Actual source code: matrix.c

petsc-3.6.1 2015-08-06
Report Typos and Errors
  2: /*
  3:    This is where the abstract matrix operations are defined
  4: */

  6: #include <petsc/private/matimpl.h>        /*I "petscmat.h" I*/
  7: #include <petsc/private/vecimpl.h>
  8: #include <petsc/private/isimpl.h>

 10: /* Logging support */
 11: PetscClassId MAT_CLASSID;
 12: PetscClassId MAT_COLORING_CLASSID;
 13: PetscClassId MAT_FDCOLORING_CLASSID;
 14: PetscClassId MAT_TRANSPOSECOLORING_CLASSID;

 16: PetscLogEvent MAT_Mult, MAT_Mults, MAT_MultConstrained, MAT_MultAdd, MAT_MultTranspose;
 17: PetscLogEvent MAT_MultTransposeConstrained, MAT_MultTransposeAdd, MAT_Solve, MAT_Solves, MAT_SolveAdd, MAT_SolveTranspose, MAT_MatSolve;
 18: PetscLogEvent MAT_SolveTransposeAdd, MAT_SOR, MAT_ForwardSolve, MAT_BackwardSolve, MAT_LUFactor, MAT_LUFactorSymbolic;
 19: PetscLogEvent MAT_LUFactorNumeric, MAT_CholeskyFactor, MAT_CholeskyFactorSymbolic, MAT_CholeskyFactorNumeric, MAT_ILUFactor;
 20: PetscLogEvent MAT_ILUFactorSymbolic, MAT_ICCFactorSymbolic, MAT_Copy, MAT_Convert, MAT_Scale, MAT_AssemblyBegin;
 21: PetscLogEvent MAT_AssemblyEnd, MAT_SetValues, MAT_GetValues, MAT_GetRow, MAT_GetRowIJ, MAT_GetSubMatrices, MAT_GetOrdering, MAT_RedundantMat, MAT_GetSeqNonzeroStructure;
 22: PetscLogEvent MAT_IncreaseOverlap, MAT_Partitioning, MAT_Coarsen, MAT_ZeroEntries, MAT_Load, MAT_View, MAT_AXPY, MAT_FDColoringCreate;
 23: PetscLogEvent MAT_FDColoringSetUp, MAT_FDColoringApply,MAT_Transpose,MAT_FDColoringFunction, MAT_GetSubMatrix;
 24: PetscLogEvent MAT_TransposeColoringCreate;
 25: PetscLogEvent MAT_MatMult, MAT_MatMultSymbolic, MAT_MatMultNumeric;
 26: PetscLogEvent MAT_PtAP, MAT_PtAPSymbolic, MAT_PtAPNumeric,MAT_RARt, MAT_RARtSymbolic, MAT_RARtNumeric;
 27: PetscLogEvent MAT_MatTransposeMult, MAT_MatTransposeMultSymbolic, MAT_MatTransposeMultNumeric;
 28: PetscLogEvent MAT_TransposeMatMult, MAT_TransposeMatMultSymbolic, MAT_TransposeMatMultNumeric;
 29: PetscLogEvent MAT_MatMatMult, MAT_MatMatMultSymbolic, MAT_MatMatMultNumeric;
 30: PetscLogEvent MAT_MultHermitianTranspose,MAT_MultHermitianTransposeAdd;
 31: PetscLogEvent MAT_Getsymtranspose, MAT_Getsymtransreduced, MAT_Transpose_SeqAIJ, MAT_GetBrowsOfAcols;
 32: PetscLogEvent MAT_GetBrowsOfAocols, MAT_Getlocalmat, MAT_Getlocalmatcondensed, MAT_Seqstompi, MAT_Seqstompinum, MAT_Seqstompisym;
 33: PetscLogEvent MAT_Applypapt, MAT_Applypapt_numeric, MAT_Applypapt_symbolic, MAT_GetSequentialNonzeroStructure;
 34: PetscLogEvent MAT_GetMultiProcBlock;
 35: PetscLogEvent MAT_CUSPCopyToGPU, MAT_CUSPARSECopyToGPU, MAT_SetValuesBatch, MAT_SetValuesBatchI, MAT_SetValuesBatchII, MAT_SetValuesBatchIII, MAT_SetValuesBatchIV;
 36: PetscLogEvent MAT_ViennaCLCopyToGPU;
 37: PetscLogEvent MAT_Merge,MAT_Residual;
 38: PetscLogEvent Mat_Coloring_Apply,Mat_Coloring_Comm,Mat_Coloring_Local,Mat_Coloring_ISCreate,Mat_Coloring_SetUp,Mat_Coloring_Weights;

 40: const char *const MatFactorTypes[] = {"NONE","LU","CHOLESKY","ILU","ICC","ILUDT","MatFactorType","MAT_FACTOR_",0};

 44: /*@
 45:    MatSetRandom - Sets all components of a matrix to random numbers. For sparse matrices that have been preallocated it randomly selects appropriate locations

 47:    Logically Collective on Vec

 49:    Input Parameters:
 50: +  x  - the vector
 51: -  rctx - the random number context, formed by PetscRandomCreate(), or NULL and
 52:           it will create one internally.

 54:    Output Parameter:
 55: .  x  - the vector

 57:    Example of Usage:
 58: .vb
 59:      PetscRandomCreate(PETSC_COMM_WORLD,&rctx);
 60:      VecSetRandom(x,rctx);
 61:      PetscRandomDestroy(rctx);
 62: .ve

 64:    Level: intermediate

 66:    Concepts: vector^setting to random
 67:    Concepts: random^vector

 69: .seealso: MatZeroEntries(), MatSetValues(), PetscRandomCreate(), PetscRandomDestroy()
 70: @*/
 71: PetscErrorCode  MatSetRandom(Mat x,PetscRandom rctx)
 72: {
 74:   PetscRandom    randObj = NULL;


 81:   if (!rctx) {
 82:     MPI_Comm comm;
 83:     PetscObjectGetComm((PetscObject)x,&comm);
 84:     PetscRandomCreate(comm,&randObj);
 85:     PetscRandomSetFromOptions(randObj);
 86:     rctx = randObj;
 87:   }

 89:   PetscLogEventBegin(VEC_SetRandom,x,rctx,0,0);
 90:   (*x->ops->setrandom)(x,rctx);
 91:   PetscLogEventEnd(VEC_SetRandom,x,rctx,0,0);

 93:   x->assembled = PETSC_TRUE;
 94:   PetscRandomDestroy(&randObj);
 95:   return(0);
 96: }


101: /*@
102:       MatFindNonzeroRows - Locate all rows that are not completely zero in the matrix

104:   Input Parameter:
105: .    A  - the matrix

107:   Output Parameter:
108: .    keptrows - the rows that are not completely zero

110:   Level: intermediate

112:  @*/
113: PetscErrorCode MatFindNonzeroRows(Mat mat,IS *keptrows)
114: {

119:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
120:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
121:   if (!mat->ops->findnonzerorows) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Not coded for this matrix type");
122:   (*mat->ops->findnonzerorows)(mat,keptrows);
123:   return(0);
124: }

128: /*@
129:    MatGetDiagonalBlock - Returns the part of the matrix associated with the on-process coupling

131:    Not Collective

133:    Input Parameters:
134: .   A - the matrix

136:    Output Parameters:
137: .   a - the diagonal part (which is a SEQUENTIAL matrix)

139:    Notes: see the manual page for MatCreateAIJ() for more information on the "diagonal part" of the matrix.
140:           Use caution, as the reference count on the returned matrix is not incremented and it is used as
141:           part of the containing MPI Mat's normal operation.

