);
447: if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.X == U && ts->rhsjacobian.Xstate == Ustate)) && (rhsfunction != TSComputeRHSFunctionLinear)) {
448: return(0);
449: }
451: if (!rhsjacobianfunc && !ijacobianfunc) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
453: if (ts->rhsjacobian.reuse) {
454: MatShift(A,-ts->rhsjacobian.shift);
455: MatScale(A,1./ts->rhsjacobian.scale);
456: if (A != B) {
457: MatShift(B,-ts->rhsjacobian.shift);
458: MatScale(B,1./ts->rhsjacobian.scale);
459: }
460: ts->rhsjacobian.shift = 0;
461: ts->rhsjacobian.scale = 1.;
462: }
464: if (rhsjacobianfunc) {
465: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
466: PetscStackPush("TS user Jacobian function");
467: (*rhsjacobianfunc)(ts,t,U,A,B,ctx);
468: PetscStackPop;
469: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
470: /* make sure user returned a correct Jacobian and preconditioner */
473: } else {
474: MatZeroEntries(A);
475: if (A != B) {MatZeroEntries(B);}
476: }
477: ts->rhsjacobian.time = t;
478: ts->rhsjacobian.X = U;
479: PetscObjectStateGet((PetscObject)U,&ts->rhsjacobian.Xstate);
480: return(0);
481: }
485: /*@
486: TSComputeRHSFunction - Evaluates the right-hand-side function.
488: Collective on TS and Vec
490: Input Parameters:
491: + ts - the TS context
492: . t - current time
493: - U - state vector
495: Output Parameter:
496: . y - right hand side
498: Note:
499: Most users should not need to explicitly call this routine, as it
500: is used internally within the nonlinear solvers.
502: Level: developer
504: .keywords: TS, compute
506: .seealso: TSSetRHSFunction(), TSComputeIFunction()
507: @*/
508: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
509: {
511: TSRHSFunction rhsfunction;
512: TSIFunction ifunction;
513: void *ctx;
514: DM dm;
520: TSGetDM(ts,&dm);
521: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
522: DMTSGetIFunction(dm,&ifunction,NULL);
524: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
526: PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
527: if (rhsfunction) {
528: PetscStackPush("TS user right-hand-side function");
529: (*rhsfunction)(ts,t,U,y,ctx);
530: PetscStackPop;
531: } else {
532: VecZeroEntries(y);
533: }
535: PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
536: return(0);
537: }
541: /*@
542: TSComputeSolutionFunction - Evaluates the solution function.
544: Collective on TS and Vec
546: Input Parameters:
547: + ts - the TS context
548: - t - current time
550: Output Parameter:
551: . U - the solution
553: Note:
554: Most users should not need to explicitly call this routine, as it
555: is used internally within the nonlinear solvers.
557: Level: developer
559: .keywords: TS, compute
561: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
562: @*/
563: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
564: {
565: PetscErrorCode ierr;
566: TSSolutionFunction solutionfunction;
567: void *ctx;
568: DM dm;
573: TSGetDM(ts,&dm);
574: DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);
576: if (solutionfunction) {
577: PetscStackPush("TS user solution function");
578: (*solutionfunction)(ts,t,U,ctx);
579: PetscStackPop;
580: }
581: return(0);
582: }
585: /*@
586: TSComputeForcingFunction - Evaluates the forcing function.
588: Collective on TS and Vec
590: Input Parameters:
591: + ts - the TS context
592: - t - current time
594: Output Parameter:
595: . U - the function value
597: Note:
598: Most users should not need to explicitly call this routine, as it
599: is used internally within the nonlinear solvers.
601: Level: developer
603: .keywords: TS, compute
605: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
606: @*/
607: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
608: {
609: PetscErrorCode ierr, (*forcing)(TS,PetscReal,Vec,void*);
610: void *ctx;
611: DM dm;
616: TSGetDM(ts,&dm);
617: DMTSGetForcingFunction(dm,&forcing,&ctx);
619: if (forcing) {
620: PetscStackPush("TS user forcing function");
621: (*forcing)(ts,t,U,ctx);
622: PetscStackPop;
623: }
624: return(0);
625: }
629: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
630: {
631: Vec F;
635: *Frhs = NULL;
636: TSGetIFunction(ts,&F,NULL,NULL);
637: if (!ts->Frhs) {
638: VecDuplicate(F,&ts->Frhs);
639: }
640: *Frhs = ts->Frhs;
641: return(0);
642: }
646: static PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
647: {
648: Mat A,B;
652: if (Arhs) *Arhs = NULL;
653: if (Brhs) *Brhs = NULL;
654: TSGetIJacobian(ts,&A,&B,NULL,NULL);
655: if (Arhs) {
656: if (!ts->Arhs) {
657: MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
658: }
659: *Arhs = ts->Arhs;
660: }
661: if (Brhs) {
662: if (!ts->Brhs) {
663: if (A != B) {
664: MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
665: } else {
666: ts->Brhs = ts->Arhs;
667: PetscObjectReference((PetscObject)ts->Arhs);
668: }
669: }
670: *Brhs = ts->Brhs;
671: }
672: return(0);
673: }
677: /*@
678: TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0
680: Collective on TS and Vec
682: Input Parameters:
683: + ts - the TS context
684: . t - current time
685: . U - state vector
686: . Udot - time derivative of state vector
687: - imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate
689: Output Parameter:
690: . Y - right hand side
692: Note:
693: Most users should not need to explicitly call this routine, as it
694: is used internally within the nonlinear solvers.
696: If the user did did not write their equations in implicit form, this
697: function recasts them in implicit form.
699: Level: developer
701: .keywords: TS, compute
703: .seealso: TSSetIFunction(), TSComputeRHSFunction()
704: @*/
705: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
706: {
708: TSIFunction ifunction;
709: TSRHSFunction rhsfunction;
710: void *ctx;
711: DM dm;
719: TSGetDM(ts,&dm);
720: DMTSGetIFunction(dm,&ifunction,&ctx);
721: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
723: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
725: PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
726: if (ifunction) {
727: PetscStackPush("TS user implicit function");
728: (*ifunction)(ts,t,U,Udot,Y,ctx);
729: PetscStackPop;
730: }
731: if (imex) {
732: if (!ifunction) {
733: VecCopy(Udot,Y);
734: }
735: } else if (rhsfunction) {
736: if (ifunction) {
737: Vec Frhs;
738: TSGetRHSVec_Private(ts,&Frhs);
739: TSComputeRHSFunction(ts,t,U,Frhs);
740: VecAXPY(Y,-1,Frhs);
741: } else {
742: TSComputeRHSFunction(ts,t,U,Y);
743: VecAYPX(Y,-1,Udot);
744: }
745: }
746: PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
747: return(0);
748: }
752: /*@
753: TSComputeIJacobian - Evaluates the Jacobian of the DAE
755: Collective on TS and Vec
757: Input
758: Input Parameters:
759: + ts - the TS context
760: . t - current timestep
761: . U - state vector
762: . Udot - time derivative of state vector
763: . shift - shift to apply, see note below
764: - imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate
766: Output Parameters:
767: + A - Jacobian matrix
768: . B - optional preconditioning matrix
769: - flag - flag indicating matrix structure
771: Notes:
772: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
774: dF/dU + shift*dF/dUdot
776: Most users should not need to explicitly call this routine, as it
777: is used internally within the nonlinear solvers.
779: Level: developer
781: .keywords: TS, compute, Jacobian, matrix
783: .seealso: TSSetIJacobian()
784: @*/
785: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,PetscBool imex)
786: {
788: TSIJacobian ijacobian;
789: TSRHSJacobian rhsjacobian;
790: DM dm;
791: void *ctx;
802: TSGetDM(ts,&dm);
803: DMTSGetIJacobian(dm,&ijacobian,&ctx);
804: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
806: if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
808: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
809: if (ijacobian) {
810: PetscStackPush("TS user implicit Jacobian");
811: (*ijacobian)(ts,t,U,Udot,shift,A,B,ctx);
812: PetscStackPop;
813: /* make sure user returned a correct Jacobian and preconditioner */
816: }
817: if (imex) {
818: if (!ijacobian) { /* system was written as Udot = G(t,U) */
819: MatZeroEntries(A);
820: MatShift(A,shift);
821: if (A != B) {
822: MatZeroEntries(B);
823: MatShift(B,shift);
824: }
825: }
826: } else {
827: Mat Arhs = NULL,Brhs = NULL;
828: if (rhsjacobian) {
829: if (ijacobian) {
830: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
831: } else {
832: TSGetIJacobian(ts,&Arhs,&Brhs,NULL,NULL);
833: }
834: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
835: }
836: if (Arhs == A) { /* No IJacobian, so we only have the RHS matrix */
837: ts->rhsjacobian.scale = -1;
838: ts->rhsjacobian.shift = shift;
839: MatScale(A,-1);
840: MatShift(A,shift);
841: if (A != B) {
842: MatScale(B,-1);
843: MatShift(B,shift);
844: }
845: } else if (Arhs) { /* Both IJacobian and RHSJacobian */
846: MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
847: if (!ijacobian) { /* No IJacobian provided, but we have a separate RHS matrix */
848: MatZeroEntries(A);
849: MatShift(A,shift);
850: if (A != B) {
851: MatZeroEntries(B);
852: MatShift(B,shift);
853: }
854: }
855: MatAXPY(A,-1,Arhs,axpy);
856: if (A != B) {
857: MatAXPY(B,-1,Brhs,axpy);
858: }
859: }
860: }
861: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
862: return(0);
863: }
867: /*@C
868: TSSetRHSFunction - Sets the routine for evaluating the function,
869: where U_t = G(t,u).
871: Logically Collective on TS
873: Input Parameters:
874: + ts - the TS context obtained from TSCreate()
875: . r - vector to put the computed right hand side (or NULL to have it created)
876: . f - routine for evaluating the right-hand-side function
877: - ctx - [optional] user-defined context for private data for the
878: function evaluation routine (may be NULL)
880: Calling sequence of func:
881: $ func (TS ts,PetscReal t,Vec u,Vec F,void *ctx);
883: + t - current timestep
884: . u - input vector
885: . F - function vector
886: - ctx - [optional] user-defined function context
888: Level: beginner
890: Notes: You must call this function or TSSetIFunction() to define your ODE. You cannot use this function when solving a DAE.
892: .keywords: TS, timestep, set, right-hand-side, function
894: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSSetIFunction()
895: @*/
896: PetscErrorCode TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
897: {
899: SNES snes;
900: Vec ralloc = NULL;
901: DM dm;
907: TSGetDM(ts,&dm);
908: DMTSSetRHSFunction(dm,f,ctx);
909: TSGetSNES(ts,&snes);
910: if (!r && !ts->dm && ts->vec_sol) {
911: VecDuplicate(ts->vec_sol,&ralloc);
912: r = ralloc;
913: }
914: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
915: VecDestroy(&ralloc);
916: return(0);
917: }
921: /*@C
922: TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE
924: Logically Collective on TS
926: Input Parameters:
927: + ts - the TS context obtained from TSCreate()
928: . f - routine for evaluating the solution
929: - ctx - [optional] user-defined context for private data for the
930: function evaluation routine (may be NULL)
932: Calling sequence of func:
933: $ func (TS ts,PetscReal t,Vec u,void *ctx);
935: + t - current timestep
936: . u - output vector
937: - ctx - [optional] user-defined function context
939: Notes:
940: This routine is used for testing accuracy of time integration schemes when you already know the solution.
941: If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
942: create closed-form solutions with non-physical forcing terms.
944: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
946: Level: beginner
948: .keywords: TS, timestep, set, right-hand-side, function
950: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction()
951: @*/
952: PetscErrorCode TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
953: {
955: DM dm;
959: TSGetDM(ts,&dm);
960: DMTSSetSolutionFunction(dm,f,ctx);
961: return(0);
962: }
966: /*@C
967: TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE
969: Logically Collective on TS
971: Input Parameters:
972: + ts - the TS context obtained from TSCreate()
973: . f - routine for evaluating the forcing function
974: - ctx - [optional] user-defined context for private data for the
975: function evaluation routine (may be NULL)
977: Calling sequence of func:
978: $ func (TS ts,PetscReal t,Vec u,void *ctx);
980: + t - current timestep
981: . u - output vector
982: - ctx - [optional] user-defined function context
984: Notes:
985: This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
986: create closed-form solutions with a non-physical forcing term.
988: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
990: Level: beginner
992: .keywords: TS, timestep, set, right-hand-side, function
994: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
995: @*/
996: PetscErrorCode TSSetForcingFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
997: {
999: DM dm;
1003: TSGetDM(ts,&dm);
1004: DMTSSetForcingFunction(dm,f,ctx);
1005: return(0);
1006: }
1010: /*@C
1011: TSSetRHSJacobian - Sets the function to compute the Jacobian of G,
1012: where U_t = G(U,t), as well as the location to store the matrix.
1014: Logically Collective on TS
1016: Input Parameters:
1017: + ts - the TS context obtained from TSCreate()
1018: . Amat - (approximate) Jacobian matrix
1019: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1020: . f - the Jacobian evaluation routine
1021: - ctx - [optional] user-defined context for private data for the
1022: Jacobian evaluation routine (may be NULL)
1024: Calling sequence of f:
1025: $ func (TS ts,PetscReal t,Vec u,Mat A,Mat B,void *ctx);
1027: + t - current timestep
1028: . u - input vector
1029: . Amat - (approximate) Jacobian matrix
1030: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1031: - ctx - [optional] user-defined context for matrix evaluation routine
1034: Level: beginner
1036: .keywords: TS, timestep, set, right-hand-side, Jacobian
1038: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction(), TSRHSJacobianSetReuse(), TSSetIJacobian()
1040: @*/
1041: PetscErrorCode TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
1042: {
1044: SNES snes;
1045: DM dm;
1046: TSIJacobian ijacobian;
1055: TSGetDM(ts,&dm);
1056: DMTSSetRHSJacobian(dm,f,ctx);
1057: if (f == TSComputeRHSJacobianConstant) {
1058: /* Handle this case automatically for the user; otherwise user should call themselves. */
1059: TSRHSJacobianSetReuse(ts,PETSC_TRUE);
1060: }
1061: DMTSGetIJacobian(dm,&ijacobian,NULL);
1062: TSGetSNES(ts,&snes);
1063: if (!ijacobian) {
1064: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1065: }
1066: if (Amat) {
1067: PetscObjectReference((PetscObject)Amat);
1068: MatDestroy(&ts->Arhs);
1070: ts->Arhs = Amat;
1071: }
1072: if (Pmat) {
1073: PetscObjectReference((PetscObject)Pmat);
1074: MatDestroy(&ts->Brhs);
1076: ts->Brhs = Pmat;
1077: }
1078: return(0);
1079: }
1084: /*@C
1085: TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.
1087: Logically Collective on TS
1089: Input Parameters:
1090: + ts - the TS context obtained from TSCreate()
1091: . r - vector to hold the residual (or NULL to have it created internally)
1092: . f - the function evaluation routine
1093: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1095: Calling sequence of f:
1096: $ f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);
1098: + t - time at step/stage being solved
1099: . u - state vector
1100: . u_t - time derivative of state vector
1101: . F - function vector
1102: - ctx - [optional] user-defined context for matrix evaluation routine
1104: Important:
1105: The user MUST call either this routine or TSSetRHSFunction() to define the ODE. When solving DAEs you must use this function.
1107: Level: beginner
1109: .keywords: TS, timestep, set, DAE, Jacobian
1111: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1112: @*/
1113: PetscErrorCode TSSetIFunction(TS ts,Vec res,TSIFunction f,void *ctx)
1114: {
1116: SNES snes;
1117: Vec resalloc = NULL;
1118: DM dm;
1124: TSGetDM(ts,&dm);
1125: DMTSSetIFunction(dm,f,ctx);
1127: TSGetSNES(ts,&snes);
1128: if (!res && !ts->dm && ts->vec_sol) {
1129: VecDuplicate(ts->vec_sol,&resalloc);
1130: res = resalloc;
1131: }
1132: SNESSetFunction(snes,res,SNESTSFormFunction,ts);
1133: VecDestroy(&resalloc);
1134: return(0);
1135: }
1139: /*@C
1140: TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1142: Not Collective
1144: Input Parameter:
1145: . ts - the TS context
1147: Output Parameter:
1148: + r - vector to hold residual (or NULL)
1149: . func - the function to compute residual (or NULL)
1150: - ctx - the function context (or NULL)
1152: Level: advanced
1154: .keywords: TS, nonlinear, get, function
1156: .seealso: TSSetIFunction(), SNESGetFunction()
1157: @*/
1158: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1159: {
1161: SNES snes;
1162: DM dm;
1166: TSGetSNES(ts,&snes);
1167: SNESGetFunction(snes,r,NULL,NULL);
1168: TSGetDM(ts,&dm);
1169: DMTSGetIFunction(dm,func,ctx);
1170: return(0);
1171: }
1175: /*@C
1176: TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.
1178: Not Collective
1180: Input Parameter:
1181: . ts - the TS context
1183: Output Parameter:
1184: + r - vector to hold computed right hand side (or NULL)
1185: . func - the function to compute right hand side (or NULL)
1186: - ctx - the function context (or NULL)
1188: Level: advanced
1190: .keywords: TS, nonlinear, get, function
1192: .seealso: TSSetRHSFunction(), SNESGetFunction()
1193: @*/
1194: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1195: {
1197: SNES snes;
1198: DM dm;
1202: TSGetSNES(ts,&snes);
1203: SNESGetFunction(snes,r,NULL,NULL);
1204: TSGetDM(ts,&dm);
1205: DMTSGetRHSFunction(dm,func,ctx);
1206: return(0);
1207: }
1211: /*@C
1212: TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1213: provided with TSSetIFunction().
1215: Logically Collective on TS
1217: Input Parameters:
1218: + ts - the TS context obtained from TSCreate()
1219: . Amat - (approximate) Jacobian matrix
1220: . Pmat - matrix used to compute preconditioner (usually the same as Amat)
1221: . f - the Jacobian evaluation routine
1222: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1224: Calling sequence of f:
1225: $ f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat Amat,Mat Pmat,void *ctx);
1227: + t - time at step/stage being solved
1228: . U - state vector
1229: . U_t - time derivative of state vector
1230: . a - shift
1231: . Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1232: . Pmat - matrix used for constructing preconditioner, usually the same as Amat
1233: - ctx - [optional] user-defined context for matrix evaluation routine
1235: Notes:
1236: The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.
1238: If you know the operator Amat has a null space you can use MatSetNullSpace() and MatSetTransposeNullSpace() to supply the null
1239: space to Amat and the KSP solvers will automatically use that null space as needed during the solution process.
1241: The matrix dF/dU + a*dF/dU_t you provide turns out to be
1242: the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1243: The time integrator internally approximates U_t by W+a*U where the positive "shift"
1244: a and vector W depend on the integration method, step size, and past states. For example with
1245: the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1246: W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt
1248: Level: beginner
1250: .keywords: TS, timestep, DAE, Jacobian
1252: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault(), TSSetRHSFunction()
1254: @*/
1255: PetscErrorCode TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1256: {
1258: SNES snes;
1259: DM dm;
1268: TSGetDM(ts,&dm);
1269: DMTSSetIJacobian(dm,f,ctx);
1271: TSGetSNES(ts,&snes);
1272: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1273: return(0);
1274: }
1278: /*@
1279: TSRHSJacobianSetReuse - restore RHS Jacobian before re-evaluating. Without this flag, TS will change the sign and
1280: shift the RHS Jacobian for a finite-time-step implicit solve, in which case the user function will need to recompute
1281: the entire Jacobian. The reuse flag must be set if the evaluation function will assume that the matrix entries have
1282: not been changed by the TS.