143:    Level: advanced

145: @*/
146: PetscErrorCode  MatGetDiagonalBlock(Mat A,Mat *a)
147: {
148:   PetscErrorCode ierr,(*f)(Mat,Mat*);
149:   PetscMPIInt    size;

155:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
156:   MPI_Comm_size(PetscObjectComm((PetscObject)A),&size);
157:   PetscObjectQueryFunction((PetscObject)A,"MatGetDiagonalBlock_C",&f);
158:   if (f) {
159:     (*f)(A,a);
160:     return(0);
161:   } else if (size == 1) {
162:     *a = A;
163:   } else {
164:     MatType mattype;
165:     MatGetType(A,&mattype);
166:     SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Matrix type %s does not support getting diagonal block",mattype);
167:   }
168:   return(0);
169: }

173: /*@
174:    MatGetTrace - Gets the trace of a matrix. The sum of the diagonal entries.

176:    Collective on Mat

178:    Input Parameters:
179: .  mat - the matrix

181:    Output Parameter:
182: .   trace - the sum of the diagonal entries

184:    Level: advanced

186: @*/
187: PetscErrorCode  MatGetTrace(Mat mat,PetscScalar *trace)
188: {
190:   Vec            diag;

193:   MatCreateVecs(mat,&diag,NULL);
194:   MatGetDiagonal(mat,diag);
195:   VecSum(diag,trace);
196:   VecDestroy(&diag);
197:   return(0);
198: }

202: /*@
203:    MatRealPart - Zeros out the imaginary part of the matrix

205:    Logically Collective on Mat

207:    Input Parameters:
208: .  mat - the matrix

210:    Level: advanced


213: .seealso: MatImaginaryPart()
214: @*/
215: PetscErrorCode  MatRealPart(Mat mat)
216: {

222:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
223:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
224:   if (!mat->ops->realpart) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
225:   MatCheckPreallocated(mat,1);
226:   (*mat->ops->realpart)(mat);
227: #if defined(PETSC_HAVE_CUSP)
228:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
229:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
230:   }
231: #endif
232: #if defined(PETSC_HAVE_VIENNACL)
233:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
234:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
235:   }
236: #endif
237:   return(0);
238: }

242: /*@C
243:    MatGetGhosts - Get the global index of all ghost nodes defined by the sparse matrix

245:    Collective on Mat

247:    Input Parameter:
248: .  mat - the matrix

250:    Output Parameters:
251: +   nghosts - number of ghosts (note for BAIJ matrices there is one ghost for each block)
252: -   ghosts - the global indices of the ghost points

254:    Notes: the nghosts and ghosts are suitable to pass into VecCreateGhost()

256:    Level: advanced

258: @*/
259: PetscErrorCode  MatGetGhosts(Mat mat,PetscInt *nghosts,const PetscInt *ghosts[])
260: {

266:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
267:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
268:   if (!mat->ops->getghosts) {
269:     if (nghosts) *nghosts = 0;
270:     if (ghosts) *ghosts = 0;
271:   } else {
272:     (*mat->ops->getghosts)(mat,nghosts,ghosts);
273:   }
274:   return(0);
275: }


280: /*@
281:    MatImaginaryPart - Moves the imaginary part of the matrix to the real part and zeros the imaginary part

283:    Logically Collective on Mat

285:    Input Parameters:
286: .  mat - the matrix

288:    Level: advanced


291: .seealso: MatRealPart()
292: @*/
293: PetscErrorCode  MatImaginaryPart(Mat mat)
294: {

300:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
301:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
302:   if (!mat->ops->imaginarypart) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
303:   MatCheckPreallocated(mat,1);
304:   (*mat->ops->imaginarypart)(mat);
305: #if defined(PETSC_HAVE_CUSP)
306:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
307:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
308:   }
309: #endif
310: #if defined(PETSC_HAVE_VIENNACL)
311:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
312:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
313:   }
314: #endif
315:   return(0);
316: }

320: /*@
321:    MatMissingDiagonal - Determine if sparse matrix is missing a diagonal entry (or block entry for BAIJ matrices)

323:    Collective on Mat

325:    Input Parameter:
326: .  mat - the matrix

328:    Output Parameters:
329: +  missing - is any diagonal missing
330: -  dd - first diagonal entry that is missing (optional)

332:    Level: advanced


335: .seealso: MatRealPart()
336: @*/
337: PetscErrorCode  MatMissingDiagonal(Mat mat,PetscBool *missing,PetscInt *dd)
338: {

344:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
345:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
346:   if (!mat->ops->missingdiagonal) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
347:   (*mat->ops->missingdiagonal)(mat,missing,dd);
348:   return(0);
349: }

353: /*@C
354:    MatGetRow - Gets a row of a matrix.  You MUST call MatRestoreRow()
355:    for each row that you get to ensure that your application does
356:    not bleed memory.

358:    Not Collective

360:    Input Parameters:
361: +  mat - the matrix
362: -  row - the row to get

364:    Output Parameters:
365: +  ncols -  if not NULL, the number of nonzeros in the row
366: .  cols - if not NULL, the column numbers
367: -  vals - if not NULL, the values

369:    Notes:
370:    This routine is provided for people who need to have direct access
371:    to the structure of a matrix.  We hope that we provide enough
372:    high-level matrix routines that few users will need it.

374:    MatGetRow() always returns 0-based column indices, regardless of
375:    whether the internal representation is 0-based (default) or 1-based.

377:    For better efficiency, set cols and/or vals to NULL if you do
378:    not wish to extract these quantities.

380:    The user can only examine the values extracted with MatGetRow();
381:    the values cannot be altered.  To change the matrix entries, one
382:    must use MatSetValues().

384:    You can only have one call to MatGetRow() outstanding for a particular
385:    matrix at a time, per processor. MatGetRow() can only obtain rows
386:    associated with the given processor, it cannot get rows from the
387:    other processors; for that we suggest using MatGetSubMatrices(), then
388:    MatGetRow() on the submatrix. The row indix passed to MatGetRows()
389:    is in the global number of rows.

391:    Fortran Notes:
392:    The calling sequence from Fortran is
393: .vb
394:    MatGetRow(matrix,row,ncols,cols,values,ierr)
395:          Mat     matrix (input)
396:          integer row    (input)
397:          integer ncols  (output)
398:          integer cols(maxcols) (output)
399:          double precision (or double complex) values(maxcols) output
400: .ve
401:    where maxcols >= maximum nonzeros in any row of the matrix.


404:    Caution:
405:    Do not try to change the contents of the output arrays (cols and vals).
406:    In some cases, this may corrupt the matrix.

408:    Level: advanced

410:    Concepts: matrices^row access

412: .seealso: MatRestoreRow(), MatSetValues(), MatGetValues(), MatGetSubMatrices(), MatGetDiagonal()
413: @*/
414: PetscErrorCode MatGetRow(Mat mat,PetscInt row,PetscInt *ncols,const PetscInt *cols[],const PetscScalar *vals[])
415: {
417:   PetscInt       incols;

422:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
423:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
424:   if (!mat->ops->getrow) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
425:   MatCheckPreallocated(mat,1);
426:   PetscLogEventBegin(MAT_GetRow,mat,0,0,0);
427:   (*mat->ops->getrow)(mat,row,&incols,(PetscInt**)cols,(PetscScalar**)vals);
428:   if (ncols) *ncols = incols;
429:   PetscLogEventEnd(MAT_GetRow,mat,0,0,0);
430:   return(0);
431: }

435: /*@
436:    MatConjugate - replaces the matrix values with their complex conjugates

438:    Logically Collective on Mat

440:    Input Parameters:
441: .  mat - the matrix

443:    Level: advanced

445: .seealso:  VecConjugate()
446: @*/
447: PetscErrorCode  MatConjugate(Mat mat)
448: {
449: #if defined(PETSC_USE_COMPLEX)

454:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
455:   if (!mat->ops->conjugate) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Not provided for this matrix format, send email to petsc-maint@mcs.anl.gov");
456:   (*mat->ops->conjugate)(mat);
457: #if defined(PETSC_HAVE_CUSP)
458:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
459:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
460:   }
461: #endif
462: #if defined(PETSC_HAVE_VIENNACL)
463:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
464:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
465:   }
466: #endif
467:   return(0);
468: #else
469:   return 0;
470: #endif
471: }

475: /*@C
476:    MatRestoreRow - Frees any temporary space allocated by MatGetRow().

478:    Not Collective

480:    Input Parameters:
481: +  mat - the matrix
482: .  row - the row to get
483: .  ncols, cols - the number of nonzeros and their columns
484: -  vals - if nonzero the column values

486:    Notes:
487:    This routine should be called after you have finished examining the entries.

489:    This routine zeros out ncols, cols, and vals. This is to prevent accidental
490:    us of the array after it has been restored. If you pass NULL, it will
491:    not zero the pointers.  Use of cols or vals after MatRestoreRow is invalid.

493:    Fortran Notes:
494:    The calling sequence from Fortran is
495: .vb
496:    MatRestoreRow(matrix,row,ncols,cols,values,ierr)
497:       Mat     matrix (input)
498:       integer row    (input)
499:       integer ncols  (output)
500:       integer cols(maxcols) (output)
501:       double precision (or double complex) values(maxcols) output
502: .ve
503:    Where maxcols >= maximum nonzeros in any row of the matrix.

505:    In Fortran MatRestoreRow() MUST be called after MatGetRow()
506:    before another call to MatGetRow() can be made.

508:    Level: advanced

510: .seealso:  MatGetRow()
511: @*/
512: PetscErrorCode MatRestoreRow(Mat mat,PetscInt row,PetscInt *ncols,const PetscInt *cols[],const PetscScalar *vals[])
513: {

519:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
520:   if (!mat->ops->restorerow) return(0);
521:   (*mat->ops->restorerow)(mat,row,ncols,(PetscInt **)cols,(PetscScalar **)vals);
522:   if (ncols) *ncols = 0;
523:   if (cols)  *cols = NULL;
524:   if (vals)  *vals = NULL;
525:   return(0);
526: }

530: /*@
531:    MatGetRowUpperTriangular - Sets a flag to enable calls to MatGetRow() for matrix in MATSBAIJ format.
532:    You should call MatRestoreRowUpperTriangular() after calling MatGetRow/MatRestoreRow() to disable the flag.

534:    Not Collective

536:    Input Parameters:
537: +  mat - the matrix

539:    Notes:
540:    The flag is to ensure that users are aware of MatGetRow() only provides the upper trianglular part of the row for the matrices in MATSBAIJ format.

542:    Level: advanced

544:    Concepts: matrices^row access

546: .seealso: MatRestoreRowRowUpperTriangular()
547: @*/
548: PetscErrorCode  MatGetRowUpperTriangular(Mat mat)
549: {

555:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
556:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
557:   if (!mat->ops->getrowuppertriangular) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
558:   MatCheckPreallocated(mat,1);
559:   (*mat->ops->getrowuppertriangular)(mat);
560:   return(0);
561: }

565: /*@
566:    MatRestoreRowUpperTriangular - Disable calls to MatGetRow() for matrix in MATSBAIJ format.

568:    Not Collective

570:    Input Parameters:
571: +  mat - the matrix

573:    Notes:
574:    This routine should be called after you have finished MatGetRow/MatRestoreRow().


577:    Level: advanced

579: .seealso:  MatGetRowUpperTriangular()
580: @*/
581: PetscErrorCode  MatRestoreRowUpperTriangular(Mat mat)
582: {

587:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
588:   if (!mat->ops->restorerowuppertriangular) return(0);
589:   (*mat->ops->restorerowuppertriangular)(mat);
590:   return(0);
591: }

595: /*@C
596:    MatSetOptionsPrefix - Sets the prefix used for searching for all
597:    Mat options in the database.

599:    Logically Collective on Mat

601:    Input Parameter:
602: +  A - the Mat context
603: -  prefix - the prefix to prepend to all option names

605:    Notes:
606:    A hyphen (-) must NOT be given at the beginning of the prefix name.
607:    The first character of all runtime options is AUTOMATICALLY the hyphen.

609:    Level: advanced

611: .keywords: Mat, set, options, prefix, database

613: .seealso: MatSetFromOptions()
614: @*/
615: PetscErrorCode  MatSetOptionsPrefix(Mat A,const char prefix[])
616: {

621:   PetscObjectSetOptionsPrefix((PetscObject)A,prefix);
622:   return(0);
623: }

627: /*@C
628:    MatAppendOptionsPrefix - Appends to the prefix used for searching for all
629:    Mat options in the database.

631:    Logically Collective on Mat

633:    Input Parameters:
634: +  A - the Mat context
635: -  prefix - the prefix to prepend to all option names

637:    Notes:
638:    A hyphen (-) must NOT be given at the beginning of the prefix name.
639:    The first character of all runtime options is AUTOMATICALLY the hyphen.

641:    Level: advanced

643: .keywords: Mat, append, options, prefix, database

645: .seealso: MatGetOptionsPrefix()
646: @*/
647: PetscErrorCode  MatAppendOptionsPrefix(Mat A,const char prefix[])
648: {

653:   PetscObjectAppendOptionsPrefix((PetscObject)A,prefix);
654:   return(0);
655: }

659: /*@C
660:    MatGetOptionsPrefix - Sets the prefix used for searching for all
661:    Mat options in the database.

663:    Not Collective

665:    Input Parameter:
666: .  A - the Mat context

668:    Output Parameter:
669: .  prefix - pointer to the prefix string used

671:    Notes: On the fortran side, the user should pass in a string 'prefix' of
672:    sufficient length to hold the prefix.

674:    Level: advanced

676: .keywords: Mat, get, options, prefix, database

678: .seealso: MatAppendOptionsPrefix()
679: @*/
680: PetscErrorCode  MatGetOptionsPrefix(Mat A,const char *prefix[])
681: {

686:   PetscObjectGetOptionsPrefix((PetscObject)A,prefix);
687:   return(0);
688: }

692: /*@
693:    MatSetUp - Sets up the internal matrix data structures for the later use.

695:    Collective on Mat

697:    Input Parameters:
698: .  A - the Mat context

700:    Notes:
701:    If the user has not set preallocation for this matrix then a default preallocation that is likely to be inefficient is used.

703:    If a suitable preallocation routine is used, this function does not need to be called.