1284: Logically Collective
1286: Input Arguments:
1287: + ts - TS context obtained from TSCreate()
1288: - reuse - PETSC_TRUE if the RHS Jacobian
1290: Level: intermediate
1292: .seealso: TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
1293: @*/
1294: PetscErrorCode TSRHSJacobianSetReuse(TS ts,PetscBool reuse)
1295: {
1297: ts->rhsjacobian.reuse = reuse;
1298: return(0);
1299: }
1303: /*@C
1304: TSLoad - Loads a KSP that has been stored in binary with KSPView().
1306: Collective on PetscViewer
1308: Input Parameters:
1309: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1310: some related function before a call to TSLoad().
1311: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()
1313: Level: intermediate
1315: Notes:
1316: The type is determined by the data in the file, any type set into the TS before this call is ignored.
1318: Notes for advanced users:
1319: Most users should not need to know the details of the binary storage
1320: format, since TSLoad() and TSView() completely hide these details.
1321: But for anyone who's interested, the standard binary matrix storage
1322: format is
1323: .vb
1324: has not yet been determined
1325: .ve
1327: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1328: @*/
1329: PetscErrorCode TSLoad(TS ts, PetscViewer viewer)
1330: {
1332: PetscBool isbinary;
1333: PetscInt classid;
1334: char type[256];
1335: DMTS sdm;
1336: DM dm;
1341: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1342: if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");
1344: PetscViewerBinaryRead(viewer,&classid,1,NULL,PETSC_INT);
1345: if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1346: PetscViewerBinaryRead(viewer,type,256,NULL,PETSC_CHAR);
1347: TSSetType(ts, type);
1348: if (ts->ops->load) {
1349: (*ts->ops->load)(ts,viewer);
1350: }
1351: DMCreate(PetscObjectComm((PetscObject)ts),&dm);
1352: DMLoad(dm,viewer);
1353: TSSetDM(ts,dm);
1354: DMCreateGlobalVector(ts->dm,&ts->vec_sol);
1355: VecLoad(ts->vec_sol,viewer);
1356: DMGetDMTS(ts->dm,&sdm);
1357: DMTSLoad(sdm,viewer);
1358: return(0);
1359: }
1361: #include <petscdraw.h>
1362: #if defined(PETSC_HAVE_SAWS)
1363: #include <petscviewersaws.h>
1364: #endif
1367: /*@C
1368: TSView - Prints the TS data structure.
1370: Collective on TS
1372: Input Parameters:
1373: + ts - the TS context obtained from TSCreate()
1374: - viewer - visualization context
1376: Options Database Key:
1377: . -ts_view - calls TSView() at end of TSStep()
1379: Notes:
1380: The available visualization contexts include
1381: + PETSC_VIEWER_STDOUT_SELF - standard output (default)
1382: - PETSC_VIEWER_STDOUT_WORLD - synchronized standard
1383: output where only the first processor opens
1384: the file. All other processors send their
1385: data to the first processor to print.
1387: The user can open an alternative visualization context with
1388: PetscViewerASCIIOpen() - output to a specified file.
1390: Level: beginner
1392: .keywords: TS, timestep, view
1394: .seealso: PetscViewerASCIIOpen()
1395: @*/
1396: PetscErrorCode TSView(TS ts,PetscViewer viewer)
1397: {
1399: TSType type;
1400: PetscBool iascii,isstring,isundials,isbinary,isdraw;
1401: DMTS sdm;
1402: #if defined(PETSC_HAVE_SAWS)
1403: PetscBool issaws;
1404: #endif
1408: if (!viewer) {
1409: PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
1410: }
1414: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1415: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
1416: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1417: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
1418: #if defined(PETSC_HAVE_SAWS)
1419: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&issaws);
1420: #endif
1421: if (iascii) {
1422: PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer);
1423: PetscViewerASCIIPrintf(viewer," maximum steps=%D\n",ts->max_steps);
1424: PetscViewerASCIIPrintf(viewer," maximum time=%g\n",(double)ts->max_time);
1425: if (ts->problem_type == TS_NONLINEAR) {
1426: PetscViewerASCIIPrintf(viewer," total number of nonlinear solver iterations=%D\n",ts->snes_its);
1427: PetscViewerASCIIPrintf(viewer," total number of nonlinear solve failures=%D\n",ts->num_snes_failures);
1428: }
1429: PetscViewerASCIIPrintf(viewer," total number of linear solver iterations=%D\n",ts->ksp_its);
1430: PetscViewerASCIIPrintf(viewer," total number of rejected steps=%D\n",ts->reject);
1431: DMGetDMTS(ts->dm,&sdm);
1432: DMTSView(sdm,viewer);
1433: if (ts->ops->view) {
1434: PetscViewerASCIIPushTab(viewer);
1435: (*ts->ops->view)(ts,viewer);
1436: PetscViewerASCIIPopTab(viewer);
1437: }
1438: } else if (isstring) {
1439: TSGetType(ts,&type);
1440: PetscViewerStringSPrintf(viewer," %-7.7s",type);
1441: } else if (isbinary) {
1442: PetscInt classid = TS_FILE_CLASSID;
1443: MPI_Comm comm;
1444: PetscMPIInt rank;
1445: char type[256];
1447: PetscObjectGetComm((PetscObject)ts,&comm);
1448: MPI_Comm_rank(comm,&rank);
1449: if (!rank) {
1450: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
1451: PetscStrncpy(type,((PetscObject)ts)->type_name,256);
1452: PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR,PETSC_FALSE);
1453: }
1454: if (ts->ops->view) {
1455: (*ts->ops->view)(ts,viewer);
1456: }
1457: DMView(ts->dm,viewer);
1458: VecView(ts->vec_sol,viewer);
1459: DMGetDMTS(ts->dm,&sdm);
1460: DMTSView(sdm,viewer);
1461: } else if (isdraw) {
1462: PetscDraw draw;
1463: char str[36];
1464: PetscReal x,y,bottom,h;
1466: PetscViewerDrawGetDraw(viewer,0,&draw);
1467: PetscDrawGetCurrentPoint(draw,&x,&y);
1468: PetscStrcpy(str,"TS: ");
1469: PetscStrcat(str,((PetscObject)ts)->type_name);
1470: PetscDrawStringBoxed(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
1471: bottom = y - h;
1472: PetscDrawPushCurrentPoint(draw,x,bottom);
1473: if (ts->ops->view) {
1474: (*ts->ops->view)(ts,viewer);
1475: }
1476: PetscDrawPopCurrentPoint(draw);
1477: #if defined(PETSC_HAVE_SAWS)
1478: } else if (issaws) {
1479: PetscMPIInt rank;
1480: const char *name;
1482: PetscObjectGetName((PetscObject)ts,&name);
1483: MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
1484: if (!((PetscObject)ts)->amsmem && !rank) {
1485: char dir[1024];
1487: PetscObjectViewSAWs((PetscObject)ts,viewer);
1488: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time_step",name);
1489: PetscStackCallSAWs(SAWs_Register,(dir,&ts->steps,1,SAWs_READ,SAWs_INT));
1490: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time",name);
1491: PetscStackCallSAWs(SAWs_Register,(dir,&ts->ptime,1,SAWs_READ,SAWs_DOUBLE));
1492: }
1493: if (ts->ops->view) {
1494: (*ts->ops->view)(ts,viewer);
1495: }
1496: #endif
1497: }
1499: PetscViewerASCIIPushTab(viewer);
1500: PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
1501: PetscViewerASCIIPopTab(viewer);
1502: return(0);
1503: }
1508: /*@
1509: TSSetApplicationContext - Sets an optional user-defined context for
1510: the timesteppers.
1512: Logically Collective on TS
1514: Input Parameters:
1515: + ts - the TS context obtained from TSCreate()
1516: - usrP - optional user context
1518: Level: intermediate
1520: .keywords: TS, timestep, set, application, context
1522: .seealso: TSGetApplicationContext()
1523: @*/
1524: PetscErrorCode TSSetApplicationContext(TS ts,void *usrP)
1525: {
1528: ts->user = usrP;
1529: return(0);
1530: }
1534: /*@
1535: TSGetApplicationContext - Gets the user-defined context for the
1536: timestepper.
1538: Not Collective
1540: Input Parameter:
1541: . ts - the TS context obtained from TSCreate()
1543: Output Parameter:
1544: . usrP - user context
1546: Level: intermediate
1548: .keywords: TS, timestep, get, application, context
1550: .seealso: TSSetApplicationContext()
1551: @*/
1552: PetscErrorCode TSGetApplicationContext(TS ts,void *usrP)
1553: {
1556: *(void**)usrP = ts->user;
1557: return(0);
1558: }
1562: /*@
1563: TSGetTimeStepNumber - Gets the number of time steps completed.
1565: Not Collective
1567: Input Parameter:
1568: . ts - the TS context obtained from TSCreate()
1570: Output Parameter:
1571: . iter - number of steps completed so far
1573: Level: intermediate
1575: .keywords: TS, timestep, get, iteration, number
1576: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSSetPostStep()
1577: @*/
1578: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt *iter)
1579: {
1583: *iter = ts->steps;
1584: return(0);
1585: }
1589: /*@
1590: TSSetInitialTimeStep - Sets the initial timestep to be used,
1591: as well as the initial time.
1593: Logically Collective on TS
1595: Input Parameters:
1596: + ts - the TS context obtained from TSCreate()
1597: . initial_time - the initial time
1598: - time_step - the size of the timestep
1600: Level: intermediate
1602: .seealso: TSSetTimeStep(), TSGetTimeStep()
1604: .keywords: TS, set, initial, timestep
1605: @*/
1606: PetscErrorCode TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
1607: {
1612: TSSetTimeStep(ts,time_step);
1613: TSSetTime(ts,initial_time);
1614: return(0);
1615: }
1619: /*@
1620: TSSetTimeStep - Allows one to reset the timestep at any time,
1621: useful for simple pseudo-timestepping codes.
1623: Logically Collective on TS
1625: Input Parameters:
1626: + ts - the TS context obtained from TSCreate()
1627: - time_step - the size of the timestep
1629: Level: intermediate
1631: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
1633: .keywords: TS, set, timestep
1634: @*/
1635: PetscErrorCode TSSetTimeStep(TS ts,PetscReal time_step)
1636: {
1640: ts->time_step = time_step;
1641: ts->time_step_orig = time_step;
1642: return(0);
1643: }
1647: /*@
1648: TSSetExactFinalTime - Determines whether to adapt the final time step to
1649: match the exact final time, interpolate solution to the exact final time,
1650: or just return at the final time TS computed.
1652: Logically Collective on TS
1654: Input Parameter:
1655: + ts - the time-step context
1656: - eftopt - exact final time option
1658: Level: beginner
1660: .seealso: TSExactFinalTimeOption
1661: @*/
1662: PetscErrorCode TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
1663: {
1667: ts->exact_final_time = eftopt;
1668: return(0);
1669: }
1673: /*@
1674: TSGetTimeStep - Gets the current timestep size.
1676: Not Collective
1678: Input Parameter:
1679: . ts - the TS context obtained from TSCreate()
1681: Output Parameter:
1682: . dt - the current timestep size
1684: Level: intermediate
1686: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
1688: .keywords: TS, get, timestep
1689: @*/
1690: PetscErrorCode TSGetTimeStep(TS ts,PetscReal *dt)
1691: {
1695: *dt = ts->time_step;
1696: return(0);
1697: }
1701: /*@
1702: TSGetSolution - Returns the solution at the present timestep. It
1703: is valid to call this routine inside the function that you are evaluating
1704: in order to move to the new timestep. This vector not changed until
1705: the solution at the next timestep has been calculated.
1707: Not Collective, but Vec returned is parallel if TS is parallel
1709: Input Parameter:
1710: . ts - the TS context obtained from TSCreate()
1712: Output Parameter:
1713: . v - the vector containing the solution
1715: Level: intermediate
1717: .seealso: TSGetTimeStep()
1719: .keywords: TS, timestep, get, solution
1720: @*/
1721: PetscErrorCode TSGetSolution(TS ts,Vec *v)
1722: {
1726: *v = ts->vec_sol;
1727: return(0);
1728: }
1732: /*@
1733: TSGetCostGradients - Returns the gradients from the TSAdjointSolve()
1735: Not Collective, but Vec returned is parallel if TS is parallel
1737: Input Parameter:
1738: . ts - the TS context obtained from TSCreate()
1740: Output Parameter:
1741: + lambda - vectors containing the gradients of the cost functions with respect to the ODE/DAE solution variables
1742: - mu - vectors containing the gradients of the cost functions with respect to the problem parameters
1744: Level: intermediate
1746: .seealso: TSGetTimeStep()
1748: .keywords: TS, timestep, get, sensitivity
1749: @*/
1750: PetscErrorCode TSGetCostGradients(TS ts,PetscInt *numcost,Vec **lambda,Vec **mu)
1751: {
1754: if (numcost) *numcost = ts->numcost;
1755: if (lambda) *lambda = ts->vecs_sensi;
1756: if (mu) *mu = ts->vecs_sensip;
1757: return(0);
1758: }
1760: /* ----- Routines to initialize and destroy a timestepper ---- */
1763: /*@
1764: TSSetProblemType - Sets the type of problem to be solved.
1766: Not collective
1768: Input Parameters:
1769: + ts - The TS
1770: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
1771: .vb
1772: U_t - A U = 0 (linear)
1773: U_t - A(t) U = 0 (linear)
1774: F(t,U,U_t) = 0 (nonlinear)
1775: .ve
1777: Level: beginner
1779: .keywords: TS, problem type
1780: .seealso: TSSetUp(), TSProblemType, TS
1781: @*/
1782: PetscErrorCode TSSetProblemType(TS ts, TSProblemType type)
1783: {
1788: ts->problem_type = type;
1789: if (type == TS_LINEAR) {
1790: SNES snes;
1791: TSGetSNES(ts,&snes);
1792: SNESSetType(snes,SNESKSPONLY);
1793: }
1794: return(0);
1795: }
1799: /*@C
1800: TSGetProblemType - Gets the type of problem to be solved.
1802: Not collective
1804: Input Parameter:
1805: . ts - The TS
1807: Output Parameter:
1808: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
1809: .vb
1810: M U_t = A U
1811: M(t) U_t = A(t) U
1812: F(t,U,U_t)
1813: .ve
1815: Level: beginner
1817: .keywords: TS, problem type
1818: .seealso: TSSetUp(), TSProblemType, TS
1819: @*/
1820: PetscErrorCode TSGetProblemType(TS ts, TSProblemType *type)
1821: {
1825: *type = ts->problem_type;
1826: return(0);
1827: }
1831: /*@
1832: TSSetUp - Sets up the internal data structures for the later use
1833: of a timestepper.
1835: Collective on TS
1837: Input Parameter:
1838: . ts - the TS context obtained from TSCreate()
1840: Notes:
1841: For basic use of the TS solvers the user need not explicitly call
1842: TSSetUp(), since these actions will automatically occur during
1843: the call to TSStep(). However, if one wishes to control this
1844: phase separately, TSSetUp() should be called after TSCreate()
1845: and optional routines of the form TSSetXXX(), but before TSStep().
1847: Level: advanced
1849: .keywords: TS, timestep, setup
1851: .seealso: TSCreate(), TSStep(), TSDestroy()
1852: @*/
1853: PetscErrorCode TSSetUp(TS ts)
1854: {
1856: DM dm;
1857: PetscErrorCode (*func)(SNES,Vec,Vec,void*);
1858: PetscErrorCode (*jac)(SNES,Vec,Mat,Mat,void*);
1859: TSIJacobian ijac;
1860: TSRHSJacobian rhsjac;
1864: if (ts->setupcalled) return(0);
1866: ts->total_steps = 0;
1867: if (!((PetscObject)ts)->type_name) {
1868: TSSetType(ts,TSEULER);
1869: }
1871: if (!ts->vec_sol) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");
1874: TSGetAdapt(ts,&ts->adapt);
1876: if (ts->rhsjacobian.reuse) {
1877: Mat Amat,Pmat;
1878: SNES snes;
1879: TSGetSNES(ts,&snes);
1880: SNESGetJacobian(snes,&Amat,&Pmat,NULL,NULL);
1881: /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
1882: * have displaced the RHS matrix */
1883: if (Amat == ts->Arhs) {
1884: MatDuplicate(ts->Arhs,MAT_DO_NOT_COPY_VALUES,&Amat);
1885: SNESSetJacobian(snes,Amat,NULL,NULL,NULL);
1886: MatDestroy(&Amat);
1887: }
1888: if (Pmat == ts->Brhs) {
1889: MatDuplicate(ts->Brhs,MAT_DO_NOT_COPY_VALUES,&Pmat);
1890: SNESSetJacobian(snes,NULL,Pmat,NULL,NULL);
1891: MatDestroy(&Pmat);
1892: }
1893: }
1894: if (ts->ops->setup) {
1895: (*ts->ops->setup)(ts);
1896: }
1898: /* in the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
1899: to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
1900: */
1901: TSGetDM(ts,&dm);
1902: DMSNESGetFunction(dm,&func,NULL);
1903: if (!func) {
1904: ierr =DMSNESSetFunction(dm,SNESTSFormFunction,ts);
1905: }
1906: /* if the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
1907: Otherwise, the SNES will use coloring internally to form the Jacobian.
1908: */
1909: DMSNESGetJacobian(dm,&jac,NULL);
1910: DMTSGetIJacobian(dm,&ijac,NULL);
1911: DMTSGetRHSJacobian(dm,&rhsjac,NULL);
1912: if (!jac && (ijac || rhsjac)) {
1913: DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
1914: }
1915: ts->setupcalled = PETSC_TRUE;
1916: return(0);
1917: }
1921: /*@
1922: TSAdjointSetUp - Sets up the internal data structures for the later use
1923: of an adjoint solver
1925: Collective on TS
1927: Input Parameter:
1928: . ts - the TS context obtained from TSCreate()
1930: Level: advanced
1932: .keywords: TS, timestep, setup
1934: .seealso: TSCreate(), TSAdjointStep(), TSSetCostGradients()
1935: @*/
1936: PetscErrorCode TSAdjointSetUp(TS ts)
1937: {
1942: if (ts->adjointsetupcalled) return(0);
1943: if (!ts->vecs_sensi) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetCostGradients() first");
1945: if (ts->vec_costintegral) { /* if there is integral in the cost function*/
1946: VecDuplicateVecs(ts->vecs_sensi[0],ts->numcost,&ts->vecs_drdy);
1947: if (ts->vecs_sensip){
1948: VecDuplicateVecs(ts->vecs_sensip[0],ts->numcost,&ts->vecs_drdp);
1949: }
1950: }
1952: if (ts->ops->adjointsetup) {
1953: (*ts->ops->adjointsetup)(ts);
1954: }
1955: ts->adjointsetupcalled = PETSC_TRUE;
1956: return(0);
1957: }
1961: /*@
1962: TSReset - Resets a TS context and removes any allocated Vecs and Mats.
1964: Collective on TS
1966: Input Parameter:
1967: . ts - the TS context obtained from TSCreate()
1969: Level: beginner
1971: .keywords: TS, timestep, reset
1973: .seealso: TSCreate(), TSSetup(), TSDestroy()
1974: @*/
1975: PetscErrorCode TSReset(TS ts)
1976: {
1982: if (ts->ops->reset) {
1983: (*ts->ops->reset)(ts);
1984: }
1985: if (ts->snes) {SNESReset(ts->snes);}
1986: if (ts->adapt) {TSAdaptReset(ts->adapt);}
1988: MatDestroy(&ts->Arhs);
1989: MatDestroy(&ts->Brhs);
1990: VecDestroy(&ts->Frhs);
1991: VecDestroy(&ts->vec_sol);
1992: VecDestroy(&ts->vatol);
1993: VecDestroy(&ts->vrtol);
1994: VecDestroyVecs(ts->nwork,&ts->work);
1996: if (ts->vec_costintegral) {
1997: VecDestroyVecs(ts->numcost,&ts->vecs_drdy);
1998: if (ts->vecs_drdp){
1999: VecDestroyVecs(ts->numcost,&ts->vecs_drdp);
2000: }
2001: }
2002: ts->vecs_sensi = NULL;
2003: ts->vecs_sensip = NULL;
2004: MatDestroy(&ts->Jacp);
2005: VecDestroy(&ts->vec_costintegral);
2006: VecDestroy(&ts->vec_costintegrand);
2007: ts->setupcalled = PETSC_FALSE;
2008: return(0);
2009: }
2013: /*@
2014: TSDestroy - Destroys the timestepper context that was created
2015: with TSCreate().