705:    See the Performance chapter of the PETSc users manual for how to preallocate matrices

707:    Level: beginner

709: .keywords: Mat, setup

711: .seealso: MatCreate(), MatDestroy()
712: @*/
713: PetscErrorCode  MatSetUp(Mat A)
714: {
715:   PetscMPIInt    size;

720:   if (!((PetscObject)A)->type_name) {
721:     MPI_Comm_size(PetscObjectComm((PetscObject)A), &size);
722:     if (size == 1) {
723:       MatSetType(A, MATSEQAIJ);
724:     } else {
725:       MatSetType(A, MATMPIAIJ);
726:     }
727:   }
728:   if (!A->preallocated && A->ops->setup) {
729:     PetscInfo(A,"Warning not preallocating matrix storage\n");
730:     (*A->ops->setup)(A);
731:   }
732:   A->preallocated = PETSC_TRUE;
733:   return(0);
734: }

736: #if defined(PETSC_HAVE_SAWS)
737: #include <petscviewersaws.h>
738: #endif
741: /*@C
742:    MatView - Visualizes a matrix object.

744:    Collective on Mat

746:    Input Parameters:
747: +  mat - the matrix
748: -  viewer - visualization context

750:   Notes:
751:   The available visualization contexts include
752: +    PETSC_VIEWER_STDOUT_SELF - for sequential matrices
753: .    PETSC_VIEWER_STDOUT_WORLD - for parallel matrices created on PETSC_COMM_WORLD
754: .    PETSC_VIEWER_STDOUT_(comm) - for matrices created on MPI communicator comm
755: -     PETSC_VIEWER_DRAW_WORLD - graphical display of nonzero structure

757:    The user can open alternative visualization contexts with
758: +    PetscViewerASCIIOpen() - Outputs matrix to a specified file
759: .    PetscViewerBinaryOpen() - Outputs matrix in binary to a
760:          specified file; corresponding input uses MatLoad()
761: .    PetscViewerDrawOpen() - Outputs nonzero matrix structure to
762:          an X window display
763: -    PetscViewerSocketOpen() - Outputs matrix to Socket viewer.
764:          Currently only the sequential dense and AIJ
765:          matrix types support the Socket viewer.

767:    The user can call PetscViewerSetFormat() to specify the output
768:    format of ASCII printed objects (when using PETSC_VIEWER_STDOUT_SELF,
769:    PETSC_VIEWER_STDOUT_WORLD and PetscViewerASCIIOpen).  Available formats include
770: +    PETSC_VIEWER_DEFAULT - default, prints matrix contents
771: .    PETSC_VIEWER_ASCII_MATLAB - prints matrix contents in Matlab format
772: .    PETSC_VIEWER_ASCII_DENSE - prints entire matrix including zeros
773: .    PETSC_VIEWER_ASCII_COMMON - prints matrix contents, using a sparse
774:          format common among all matrix types
775: .    PETSC_VIEWER_ASCII_IMPL - prints matrix contents, using an implementation-specific
776:          format (which is in many cases the same as the default)
777: .    PETSC_VIEWER_ASCII_INFO - prints basic information about the matrix
778:          size and structure (not the matrix entries)
779: .    PETSC_VIEWER_ASCII_INFO_DETAIL - prints more detailed information about
780:          the matrix structure

782:    Options Database Keys:
783: +  -mat_view ::ascii_info - Prints info on matrix at conclusion of MatEndAssembly()
784: .  -mat_view ::ascii_info_detail - Prints more detailed info
785: .  -mat_view - Prints matrix in ASCII format
786: .  -mat_view ::ascii_matlab - Prints matrix in Matlab format
787: .  -mat_view draw - PetscDraws nonzero structure of matrix, using MatView() and PetscDrawOpenX().
788: .  -display <name> - Sets display name (default is host)
789: .  -draw_pause <sec> - Sets number of seconds to pause after display
790: .  -mat_view socket - Sends matrix to socket, can be accessed from Matlab (see Users-Manual: Chapter 11 Using MATLAB with PETSc for details)
791: .  -viewer_socket_machine <machine> -
792: .  -viewer_socket_port <port> -
793: .  -mat_view binary - save matrix to file in binary format
794: -  -viewer_binary_filename <name> -
795:    Level: beginner

797:    Notes: see the manual page for MatLoad() for the exact format of the binary file when the binary
798:       viewer is used.

800:       See share/petsc/matlab/PetscBinaryRead.m for a Matlab code that can read in the binary file when the binary
801:       viewer is used.

803:       One can use '-mat_view draw -draw_pause -1' to pause the graphical display of matrix nonzero structure.
804:       And then use the following mouse functions:
805:           left mouse: zoom in
806:           middle mouse: zoom out
807:           right mouse: continue with the simulation

809:    Concepts: matrices^viewing
810:    Concepts: matrices^plotting
811:    Concepts: matrices^printing

813: .seealso: PetscViewerSetFormat(), PetscViewerASCIIOpen(), PetscViewerDrawOpen(),
814:           PetscViewerSocketOpen(), PetscViewerBinaryOpen(), MatLoad()
815: @*/
816: PetscErrorCode  MatView(Mat mat,PetscViewer viewer)
817: {
818:   PetscErrorCode    ierr;
819:   PetscInt          rows,cols,rbs,cbs;
820:   PetscBool         iascii;
821:   PetscViewerFormat format;
822: #if defined(PETSC_HAVE_SAWS)
823:   PetscBool         issaws;
824: #endif

829:   if (!viewer) {
830:     PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)mat),&viewer);
831:   }
834:   MatCheckPreallocated(mat,1);

836:   PetscLogEventBegin(MAT_View,mat,viewer,0,0);
837:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
838:   PetscViewerGetFormat(viewer,&format);
839:   if ((!iascii || (format != PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL)) && mat->factortype) {
840:     SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"No viewers for factored matrix except ASCII info or info_detailed");
841:   }

843: #if defined(PETSC_HAVE_SAWS)
844:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&issaws);
845: #endif
846:   if (iascii) {
847:     if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ORDER,"Must call MatAssemblyBegin/End() before viewing matrix");
848:     PetscObjectPrintClassNamePrefixType((PetscObject)mat,viewer);
849:     if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
850:       PetscViewerASCIIPushTab(viewer);
851:       MatGetSize(mat,&rows,&cols);
852:       MatGetBlockSizes(mat,&rbs,&cbs);
853:       if (rbs != 1 || cbs != 1) {
854:         if (rbs != cbs) {PetscViewerASCIIPrintf(viewer,"rows=%D, cols=%D, rbs=%D, cbs = %D\n",rows,cols,rbs,cbs);}
855:         else            {PetscViewerASCIIPrintf(viewer,"rows=%D, cols=%D, bs=%D\n",rows,cols,rbs);}
856:       } else {
857:         PetscViewerASCIIPrintf(viewer,"rows=%D, cols=%D\n",rows,cols);
858:       }
859:       if (mat->factortype) {
860:         const MatSolverPackage solver;
861:         MatFactorGetSolverPackage(mat,&solver);
862:         PetscViewerASCIIPrintf(viewer,"package used to perform factorization: %s\n",solver);
863:       }
864:       if (mat->ops->getinfo) {
865:         MatInfo info;
866:         MatGetInfo(mat,MAT_GLOBAL_SUM,&info);
867:         PetscViewerASCIIPrintf(viewer,"total: nonzeros=%g, allocated nonzeros=%g\n",info.nz_used,info.nz_allocated);
868:         PetscViewerASCIIPrintf(viewer,"total number of mallocs used during MatSetValues calls =%D\n",(PetscInt)info.mallocs);
869:       }
870:       if (mat->nullsp) {PetscViewerASCIIPrintf(viewer,"  has attached null space\n");}
871:       if (mat->nearnullsp) {PetscViewerASCIIPrintf(viewer,"  has attached near null space\n");}
872:     }
873: #if defined(PETSC_HAVE_SAWS)
874:   } else if (issaws) {
875:     PetscMPIInt rank;