2017: Collective on TS
2019: Input Parameter:
2020: . ts - the TS context obtained from TSCreate()
2022: Level: beginner
2024: .keywords: TS, timestepper, destroy
2026: .seealso: TSCreate(), TSSetUp(), TSSolve()
2027: @*/
2028: PetscErrorCode TSDestroy(TS *ts)
2029: {
2033: if (!*ts) return(0);
2035: if (--((PetscObject)(*ts))->refct > 0) {*ts = 0; return(0);}
2037: TSReset((*ts));
2039: /* if memory was published with SAWs then destroy it */
2040: PetscObjectSAWsViewOff((PetscObject)*ts);
2041: if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}
2043: TSTrajectoryDestroy(&(*ts)->trajectory);
2045: TSAdaptDestroy(&(*ts)->adapt);
2046: if ((*ts)->event) {
2047: TSEventMonitorDestroy(&(*ts)->event);
2048: }
2049: SNESDestroy(&(*ts)->snes);
2050: DMDestroy(&(*ts)->dm);
2051: TSMonitorCancel((*ts));
2053: PetscHeaderDestroy(ts);
2054: return(0);
2055: }
2059: /*@
2060: TSGetSNES - Returns the SNES (nonlinear solver) associated with
2061: a TS (timestepper) context. Valid only for nonlinear problems.
2063: Not Collective, but SNES is parallel if TS is parallel
2065: Input Parameter:
2066: . ts - the TS context obtained from TSCreate()
2068: Output Parameter:
2069: . snes - the nonlinear solver context
2071: Notes:
2072: The user can then directly manipulate the SNES context to set various
2073: options, etc. Likewise, the user can then extract and manipulate the
2074: KSP, KSP, and PC contexts as well.
2076: TSGetSNES() does not work for integrators that do not use SNES; in
2077: this case TSGetSNES() returns NULL in snes.
2079: Level: beginner
2081: .keywords: timestep, get, SNES
2082: @*/
2083: PetscErrorCode TSGetSNES(TS ts,SNES *snes)
2084: {
2090: if (!ts->snes) {
2091: SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
2092: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2093: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->snes);
2094: PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
2095: if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
2096: if (ts->problem_type == TS_LINEAR) {
2097: SNESSetType(ts->snes,SNESKSPONLY);
2098: }
2099: }
2100: *snes = ts->snes;
2101: return(0);
2102: }
2106: /*@
2107: TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context
2109: Collective
2111: Input Parameter:
2112: + ts - the TS context obtained from TSCreate()
2113: - snes - the nonlinear solver context
2115: Notes:
2116: Most users should have the TS created by calling TSGetSNES()
2118: Level: developer
2120: .keywords: timestep, set, SNES
2121: @*/
2122: PetscErrorCode TSSetSNES(TS ts,SNES snes)
2123: {
2125: PetscErrorCode (*func)(SNES,Vec,Mat,Mat,void*);
2130: PetscObjectReference((PetscObject)snes);
2131: SNESDestroy(&ts->snes);
2133: ts->snes = snes;
2135: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2136: SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
2137: if (func == SNESTSFormJacobian) {
2138: SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
2139: }
2140: return(0);
2141: }
2145: /*@
2146: TSGetKSP - Returns the KSP (linear solver) associated with
2147: a TS (timestepper) context.
2149: Not Collective, but KSP is parallel if TS is parallel
2151: Input Parameter:
2152: . ts - the TS context obtained from TSCreate()
2154: Output Parameter:
2155: . ksp - the nonlinear solver context
2157: Notes:
2158: The user can then directly manipulate the KSP context to set various
2159: options, etc. Likewise, the user can then extract and manipulate the
2160: KSP and PC contexts as well.
2162: TSGetKSP() does not work for integrators that do not use KSP;
2163: in this case TSGetKSP() returns NULL in ksp.
2165: Level: beginner
2167: .keywords: timestep, get, KSP
2168: @*/
2169: PetscErrorCode TSGetKSP(TS ts,KSP *ksp)
2170: {
2172: SNES snes;
2177: if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
2178: if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
2179: TSGetSNES(ts,&snes);
2180: SNESGetKSP(snes,ksp);
2181: return(0);
2182: }
2184: /* ----------- Routines to set solver parameters ---------- */
2188: /*@
2189: TSGetDuration - Gets the maximum number of timesteps to use and
2190: maximum time for iteration.
2192: Not Collective
2194: Input Parameters:
2195: + ts - the TS context obtained from TSCreate()
2196: . maxsteps - maximum number of iterations to use, or NULL
2197: - maxtime - final time to iterate to, or NULL
2199: Level: intermediate
2201: .keywords: TS, timestep, get, maximum, iterations, time
2202: @*/
2203: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
2204: {
2207: if (maxsteps) {
2209: *maxsteps = ts->max_steps;
2210: }
2211: if (maxtime) {
2213: *maxtime = ts->max_time;
2214: }
2215: return(0);
2216: }
2220: /*@
2221: TSSetDuration - Sets the maximum number of timesteps to use and
2222: maximum time for iteration.
2224: Logically Collective on TS
2226: Input Parameters:
2227: + ts - the TS context obtained from TSCreate()
2228: . maxsteps - maximum number of iterations to use
2229: - maxtime - final time to iterate to
2231: Options Database Keys:
2232: . -ts_max_steps <maxsteps> - Sets maxsteps
2233: . -ts_final_time <maxtime> - Sets maxtime
2235: Notes:
2236: The default maximum number of iterations is 5000. Default time is 5.0
2238: Level: intermediate
2240: .keywords: TS, timestep, set, maximum, iterations
2242: .seealso: TSSetExactFinalTime()
2243: @*/
2244: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
2245: {
2250: if (maxsteps >= 0) ts->max_steps = maxsteps;
2251: if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
2252: return(0);
2253: }
2257: /*@
2258: TSSetSolution - Sets the initial solution vector
2259: for use by the TS routines.
2261: Logically Collective on TS and Vec
2263: Input Parameters:
2264: + ts - the TS context obtained from TSCreate()
2265: - u - the solution vector
2267: Level: beginner
2269: .keywords: TS, timestep, set, solution, initial conditions
2270: @*/
2271: PetscErrorCode TSSetSolution(TS ts,Vec u)
2272: {
2274: DM dm;
2279: PetscObjectReference((PetscObject)u);
2280: VecDestroy(&ts->vec_sol);
2282: ts->vec_sol = u;
2284: TSGetDM(ts,&dm);
2285: DMShellSetGlobalVector(dm,u);
2286: return(0);
2287: }
2291: /*@
2292: TSAdjointSetSteps - Sets the number of steps the adjoint solver should take backward in time
2294: Logically Collective on TS
2296: Input Parameters:
2297: + ts - the TS context obtained from TSCreate()
2298: . steps - number of steps to use
2300: Level: intermediate
2302: Notes: Normally one does not call this and TSAdjointSolve() integrates back to the original timestep. One can call this
2303: so as to integrate back to less than the original timestep
2305: .keywords: TS, timestep, set, maximum, iterations
2307: .seealso: TSSetExactFinalTime()
2308: @*/
2309: PetscErrorCode TSAdjointSetSteps(TS ts,PetscInt steps)
2310: {
2314: if (steps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Cannot step back a negative number of steps");
2315: if (steps > ts->total_steps) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Cannot step back more than the total number of forward steps");
2316: ts->adjoint_max_steps = steps;
2317: return(0);
2318: }
2322: /*@
2323: TSSetCostGradients - Sets the initial value of the gradients of the cost function w.r.t. initial conditions and w.r.t. the problem parameters
2324: for use by the TSAdjoint routines.
2326: Logically Collective on TS and Vec
2328: Input Parameters:
2329: + ts - the TS context obtained from TSCreate()
2330: . lambda - gradients with respect to the initial condition variables, the dimension and parallel layout of these vectors is the same as the ODE solution vector
2331: - mu - gradients with respect to the parameters, the number of entries in these vectors is the same as the number of parameters
2333: Level: beginner
2335: Notes: the entries in these vectors must be correctly initialized with the values lamda_i = df/dy|finaltime mu_i = df/dp|finaltime
2337: .keywords: TS, timestep, set, sensitivity, initial conditions
2338: @*/
2339: PetscErrorCode TSSetCostGradients(TS ts,PetscInt numcost,Vec *lambda,Vec *mu)
2340: {
2344: ts->vecs_sensi = lambda;
2345: ts->vecs_sensip = mu;
2346: if (ts->numcost && ts->numcost!=numcost) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"The number of cost functions (2rd parameter of TSSetCostIntegrand()) is inconsistent with the one set by TSSetCostIntegrand");
2347: ts->numcost = numcost;
2348: return(0);
2349: }
2353: /*@C
2354: TSAdjointSetRHSJacobian - Sets the function that computes the Jacobian of G w.r.t. the parameters p where y_t = G(y,p,t), as well as the location to store the matrix.
2356: Logically Collective on TS
2358: Input Parameters:
2359: + ts - The TS context obtained from TSCreate()
2360: - func - The function
2362: Calling sequence of func:
2363: $ func (TS ts,PetscReal t,Vec y,Mat A,void *ctx);
2364: + t - current timestep
2365: . y - input vector (current ODE solution)
2366: . A - output matrix
2367: - ctx - [optional] user-defined function context
2369: Level: intermediate
2371: Notes: Amat has the same number of rows and the same row parallel layout as u, Amat has the same number of columns and parallel layout as p
2373: .keywords: TS, sensitivity
2374: .seealso:
2375: @*/
2376: PetscErrorCode TSAdjointSetRHSJacobian(TS ts,Mat Amat,PetscErrorCode (*func)(TS,PetscReal,Vec,Mat,void*),void *ctx)
2377: {
2384: ts->rhsjacobianp = func;
2385: ts->rhsjacobianpctx = ctx;
2386: if(Amat) {
2387: PetscObjectReference((PetscObject)Amat);
2388: MatDestroy(&ts->Jacp);
2389: ts->Jacp = Amat;
2390: }
2391: return(0);
2392: }
2396: /*@C
2397: TSAdjointComputeRHSJacobian - Runs the user-defined Jacobian function.
2399: Collective on TS
2401: Input Parameters:
2402: . ts - The TS context obtained from TSCreate()
2404: Level: developer
2406: .keywords: TS, sensitivity
2407: .seealso: TSAdjointSetRHSJacobian()
2408: @*/
2409: PetscErrorCode TSAdjointComputeRHSJacobian(TS ts,PetscReal t,Vec X,Mat Amat)
2410: {
2418: PetscStackPush("TS user JacobianP function for sensitivity analysis");
2419: (*ts->rhsjacobianp)(ts,t,X,Amat,ts->rhsjacobianpctx);
2420: PetscStackPop;
2421: return(0);
2422: }
2426: /*@C
2427: TSSetCostIntegrand - Sets the routine for evaluating the integral term in one or more cost functions
2429: Logically Collective on TS
2431: Input Parameters:
2432: + ts - the TS context obtained from TSCreate()
2433: . numcost - number of gradients to be computed, this is the number of cost functions
2434: . rf - routine for evaluating the integrand function
2435: . drdyf - function that computes the gradients of the r's with respect to y,NULL if not a function y
2436: . drdpf - function that computes the gradients of the r's with respect to p, NULL if not a function of p
2437: - ctx - [optional] user-defined context for private data for the function evaluation routine (may be NULL)
2439: Calling sequence of rf:
2440: $ rf(TS ts,PetscReal t,Vec y,Vec f[],void *ctx);
2442: + t - current timestep
2443: . y - input vector
2444: . f - function result; one vector entry for each cost function
2445: - ctx - [optional] user-defined function context
2447: Calling sequence of drdyf:
2448: $ PetscErroCode drdyf(TS ts,PetscReal t,Vec y,Vec *drdy,void *ctx);
2450: Calling sequence of drdpf:
2451: $ PetscErroCode drdpf(TS ts,PetscReal t,Vec y,Vec *drdp,void *ctx);
2453: Level: intermediate
2455: Notes: For optimization there is generally a single cost function, numcost = 1. For sensitivities there may be multiple cost functions
2457: .keywords: TS, sensitivity analysis, timestep, set, quadrature, function
2459: .seealso: TSAdjointSetRHSJacobian(),TSGetCostGradients(), TSSetCostGradients()
2460: @*/
2461: PetscErrorCode TSSetCostIntegrand(TS ts,PetscInt numcost, PetscErrorCode (*rf)(TS,PetscReal,Vec,Vec,void*),
2462: PetscErrorCode (*drdyf)(TS,PetscReal,Vec,Vec*,void*),
2463: PetscErrorCode (*drdpf)(TS,PetscReal,Vec,Vec*,void*),void *ctx)
2464: {
2469: if (ts->numcost && ts->numcost!=numcost) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"The number of cost functions (2rd parameter of TSSetCostIntegrand()) is inconsistent with the one set by TSSetCostGradients()");
2470: if (!ts->numcost) ts->numcost=numcost;
2472: VecCreateSeq(PETSC_COMM_SELF,numcost,&ts->vec_costintegral);
2473: VecDuplicate(ts->vec_costintegral,&ts->vec_costintegrand);
2474: ts->costintegrand = rf;
2475: ts->costintegrandctx = ctx;
2476: ts->drdyfunction = drdyf;
2477: ts->drdpfunction = drdpf;
2478: return(0);
2479: }
2483: /*@
2484: TSGetCostIntegral - Returns the values of the integral term in the cost functions.
2485: It is valid to call the routine after a backward run.
2487: Not Collective
2489: Input Parameter:
2490: . ts - the TS context obtained from TSCreate()
2492: Output Parameter:
2493: . v - the vector containing the integrals for each cost function
2495: Level: intermediate
2497: .seealso: TSSetCostIntegrand()
2499: .keywords: TS, sensitivity analysis
2500: @*/
2501: PetscErrorCode TSGetCostIntegral(TS ts,Vec *v)
2502: {
2506: *v = ts->vec_costintegral;
2507: return(0);
2508: }
2512: /*@
2513: TSAdjointComputeCostIntegrand - Evaluates the integral function in the cost functions.
2515: Input Parameters:
2516: + ts - the TS context
2517: . t - current time
2518: - y - state vector, i.e. current solution
2520: Output Parameter:
2521: . q - vector of size numcost to hold the outputs
2523: Note:
2524: Most users should not need to explicitly call this routine, as it
2525: is used internally within the sensitivity analysis context.
2527: Level: developer
2529: .keywords: TS, compute
2531: .seealso: TSSetCostIntegrand()
2532: @*/
2533: PetscErrorCode TSAdjointComputeCostIntegrand(TS ts,PetscReal t,Vec y,Vec q)
2534: {
2542: PetscLogEventBegin(TS_FunctionEval,ts,y,q,0);
2543: if (ts->costintegrand) {
2544: PetscStackPush("TS user integrand in the cost function");
2545: (*ts->costintegrand)(ts,t,y,q,ts->costintegrandctx);
2546: PetscStackPop;
2547: } else {
2548: VecZeroEntries(q);
2549: }
2551: PetscLogEventEnd(TS_FunctionEval,ts,y,q,0);
2552: return(0);
2553: }
2557: /*@
2558: TSAdjointComputeDRDYFunction - Runs the user-defined DRDY function.
2560: Collective on TS
2562: Input Parameters:
2563: . ts - The TS context obtained from TSCreate()
2565: Notes:
2566: TSAdjointComputeDRDYFunction() is typically used for sensitivity implementation,
2567: so most users would not generally call this routine themselves.
2569: Level: developer
2571: .keywords: TS, sensitivity
2572: .seealso: TSAdjointComputeDRDYFunction()
2573: @*/
2574: PetscErrorCode TSAdjointComputeDRDYFunction(TS ts,PetscReal t,Vec y,Vec *drdy)
2575: {
2582: PetscStackPush("TS user DRDY function for sensitivity analysis");
2583: (*ts->drdyfunction)(ts,t,y,drdy,ts->costintegrandctx);
2584: PetscStackPop;
2585: return(0);
2586: }
2590: /*@
2591: TSAdjointComputeDRDPFunction - Runs the user-defined DRDP function.
2593: Collective on TS
2595: Input Parameters:
2596: . ts - The TS context obtained from TSCreate()
2598: Notes:
2599: TSDRDPFunction() is typically used for sensitivity implementation,
2600: so most users would not generally call this routine themselves.
2602: Level: developer
2604: .keywords: TS, sensitivity
2605: .seealso: TSAdjointSetDRDPFunction()
2606: @*/
2607: PetscErrorCode TSAdjointComputeDRDPFunction(TS ts,PetscReal t,Vec y,Vec *drdp)
2608: {
2615: PetscStackPush("TS user DRDP function for sensitivity analysis");
2616: (*ts->drdpfunction)(ts,t,y,drdp,ts->costintegrandctx);
2617: PetscStackPop;
2618: return(0);
2619: }
2623: /*@C
2624: TSSetPreStep - Sets the general-purpose function
2625: called once at the beginning of each time step.
2627: Logically Collective on TS
2629: Input Parameters:
2630: + ts - The TS context obtained from TSCreate()
2631: - func - The function
2633: Calling sequence of func:
2634: . func (TS ts);
2636: Level: intermediate
2638: Note:
2639: If a step is rejected, TSStep() will call this routine again before each attempt.
2640: The last completed time step number can be queried using TSGetTimeStepNumber(), the
2641: size of the step being attempted can be obtained using TSGetTimeStep().
2643: .keywords: TS, timestep
2644: .seealso: TSSetPreStage(), TSSetPostStage(), TSSetPostStep(), TSStep()
2645: @*/
2646: PetscErrorCode TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
2647: {
2650: ts->prestep = func;
2651: return(0);
2652: }
2656: /*@
2657: TSPreStep - Runs the user-defined pre-step function.
2659: Collective on TS
2661: Input Parameters:
2662: . ts - The TS context obtained from TSCreate()
2664: Notes:
2665: TSPreStep() is typically used within time stepping implementations,
2666: so most users would not generally call this routine themselves.
2668: Level: developer
2670: .keywords: TS, timestep
2671: .seealso: TSSetPreStep(), TSPreStage(), TSPostStage(), TSPostStep()
2672: @*/
2673: PetscErrorCode TSPreStep(TS ts)
2674: {
2679: if (ts->prestep) {
2680: PetscStackCallStandard((*ts->prestep),(ts));
2681: }
2682: return(0);
2683: }
2687: /*@C
2688: TSSetPreStage - Sets the general-purpose function
2689: called once at the beginning of each stage.
2691: Logically Collective on TS
2693: Input Parameters:
2694: + ts - The TS context obtained from TSCreate()
2695: - func - The function
2697: Calling sequence of func:
2698: . PetscErrorCode func(TS ts, PetscReal stagetime);
2700: Level: intermediate
2702: Note:
2703: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
2704: The time step number being computed can be queried using TSGetTimeStepNumber() and the total size of the step being
2705: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
2707: .keywords: TS, timestep
2708: .seealso: TSSetPostStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
2709: @*/
2710: PetscErrorCode TSSetPreStage(TS ts, PetscErrorCode (*func)(TS,PetscReal))
2711: {
2714: ts->prestage = func;
2715: return(0);
2716: }
2720: /*@C
2721: TSSetPostStage - Sets the general-purpose function
2722: called once at the end of each stage.
2724: Logically Collective on TS
2726: Input Parameters:
2727: + ts - The TS context obtained from TSCreate()
2728: - func - The function
2730: Calling sequence of func:
2731: . PetscErrorCode func(TS ts, PetscReal stagetime, PetscInt stageindex, Vec* Y);
2733: Level: intermediate
2735: Note:
2736: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
2737: The time step number being computed can be queried using TSGetTimeStepNumber() and the total size of the step being
2738: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
2740: .keywords: TS, timestep
2741: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
2742: @*/
2743: PetscErrorCode TSSetPostStage(TS ts, PetscErrorCode (*func)(TS,PetscReal,PetscInt,Vec*))
2744: {
2747: ts->poststage = func;
2748: return(0);
2749: }
2753: /*@
2754: TSPreStage - Runs the user-defined pre-stage function set using TSSetPreStage()
2756: Collective on TS
2758: Input Parameters:
2759: . ts - The TS context obtained from TSCreate()
2760: stagetime - The absolute time of the current stage
2762: Notes:
2763: TSPreStage() is typically used within time stepping implementations,
2764: most users would not generally call this routine themselves.
2766: Level: developer
2768: .keywords: TS, timestep
2769: .seealso: TSPostStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
2770: @*/
2771: PetscErrorCode TSPreStage(TS ts, PetscReal stagetime)
2772: {
2777: if (ts->prestage) {
2778: PetscStackCallStandard((*ts->prestage),(ts,stagetime));
2779: }
2780: return(0);
2781: }
2785: /*@
2786: TSPostStage - Runs the user-defined post-stage function set using TSSetPostStage()
2788: Collective on TS
2790: Input Parameters:
2791: . ts - The TS context obtained from TSCreate()
2792: stagetime - The absolute time of the current stage
2793: stageindex - Stage number
2794: Y - Array of vectors (of size = total number
2795: of stages) with the stage solutions
2797: Notes:
2798: TSPostStage() is typically used within time stepping implementations,
2799: most users would not generally call this routine themselves.
2801: Level: developer
2803: .keywords: TS, timestep
2804: .seealso: TSPreStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
2805: @*/
2806: PetscErrorCode TSPostStage(TS ts, PetscReal stagetime, PetscInt stageindex, Vec *Y)
2807: {
2812: if (ts->poststage) {
2813: PetscStackCallStandard((*ts->poststage),(ts,stagetime,stageindex,Y));
2814: }
2815: return(0);
2816: }
2820: /*@C
2821: TSSetPostStep - Sets the general-purpose function
2822: called once at the end of each time step.
2824: Logically Collective on TS
2826: Input Parameters:
2827: + ts - The TS context obtained from TSCreate()
2828: - func - The function
2830: Calling sequence of func:
2831: $ func (TS ts);
2833: Level: intermediate
2835: .keywords: TS, timestep
2836: .seealso: TSSetPreStep(), TSSetPreStage(), TSGetTimeStep(), TSGetTimeStepNumber(), TSGetTime()
2837: @*/
2838: PetscErrorCode TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
2839: {
2842: ts->poststep = func;
2843: return(0);
2844: }
2848: /*@
2849: TSPostStep - Runs the user-defined post-step function.
2851: Collective on TS
2853: Input Parameters:
2854: . ts - The TS context obtained from TSCreate()
2856: Notes:
2857: TSPostStep() is typically used within time stepping implementations,
2858: so most users would not generally call this routine themselves.
2860: Level: developer
2862: .keywords: TS, timestep
2863: @*/
2864: PetscErrorCode TSPostStep(TS ts)
2865: {
2870: if (ts->poststep) {
2871: PetscStackCallStandard((*ts->poststep),(ts));
2872: }
2873: return(0);
2874: }
2876: /* ------------ Routines to set performance monitoring options ----------- */
2880: /*@C
2881: TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
2882: timestep to display the iteration's progress.
2884: Logically Collective on TS
2886: Input Parameters:
2887: + ts - the TS context obtained from TSCreate()
2888: . monitor - monitoring routine
2889: . mctx - [optional] user-defined context for private data for the
2890: monitor routine (use NULL if no context is desired)
2891: - monitordestroy - [optional] routine that frees monitor context
2892: (may be NULL)
2894: Calling sequence of monitor:
2895: $ int monitor(TS ts,PetscInt steps,PetscReal time,Vec u,void *mctx)
2897: + ts - the TS context
2898: . steps - iteration number (after the final time step the monitor routine is called with a step of -1, this is at the final time which may have
2899: been interpolated to)
2900: . time - current time
2901: . u - current iterate
2902: - mctx - [optional] monitoring context
2904: Notes:
2905: This routine adds an additional monitor to the list of monitors that
2906: already has been loaded.
2908: Fortran notes: Only a single monitor function can be set for each TS object
2910: Level: intermediate
2912: .keywords: TS, timestep, set, monitor
2914: .seealso: TSMonitorDefault(), TSMonitorCancel()
2915: @*/
2916: PetscErrorCode TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
2917: {
2920: if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
2921: ts->monitor[ts->numbermonitors] = monitor;
2922: ts->monitordestroy[ts->numbermonitors] = mdestroy;
2923: ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
2924: return(0);
2925: }
2929: /*@C
2930: TSMonitorCancel - Clears all the monitors that have been set on a time-step object.
2932: Logically Collective on TS
2934: Input Parameters:
2935: . ts - the TS context obtained from TSCreate()
2937: Notes:
2938: There is no way to remove a single, specific monitor.
2940: Level: intermediate
2942: .keywords: TS, timestep, set, monitor
2944: .seealso: TSMonitorDefault(), TSMonitorSet()
2945: @*/
2946: PetscErrorCode TSMonitorCancel(TS ts)
2947: {
2949: PetscInt i;
2953: for (i=0; i<ts->numbermonitors; i++) {
2954: if (ts->monitordestroy[i]) {
2955: (*ts->monitordestroy[i])(&ts->monitorcontext[i]);
2956: }
2957: }
2958: ts->numbermonitors = 0;
2959: return(0);
2960: }
2964: /*@
2965: TSMonitorDefault - Sets the Default monitor
2967: Level: intermediate
2969: .keywords: TS, set, monitor
2971: .seealso: TSMonitorDefault(), TSMonitorSet()
2972: @*/
2973: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,void *dummy)
2974: {
2976: PetscViewer viewer = dummy ? (PetscViewer) dummy : PETSC_VIEWER_STDOUT_(PetscObjectComm((PetscObject)ts));
2979: PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
2980: PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)\n" : "\n");
2981: PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
2982: return(0);
2983: }
2987: /*@
2988: TSSetRetainStages - Request that all stages in the upcoming step be stored so that interpolation will be available.
2990: Logically Collective on TS
2992: Input Argument:
2993: . ts - time stepping context
2995: Output Argument:
2996: . flg - PETSC_TRUE or PETSC_FALSE
2998: Level: intermediate
3000: .keywords: TS, set
3002: .seealso: TSInterpolate(), TSSetPostStep()
3003: @*/
3004: PetscErrorCode TSSetRetainStages(TS ts,PetscBool flg)
3005: {
3008: ts->retain_stages = flg;
3009: return(0);
3010: }
3014: /*@
3015: TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval
3017: Collective on TS
3019: Input Argument:
3020: + ts - time stepping context
3021: - t - time to interpolate to
3023: Output Argument:
3024: . U - state at given time
3026: Notes:
3027: The user should call TSSetRetainStages() before taking a step in which interpolation will be requested.
3029: Level: intermediate
3031: Developer Notes:
3032: TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.
3034: .keywords: TS, set
3036: .seealso: TSSetRetainStages(), TSSetPostStep()
3037: @*/
3038: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec U)
3039: {
3045: if (t < ts->ptime - ts->time_step_prev || t > ts->ptime) SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Requested time %g not in last time steps [%g,%g]",t,(double)(ts->ptime-ts->time_step_prev),(double)ts->ptime);
3046: if (!ts->ops->interpolate) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
3047: (*ts->ops->interpolate)(ts,t,U);
3048: return(0);
3049: }
3053: /*@
3054: TSStep - Steps one time step
3056: Collective on TS
3058: Input Parameter:
3059: . ts - the TS context obtained from TSCreate()
3061: Level: developer
3063: Notes:
3064: The public interface for the ODE/DAE solvers is TSSolve(), you should almost for sure be using that routine and not this routine.
3066: The hook set using TSSetPreStep() is called before each attempt to take the step. In general, the time step size may
3067: be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.
3069: This may over-step the final time provided in TSSetDuration() depending on the time-step used. TSSolve() interpolates to exactly the
3070: time provided in TSSetDuration(). One can use TSInterpolate() to determine an interpolated solution within the final timestep.
3072: .keywords: TS, timestep, solve
3074: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSInterpolate()
3075: @*/
3076: PetscErrorCode TSStep(TS ts)
3077: {
3078: DM dm;
3079: PetscErrorCode ierr;
3080: static PetscBool cite = PETSC_FALSE;
3084: PetscCitationsRegister("@techreport{tspaper,\n"
3085: " title = {{PETSc/TS}: A Modern Scalable {DAE/ODE} Solver Library},\n"
3086: " author = {Shrirang Abhyankar and Jed Brown and Emil Constantinescu and Debojyoti Ghosh and Barry F. Smith},\n"
3087: " type = {Preprint},\n"
3088: " number = {ANL/MCS-P5061-0114},\n"
3089: " institution = {Argonne National Laboratory},\n"
3090: " year = {2014}\n}\n",&cite);
3092: TSGetDM(ts, &dm);
3093: TSSetUp(ts);
3095: ts->reason = TS_CONVERGED_ITERATING;
3096: ts->ptime_prev = ts->ptime;
3097: DMSetOutputSequenceNumber(dm, ts->steps, ts->ptime);
3099: if (!ts->ops->step) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3100: PetscLogEventBegin(TS_Step,ts,0,0,0);
3101: (*ts->ops->step)(ts);
3102: PetscLogEventEnd(TS_Step,ts,0,0,0);
3104: ts->time_step_prev = ts->ptime - ts->ptime_prev;
3105: DMSetOutputSequenceNumber(dm, ts->steps, ts->ptime);
3107: if (ts->reason < 0) {
3108: if (ts->errorifstepfailed) {
3109: if (ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
3110: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
3111: }
3112: } else if (!ts->reason) {
3113: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3114: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3115: }
3116: ts->total_steps++;
3117: ts->steprollback = PETSC_FALSE;
3118: return(0);
3119: }
3123: /*@
3124: TSAdjointStep - Steps one time step backward in the adjoint run
3126: Collective on TS
3128: Input Parameter:
3129: . ts - the TS context obtained from TSCreate()
3131: Level: intermediate
3133: .keywords: TS, adjoint, step
3135: .seealso: TSAdjointSetUp(), TSAdjointSolve()
3136: @*/
3137: PetscErrorCode TSAdjointStep(TS ts)
3138: {
3139: DM dm;
3140: PetscErrorCode ierr;
3144: TSGetDM(ts, &dm);
3145: TSAdjointSetUp(ts);
3147: ts->reason = TS_CONVERGED_ITERATING;
3148: ts->ptime_prev = ts->ptime;
3149: DMSetOutputSequenceNumber(dm, ts->steps, ts->ptime);
3150: VecViewFromOptions(ts->vec_sol,(PetscObject)ts, "-ts_view_solution");
3152: PetscLogEventBegin(TS_Step,ts,0,0,0);
3153: if (!ts->ops->adjointstep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed because the adjoint of %s has not been implemented, try other time stepping methods for adjoint sensitivity analysis",((PetscObject)ts)->type_name);
3154: (*ts->ops->adjointstep)(ts);
3155: PetscLogEventEnd(TS_Step,ts,0,0,0);
3157: ts->time_step_prev = ts->ptime - ts->ptime_prev;
3158: DMSetOutputSequenceNumber(dm, ts->steps, ts->ptime);
3160: if (ts->reason < 0) {
3161: if (ts->errorifstepfailed) {
3162: if (ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) {
3163: SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
3164: } else if (ts->reason == TS_DIVERGED_STEP_REJECTED) {
3165: SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_reject or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
3166: } else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
3167: }
3168: } else if (!ts->reason) {
3169: if (ts->steps >= ts->adjoint_max_steps) ts->reason = TS_CONVERGED_ITS;
3170: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3171: }
3172: ts->total_steps--;
3173: return(0);
3174: }
3178: /*@
3179: TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.
3181: Collective on TS
3183: Input Arguments:
3184: + ts - time stepping context
3185: . order - desired order of accuracy
3186: - done - whether the step was evaluated at this order (pass NULL to generate an error if not available)
3188: Output Arguments:
3189: . U - state at the end of the current step
3191: Level: advanced
3193: Notes:
3194: This function cannot be called until all stages have been evaluated.
3195: It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.
3197: .seealso: TSStep(), TSAdapt
3198: @*/
3199: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec U,PetscBool *done)
3200: {
3207: if (!ts->ops->evaluatestep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3208: (*ts->ops->evaluatestep)(ts,order,U,done);
3209: return(0);
3210: }
3215: /*@
3216: TSSolve - Steps the requested number of timesteps.
3218: Collective on TS
3220: Input Parameter:
3221: + ts - the TS context obtained from TSCreate()
3222: - u - the solution vector (can be null if TSSetSolution() was used, otherwise must contain the initial conditions)
3224: Level: beginner
3226: Notes:
3227: The final time returned by this function may be different from the time of the internally
3228: held state accessible by TSGetSolution() and TSGetTime() because the method may have
3229: stepped over the final time.
3231: .keywords: TS, timestep, solve
3233: .seealso: TSCreate(), TSSetSolution(), TSStep()
3234: @*/
3235: PetscErrorCode TSSolve(TS ts,Vec u)
3236: {
3237: Vec solution;
3238: PetscErrorCode ierr;
3243: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE) { /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
3245: if (!ts->vec_sol || u == ts->vec_sol) {
3246: VecDuplicate(u,&solution);
3247: TSSetSolution(ts,solution);
3248: VecDestroy(&solution); /* grant ownership */
3249: }
3250: VecCopy(u,ts->vec_sol);
3251: } else if (u) {
3252: TSSetSolution(ts,u);
3253: }
3254: TSSetUp(ts);
3255: /* reset time step and iteration counters */
3256: ts->steps = 0;
3257: ts->ksp_its = 0;
3258: ts->snes_its = 0;
3259: ts->num_snes_failures = 0;
3260: ts->reject = 0;
3261: ts->reason = TS_CONVERGED_ITERATING;
3263: TSViewFromOptions(ts,NULL,"-ts_view_pre");
3264: {
3265: DM dm;
3266: TSGetDM(ts, &dm);
3267: DMSetOutputSequenceNumber(dm, ts->steps, ts->ptime);
3268: }
3270: if (ts->ops->solve) { /* This private interface is transitional and should be removed when all implementations are updated. */
3271: (*ts->ops->solve)(ts);
3272: VecCopy(ts->vec_sol,u);
3273: ts->solvetime = ts->ptime;
3274: } else {
3275: /* steps the requested number of timesteps. */
3276: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3277: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3278: TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
3279: if (ts->vec_costintegral) ts->costintegralfwd=PETSC_TRUE;
3280: if(ts->event) {
3281: TSEventMonitorInitialize(ts);
3282: }
3283: while (!ts->reason) {
3284: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
3285: TSStep(ts);
3286: if (ts->event) {
3287: TSEventMonitor(ts);
3288: }
3289: if(!ts->steprollback) {
3290: TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
3291: TSPostStep(ts);
3292: }
3293: }
3294: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
3295: TSInterpolate(ts,ts->max_time,u);
3296: ts->solvetime = ts->max_time;
3297: solution = u;
3298: } else {
3299: if (u) {VecCopy(ts->vec_sol,u);}
3300: ts->solvetime = ts->ptime;
3301: solution = ts->vec_sol;
3302: }
3303: TSMonitor(ts,ts->steps,ts->solvetime,solution);
3304: VecViewFromOptions(solution,(PetscObject) ts,"-ts_view_solution");
3305: }
3307: TSViewFromOptions(ts,NULL,"-ts_view");
3308: VecViewFromOptions(ts->vec_sol,NULL,"-ts_view_solution");
3309: PetscObjectSAWsBlock((PetscObject)ts);
3310: if (ts->adjoint_solve) {
3311: TSAdjointSolve(ts);
3312: }
3313: return(0);
3314: }
3318: /*@
3319: TSAdjointSolve - Solves the discrete ajoint problem for an ODE/DAE
3321: Collective on TS
3323: Input Parameter:
3324: . ts - the TS context obtained from TSCreate()
3326: Options Database:
3327: . -ts_adjoint_view_solution <viewerinfo> - views the first gradient with respect to the initial conditions
3329: Level: intermediate
3331: Notes:
3332: This must be called after a call to TSSolve() that solves the forward problem
3334: By default this will integrate back to the initial time, one can use TSAdjointSetSteps() to step back to a later time
3336: .keywords: TS, timestep, solve
3338: .seealso: TSCreate(), TSSetCostGradients(), TSSetSolution(), TSAdjointStep()
3339: @*/
3340: PetscErrorCode TSAdjointSolve(TS ts)
3341: {
3342: PetscErrorCode ierr;
3346: TSAdjointSetUp(ts);
3347: /* reset time step and iteration counters */
3348: ts->steps = 0;
3349: ts->ksp_its = 0;
3350: ts->snes_its = 0;
3351: ts->num_snes_failures = 0;
3352: ts->reject = 0;
3353: ts->reason = TS_CONVERGED_ITERATING;
3355: if (!ts->adjoint_max_steps) ts->adjoint_max_steps = ts->total_steps;
3357: if (ts->steps >= ts->adjoint_max_steps) ts->reason = TS_CONVERGED_ITS;
3358: while (!ts->reason) {
3359: TSTrajectoryGet(ts->trajectory,ts,ts->total_steps,&ts->ptime);
3360: TSMonitor(ts,ts->total_steps,ts->ptime,ts->vec_sol);
3361: if (ts->event) {
3362: TSAdjointEventMonitor(ts);
3363: }
3364: TSAdjointStep(ts);
3365: }
3366: ts->solvetime = ts->ptime;
3367: VecViewFromOptions(ts->vecs_sensi[0],(PetscObject) ts, "-ts_adjoint_view_solution");
3368: return(0);
3369: }
3373: /*@
3374: TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()
3376: Collective on TS
3378: Input Parameters:
3379: + ts - time stepping context obtained from TSCreate()
3380: . step - step number that has just completed
3381: . ptime - model time of the state
3382: - u - state at the current model time
3384: Notes:
3385: TSMonitor() is typically used within the time stepping implementations.
3386: Users might call this function when using the TSStep() interface instead of TSSolve().
3388: Level: advanced
3390: .keywords: TS, timestep
3391: @*/
3392: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u)
3393: {
3395: PetscInt i,n = ts->numbermonitors;
3400: VecLockPush(u);
3401: for (i=0; i<n; i++) {
3402: (*ts->monitor[i])(ts,step,ptime,u,ts->monitorcontext[i]);
3403: }
3404: VecLockPop(u);
3405: return(0);
3406: }
3408: /* ------------------------------------------------------------------------*/
3411: /*@C
3412: TSMonitorLGCtxCreate - Creates a line graph context for use with
3413: TS to monitor the solution process graphically in various ways
3415: Collective on TS
3417: Input Parameters:
3418: + host - the X display to open, or null for the local machine
3419: . label - the title to put in the title bar
3420: . x, y - the screen coordinates of the upper left coordinate of the window
3421: . m, n - the screen width and height in pixels
3422: - howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time
3424: Output Parameter:
3425: . ctx - the context
3427: Options Database Key:
3428: + -ts_monitor_lg_timestep - automatically sets line graph monitor
3429: . -ts_monitor_lg_solution -
3430: . -ts_monitor_lg_error -
3431: . -ts_monitor_lg_ksp_iterations -
3432: . -ts_monitor_lg_snes_iterations -
3433: - -lg_use_markers <true,false> - mark the data points (at each time step) on the plot; default is true
3435: Notes:
3436: Use TSMonitorLGCtxDestroy() to destroy.