877:     PetscObjectName((PetscObject)mat);
878:     MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
879:     if (!((PetscObject)mat)->amsmem && !rank) {
880:       PetscObjectViewSAWs((PetscObject)mat,viewer);
881:     }
882: #endif
883:   }
884:   if (mat->ops->view) {
885:     PetscViewerASCIIPushTab(viewer);
886:     (*mat->ops->view)(mat,viewer);
887:     PetscViewerASCIIPopTab(viewer);
888:   }
889:   if (iascii) {
890:     if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ORDER,"Must call MatAssemblyBegin/End() before viewing matrix");
891:     PetscViewerGetFormat(viewer,&format);
892:     if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
893:       PetscViewerASCIIPopTab(viewer);
894:     }
895:   }
896:   PetscLogEventEnd(MAT_View,mat,viewer,0,0);
897:   return(0);
898: }

900: #if defined(PETSC_USE_DEBUG)
901: #include <../src/sys/totalview/tv_data_display.h>
902: PETSC_UNUSED static int TV_display_type(const struct _p_Mat *mat)
903: {
904:   TV_add_row("Local rows", "int", &mat->rmap->n);
905:   TV_add_row("Local columns", "int", &mat->cmap->n);
906:   TV_add_row("Global rows", "int", &mat->rmap->N);
907:   TV_add_row("Global columns", "int", &mat->cmap->N);
908:   TV_add_row("Typename", TV_ascii_string_type, ((PetscObject)mat)->type_name);
909:   return TV_format_OK;
910: }
911: #endif

915: /*@C
916:    MatLoad - Loads a matrix that has been stored in binary format
917:    with MatView().  The matrix format is determined from the options database.
918:    Generates a parallel MPI matrix if the communicator has more than one
919:    processor.  The default matrix type is AIJ.

921:    Collective on PetscViewer

923:    Input Parameters:
924: +  newmat - the newly loaded matrix, this needs to have been created with MatCreate()
925:             or some related function before a call to MatLoad()
926: -  viewer - binary file viewer, created with PetscViewerBinaryOpen()

928:    Options Database Keys:
929:    Used with block matrix formats (MATSEQBAIJ,  ...) to specify
930:    block size
931: .    -matload_block_size <bs>

933:    Level: beginner

935:    Notes:
936:    If the Mat type has not yet been given then MATAIJ is used, call MatSetFromOptions() on the
937:    Mat before calling this routine if you wish to set it from the options database.

939:    MatLoad() automatically loads into the options database any options
940:    given in the file filename.info where filename is the name of the file
941:    that was passed to the PetscViewerBinaryOpen(). The options in the info
942:    file will be ignored if you use the -viewer_binary_skip_info option.

944:    If the type or size of newmat is not set before a call to MatLoad, PETSc
945:    sets the default matrix type AIJ and sets the local and global sizes.
946:    If type and/or size is already set, then the same are used.

948:    In parallel, each processor can load a subset of rows (or the
949:    entire matrix).  This routine is especially useful when a large
950:    matrix is stored on disk and only part of it is desired on each
951:    processor.  For example, a parallel solver may access only some of
952:    the rows from each processor.  The algorithm used here reads
953:    relatively small blocks of data rather than reading the entire
954:    matrix and then subsetting it.

956:    Notes for advanced users:
957:    Most users should not need to know the details of the binary storage
958:    format, since MatLoad() and MatView() completely hide these details.
959:    But for anyone who's interested, the standard binary matrix storage
960:    format is

962: $    int    MAT_FILE_CLASSID
963: $    int    number of rows
964: $    int    number of columns
965: $    int    total number of nonzeros
966: $    int    *number nonzeros in each row
967: $    int    *column indices of all nonzeros (starting index is zero)
968: $    PetscScalar *values of all nonzeros

970:    PETSc automatically does the byte swapping for
971: machines that store the bytes reversed, e.g.  DEC alpha, freebsd,
972: linux, Windows and the paragon; thus if you write your own binary
973: read/write routines you have to swap the bytes; see PetscBinaryRead()
974: and PetscBinaryWrite() to see how this may be done.

976: .keywords: matrix, load, binary, input

978: .seealso: PetscViewerBinaryOpen(), MatView(), VecLoad()

980:  @*/
981: PetscErrorCode  MatLoad(Mat newmat,PetscViewer viewer)
982: {
984:   PetscBool      isbinary,flg;

989:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
990:   if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");

992:   if (!((PetscObject)newmat)->type_name) {
993:     MatSetType(newmat,MATAIJ);
994:   }

996:   if (!newmat->ops->load) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"MatLoad is not supported for type");
997:   PetscLogEventBegin(MAT_Load,viewer,0,0,0);
998:   (*newmat->ops->load)(newmat,viewer);
999:   PetscLogEventEnd(MAT_Load,viewer,0,0,0);

1001:   flg  = PETSC_FALSE;
1002:   PetscOptionsGetBool(((PetscObject)newmat)->prefix,"-matload_symmetric",&flg,NULL);
1003:   if (flg) {
1004:     MatSetOption(newmat,MAT_SYMMETRIC,PETSC_TRUE);
1005:     MatSetOption(newmat,MAT_SYMMETRY_ETERNAL,PETSC_TRUE);
1006:   }
1007:   flg  = PETSC_FALSE;
1008:   PetscOptionsGetBool(((PetscObject)newmat)->prefix,"-matload_spd",&flg,NULL);
1009:   if (flg) {
1010:     MatSetOption(newmat,MAT_SPD,PETSC_TRUE);
1011:   }
1012:   return(0);
1013: }

1017: PetscErrorCode MatDestroy_Redundant(Mat_Redundant **redundant)
1018: {
1020:   Mat_Redundant  *redund = *redundant;
1021:   PetscInt       i;

1024:   if (redund){
1025:     if (redund->matseq) { /* via MatGetSubMatrices()  */
1026:       ISDestroy(&redund->isrow);
1027:       ISDestroy(&redund->iscol);
1028:       MatDestroy(&redund->matseq[0]);
1029:       PetscFree(redund->matseq);
1030:     } else {
1031:       PetscFree2(redund->send_rank,redund->recv_rank);
1032:       PetscFree(redund->sbuf_j);
1033:       PetscFree(redund->sbuf_a);
1034:       for (i=0; i<redund->nrecvs; i++) {
1035:         PetscFree(redund->rbuf_j[i]);
1036:         PetscFree(redund->rbuf_a[i]);
1037:       }
1038:       PetscFree4(redund->sbuf_nz,redund->rbuf_nz,redund->rbuf_j,redund->rbuf_a);
1039:     }

1041:     if (redund->subcomm) {
1042:       PetscCommDestroy(&redund->subcomm);
1043:     }
1044:     PetscFree(redund);
1045:   }
1046:   return(0);
1047: }

1051: /*@
1052:    MatDestroy - Frees space taken by a matrix.

1054:    Collective on Mat

1056:    Input Parameter:
1057: .  A - the matrix

1059:    Level: beginner

1061: @*/
1062: PetscErrorCode  MatDestroy(Mat *A)
1063: {

1067:   if (!*A) return(0);
1069:   if (--((PetscObject)(*A))->refct > 0) {*A = NULL; return(0);}

1071:   /* if memory was published with SAWs then destroy it */
1072:   PetscObjectSAWsViewOff((PetscObject)*A);
1073:   if ((*A)->ops->destroy) {
1074:     (*(*A)->ops->destroy)(*A);
1075:   }
1076:   MatDestroy_Redundant(&(*A)->redundant);
1077:   MatNullSpaceDestroy(&(*A)->nullsp);
1078:   MatNullSpaceDestroy(&(*A)->transnullsp);
1079:   MatNullSpaceDestroy(&(*A)->nearnullsp);
1080:   PetscLayoutDestroy(&(*A)->rmap);
1081:   PetscLayoutDestroy(&(*A)->cmap);
1082:   PetscHeaderDestroy(A);
1083:   return(0);
1084: }

1088: /*@
1089:    MatSetValues - Inserts or adds a block of values into a matrix.
1090:    These values may be cached, so MatAssemblyBegin() and MatAssemblyEnd()
1091:    MUST be called after all calls to MatSetValues() have been completed.

1093:    Not Collective

1095:    Input Parameters:
1096: +  mat - the matrix
1097: .  v - a logically two-dimensional array of values
1098: .  m, idxm - the number of rows and their global indices
1099: .  n, idxn - the number of columns and their global indices
1100: -  addv - either ADD_VALUES or INSERT_VALUES, where
1101:    ADD_VALUES adds values to any existing entries, and
1102:    INSERT_VALUES replaces existing entries with new values

1104:    Notes:
1105:    If you create the matrix yourself (that is not with a call to DMCreateMatrix()) then you MUST call MatXXXXSetPreallocation() or
1106:       MatSetUp() before using this routine

1108:    By default the values, v, are row-oriented. See MatSetOption() for other options.

1110:    Calls to MatSetValues() with the INSERT_VALUES and ADD_VALUES
1111:    options cannot be mixed without intervening calls to the assembly
1112:    routines.

1114:    MatSetValues() uses 0-based row and column numbers in Fortran
1115:    as well as in C.

1117:    Negative indices may be passed in idxm and idxn, these rows and columns are
1118:    simply ignored. This allows easily inserting element stiffness matrices
1119:    with homogeneous Dirchlet boundary conditions that you don't want represented
1120:    in the matrix.

1122:    Efficiency Alert:
1123:    The routine MatSetValuesBlocked() may offer much better efficiency
1124:    for users of block sparse formats (MATSEQBAIJ and MATMPIBAIJ).

1126:    Level: beginner

1128:    Concepts: matrices^putting entries in

1130: .seealso: MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValuesBlocked(), MatSetValuesLocal(),
1131:           InsertMode, INSERT_VALUES, ADD_VALUES
1132: @*/
1133: PetscErrorCode  MatSetValues(Mat mat,PetscInt m,const PetscInt idxm[],PetscInt n,const PetscInt idxn[],const PetscScalar v[],InsertMode addv)
1134: {
1136: #if defined(PETSC_USE_DEBUG)
1137:   PetscInt       i,j;
1138: #endif

1143:   if (!m || !n) return(0); /* no values to insert */
1147:   MatCheckPreallocated(mat,1);
1148:   if (mat->insertmode == NOT_SET_VALUES) {
1149:     mat->insertmode = addv;
1150:   }
1151: #if defined(PETSC_USE_DEBUG)
1152:   else if (mat->insertmode != addv) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Cannot mix add values and insert values");
1153:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
1154:   if (!mat->ops->setvalues) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);

1156:   for (i=0; i<m; i++) {
1157:     for (j=0; j<n; j++) {
1158:       if (mat->erroriffpe && PetscIsInfOrNanScalar(v[i*n+j]))
1159: #if defined(PETSC_USE_COMPLEX)
1160:         SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_FP,"Inserting %g+ig at matrix entry (%D,%D)",(double)PetscRealPart(v[i*n+j]),(double)PetscImaginaryPart(v[i*n+j]),idxm[i],idxn[j]);
1161: #else
1162:       SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_FP,"Inserting %g at matrix entry (%D,%D)",(double)v[i*n+j],idxm[i],idxn[j]);
1163: #endif
1164:     }
1165:   }
1166: #endif

1168:   if (mat->assembled) {
1169:     mat->was_assembled = PETSC_TRUE;
1170:     mat->assembled     = PETSC_FALSE;
1171:   }
1172:   PetscLogEventBegin(MAT_SetValues,mat,0,0,0);
1173:   (*mat->ops->setvalues)(mat,m,idxm,n,idxn,v,addv);
1174:   PetscLogEventEnd(MAT_SetValues,mat,0,0,0);
1175: #if defined(PETSC_HAVE_CUSP)
1176:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
1177:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
1178:   }
1179: #endif
1180: #if defined(PETSC_HAVE_VIENNACL)
1181:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
1182:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
1183:   }
1184: #endif
1185:   return(0);
1186: }


1191: /*@
1192:    MatSetValuesRowLocal - Inserts a row (block row for BAIJ matrices) of nonzero
1193:         values into a matrix

1195:    Not Collective

1197:    Input Parameters:
1198: +  mat - the matrix
1199: .  row - the (block) row to set
1200: -  v - a logically two-dimensional array of values

1202:    Notes:
1203:    By the values, v, are column-oriented (for the block version) and sorted

1205:    All the nonzeros in the row must be provided

1207:    The matrix must have previously had its column indices set

1209:    The row must belong to this process

1211:    Level: intermediate

1213:    Concepts: matrices^putting entries in

1215: .seealso: MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValuesBlocked(), MatSetValuesLocal(),
1216:           InsertMode, INSERT_VALUES, ADD_VALUES, MatSetValues(), MatSetValuesRow(), MatSetLocalToGlobalMapping()
1217: @*/
1218: PetscErrorCode  MatSetValuesRowLocal(Mat mat,PetscInt row,const PetscScalar v[])
1219: {
1221:   PetscInt       globalrow;

1227:   ISLocalToGlobalMappingApply(mat->rmap->mapping,1,&row,&globalrow);
1228:   MatSetValuesRow(mat,globalrow,v);
1229: #if defined(PETSC_HAVE_CUSP)
1230:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
1231:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
1232:   }
1233: #endif
1234: #if defined(PETSC_HAVE_VIENNACL)
1235:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
1236:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
1237:   }
1238: #endif
1239:   return(0);
1240: }

1244: /*@
1245:    MatSetValuesRow - Inserts a row (block row for BAIJ matrices) of nonzero
1246:         values into a matrix

1248:    Not Collective

1250:    Input Parameters:
1251: +  mat - the matrix
1252: .  row - the (block) row to set
1253: -  v - a logically two-dimensional array of values

1255:    Notes:
1256:    The values, v, are column-oriented for the block version.

1258:    All the nonzeros in the row must be provided

1260:    THE MATRIX MUSAT HAVE PREVIOUSLY HAD ITS COLUMN INDICES SET. IT IS RARE THAT THIS ROUTINE IS USED, usually MatSetValues() is used.