3438: Level: intermediate
3440: .keywords: TS, monitor, line graph, residual, seealso
3442: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()
3444: @*/
3445: PetscErrorCode TSMonitorLGCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorLGCtx *ctx)
3446: {
3447: PetscDraw win;
3451: PetscNew(ctx);
3452: PetscDrawCreate(comm,host,label,x,y,m,n,&win);
3453: PetscDrawSetFromOptions(win);
3454: PetscDrawLGCreate(win,1,&(*ctx)->lg);
3455: PetscLogObjectParent((PetscObject)(*ctx)->lg,(PetscObject)win);
3456: PetscDrawLGSetUseMarkers((*ctx)->lg,PETSC_TRUE);
3457: PetscDrawLGSetFromOptions((*ctx)->lg);
3458: (*ctx)->howoften = howoften;
3459: return(0);
3460: }
3464: PetscErrorCode TSMonitorLGTimeStep(TS ts,PetscInt step,PetscReal ptime,Vec v,void *monctx)
3465: {
3466: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
3467: PetscReal x = ptime,y;
3471: if (!step) {
3472: PetscDrawAxis axis;
3473: PetscDrawLGGetAxis(ctx->lg,&axis);
3474: PetscDrawAxisSetLabels(axis,"Timestep as function of time","Time","Time step");
3475: PetscDrawLGReset(ctx->lg);
3476: }
3477: TSGetTimeStep(ts,&y);
3478: PetscDrawLGAddPoint(ctx->lg,&x,&y);
3479: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
3480: PetscDrawLGDraw(ctx->lg);
3481: }
3482: return(0);
3483: }
3487: /*@C
3488: TSMonitorLGCtxDestroy - Destroys a line graph context that was created
3489: with TSMonitorLGCtxCreate().
3491: Collective on TSMonitorLGCtx
3493: Input Parameter:
3494: . ctx - the monitor context
3496: Level: intermediate
3498: .keywords: TS, monitor, line graph, destroy
3500: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep();
3501: @*/
3502: PetscErrorCode TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
3503: {
3504: PetscDraw draw;
3508: if ((*ctx)->transformdestroy) {
3509: ((*ctx)->transformdestroy)((*ctx)->transformctx);
3510: }
3511: PetscDrawLGGetDraw((*ctx)->lg,&draw);
3512: PetscDrawDestroy(&draw);
3513: PetscDrawLGDestroy(&(*ctx)->lg);
3514: PetscStrArrayDestroy(&(*ctx)->names);
3515: PetscStrArrayDestroy(&(*ctx)->displaynames);
3516: PetscFree((*ctx)->displayvariables);
3517: PetscFree((*ctx)->displayvalues);
3518: PetscFree(*ctx);
3519: return(0);
3520: }
3524: /*@
3525: TSGetTime - Gets the time of the most recently completed step.
3527: Not Collective
3529: Input Parameter:
3530: . ts - the TS context obtained from TSCreate()
3532: Output Parameter:
3533: . t - the current time
3535: Level: beginner
3537: Note:
3538: When called during time step evaluation (e.g. during residual evaluation or via hooks set using TSSetPreStep(),
3539: TSSetPreStage(), TSSetPostStage(), or TSSetPostStep()), the time is the time at the start of the step being evaluated.
3541: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
3543: .keywords: TS, get, time
3544: @*/
3545: PetscErrorCode TSGetTime(TS ts,PetscReal *t)
3546: {
3550: *t = ts->ptime;
3551: return(0);
3552: }
3556: /*@
3557: TSGetPrevTime - Gets the starting time of the previously completed step.
3559: Not Collective
3561: Input Parameter:
3562: . ts - the TS context obtained from TSCreate()
3564: Output Parameter:
3565: . t - the previous time
3567: Level: beginner
3569: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
3571: .keywords: TS, get, time
3572: @*/
3573: PetscErrorCode TSGetPrevTime(TS ts,PetscReal *t)
3574: {
3578: *t = ts->ptime_prev;
3579: return(0);
3580: }
3584: /*@
3585: TSSetTime - Allows one to reset the time.
3587: Logically Collective on TS
3589: Input Parameters:
3590: + ts - the TS context obtained from TSCreate()
3591: - time - the time
3593: Level: intermediate
3595: .seealso: TSGetTime(), TSSetDuration()
3597: .keywords: TS, set, time
3598: @*/
3599: PetscErrorCode TSSetTime(TS ts, PetscReal t)
3600: {
3604: ts->ptime = t;
3605: return(0);
3606: }
3610: /*@C
3611: TSSetOptionsPrefix - Sets the prefix used for searching for all
3612: TS options in the database.
3614: Logically Collective on TS
3616: Input Parameter:
3617: + ts - The TS context
3618: - prefix - The prefix to prepend to all option names
3620: Notes:
3621: A hyphen (-) must NOT be given at the beginning of the prefix name.
3622: The first character of all runtime options is AUTOMATICALLY the
3623: hyphen.
3625: Level: advanced
3627: .keywords: TS, set, options, prefix, database
3629: .seealso: TSSetFromOptions()
3631: @*/
3632: PetscErrorCode TSSetOptionsPrefix(TS ts,const char prefix[])
3633: {
3635: SNES snes;
3639: PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
3640: TSGetSNES(ts,&snes);
3641: SNESSetOptionsPrefix(snes,prefix);
3642: return(0);
3643: }
3648: /*@C
3649: TSAppendOptionsPrefix - Appends to the prefix used for searching for all
3650: TS options in the database.
3652: Logically Collective on TS
3654: Input Parameter:
3655: + ts - The TS context
3656: - prefix - The prefix to prepend to all option names
3658: Notes:
3659: A hyphen (-) must NOT be given at the beginning of the prefix name.
3660: The first character of all runtime options is AUTOMATICALLY the
3661: hyphen.
3663: Level: advanced
3665: .keywords: TS, append, options, prefix, database
3667: .seealso: TSGetOptionsPrefix()
3669: @*/
3670: PetscErrorCode TSAppendOptionsPrefix(TS ts,const char prefix[])
3671: {
3673: SNES snes;
3677: PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
3678: TSGetSNES(ts,&snes);
3679: SNESAppendOptionsPrefix(snes,prefix);
3680: return(0);
3681: }
3685: /*@C
3686: TSGetOptionsPrefix - Sets the prefix used for searching for all
3687: TS options in the database.
3689: Not Collective
3691: Input Parameter:
3692: . ts - The TS context
3694: Output Parameter:
3695: . prefix - A pointer to the prefix string used
3697: Notes: On the fortran side, the user should pass in a string 'prifix' of
3698: sufficient length to hold the prefix.
3700: Level: intermediate
3702: .keywords: TS, get, options, prefix, database
3704: .seealso: TSAppendOptionsPrefix()
3705: @*/
3706: PetscErrorCode TSGetOptionsPrefix(TS ts,const char *prefix[])
3707: {
3713: PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
3714: return(0);
3715: }
3719: /*@C
3720: TSGetRHSJacobian - Returns the Jacobian J at the present timestep.
3722: Not Collective, but parallel objects are returned if TS is parallel
3724: Input Parameter:
3725: . ts - The TS context obtained from TSCreate()
3727: Output Parameters:
3728: + Amat - The (approximate) Jacobian J of G, where U_t = G(U,t) (or NULL)
3729: . Pmat - The matrix from which the preconditioner is constructed, usually the same as Amat (or NULL)
3730: . func - Function to compute the Jacobian of the RHS (or NULL)
3731: - ctx - User-defined context for Jacobian evaluation routine (or NULL)
3733: Notes: You can pass in NULL for any return argument you do not need.
3735: Level: intermediate
3737: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()
3739: .keywords: TS, timestep, get, matrix, Jacobian
3740: @*/
3741: PetscErrorCode TSGetRHSJacobian(TS ts,Mat *Amat,Mat *Pmat,TSRHSJacobian *func,void **ctx)
3742: {
3744: SNES snes;
3745: DM dm;
3748: TSGetSNES(ts,&snes);
3749: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
3750: TSGetDM(ts,&dm);
3751: DMTSGetRHSJacobian(dm,func,ctx);
3752: return(0);
3753: }
3757: /*@C
3758: TSGetIJacobian - Returns the implicit Jacobian at the present timestep.
3760: Not Collective, but parallel objects are returned if TS is parallel
3762: Input Parameter:
3763: . ts - The TS context obtained from TSCreate()
3765: Output Parameters:
3766: + Amat - The (approximate) Jacobian of F(t,U,U_t)
3767: . Pmat - The matrix from which the preconditioner is constructed, often the same as Amat
3768: . f - The function to compute the matrices
3769: - ctx - User-defined context for Jacobian evaluation routine
3771: Notes: You can pass in NULL for any return argument you do not need.
3773: Level: advanced
3775: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()
3777: .keywords: TS, timestep, get, matrix, Jacobian
3778: @*/
3779: PetscErrorCode TSGetIJacobian(TS ts,Mat *Amat,Mat *Pmat,TSIJacobian *f,void **ctx)
3780: {
3782: SNES snes;
3783: DM dm;
3786: TSGetSNES(ts,&snes);
3787: SNESSetUpMatrices(snes);
3788: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
3789: TSGetDM(ts,&dm);
3790: DMTSGetIJacobian(dm,f,ctx);
3791: return(0);
3792: }
3797: /*@C
3798: TSMonitorDrawSolution - Monitors progress of the TS solvers by calling
3799: VecView() for the solution at each timestep
3801: Collective on TS
3803: Input Parameters:
3804: + ts - the TS context
3805: . step - current time-step
3806: . ptime - current time
3807: - dummy - either a viewer or NULL
3809: Options Database:
3810: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
3812: Notes: the initial solution and current solution are not display with a common axis scaling so generally the option -ts_monitor_draw_solution_initial
3813: will look bad
3815: Level: intermediate
3817: .keywords: TS, vector, monitor, view
3819: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3820: @*/
3821: PetscErrorCode TSMonitorDrawSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
3822: {
3823: PetscErrorCode ierr;
3824: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
3825: PetscDraw draw;
3828: if (!step && ictx->showinitial) {
3829: if (!ictx->initialsolution) {
3830: VecDuplicate(u,&ictx->initialsolution);
3831: }
3832: VecCopy(u,ictx->initialsolution);
3833: }
3834: if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);
3836: if (ictx->showinitial) {
3837: PetscReal pause;
3838: PetscViewerDrawGetPause(ictx->viewer,&pause);
3839: PetscViewerDrawSetPause(ictx->viewer,0.0);
3840: VecView(ictx->initialsolution,ictx->viewer);
3841: PetscViewerDrawSetPause(ictx->viewer,pause);
3842: PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
3843: }
3844: VecView(u,ictx->viewer);
3845: if (ictx->showtimestepandtime) {
3846: PetscReal xl,yl,xr,yr,h;
3847: char time[32];
3849: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
3850: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
3851: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
3852: h = yl + .95*(yr - yl);
3853: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
3854: PetscDrawFlush(draw);
3855: }
3857: if (ictx->showinitial) {
3858: PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
3859: }
3860: return(0);
3861: }
3865: /*@C
3866: TSMonitorDrawSolutionPhase - Monitors progress of the TS solvers by plotting the solution as a phase diagram
3868: Collective on TS
3870: Input Parameters:
3871: + ts - the TS context
3872: . step - current time-step
3873: . ptime - current time
3874: - dummy - either a viewer or NULL
3876: Level: intermediate
3878: .keywords: TS, vector, monitor, view
3880: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3881: @*/
3882: PetscErrorCode TSMonitorDrawSolutionPhase(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
3883: {
3884: PetscErrorCode ierr;
3885: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
3886: PetscDraw draw;
3887: MPI_Comm comm;
3888: PetscInt n;
3889: PetscMPIInt size;
3890: PetscReal xl,yl,xr,yr,h;
3891: char time[32];
3892: const PetscScalar *U;
3895: PetscObjectGetComm((PetscObject)ts,&comm);
3896: MPI_Comm_size(comm,&size);
3897: if (size != 1) SETERRQ(comm,PETSC_ERR_SUP,"Only allowed for sequential runs");
3898: VecGetSize(u,&n);
3899: if (n != 2) SETERRQ(comm,PETSC_ERR_SUP,"Only for ODEs with two unknowns");
3901: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
3903: VecGetArrayRead(u,&U);
3904: PetscDrawAxisGetLimits(ictx->axis,&xl,&xr,&yl,&yr);
3905: if ((PetscRealPart(U[0]) < xl) || (PetscRealPart(U[1]) < yl) || (PetscRealPart(U[0]) > xr) || (PetscRealPart(U[1]) > yr)) {
3906: VecRestoreArrayRead(u,&U);
3907: return(0);
3908: }
3909: if (!step) ictx->color++;
3910: PetscDrawPoint(draw,PetscRealPart(U[0]),PetscRealPart(U[1]),ictx->color);
3911: VecRestoreArrayRead(u,&U);
3913: if (ictx->showtimestepandtime) {
3914: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
3915: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
3916: h = yl + .95*(yr - yl);
3917: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
3918: }
3919: PetscDrawFlush(draw);
3920: return(0);
3921: }
3926: /*@C
3927: TSMonitorDrawCtxDestroy - Destroys the monitor context for TSMonitorDrawSolution()
3929: Collective on TS
3931: Input Parameters:
3932: . ctx - the monitor context
3934: Level: intermediate
3936: .keywords: TS, vector, monitor, view
3938: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawSolution(), TSMonitorDrawError()
3939: @*/
3940: PetscErrorCode TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
3941: {
3945: PetscDrawAxisDestroy(&(*ictx)->axis);
3946: PetscViewerDestroy(&(*ictx)->viewer);
3947: VecDestroy(&(*ictx)->initialsolution);
3948: PetscFree(*ictx);
3949: return(0);
3950: }
3954: /*@C
3955: TSMonitorDrawCtxCreate - Creates the monitor context for TSMonitorDrawCtx
3957: Collective on TS
3959: Input Parameter:
3960: . ts - time-step context
3962: Output Patameter:
3963: . ctx - the monitor context
3965: Options Database:
3966: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
3968: Level: intermediate
3970: .keywords: TS, vector, monitor, view
3972: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawCtx()
3973: @*/
3974: PetscErrorCode TSMonitorDrawCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorDrawCtx *ctx)
3975: {
3976: PetscErrorCode ierr;
3979: PetscNew(ctx);
3980: PetscViewerDrawOpen(comm,host,label,x,y,m,n,&(*ctx)->viewer);
3981: PetscViewerSetFromOptions((*ctx)->viewer);
3983: (*ctx)->howoften = howoften;
3984: (*ctx)->showinitial = PETSC_FALSE;
3985: PetscOptionsGetBool(NULL,"-ts_monitor_draw_solution_initial",&(*ctx)->showinitial,NULL);
3987: (*ctx)->showtimestepandtime = PETSC_FALSE;
3988: PetscOptionsGetBool(NULL,"-ts_monitor_draw_solution_show_time",&(*ctx)->showtimestepandtime,NULL);
3989: (*ctx)->color = PETSC_DRAW_WHITE;
3990: return(0);
3991: }
3995: /*@C
3996: TSMonitorDrawError - Monitors progress of the TS solvers by calling
3997: VecView() for the error at each timestep
3999: Collective on TS
4001: Input Parameters:
4002: + ts - the TS context
4003: . step - current time-step
4004: . ptime - current time
4005: - dummy - either a viewer or NULL
4007: Level: intermediate
4009: .keywords: TS, vector, monitor, view
4011: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4012: @*/
4013: PetscErrorCode TSMonitorDrawError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4014: {
4015: PetscErrorCode ierr;
4016: TSMonitorDrawCtx ctx = (TSMonitorDrawCtx)dummy;
4017: PetscViewer viewer = ctx->viewer;
4018: Vec work;
4021: if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4022: VecDuplicate(u,&work);
4023: TSComputeSolutionFunction(ts,ptime,work);
4024: VecAXPY(work,-1.0,u);
4025: VecView(work,viewer);
4026: VecDestroy(&work);
4027: return(0);
4028: }
4030: #include <petsc/private/dmimpl.h>
4033: /*@
4034: TSSetDM - Sets the DM that may be used by some preconditioners
4036: Logically Collective on TS and DM
4038: Input Parameters:
4039: + ts - the preconditioner context
4040: - dm - the dm
4042: Level: intermediate
4045: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
4046: @*/
4047: PetscErrorCode TSSetDM(TS ts,DM dm)
4048: {
4050: SNES snes;
4051: DMTS tsdm;
4055: PetscObjectReference((PetscObject)dm);
4056: if (ts->dm) { /* Move the DMTS context over to the new DM unless the new DM already has one */
4057: if (ts->dm->dmts && !dm->dmts) {
4058: DMCopyDMTS(ts->dm,dm);
4059: DMGetDMTS(ts->dm,&tsdm);
4060: if (tsdm->originaldm == ts->dm) { /* Grant write privileges to the replacement DM */
4061: tsdm->originaldm = dm;
4062: }
4063: }
4064: DMDestroy(&ts->dm);
4065: }
4066: ts->dm = dm;
4068: TSGetSNES(ts,&snes);
4069: SNESSetDM(snes,dm);
4070: return(0);
4071: }
4075: /*@
4076: TSGetDM - Gets the DM that may be used by some preconditioners
4078: Not Collective
4080: Input Parameter:
4081: . ts - the preconditioner context
4083: Output Parameter:
4084: . dm - the dm
4086: Level: intermediate
4089: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
4090: @*/
4091: PetscErrorCode TSGetDM(TS ts,DM *dm)
4092: {
4097: if (!ts->dm) {
4098: DMShellCreate(PetscObjectComm((PetscObject)ts),&ts->dm);
4099: if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
4100: }
4101: *dm = ts->dm;
4102: return(0);
4103: }
4107: /*@
4108: SNESTSFormFunction - Function to evaluate nonlinear residual
4110: Logically Collective on SNES
4112: Input Parameter:
4113: + snes - nonlinear solver
4114: . U - the current state at which to evaluate the residual
4115: - ctx - user context, must be a TS
4117: Output Parameter:
4118: . F - the nonlinear residual
4120: Notes:
4121: This function is not normally called by users and is automatically registered with the SNES used by TS.
4122: It is most frequently passed to MatFDColoringSetFunction().
4124: Level: advanced
4126: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
4127: @*/
4128: PetscErrorCode SNESTSFormFunction(SNES snes,Vec U,Vec F,void *ctx)
4129: {
4130: TS ts = (TS)ctx;
4138: (ts->ops->snesfunction)(snes,U,F,ts);
4139: return(0);
4140: }
4144: /*@
4145: SNESTSFormJacobian - Function to evaluate the Jacobian
4147: Collective on SNES
4149: Input Parameter:
4150: + snes - nonlinear solver
4151: . U - the current state at which to evaluate the residual
4152: - ctx - user context, must be a TS
4154: Output Parameter:
4155: + A - the Jacobian
4156: . B - the preconditioning matrix (may be the same as A)
4157: - flag - indicates any structure change in the matrix
4159: Notes:
4160: This function is not normally called by users and is automatically registered with the SNES used by TS.
4162: Level: developer
4164: .seealso: SNESSetJacobian()
4165: @*/
4166: PetscErrorCode SNESTSFormJacobian(SNES snes,Vec U,Mat A,Mat B,void *ctx)
4167: {
4168: TS ts = (TS)ctx;
4179: (ts->ops->snesjacobian)(snes,U,A,B,ts);
4180: return(0);
4181: }
4185: /*@C
4186: TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems only
4188: Collective on TS
4190: Input Arguments:
4191: + ts - time stepping context
4192: . t - time at which to evaluate
4193: . U - state at which to evaluate
4194: - ctx - context
4196: Output Arguments:
4197: . F - right hand side
4199: Level: intermediate
4201: Notes:
4202: This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
4203: The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().