1262:    The row must belong to this process

1264:    Level: advanced

1266:    Concepts: matrices^putting entries in

1268: .seealso: MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValuesBlocked(), MatSetValuesLocal(),
1269:           InsertMode, INSERT_VALUES, ADD_VALUES, MatSetValues()
1270: @*/
1271: PetscErrorCode  MatSetValuesRow(Mat mat,PetscInt row,const PetscScalar v[])
1272: {

1278:   MatCheckPreallocated(mat,1);
1280: #if defined(PETSC_USE_DEBUG)
1281:   if (mat->insertmode == ADD_VALUES) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Cannot mix add and insert values");
1282:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
1283: #endif
1284:   mat->insertmode = INSERT_VALUES;

1286:   if (mat->assembled) {
1287:     mat->was_assembled = PETSC_TRUE;
1288:     mat->assembled     = PETSC_FALSE;
1289:   }
1290:   PetscLogEventBegin(MAT_SetValues,mat,0,0,0);
1291:   if (!mat->ops->setvaluesrow) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
1292:   (*mat->ops->setvaluesrow)(mat,row,v);
1293:   PetscLogEventEnd(MAT_SetValues,mat,0,0,0);
1294: #if defined(PETSC_HAVE_CUSP)
1295:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
1296:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
1297:   }
1298: #endif
1299: #if defined(PETSC_HAVE_VIENNACL)
1300:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
1301:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
1302:   }
1303: #endif
1304:   return(0);
1305: }

1309: /*@
1310:    MatSetValuesStencil - Inserts or adds a block of values into a matrix.
1311:      Using structured grid indexing

1313:    Not Collective

1315:    Input Parameters:
1316: +  mat - the matrix
1317: .  m - number of rows being entered
1318: .  idxm - grid coordinates (and component number when dof > 1) for matrix rows being entered
1319: .  n - number of columns being entered
1320: .  idxn - grid coordinates (and component number when dof > 1) for matrix columns being entered
1321: .  v - a logically two-dimensional array of values
1322: -  addv - either ADD_VALUES or INSERT_VALUES, where
1323:    ADD_VALUES adds values to any existing entries, and
1324:    INSERT_VALUES replaces existing entries with new values

1326:    Notes:
1327:    By default the values, v, are row-oriented.  See MatSetOption() for other options.

1329:    Calls to MatSetValuesStencil() with the INSERT_VALUES and ADD_VALUES
1330:    options cannot be mixed without intervening calls to the assembly
1331:    routines.

1333:    The grid coordinates are across the entire grid, not just the local portion

1335:    MatSetValuesStencil() uses 0-based row and column numbers in Fortran
1336:    as well as in C.

1338:    For setting/accessing vector values via array coordinates you can use the DMDAVecGetArray() routine

1340:    In order to use this routine you must either obtain the matrix with DMCreateMatrix()
1341:    or call MatSetLocalToGlobalMapping() and MatSetStencil() first.

1343:    The columns and rows in the stencil passed in MUST be contained within the
1344:    ghost region of the given process as set with DMDACreateXXX() or MatSetStencil(). For example,
1345:    if you create a DMDA with an overlap of one grid level and on a particular process its first
1346:    local nonghost x logical coordinate is 6 (so its first ghost x logical coordinate is 5) the
1347:    first i index you can use in your column and row indices in MatSetStencil() is 5.

1349:    In Fortran idxm and idxn should be declared as
1350: $     MatStencil idxm(4,m),idxn(4,n)
1351:    and the values inserted using
1352: $    idxm(MatStencil_i,1) = i
1353: $    idxm(MatStencil_j,1) = j
1354: $    idxm(MatStencil_k,1) = k
1355: $    idxm(MatStencil_c,1) = c
1356:    etc

1358:    For periodic boundary conditions use negative indices for values to the left (below 0; that are to be
1359:    obtained by wrapping values from right edge). For values to the right of the last entry using that index plus one
1360:    etc to obtain values that obtained by wrapping the values from the left edge. This does not work for anything but the
1361:    DM_BOUNDARY_PERIODIC boundary type.

1363:    For indices that don't mean anything for your case (like the k index when working in 2d) or the c index when you have
1364:    a single value per point) you can skip filling those indices.

1366:    Inspired by the structured grid interface to the HYPRE package
1367:    (http://www.llnl.gov/CASC/hypre)

1369:    Efficiency Alert:
1370:    The routine MatSetValuesBlockedStencil() may offer much better efficiency
1371:    for users of block sparse formats (MATSEQBAIJ and MATMPIBAIJ).

1373:    Level: beginner

1375:    Concepts: matrices^putting entries in

1377: .seealso: MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValuesBlocked(), MatSetValuesLocal()
1378:           MatSetValues(), MatSetValuesBlockedStencil(), MatSetStencil(), DMCreateMatrix(), DMDAVecGetArray(), MatStencil
1379: @*/
1380: PetscErrorCode  MatSetValuesStencil(Mat mat,PetscInt m,const MatStencil idxm[],PetscInt n,const MatStencil idxn[],const PetscScalar v[],InsertMode addv)
1381: {
1383:   PetscInt       buf[8192],*bufm=0,*bufn=0,*jdxm,*jdxn;
1384:   PetscInt       j,i,dim = mat->stencil.dim,*dims = mat->stencil.dims+1,tmp;
1385:   PetscInt       *starts = mat->stencil.starts,*dxm = (PetscInt*)idxm,*dxn = (PetscInt*)idxn,sdim = dim - (1 - (PetscInt)mat->stencil.noc);

1388:   if (!m || !n) return(0); /* no values to insert */

1395:   if ((m+n) <= (PetscInt)(sizeof(buf)/sizeof(PetscInt))) {
1396:     jdxm = buf; jdxn = buf+m;
1397:   } else {
1398:     PetscMalloc2(m,&bufm,n,&bufn);
1399:     jdxm = bufm; jdxn = bufn;
1400:   }
1401:   for (i=0; i<m; i++) {
1402:     for (j=0; j<3-sdim; j++) dxm++;
1403:     tmp = *dxm++ - starts[0];
1404:     for (j=0; j<dim-1; j++) {
1405:       if ((*dxm++ - starts[j+1]) < 0 || tmp < 0) tmp = -1;
1406:       else                                       tmp = tmp*dims[j] + *(dxm-1) - starts[j+1];
1407:     }
1408:     if (mat->stencil.noc) dxm++;
1409:     jdxm[i] = tmp;
1410:   }
1411:   for (i=0; i<n; i++) {
1412:     for (j=0; j<3-sdim; j++) dxn++;
1413:     tmp = *dxn++ - starts[0];
1414:     for (j=0; j<dim-1; j++) {
1415:       if ((*dxn++ - starts[j+1]) < 0 || tmp < 0) tmp = -1;
1416:       else                                       tmp = tmp*dims[j] + *(dxn-1) - starts[j+1];
1417:     }
1418:     if (mat->stencil.noc) dxn++;
1419:     jdxn[i] = tmp;
1420:   }
1421:   MatSetValuesLocal(mat,m,jdxm,n,jdxn,v,addv);
1422:   PetscFree2(bufm,bufn);
1423:   return(0);
1424: }

1428: /*@
1429:    MatSetValuesBlockedStencil - Inserts or adds a block of values into a matrix.
1430:      Using structured grid indexing

1432:    Not Collective

1434:    Input Parameters:
1435: +  mat - the matrix
1436: .  m - number of rows being entered
1437: .  idxm - grid coordinates for matrix rows being entered
1438: .  n - number of columns being entered
1439: .  idxn - grid coordinates for matrix columns being entered
1440: .  v - a logically two-dimensional array of values
1441: -  addv - either ADD_VALUES or INSERT_VALUES, where
1442:    ADD_VALUES adds values to any existing entries, and
1443:    INSERT_VALUES replaces existing entries with new values

1445:    Notes:
1446:    By default the values, v, are row-oriented and unsorted.
1447:    See MatSetOption() for other options.