4205: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
4206: @*/
4207: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
4208: {
4210: Mat Arhs,Brhs;
4213: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
4214: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
4215: MatMult(Arhs,U,F);
4216: return(0);
4217: }
4221: /*@C
4222: TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.
4224: Collective on TS
4226: Input Arguments:
4227: + ts - time stepping context
4228: . t - time at which to evaluate
4229: . U - state at which to evaluate
4230: - ctx - context
4232: Output Arguments:
4233: + A - pointer to operator
4234: . B - pointer to preconditioning matrix
4235: - flg - matrix structure flag
4237: Level: intermediate
4239: Notes:
4240: This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.
4242: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
4243: @*/
4244: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec U,Mat A,Mat B,void *ctx)
4245: {
4247: return(0);
4248: }
4252: /*@C
4253: TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only
4255: Collective on TS
4257: Input Arguments:
4258: + ts - time stepping context
4259: . t - time at which to evaluate
4260: . U - state at which to evaluate
4261: . Udot - time derivative of state vector
4262: - ctx - context
4264: Output Arguments:
4265: . F - left hand side
4267: Level: intermediate
4269: Notes:
4270: The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
4271: user is required to write their own TSComputeIFunction.
4272: This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
4273: The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().
4275: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant()
4276: @*/
4277: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
4278: {
4280: Mat A,B;
4283: TSGetIJacobian(ts,&A,&B,NULL,NULL);
4284: TSComputeIJacobian(ts,t,U,Udot,1.0,A,B,PETSC_TRUE);
4285: MatMult(A,Udot,F);
4286: return(0);
4287: }
4291: /*@C
4292: TSComputeIJacobianConstant - Reuses a time-independent for a semi-implicit DAE or ODE
4294: Collective on TS
4296: Input Arguments:
4297: + ts - time stepping context
4298: . t - time at which to evaluate
4299: . U - state at which to evaluate
4300: . Udot - time derivative of state vector
4301: . shift - shift to apply
4302: - ctx - context
4304: Output Arguments:
4305: + A - pointer to operator
4306: . B - pointer to preconditioning matrix
4307: - flg - matrix structure flag
4309: Level: advanced
4311: Notes:
4312: This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.
4314: It is only appropriate for problems of the form
4316: $ M Udot = F(U,t)
4318: where M is constant and F is non-stiff. The user must pass M to TSSetIJacobian(). The current implementation only
4319: works with IMEX time integration methods such as TSROSW and TSARKIMEX, since there is no support for de-constructing
4320: an implicit operator of the form
4322: $ shift*M + J
4324: where J is the Jacobian of -F(U). Support may be added in a future version of PETSc, but for now, the user must store
4325: a copy of M or reassemble it when requested.
4327: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
4328: @*/
4329: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,void *ctx)
4330: {
4334: MatScale(A, shift / ts->ijacobian.shift);
4335: ts->ijacobian.shift = shift;
4336: return(0);
4337: }
4341: /*@
4342: TSGetEquationType - Gets the type of the equation that TS is solving.
4344: Not Collective
4346: Input Parameter:
4347: . ts - the TS context
4349: Output Parameter:
4350: . equation_type - see TSEquationType
4352: Level: beginner
4354: .keywords: TS, equation type
4356: .seealso: TSSetEquationType(), TSEquationType
4357: @*/
4358: PetscErrorCode TSGetEquationType(TS ts,TSEquationType *equation_type)
4359: {
4363: *equation_type = ts->equation_type;
4364: return(0);
4365: }
4369: /*@
4370: TSSetEquationType - Sets the type of the equation that TS is solving.
4372: Not Collective
4374: Input Parameter:
4375: + ts - the TS context
4376: - equation_type - see TSEquationType
4378: Level: advanced
4380: .keywords: TS, equation type
4382: .seealso: TSGetEquationType(), TSEquationType
4383: @*/
4384: PetscErrorCode TSSetEquationType(TS ts,TSEquationType equation_type)
4385: {
4388: ts->equation_type = equation_type;
4389: return(0);
4390: }
4394: /*@
4395: TSGetConvergedReason - Gets the reason the TS iteration was stopped.
4397: Not Collective
4399: Input Parameter:
4400: . ts - the TS context
4402: Output Parameter:
4403: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
4404: manual pages for the individual convergence tests for complete lists
4406: Level: beginner
4408: Notes:
4409: Can only be called after the call to TSSolve() is complete.
4411: .keywords: TS, nonlinear, set, convergence, test
4413: .seealso: TSSetConvergenceTest(), TSConvergedReason
4414: @*/
4415: PetscErrorCode TSGetConvergedReason(TS ts,TSConvergedReason *reason)
4416: {
4420: *reason = ts->reason;
4421: return(0);
4422: }
4426: /*@
4427: TSSetConvergedReason - Sets the reason for handling the convergence of TSSolve.
4429: Not Collective
4431: Input Parameter:
4432: + ts - the TS context
4433: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
4434: manual pages for the individual convergence tests for complete lists
4436: Level: advanced
4438: Notes:
4439: Can only be called during TSSolve() is active.
4441: .keywords: TS, nonlinear, set, convergence, test
4443: .seealso: TSConvergedReason
4444: @*/
4445: PetscErrorCode TSSetConvergedReason(TS ts,TSConvergedReason reason)
4446: {
4449: ts->reason = reason;
4450: return(0);
4451: }
4455: /*@
4456: TSGetSolveTime - Gets the time after a call to TSSolve()
4458: Not Collective
4460: Input Parameter:
4461: . ts - the TS context
4463: Output Parameter:
4464: . ftime - the final time. This time should correspond to the final time set with TSSetDuration()
4466: Level: beginner
4468: Notes:
4469: Can only be called after the call to TSSolve() is complete.
4471: .keywords: TS, nonlinear, set, convergence, test
4473: .seealso: TSSetConvergenceTest(), TSConvergedReason
4474: @*/
4475: PetscErrorCode TSGetSolveTime(TS ts,PetscReal *ftime)
4476: {
4480: *ftime = ts->solvetime;
4481: return(0);
4482: }
4486: /*@
4487: TSGetTotalSteps - Gets the total number of steps done since the last call to TSSetUp() or TSCreate()
4489: Not Collective
4491: Input Parameter:
4492: . ts - the TS context
4494: Output Parameter:
4495: . steps - the number of steps
4497: Level: beginner
4499: Notes:
4500: Includes the number of steps for all calls to TSSolve() since TSSetUp() was called
4502: .keywords: TS, nonlinear, set, convergence, test
4504: .seealso: TSSetConvergenceTest(), TSConvergedReason
4505: @*/
4506: PetscErrorCode TSGetTotalSteps(TS ts,PetscInt *steps)
4507: {
4511: *steps = ts->total_steps;
4512: return(0);
4513: }
4517: /*@
4518: TSGetSNESIterations - Gets the total number of nonlinear iterations
4519: used by the time integrator.
4521: Not Collective
4523: Input Parameter:
4524: . ts - TS context
4526: Output Parameter:
4527: . nits - number of nonlinear iterations
4529: Notes:
4530: This counter is reset to zero for each successive call to TSSolve().
4532: Level: intermediate
4534: .keywords: TS, get, number, nonlinear, iterations
4536: .seealso: TSGetKSPIterations()
4537: @*/
4538: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
4539: {
4543: *nits = ts->snes_its;
4544: return(0);
4545: }
4549: /*@
4550: TSGetKSPIterations - Gets the total number of linear iterations
4551: used by the time integrator.
4553: Not Collective
4555: Input Parameter:
4556: . ts - TS context
4558: Output Parameter:
4559: . lits - number of linear iterations
4561: Notes:
4562: This counter is reset to zero for each successive call to TSSolve().
4564: Level: intermediate
4566: .keywords: TS, get, number, linear, iterations
4568: .seealso: TSGetSNESIterations(), SNESGetKSPIterations()
4569: @*/
4570: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
4571: {
4575: *lits = ts->ksp_its;
4576: return(0);
4577: }
4581: /*@
4582: TSGetStepRejections - Gets the total number of rejected steps.
4584: Not Collective
4586: Input Parameter:
4587: . ts - TS context
4589: Output Parameter:
4590: . rejects - number of steps rejected
4592: Notes:
4593: This counter is reset to zero for each successive call to TSSolve().
4595: Level: intermediate
4597: .keywords: TS, get, number
4599: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
4600: @*/
4601: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
4602: {
4606: *rejects = ts->reject;
4607: return(0);
4608: }
4612: /*@
4613: TSGetSNESFailures - Gets the total number of failed SNES solves
4615: Not Collective
4617: Input Parameter:
4618: . ts - TS context
4620: Output Parameter:
4621: . fails - number of failed nonlinear solves
4623: Notes:
4624: This counter is reset to zero for each successive call to TSSolve().
4626: Level: intermediate
4628: .keywords: TS, get, number
4630: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
4631: @*/
4632: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
4633: {
4637: *fails = ts->num_snes_failures;
4638: return(0);
4639: }
4643: /*@
4644: TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails
4646: Not Collective
4648: Input Parameter:
4649: + ts - TS context
4650: - rejects - maximum number of rejected steps, pass -1 for unlimited
4652: Notes:
4653: The counter is reset to zero for each step
4655: Options Database Key:
4656: . -ts_max_reject - Maximum number of step rejections before a step fails
4658: Level: intermediate
4660: .keywords: TS, set, maximum, number
4662: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
4663: @*/
4664: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
4665: {
4668: ts->max_reject = rejects;
4669: return(0);
4670: }
4674: /*@
4675: TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves
4677: Not Collective
4679: Input Parameter:
4680: + ts - TS context
4681: - fails - maximum number of failed nonlinear solves, pass -1 for unlimited
4683: Notes:
4684: The counter is reset to zero for each successive call to TSSolve().
4686: Options Database Key:
4687: . -ts_max_snes_failures - Maximum number of nonlinear solve failures
4689: Level: intermediate
4691: .keywords: TS, set, maximum, number
4693: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
4694: @*/
4695: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
4696: {
4699: ts->max_snes_failures = fails;
4700: return(0);
4701: }
4705: /*@
4706: TSSetErrorIfStepFails - Error if no step succeeds
4708: Not Collective
4710: Input Parameter:
4711: + ts - TS context
4712: - err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure
4714: Options Database Key:
4715: . -ts_error_if_step_fails - Error if no step succeeds
4717: Level: intermediate
4719: .keywords: TS, set, error
4721: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
4722: @*/
4723: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
4724: {
4727: ts->errorifstepfailed = err;
4728: return(0);
4729: }
4733: /*@C
4734: TSMonitorSolutionBinary - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file
4736: Collective on TS
4738: Input Parameters:
4739: + ts - the TS context
4740: . step - current time-step
4741: . ptime - current time
4742: . u - current state
4743: - viewer - binary viewer
4745: Level: intermediate
4747: .keywords: TS, vector, monitor, view
4749: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4750: @*/
4751: PetscErrorCode TSMonitorSolutionBinary(TS ts,PetscInt step,PetscReal ptime,Vec u,void *viewer)
4752: {
4754: PetscViewer v = (PetscViewer)viewer;
4757: VecView(u,v);
4758: return(0);
4759: }
4763: /*@C
4764: TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.
4766: Collective on TS
4768: Input Parameters:
4769: + ts - the TS context
4770: . step - current time-step
4771: . ptime - current time
4772: . u - current state
4773: - filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
4775: Level: intermediate
4777: Notes:
4778: The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
4779: These are named according to the file name template.
4781: This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().
4783: .keywords: TS, vector, monitor, view
4785: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4786: @*/
4787: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec u,void *filenametemplate)
4788: {
4790: char filename[PETSC_MAX_PATH_LEN];
4791: PetscViewer viewer;
4794: PetscSNPrintf(filename,sizeof(filename),(const char*)filenametemplate,step);
4795: PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts),filename,FILE_MODE_WRITE,&viewer);
4796: VecView(u,viewer);
4797: PetscViewerDestroy(&viewer);
4798: return(0);
4799: }
4803: /*@C
4804: TSMonitorSolutionVTKDestroy - Destroy context for monitoring
4806: Collective on TS
4808: Input Parameters:
4809: . filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
4811: Level: intermediate
4813: Note:
4814: This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().
4816: .keywords: TS, vector, monitor, view
4818: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
4819: @*/
4820: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
4821: {
4825: PetscFree(*(char**)filenametemplate);
4826: return(0);
4827: }
4831: /*@
4832: TSGetAdapt - Get the adaptive controller context for the current method
4834: Collective on TS if controller has not been created yet
4836: Input Arguments:
4837: . ts - time stepping context
4839: Output Arguments:
4840: . adapt - adaptive controller
4842: Level: intermediate
4844: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
4845: @*/
4846: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
4847: {
4853: if (!ts->adapt) {
4854: TSAdaptCreate(PetscObjectComm((PetscObject)ts),&ts->adapt);
4855: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->adapt);
4856: PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
4857: }
4858: *adapt = ts->adapt;
4859: return(0);
4860: }
4864: /*@
4865: TSSetTolerances - Set tolerances for local truncation error when using adaptive controller
4867: Logically Collective
4869: Input Arguments:
4870: + ts - time integration context
4871: . atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
4872: . vatol - vector of absolute tolerances or NULL, used in preference to atol if present
4873: . rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
4874: - vrtol - vector of relative tolerances or NULL, used in preference to atol if present
4876: Options Database keys:
4877: + -ts_rtol <rtol> - relative tolerance for local truncation error
4878: - -ts_atol <atol> Absolute tolerance for local truncation error
4880: Notes:
4881: With PETSc's implicit schemes for DAE problems, the calculation of the local truncation error
4882: (LTE) includes both the differential and the algebraic variables. If one wants the LTE to be
4883: computed only for the differential or the algebraic part then this can be done using the vector of
4884: tolerances vatol. For example, by setting the tolerance vector with the desired tolerance for the
4885: differential part and infinity for the algebraic part, the LTE calculation will include only the
4886: differential variables.
4888: Level: beginner
4890: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSGetTolerances()
4891: @*/
4892: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
4893: {
4897: if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
4898: if (vatol) {
4899: PetscObjectReference((PetscObject)vatol);
4900: VecDestroy(&ts->vatol);
4902: ts->vatol = vatol;
4903: }
4904: if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
4905: if (vrtol) {
4906: PetscObjectReference((PetscObject)vrtol);
4907: VecDestroy(&ts->vrtol);
4909: ts->vrtol = vrtol;
4910: }
4911: return(0);
4912: }
4916: /*@
4917: TSGetTolerances - Get tolerances for local truncation error when using adaptive controller
4919: Logically Collective
4921: Input Arguments:
4922: . ts - time integration context
4924: Output Arguments:
4925: + atol - scalar absolute tolerances, NULL to ignore
4926: . vatol - vector of absolute tolerances, NULL to ignore
4927: . rtol - scalar relative tolerances, NULL to ignore
4928: - vrtol - vector of relative tolerances, NULL to ignore
4930: Level: beginner
4932: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSSetTolerances()
4933: @*/
4934: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
4935: {
4937: if (atol) *atol = ts->atol;
4938: if (vatol) *vatol = ts->vatol;
4939: if (rtol) *rtol = ts->rtol;
4940: if (vrtol) *vrtol = ts->vrtol;
4941: return(0);
4942: }
4946: /*@
4947: TSErrorWeightedNorm2 - compute a weighted 2-norm of the difference between two state vectors
4949: Collective on TS
4951: Input Arguments:
4952: + ts - time stepping context
4953: . U - state vector, usually ts->vec_sol
4954: - Y - state vector to be compared to U
4956: Output Arguments:
4957: . norm - weighted norm, a value of 1.0 is considered small
4959: Level: developer
4961: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNormInfinity()
4962: @*/
4963: PetscErrorCode TSErrorWeightedNorm2(TS ts,Vec U,Vec Y,PetscReal *norm)
4964: {
4965: PetscErrorCode ierr;
4966: PetscInt i,n,N,rstart;
4967: const PetscScalar *u,*y;
4968: PetscReal sum,gsum;
4969: PetscReal tol;
4979: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");
4981: VecGetSize(U,&N);
4982: VecGetLocalSize(U,&n);
4983: VecGetOwnershipRange(U,&rstart,NULL);
4984: VecGetArrayRead(U,&u);
4985: VecGetArrayRead(Y,&y);
4986: sum = 0.;
4987: if (ts->vatol && ts->vrtol) {
4988: const PetscScalar *atol,*rtol;
4989: VecGetArrayRead(ts->vatol,&atol);
4990: VecGetArrayRead(ts->vrtol,&rtol);
4991: for (i=0; i<n; i++) {
4992: tol = PetscRealPart(atol[i]) + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4993: sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4994: }
4995: VecRestoreArrayRead(ts->vatol,&atol);
4996: VecRestoreArrayRead(ts->vrtol,&rtol);
4997: } else if (ts->vatol) { /* vector atol, scalar rtol */
4998: const PetscScalar *atol;
4999: VecGetArrayRead(ts->vatol,&atol);
5000: for (i=0; i<n; i++) {
5001: tol = PetscRealPart(atol[i]) + ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5002: sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
5003: }
5004: VecRestoreArrayRead(ts->vatol,&atol);
5005: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5006: const PetscScalar *rtol;
5007: VecGetArrayRead(ts->vrtol,&rtol);
5008: for (i=0; i<n; i++) {
5009: tol = ts->atol + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5010: sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
5011: }
5012: VecRestoreArrayRead(ts->vrtol,&rtol);
5013: } else { /* scalar atol, scalar rtol */
5014: for (i=0; i<n; i++) {
5015: tol = ts->atol + ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5016: sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
5017: }
5018: }
5019: VecRestoreArrayRead(U,&u);
5020: VecRestoreArrayRead(Y,&y);
5022: MPI_Allreduce(&sum,&gsum,1,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
5023: *norm = PetscSqrtReal(gsum / N);
5025: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5026: return(0);
5027: }
5031: /*@
5032: TSErrorWeightedNormInfinity - compute a weighted infinity-norm of the difference between two state vectors
5034: Collective on TS
5036: Input Arguments:
5037: + ts - time stepping context
5038: . U - state vector, usually ts->vec_sol
5039: - Y - state vector to be compared to U
5041: Output Arguments:
5042: . norm - weighted norm, a value of 1.0 is considered small
5044: Level: developer
5046: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNorm2()
5047: @*/
5048: PetscErrorCode TSErrorWeightedNormInfinity(TS ts,Vec U,Vec Y,PetscReal *norm)
5049: {
5050: PetscErrorCode ierr;
5051: PetscInt i,n,N,rstart,k;
5052: const PetscScalar *u,*y;
5053: PetscReal max,gmax;
5054: PetscReal tol;
5064: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");
5066: VecGetSize(U,&N);
5067: VecGetLocalSize(U,&n);
5068: VecGetOwnershipRange(U,&rstart,NULL);
5069: VecGetArrayRead(U,&u);
5070: VecGetArrayRead(Y,&y);
5071: if (ts->vatol && ts->vrtol) {
5072: const PetscScalar *atol,*rtol;
5073: VecGetArrayRead(ts->vatol,&atol);
5074: VecGetArrayRead(ts->vrtol,&rtol);
5075: k = 0;
5076: tol = PetscRealPart(atol[k]) + PetscRealPart(rtol[k]) * PetscMax(PetscAbsScalar(u[k]),PetscAbsScalar(y[k]));
5077: max = PetscAbsScalar(y[k] - u[k]) / tol;
5078: for (i=1; i<n; i++) {
5079: tol = PetscRealPart(atol[i]) + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5080: max = PetscMax(max,PetscAbsScalar(y[i] - u[i]) / tol);
5081: }
5082: VecRestoreArrayRead(ts->vatol,&atol);
5083: VecRestoreArrayRead(ts->vrtol,&rtol);
5084: } else if (ts->vatol) { /* vector atol, scalar rtol */
5085: const PetscScalar *atol;
5086: VecGetArrayRead(ts->vatol,&atol);
5087: k = 0;
5088: tol = PetscRealPart(atol[k]) + ts->rtol * PetscMax(PetscAbsScalar(u[k]),PetscAbsScalar(y[k]));
5089: max = PetscAbsScalar(y[k] - u[k]) / tol;
5090: for (i=1; i<n; i++) {
5091: tol = PetscRealPart(atol[i]) + ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5092: max = PetscMax(max,PetscAbsScalar(y[i] - u[i]) / tol);
5093: }
5094: VecRestoreArrayRead(ts->vatol,&atol);
5095: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5096: const PetscScalar *rtol;
5097: VecGetArrayRead(ts->vrtol,&rtol);
5098: k = 0;
5099: tol = ts->atol + PetscRealPart(rtol[k]) * PetscMax(PetscAbsScalar(u[k]),PetscAbsScalar(y[k]));
5100: max = PetscAbsScalar(y[k] - u[k]) / tol;
5101: for (i=1; i<n; i++) {
5102: tol = ts->atol + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5103: max = PetscMax(max,PetscAbsScalar(y[i] - u[i]) / tol);
5104: }
5105: VecRestoreArrayRead(ts->vrtol,&rtol);
5106: } else { /* scalar atol, scalar rtol */
5107: k = 0;
5108: tol = ts->atol + ts->rtol * PetscMax(PetscAbsScalar(u[k]),PetscAbsScalar(y[k]));
5109: max = PetscAbsScalar(y[k] - u[k]) / tol;
5110: for (i=1; i<n; i++) {
5111: tol = ts->atol + ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5112: max = PetscMax(max,PetscAbsScalar(y[i] - u[i]) / tol);
5113: }
5114: }
5115: VecRestoreArrayRead(U,&u);
5116: VecRestoreArrayRead(Y,&y);
5118: MPI_Allreduce(&max,&gmax,1,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
5119: *norm = gmax;
5121: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5122: return(0);
5123: }
5127: /*@
5128: TSErrorWeightedNorm - compute a weighted norm of the difference between two state vectors
5130: Collective on TS
5132: Input Arguments:
5133: + ts - time stepping context
5134: . U - state vector, usually ts->vec_sol
5135: . Y - state vector to be compared to U
5136: - wnormtype - norm type, either NORM_2 or NORM_INFINITY
5138: Output Arguments:
5139: . norm - weighted norm, a value of 1.0 is considered small
5142: Options Database Keys:
5143: . -ts_adapt_wnormtype <wnormtype> - 2, INFINITY
5145: Level: developer
5147: .seealso: TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2()
5148: @*/
5149: PetscErrorCode TSErrorWeightedNorm(TS ts,Vec U,Vec Y,NormType wnormtype,PetscReal *norm)
5150: {
5154: if (wnormtype == NORM_2) {
5155: TSErrorWeightedNorm2(ts,U,Y,norm);
5156: } else if(wnormtype == NORM_INFINITY) {
5157: TSErrorWeightedNormInfinity(ts,U,Y,norm);
5158: } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
5159: return(0);
5160: }
5164: /*@
5165: TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler
5167: Logically Collective on TS
5169: Input Arguments:
5170: + ts - time stepping context
5171: - cfltime - maximum stable time step if using forward Euler (value can be different on each process)
5173: Note:
5174: After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()
5176: Level: intermediate
5178: .seealso: TSGetCFLTime(), TSADAPTCFL
5179: @*/
5180: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
5181: {
5184: ts->cfltime_local = cfltime;
5185: ts->cfltime = -1.;
5186: return(0);
5187: }
5191: /*@
5192: TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler
5194: Collective on TS
5196: Input Arguments:
5197: . ts - time stepping context
5199: Output Arguments:
5200: . cfltime - maximum stable time step for forward Euler
5202: Level: advanced
5204: .seealso: TSSetCFLTimeLocal()
5205: @*/
5206: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
5207: {
5211: if (ts->cfltime < 0) {
5212: MPI_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
5213: }
5214: *cfltime = ts->cfltime;
5215: return(0);
5216: }
5220: /*@
5221: TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu
5223: Input Parameters:
5224: . ts - the TS context.
5225: . xl - lower bound.
5226: . xu - upper bound.
5228: Notes:
5229: If this routine is not called then the lower and upper bounds are set to
5230: PETSC_NINFINITY and PETSC_INFINITY respectively during SNESSetUp().
5232: Level: advanced
5234: @*/
5235: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
5236: {
5238: SNES snes;
5241: TSGetSNES(ts,&snes);
5242: SNESVISetVariableBounds(snes,xl,xu);
5243: return(0);
5244: }
5246: #if defined(PETSC_HAVE_MATLAB_ENGINE)
5247: #include <mex.h>
5249: typedef struct {char *funcname; mxArray *ctx;} TSMatlabContext;
5253: /*
5254: TSComputeFunction_Matlab - Calls the function that has been set with
5255: TSSetFunctionMatlab().
5257: Collective on TS
5259: Input Parameters:
5260: + snes - the TS context
5261: - u - input vector
5263: Output Parameter:
5264: . y - function vector, as set by TSSetFunction()
5266: Notes:
5267: TSComputeFunction() is typically used within nonlinear solvers
5268: implementations, so most users would not generally call this routine
5269: themselves.
5271: Level: developer
5273: .keywords: TS, nonlinear, compute, function
5275: .seealso: TSSetFunction(), TSGetFunction()
5276: */
5277: PetscErrorCode TSComputeFunction_Matlab(TS snes,PetscReal time,Vec u,Vec udot,Vec y, void *ctx)
5278: {
5279: PetscErrorCode ierr;
5280: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
5281: int nlhs = 1,nrhs = 7;
5282: mxArray *plhs[1],*prhs[7];
5283: long long int lx = 0,lxdot = 0,ly = 0,ls = 0;
5293: PetscMemcpy(&ls,&snes,sizeof(snes));
5294: PetscMemcpy(&lx,&u,sizeof(u));
5295: PetscMemcpy(&lxdot,&udot,sizeof(udot));
5296: PetscMemcpy(&ly,&y,sizeof(u));
5298: prhs[0] = mxCreateDoubleScalar((double)ls);
5299: prhs[1] = mxCreateDoubleScalar(time);
5300: prhs[2] = mxCreateDoubleScalar((double)lx);
5301: prhs[3] = mxCreateDoubleScalar((double)lxdot);
5302: prhs[4] = mxCreateDoubleScalar((double)ly);
5303: prhs[5] = mxCreateString(sctx->funcname);
5304: prhs[6] = sctx->ctx;
5305: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeFunctionInternal");
5306: mxGetScalar(plhs[0]);
5307: mxDestroyArray(prhs[0]);
5308: mxDestroyArray(prhs[1]);
5309: mxDestroyArray(prhs[2]);
5310: mxDestroyArray(prhs[3]);
5311: mxDestroyArray(prhs[4]);
5312: mxDestroyArray(prhs[5]);
5313: mxDestroyArray(plhs[0]);
5314: return(0);
5315: }
5320: /*
5321: TSSetFunctionMatlab - Sets the function evaluation routine and function
5322: vector for use by the TS routines in solving ODEs
5323: equations from MATLAB. Here the function is a string containing the name of a MATLAB function
5325: Logically Collective on TS
5327: Input Parameters:
5328: + ts - the TS context
5329: - func - function evaluation routine
5331: Calling sequence of func:
5332: $ func (TS ts,PetscReal time,Vec u,Vec udot,Vec f,void *ctx);
5334: Level: beginner
5336: .keywords: TS, nonlinear, set, function
5338: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
5339: */
5340: PetscErrorCode TSSetFunctionMatlab(TS ts,const char *func,mxArray *ctx)
5341: {
5342: PetscErrorCode ierr;
5343: TSMatlabContext *sctx;
5346: /* currently sctx is memory bleed */
5347: PetscMalloc(sizeof(TSMatlabContext),&sctx);
5348: PetscStrallocpy(func,&sctx->funcname);
5349: /*
5350: This should work, but it doesn't
5351: sctx->ctx = ctx;
5352: mexMakeArrayPersistent(sctx->ctx);
5353: */
5354: sctx->ctx = mxDuplicateArray(ctx);
5356: TSSetIFunction(ts,NULL,TSComputeFunction_Matlab,sctx);
5357: return(0);
5358: }
5362: /*
5363: TSComputeJacobian_Matlab - Calls the function that has been set with
5364: TSSetJacobianMatlab().
5366: Collective on TS
5368: Input Parameters:
5369: + ts - the TS context
5370: . u - input vector
5371: . A, B - the matrices
5372: - ctx - user context
5374: Level: developer
5376: .keywords: TS, nonlinear, compute, function
5378: .seealso: TSSetFunction(), TSGetFunction()
5379: @*/
5380: PetscErrorCode TSComputeJacobian_Matlab(TS ts,PetscReal time,Vec u,Vec udot,PetscReal shift,Mat A,Mat B,void *ctx)
5381: {
5382: PetscErrorCode ierr;
5383: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
5384: int nlhs = 2,nrhs = 9;
5385: mxArray *plhs[2],*prhs[9];
5386: long long int lx = 0,lxdot = 0,lA = 0,ls = 0, lB = 0;
5392: /* call Matlab function in ctx with arguments u and y */
5394: PetscMemcpy(&ls,&ts,sizeof(ts));
5395: PetscMemcpy(&lx,&u,sizeof(u));
5396: PetscMemcpy(&lxdot,&udot,sizeof(u));
5397: PetscMemcpy(&lA,A,sizeof(u));
5398: PetscMemcpy(&lB,B,sizeof(u));
5400: prhs[0] = mxCreateDoubleScalar((double)ls);
5401: prhs[1] = mxCreateDoubleScalar((double)time);
5402: prhs[2] = mxCreateDoubleScalar((double)lx);
5403: prhs[3] = mxCreateDoubleScalar((double)lxdot);
5404: prhs[4] = mxCreateDoubleScalar((double)shift);
5405: prhs[5] = mxCreateDoubleScalar((double)lA);
5406: prhs[6] = mxCreateDoubleScalar((double)lB);
5407: prhs[7] = mxCreateString(sctx->funcname);
5408: prhs[8] = sctx->ctx;
5409: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeJacobianInternal");
5410: mxGetScalar(plhs[0]);
5411: mxDestroyArray(prhs[0]);
5412: mxDestroyArray(prhs[1]);
5413: mxDestroyArray(prhs[2]);
5414: mxDestroyArray(prhs[3]);
5415: mxDestroyArray(prhs[4]);
5416: mxDestroyArray(prhs[5]);
5417: mxDestroyArray(prhs[6]);
5418: mxDestroyArray(prhs[7]);
5419: mxDestroyArray(plhs[0]);
5420: mxDestroyArray(plhs[1]);
5421: return(0);
5422: }
5427: /*
5428: TSSetJacobianMatlab - Sets the Jacobian function evaluation routine and two empty Jacobian matrices
5429: vector for use by the TS routines in solving ODEs from MATLAB. Here the function is a string containing the name of a MATLAB function
5431: Logically Collective on TS
5433: Input Parameters:
5434: + ts - the TS context
5435: . A,B - Jacobian matrices
5436: . func - function evaluation routine
5437: - ctx - user context
5439: Calling sequence of func:
5440: $ flag = func (TS ts,PetscReal time,Vec u,Vec udot,Mat A,Mat B,void *ctx);
5443: Level: developer
5445: .keywords: TS, nonlinear, set, function
5447: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
5448: */
5449: PetscErrorCode TSSetJacobianMatlab(TS ts,Mat A,Mat B,const char *func,mxArray *ctx)
5450: {
5451: PetscErrorCode ierr;
5452: TSMatlabContext *sctx;
5455: /* currently sctx is memory bleed */
5456: PetscMalloc(sizeof(TSMatlabContext),&sctx);
5457: PetscStrallocpy(func,&sctx->funcname);
5458: /*
5459: This should work, but it doesn't
5460: sctx->ctx = ctx;
5461: mexMakeArrayPersistent(sctx->ctx);
5462: */
5463: sctx->ctx = mxDuplicateArray(ctx);
5465: TSSetIJacobian(ts,A,B,TSComputeJacobian_Matlab,sctx);
5466: return(0);
5467: }
5471: /*
5472: TSMonitor_Matlab - Calls the function that has been set with TSMonitorSetMatlab().
5474: Collective on TS
5476: .seealso: TSSetFunction(), TSGetFunction()
5477: @*/
5478: PetscErrorCode TSMonitor_Matlab(TS ts,PetscInt it, PetscReal time,Vec u, void *ctx)
5479: {
5480: PetscErrorCode ierr;
5481: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
5482: int nlhs = 1,nrhs = 6;
5483: mxArray *plhs[1],*prhs[6];
5484: long long int lx = 0,ls = 0;
5490: PetscMemcpy(&ls,&ts,sizeof(ts));
5491: PetscMemcpy(&lx,&u,sizeof(u));
5493: prhs[0] = mxCreateDoubleScalar((double)ls);
5494: prhs[1] = mxCreateDoubleScalar((double)it);
5495: prhs[2] = mxCreateDoubleScalar((double)time);
5496: prhs[3] = mxCreateDoubleScalar((double)lx);
5497: prhs[4] = mxCreateString(sctx->funcname);
5498: prhs[5] = sctx->ctx;
5499: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSMonitorInternal");
5500: mxGetScalar(plhs[0]);
5501: mxDestroyArray(prhs[0]);
5502: mxDestroyArray(prhs[1]);
5503: mxDestroyArray(prhs[2]);
5504: mxDestroyArray(prhs[3]);
5505: mxDestroyArray(prhs[4]);
5506: mxDestroyArray(plhs[0]);
5507: return(0);
5508: }
5513: /*
5514: TSMonitorSetMatlab - Sets the monitor function from Matlab
5516: Level: developer
5518: .keywords: TS, nonlinear, set, function
5520: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
5521: */
5522: PetscErrorCode TSMonitorSetMatlab(TS ts,const char *func,mxArray *ctx)
5523: {
5524: PetscErrorCode ierr;
5525: TSMatlabContext *sctx;
5528: /* currently sctx is memory bleed */
5529: PetscMalloc(sizeof(TSMatlabContext),&sctx);
5530: PetscStrallocpy(func,&sctx->funcname);
5531: /*
5532: This should work, but it doesn't
5533: sctx->ctx = ctx;
5534: mexMakeArrayPersistent(sctx->ctx);
5535: */
5536: sctx->ctx = mxDuplicateArray(ctx);
5538: TSMonitorSet(ts,TSMonitor_Matlab,sctx,NULL);
5539: return(0);
5540: }
5541: #endif
5545: /*@C
5546: TSMonitorLGSolution - Monitors progress of the TS solvers by plotting each component of the solution vector
5547: in a time based line graph
5549: Collective on TS
5551: Input Parameters:
5552: + ts - the TS context
5553: . step - current time-step
5554: . ptime - current time
5555: - lg - a line graph object
5557: Options Database:
5558: . -ts_monitor_lg_solution_variables
5560: Level: intermediate
5562: Notes: each process in a parallel run displays its component solutions in a separate window
5564: .keywords: TS, vector, monitor, view
5566: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5567: @*/
5568: PetscErrorCode TSMonitorLGSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
5569: {
5570: PetscErrorCode ierr;
5571: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dummy;
5572: const PetscScalar *yy;
5573: PetscInt dim;
5574: Vec v;
5577: if (!step) {
5578: PetscDrawAxis axis;
5579: PetscDrawLGGetAxis(ctx->lg,&axis);
5580: PetscDrawAxisSetLabels(axis,"Solution as function of time","Time","Solution");
5581: if (ctx->names && !ctx->displaynames) {
5582: char **displaynames;
5583: PetscBool flg;
5585: VecGetLocalSize(u,&dim);
5586: PetscMalloc((dim+1)*sizeof(char*),&displaynames);
5587: PetscMemzero(displaynames,(dim+1)*sizeof(char*));
5588: PetscOptionsGetStringArray(((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",displaynames,&dim,&flg);
5589: if (flg) {
5590: TSMonitorLGCtxSetDisplayVariables(ctx,(const char *const *)displaynames);
5591: }
5592: PetscStrArrayDestroy(&displaynames);
5593: }
5594: if (ctx->displaynames) {
5595: PetscDrawLGSetDimension(ctx->lg,ctx->ndisplayvariables);
5596: PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->displaynames);
5597: } else if (ctx->names) {
5598: VecGetLocalSize(u,&dim);
5599: PetscDrawLGSetDimension(ctx->lg,dim);
5600: PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->names);
5601: }
5602: PetscDrawLGReset(ctx->lg);
5603: }
5604: if (ctx->transform) {
5605: (*ctx->transform)(ctx->transformctx,u,&v);
5606: } else {
5607: v = u;
5608: }
5609: VecGetArrayRead(v,&yy);
5610: #if defined(PETSC_USE_COMPLEX)
5611: {
5612: PetscReal *yreal;
5613: PetscInt i,n;
5614: VecGetLocalSize(v,&n);
5615: PetscMalloc1(n,&yreal);
5616: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
5617: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
5618: PetscFree(yreal);
5619: }
5620: #else
5621: if (ctx->displaynames) {
5622: PetscInt i;
5623: for (i=0; i<ctx->ndisplayvariables; i++) {
5624: ctx->displayvalues[i] = yy[ctx->displayvariables[i]];
5625: }
5626: PetscDrawLGAddCommonPoint(ctx->lg,ptime,ctx->displayvalues);
5627: } else {
5628: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
5629: }
5630: #endif
5631: VecRestoreArrayRead(v,&yy);
5632: if (ctx->transform) {
5633: VecDestroy(&v);
5634: }
5635: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
5636: PetscDrawLGDraw(ctx->lg);
5637: }
5638: return(0);
5639: }
5644: /*@C
5645: TSMonitorLGSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot
5647: Collective on TS
5649: Input Parameters:
5650: + ts - the TS context
5651: - names - the names of the components, final string must be NULL
5653: Level: intermediate
5655: .keywords: TS, vector, monitor, view
5657: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetVariableNames()
5658: @*/
5659: PetscErrorCode TSMonitorLGSetVariableNames(TS ts,const char * const *names)
5660: {
5661: PetscErrorCode ierr;
5662: PetscInt i;
5665: for (i=0; i<ts->numbermonitors; i++) {
5666: if (ts->monitor[i] == TSMonitorLGSolution) {
5667: TSMonitorLGCtxSetVariableNames((TSMonitorLGCtx)ts->monitorcontext[i],names);
5668: break;
5669: }
5670: }
5671: return(0);
5672: }
5676: /*@C
5677: TSMonitorLGCtxSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot
5679: Collective on TS
5681: Input Parameters:
5682: + ts - the TS context
5683: - names - the names of the components, final string must be NULL
5685: Level: intermediate
5687: .keywords: TS, vector, monitor, view
5689: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGSetVariableNames()
5690: @*/
5691: PetscErrorCode TSMonitorLGCtxSetVariableNames(TSMonitorLGCtx ctx,const char * const *names)
5692: {
5693: PetscErrorCode ierr;
5696: PetscStrArrayDestroy(&ctx->names);
5697: PetscStrArrayallocpy(names,&ctx->names);
5698: return(0);
5699: }
5703: /*@C
5704: TSMonitorLGGetVariableNames - Gets the name of each component in the solution vector so that it may be displayed in the plot
5706: Collective on TS
5708: Input Parameter:
5709: . ts - the TS context
5711: Output Parameter:
5712: . names - the names of the components, final string must be NULL
5714: Level: intermediate
5716: .keywords: TS, vector, monitor, view
5718: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
5719: @*/
5720: PetscErrorCode TSMonitorLGGetVariableNames(TS ts,const char *const **names)
5721: {
5722: PetscInt i;
5725: *names = NULL;
5726: for (i=0; i<ts->numbermonitors; i++) {
5727: if (ts->monitor[i] == TSMonitorLGSolution) {
5728: TSMonitorLGCtx ctx = (TSMonitorLGCtx) ts->monitorcontext[i];
5729: *names = (const char *const *)ctx->names;
5730: break;
5731: }
5732: }
5733: return(0);
5734: }
5738: /*@C
5739: TSMonitorLGCtxSetDisplayVariables - Sets the variables that are to be display in the monitor
5741: Collective on TS
5743: Input Parameters:
5744: + ctx - the TSMonitorLG context
5745: . displaynames - the names of the components, final string must be NULL
5747: Level: intermediate
5749: .keywords: TS, vector, monitor, view
5751: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
5752: @*/
5753: PetscErrorCode TSMonitorLGCtxSetDisplayVariables(TSMonitorLGCtx ctx,const char * const *displaynames)
5754: {
5755: PetscInt j = 0,k;
5756: PetscErrorCode ierr;
5759: if (!ctx->names) return(0);
5760: PetscStrArrayDestroy(&ctx->displaynames);
5761: PetscStrArrayallocpy(displaynames,&ctx->displaynames);
5762: while (displaynames[j]) j++;
5763: ctx->ndisplayvariables = j;
5764: PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvariables);
5765: PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvalues);
5766: j = 0;
5767: while (displaynames[j]) {
5768: k = 0;
5769: while (ctx->names[k]) {
5770: PetscBool flg;
5771: PetscStrcmp(displaynames[j],ctx->names[k],&flg);
5772: if (flg) {
5773: ctx->displayvariables[j] = k;
5774: break;
5775: }
5776: k++;
5777: }
5778: j++;
5779: }
5780: return(0);
5781: }
5786: /*@C
5787: TSMonitorLGSetDisplayVariables - Sets the variables that are to be display in the monitor
5789: Collective on TS
5791: Input Parameters:
5792: + ts - the TS context
5793: . displaynames - the names of the components, final string must be NULL
5795: Level: intermediate
5797: .keywords: TS, vector, monitor, view
5799: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
5800: @*/
5801: PetscErrorCode TSMonitorLGSetDisplayVariables(TS ts,const char * const *displaynames)
5802: {
5803: PetscInt i;
5804: PetscErrorCode ierr;
5807: for (i=0; i<ts->numbermonitors; i++) {
5808: if (ts->monitor[i] == TSMonitorLGSolution) {
5809: TSMonitorLGCtxSetDisplayVariables((TSMonitorLGCtx)ts->monitorcontext[i],displaynames);
5810: break;
5811: }
5812: }
5813: return(0);
5814: }
5818: /*@C
5819: TSMonitorLGSetTransform - Solution vector will be transformed by provided function before being displayed
5821: Collective on TS
5823: Input Parameters:
5824: + ts - the TS context
5825: . transform - the transform function
5826: . destroy - function to destroy the optional context
5827: - ctx - optional context used by transform function
5829: Level: intermediate
5831: .keywords: TS, vector, monitor, view
5833: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGCtxSetTransform()
5834: @*/
5835: PetscErrorCode TSMonitorLGSetTransform(TS ts,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
5836: {
5837: PetscInt i;
5838: PetscErrorCode ierr;
5841: for (i=0; i<ts->numbermonitors; i++) {
5842: if (ts->monitor[i] == TSMonitorLGSolution) {
5843: TSMonitorLGCtxSetTransform((TSMonitorLGCtx)ts->monitorcontext[i],transform,destroy,tctx);
5844: }
5845: }
5846: return(0);
5847: }
5851: /*@C
5852: TSMonitorLGCtxSetTransform - Solution vector will be transformed by provided function before being displayed
5854: Collective on TSLGCtx
5856: Input Parameters:
5857: + ts - the TS context
5858: . transform - the transform function
5859: . destroy - function to destroy the optional context
5860: - ctx - optional context used by transform function
5862: Level: intermediate
5864: .keywords: TS, vector, monitor, view
5866: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGSetTransform()
5867: @*/
5868: PetscErrorCode TSMonitorLGCtxSetTransform(TSMonitorLGCtx ctx,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
5869: {
5871: ctx->transform = transform;
5872: ctx->transformdestroy = destroy;
5873: ctx->transformctx = tctx;
5874: return(0);
5875: }
5879: /*@C
5880: TSMonitorLGError - Monitors progress of the TS solvers by plotting each component of the solution vector
5881: in a time based line graph
5883: Collective on TS
5885: Input Parameters:
5886: + ts - the TS context
5887: . step - current time-step
5888: . ptime - current time
5889: - lg - a line graph object
5891: Level: intermediate
5893: Notes:
5894: Only for sequential solves.
5896: The user must provide the solution using TSSetSolutionFunction() to use this monitor.
5898: Options Database Keys:
5899: . -ts_monitor_lg_error - create a graphical monitor of error history
5901: .keywords: TS, vector, monitor, view
5903: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
5904: @*/
5905: PetscErrorCode TSMonitorLGError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
5906: {
5907: PetscErrorCode ierr;
5908: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dummy;
5909: const PetscScalar *yy;
5910: Vec y;
5911: PetscInt dim;
5914: if (!step) {
5915: PetscDrawAxis axis;
5916: PetscDrawLGGetAxis(ctx->lg,&axis);
5917: PetscDrawAxisSetLabels(axis,"Error in solution as function of time","Time","Solution");
5918: VecGetLocalSize(u,&dim);
5919: PetscDrawLGSetDimension(ctx->lg,dim);
5920: PetscDrawLGReset(ctx->lg);
5921: }
5922: VecDuplicate(u,&y);
5923: TSComputeSolutionFunction(ts,ptime,y);
5924: VecAXPY(y,-1.0,u);
5925: VecGetArrayRead(y,&yy);
5926: #if defined(PETSC_USE_COMPLEX)
5927: {
5928: PetscReal *yreal;
5929: PetscInt i,n;
5930: VecGetLocalSize(y,&n);
5931: PetscMalloc1(n,&yreal);
5932: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
5933: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
5934: PetscFree(yreal);
5935: }
5936: #else
5937: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
5938: #endif
5939: VecRestoreArrayRead(y,&yy);
5940: VecDestroy(&y);
5941: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
5942: PetscDrawLGDraw(ctx->lg);
5943: }
5944: return(0);
5945: }
5949: PetscErrorCode TSMonitorLGSNESIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
5950: {
5951: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
5952: PetscReal x = ptime,y;
5954: PetscInt its;
5957: if (!n) {
5958: PetscDrawAxis axis;
5960: PetscDrawLGGetAxis(ctx->lg,&axis);
5961: PetscDrawAxisSetLabels(axis,"Nonlinear iterations as function of time","Time","SNES Iterations");
5962: PetscDrawLGReset(ctx->lg);
5964: ctx->snes_its = 0;
5965: }
5966: TSGetSNESIterations(ts,&its);
5967: y = its - ctx->snes_its;
5968: PetscDrawLGAddPoint(ctx->lg,&x,&y);
5969: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
5970: PetscDrawLGDraw(ctx->lg);
5971: }
5972: ctx->snes_its = its;
5973: return(0);
5974: }
5978: PetscErrorCode TSMonitorLGKSPIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
5979: {
5980: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
5981: PetscReal x = ptime,y;
5983: PetscInt its;
5986: if (!n) {
5987: PetscDrawAxis axis;
5989: PetscDrawLGGetAxis(ctx->lg,&axis);
5990: PetscDrawAxisSetLabels(axis,"Linear iterations as function of time","Time","KSP Iterations");
5991: PetscDrawLGReset(ctx->lg);
5993: ctx->ksp_its = 0;
5994: }
5995: TSGetKSPIterations(ts,&its);
5996: y = its - ctx->ksp_its;
5997: PetscDrawLGAddPoint(ctx->lg,&x,&y);
5998: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
5999: PetscDrawLGDraw(ctx->lg);
6000: }
6001: ctx->ksp_its = its;
6002: return(0);
6003: }
6007: /*@
6008: TSComputeLinearStability - computes the linear stability function at a point
6010: Collective on TS and Vec
6012: Input Parameters:
6013: + ts - the TS context
6014: - xr,xi - real and imaginary part of input arguments
6016: Output Parameters:
6017: . yr,yi - real and imaginary part of function value
6019: Level: developer
6021: .keywords: TS, compute
6023: .seealso: TSSetRHSFunction(), TSComputeIFunction()
6024: @*/
6025: PetscErrorCode TSComputeLinearStability(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
6026: {
6031: if (!ts->ops->linearstability) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Linearized stability function not provided for this method");
6032: (*ts->ops->linearstability)(ts,xr,xi,yr,yi);
6033: return(0);
6034: }
6036: /* ------------------------------------------------------------------------*/
6039: /*@C
6040: TSMonitorEnvelopeCtxCreate - Creates a context for use with TSMonitorEnvelope()
6042: Collective on TS
6044: Input Parameters:
6045: . ts - the ODE solver object
6047: Output Parameter:
6048: . ctx - the context
6050: Level: intermediate
6052: .keywords: TS, monitor, line graph, residual, seealso
6054: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()
6056: @*/
6057: PetscErrorCode TSMonitorEnvelopeCtxCreate(TS ts,TSMonitorEnvelopeCtx *ctx)
6058: {
6062: PetscNew(ctx);
6063: return(0);
6064: }
6068: /*@C
6069: TSMonitorEnvelope - Monitors the maximum and minimum value of each component of the solution
6071: Collective on TS
6073: Input Parameters:
6074: + ts - the TS context
6075: . step - current time-step
6076: . ptime - current time
6077: - ctx - the envelope context
6079: Options Database:
6080: . -ts_monitor_envelope
6082: Level: intermediate
6084: Notes: after a solve you can use TSMonitorEnvelopeGetBounds() to access the envelope
6086: .keywords: TS, vector, monitor, view
6088: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorEnvelopeGetBounds()
6089: @*/
6090: PetscErrorCode TSMonitorEnvelope(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
6091: {
6092: PetscErrorCode ierr;
6093: TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx)dummy;
6096: if (!ctx->max) {
6097: VecDuplicate(u,&ctx->max);
6098: VecDuplicate(u,&ctx->min);
6099: VecCopy(u,ctx->max);
6100: VecCopy(u,ctx->min);
6101: } else {
6102: VecPointwiseMax(ctx->max,u,ctx->max);
6103: VecPointwiseMin(ctx->min,u,ctx->min);
6104: }
6105: return(0);
6106: }
6111: /*@C
6112: TSMonitorEnvelopeGetBounds - Gets the bounds for the components of the solution
6114: Collective on TS
6116: Input Parameter:
6117: . ts - the TS context
6119: Output Parameter:
6120: + max - the maximum values
6121: - min - the minimum values
6123: Level: intermediate
6125: .keywords: TS, vector, monitor, view
6127: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
6128: @*/
6129: PetscErrorCode TSMonitorEnvelopeGetBounds(TS ts,Vec *max,Vec *min)
6130: {
6131: PetscInt i;
6134: if (max) *max = NULL;
6135: if (min) *min = NULL;
6136: for (i=0; i<ts->numbermonitors; i++) {
6137: if (ts->monitor[i] == TSMonitorEnvelope) {
6138: TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx) ts->monitorcontext[i];
6139: if (max) *max = ctx->max;
6140: if (min) *min = ctx->min;
6141: break;
6142: }
6143: }
6144: return(0);
6145: }
6149: /*@C
6150: TSMonitorEnvelopeCtxDestroy - Destroys a context that was created with TSMonitorEnvelopeCtxCreate().
6152: Collective on TSMonitorEnvelopeCtx
6154: Input Parameter:
6155: . ctx - the monitor context
6157: Level: intermediate
6159: .keywords: TS, monitor, line graph, destroy
6161: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep();
6162: @*/
6163: PetscErrorCode TSMonitorEnvelopeCtxDestroy(TSMonitorEnvelopeCtx *ctx)
6164: {
6168: VecDestroy(&(*ctx)->min);
6169: VecDestroy(&(*ctx)->max);
6170: PetscFree(*ctx);
6171: return(0);
6172: }
6176: /*@
6177: TSRollBack - Rolls back one time step
6179: Collective on TS
6181: Input Parameter:
6182: . ts - the TS context obtained from TSCreate()
6184: Level: advanced
6186: .keywords: TS, timestep, rollback
6188: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSInterpolate()
6189: @*/
6190: PetscErrorCode TSRollBack(TS ts)
6191: {
6197: if (!ts->ops->rollback) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSRollBack not implemented for type '%s'",((PetscObject)ts)->type_name);
6198: (*ts->ops->rollback)(ts);
6199: ts->time_step = ts->ptime - ts->ptime_prev;
6200: ts->ptime = ts->ptime_prev;
6201: ts->steprollback = PETSC_TRUE; /* Flag to indicate that the step is rollbacked */
6202: return(0);
6203: }
6207: /*@
6208: TSGetStages - Get the number of stages and stage values
6210: Input Parameter:
6211: . ts - the TS context obtained from TSCreate()
6213: Level: advanced
6215: .keywords: TS, getstages
6217: .seealso: TSCreate()
6218: @*/
6219: PetscErrorCode TSGetStages(TS ts,PetscInt *ns, Vec **Y)
6220: {
6227: if (!ts->ops->getstages) *ns=0;
6228: else {
6229: (*ts->ops->getstages)(ts,ns,Y);
6230: }
6231: return(0);
6232: }
6236: /*@C
6237: TSComputeIJacobianDefaultColor - Computes the Jacobian using finite differences and coloring to exploit matrix sparsity.
6239: Collective on SNES
6241: Input Parameters:
6242: + ts - the TS context
6243: . t - current timestep
6244: . U - state vector
6245: . Udot - time derivative of state vector
6246: . shift - shift to apply, see note below
6247: - ctx - an optional user context
6249: Output Parameters:
6250: + J - Jacobian matrix (not altered in this routine)
6251: - B - newly computed Jacobian matrix to use with preconditioner (generally the same as J)
6253: Level: intermediate
6255: Notes:
6256: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
6258: dF/dU + shift*dF/dUdot
6260: Most users should not need to explicitly call this routine, as it
6261: is used internally within the nonlinear solvers.
6263: This will first try to get the coloring from the DM. If the DM type has no coloring
6264: routine, then it will try to get the coloring from the matrix. This requires that the
6265: matrix have nonzero entries precomputed.
6267: .keywords: TS, finite differences, Jacobian, coloring, sparse
6268: .seealso: TSSetIJacobian(), MatFDColoringCreate(), MatFDColoringSetFunction()
6269: @*/
6270: PetscErrorCode TSComputeIJacobianDefaultColor(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat J,Mat B,void *ctx)
6271: {
6272: SNES snes;
6273: MatFDColoring color;
6274: PetscBool hascolor, matcolor = PETSC_FALSE;
6278: PetscOptionsGetBool(((PetscObject) ts)->prefix, "-ts_fd_color_use_mat", &matcolor, NULL);
6279: PetscObjectQuery((PetscObject) B, "TSMatFDColoring", (PetscObject *) &color);
6280: if (!color) {
6281: DM dm;
6282: ISColoring iscoloring;
6284: TSGetDM(ts, &dm);
6285: DMHasColoring(dm, &hascolor);
6286: if (hascolor && !matcolor) {
6287: DMCreateColoring(dm, IS_COLORING_GLOBAL, &iscoloring);
6288: MatFDColoringCreate(B, iscoloring, &color);
6289: MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
6290: MatFDColoringSetFromOptions(color);
6291: MatFDColoringSetUp(B, iscoloring, color);
6292: ISColoringDestroy(&iscoloring);
6293: } else {
6294: MatColoring mc;
6296: MatColoringCreate(B, &mc);
6297: MatColoringSetDistance(mc, 2);
6298: MatColoringSetType(mc, MATCOLORINGSL);
6299: MatColoringSetFromOptions(mc);
6300: MatColoringApply(mc, &iscoloring);
6301: MatColoringDestroy(&mc);
6302: MatFDColoringCreate(B, iscoloring, &color);
6303: MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
6304: MatFDColoringSetFromOptions(color);
6305: MatFDColoringSetUp(B, iscoloring, color);
6306: ISColoringDestroy(&iscoloring);
6307: }
6308: PetscObjectCompose((PetscObject) B, "TSMatFDColoring", (PetscObject) color);
6309: PetscObjectDereference((PetscObject) color);
6310: }
6311: TSGetSNES(ts, &snes);
6312: MatFDColoringApply(B, color, U, snes);
6313: if (J != B) {
6314: MatAssemblyBegin(J, MAT_FINAL_ASSEMBLY);
6315: MatAssemblyEnd(J, MAT_FINAL_ASSEMBLY);
6316: }
6317: return(0);
6318: }
6320: #undef __FUNCT__
6322: /*@C
6323: TSClone - This function clones a time step object.
6325: Collective on MPI_Comm
6327: Input Parameter:
6328: . tsin - The input TS
6330: Output Parameter:
6331: . tsout - The output TS (cloned)
6333: Notes:
6334: This function is used to create a clone of a TS object. It is used in ARKIMEX for initializing the slope for first stage explicit methods. It will likely be replaced in the future with a mechanism of switching methods on the fly.
6336: When using TSDestroy() on a clone the user has to first reset the correct TS reference in the embedded SNES object: e.g.: by running SNES snes_dup=NULL; TSGetSNES(ts,&snes_dup); TSSetSNES(ts,snes_dup);
6338: Level: developer
6340: .keywords: TS, clone
6341: .seealso: TSCreate(), TSSetType(), TSSetUp(), TSDestroy(), TSSetProblemType()
6342: @*/
6343: PetscErrorCode TSClone(TS tsin, TS *tsout)
6344: {
6345: TS t;
6347: SNES snes_start;
6348: DM dm;
6349: TSType type;
6353: *tsout = NULL;
6355: PetscHeaderCreate(t, TS_CLASSID, "TS", "Time stepping", "TS", PetscObjectComm((PetscObject)tsin), TSDestroy, TSView);
6357: /* General TS description */
6358: t->numbermonitors = 0;
6359: t->setupcalled = 0;
6360: t->ksp_its = 0;
6361: t->snes_its = 0;
6362: t->nwork = 0;
6363: t->rhsjacobian.time = -1e20;
6364: t->rhsjacobian.scale = 1.;
6365: t->ijacobian.shift = 1.;
6367: TSGetSNES(tsin,&snes_start);
6368: TSSetSNES(t,snes_start);
6370: TSGetDM(tsin,&dm);
6371: TSSetDM(t,dm);
6373: t->adapt=tsin->adapt;
6374: PetscObjectReference((PetscObject)t->adapt);
6376: t->problem_type = tsin->problem_type;
6377: t->ptime = tsin->ptime;
6378: t->time_step = tsin->time_step;
6379: t->time_step_orig = tsin->time_step_orig;
6380: t->max_time = tsin->max_time;
6381: t->steps = tsin->steps;
6382: t->max_steps = tsin->max_steps;
6383: t->equation_type = tsin->equation_type;
6384: t->atol = tsin->atol;
6385: t->rtol = tsin->rtol;
6386: t->max_snes_failures = tsin->max_snes_failures;
6387: t->max_reject = tsin->max_reject;
6388: t->errorifstepfailed = tsin->errorifstepfailed;
6390: TSGetType(tsin,&type);
6391: TSSetType(t,type);
6393: t->vec_sol = NULL;
6395: t->cfltime = tsin->cfltime;
6396: t->cfltime_local = tsin->cfltime_local;
6397: t->exact_final_time = tsin->exact_final_time;
6399: PetscMemcpy(t->ops,tsin->ops,sizeof(struct _TSOps));
6401: *tsout = t;
6402: return(0);
6403: }