1449:    Calls to MatSetValuesBlockedStencil() with the INSERT_VALUES and ADD_VALUES
1450:    options cannot be mixed without intervening calls to the assembly
1451:    routines.

1453:    The grid coordinates are across the entire grid, not just the local portion

1455:    MatSetValuesBlockedStencil() uses 0-based row and column numbers in Fortran
1456:    as well as in C.

1458:    For setting/accessing vector values via array coordinates you can use the DMDAVecGetArray() routine

1460:    In order to use this routine you must either obtain the matrix with DMCreateMatrix()
1461:    or call MatSetBlockSize(), MatSetLocalToGlobalMapping() and MatSetStencil() first.

1463:    The columns and rows in the stencil passed in MUST be contained within the
1464:    ghost region of the given process as set with DMDACreateXXX() or MatSetStencil(). For example,
1465:    if you create a DMDA with an overlap of one grid level and on a particular process its first
1466:    local nonghost x logical coordinate is 6 (so its first ghost x logical coordinate is 5) the
1467:    first i index you can use in your column and row indices in MatSetStencil() is 5.

1469:    In Fortran idxm and idxn should be declared as
1470: $     MatStencil idxm(4,m),idxn(4,n)
1471:    and the values inserted using
1472: $    idxm(MatStencil_i,1) = i
1473: $    idxm(MatStencil_j,1) = j
1474: $    idxm(MatStencil_k,1) = k
1475:    etc

1477:    Negative indices may be passed in idxm and idxn, these rows and columns are
1478:    simply ignored. This allows easily inserting element stiffness matrices
1479:    with homogeneous Dirchlet boundary conditions that you don't want represented
1480:    in the matrix.

1482:    Inspired by the structured grid interface to the HYPRE package
1483:    (http://www.llnl.gov/CASC/hypre)

1485:    Level: beginner

1487:    Concepts: matrices^putting entries in

1489: .seealso: MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValuesBlocked(), MatSetValuesLocal()
1490:           MatSetValues(), MatSetValuesStencil(), MatSetStencil(), DMCreateMatrix(), DMDAVecGetArray(), MatStencil,
1491:           MatSetBlockSize(), MatSetLocalToGlobalMapping()
1492: @*/
1493: PetscErrorCode  MatSetValuesBlockedStencil(Mat mat,PetscInt m,const MatStencil idxm[],PetscInt n,const MatStencil idxn[],const PetscScalar v[],InsertMode addv)
1494: {
1496:   PetscInt       buf[8192],*bufm=0,*bufn=0,*jdxm,*jdxn;
1497:   PetscInt       j,i,dim = mat->stencil.dim,*dims = mat->stencil.dims+1,tmp;
1498:   PetscInt       *starts = mat->stencil.starts,*dxm = (PetscInt*)idxm,*dxn = (PetscInt*)idxn,sdim = dim - (1 - (PetscInt)mat->stencil.noc);

1501:   if (!m || !n) return(0); /* no values to insert */

1508:   if ((m+n) <= (PetscInt)(sizeof(buf)/sizeof(PetscInt))) {
1509:     jdxm = buf; jdxn = buf+m;
1510:   } else {
1511:     PetscMalloc2(m,&bufm,n,&bufn);
1512:     jdxm = bufm; jdxn = bufn;
1513:   }
1514:   for (i=0; i<m; i++) {
1515:     for (j=0; j<3-sdim; j++) dxm++;
1516:     tmp = *dxm++ - starts[0];
1517:     for (j=0; j<sdim-1; j++) {
1518:       if ((*dxm++ - starts[j+1]) < 0 || tmp < 0) tmp = -1;
1519:       else                                       tmp = tmp*dims[j] + *(dxm-1) - starts[j+1];
1520:     }
1521:     dxm++;
1522:     jdxm[i] = tmp;
1523:   }
1524:   for (i=0; i<n; i++) {
1525:     for (j=0; j<3-sdim; j++) dxn++;
1526:     tmp = *dxn++ - starts[0];
1527:     for (j=0; j<sdim-1; j++) {
1528:       if ((*dxn++ - starts[j+1]) < 0 || tmp < 0) tmp = -1;
1529:       else                                       tmp = tmp*dims[j] + *(dxn-1) - starts[j+1];
1530:     }
1531:     dxn++;
1532:     jdxn[i] = tmp;
1533:   }
1534:   MatSetValuesBlockedLocal(mat,m,jdxm,n,jdxn,v,addv);
1535:   PetscFree2(bufm,bufn);
1536: #if defined(PETSC_HAVE_CUSP)
1537:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
1538:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
1539:   }
1540: #endif
1541: #if defined(PETSC_HAVE_VIENNACL)
1542:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
1543:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
1544:   }
1545: #endif
1546:   return(0);
1547: }

1551: /*@
1552:    MatSetStencil - Sets the grid information for setting values into a matrix via
1553:         MatSetValuesStencil()

1555:    Not Collective

1557:    Input Parameters:
1558: +  mat - the matrix
1559: .  dim - dimension of the grid 1, 2, or 3
1560: .  dims - number of grid points in x, y, and z direction, including ghost points on your processor
1561: .  starts - starting point of ghost nodes on your processor in x, y, and z direction
1562: -  dof - number of degrees of freedom per node


1565:    Inspired by the structured grid interface to the HYPRE package
1566:    (www.llnl.gov/CASC/hyper)

1568:    For matrices generated with DMCreateMatrix() this routine is automatically called and so not needed by the
1569:    user.

1571:    Level: beginner

1573:    Concepts: matrices^putting entries in

1575: .seealso: MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValuesBlocked(), MatSetValuesLocal()
1576:           MatSetValues(), MatSetValuesBlockedStencil(), MatSetValuesStencil()
1577: @*/
1578: PetscErrorCode  MatSetStencil(Mat mat,PetscInt dim,const PetscInt dims[],const PetscInt starts[],PetscInt dof)
1579: {
1580:   PetscInt i;


1587:   mat->stencil.dim = dim + (dof > 1);
1588:   for (i=0; i<dim; i++) {
1589:     mat->stencil.dims[i]   = dims[dim-i-1];      /* copy the values in backwards */
1590:     mat->stencil.starts[i] = starts[dim-i-1];
1591:   }
1592:   mat->stencil.dims[dim]   = dof;
1593:   mat->stencil.starts[dim] = 0;
1594:   mat->stencil.noc         = (PetscBool)(dof == 1);
1595:   return(0);
1596: }

1600: /*@
1601:    MatSetValuesBlocked - Inserts or adds a block of values into a matrix.

1603:    Not Collective

1605:    Input Parameters:
1606: +  mat - the matrix
1607: .  v - a logically two-dimensional array of values
1608: .  m, idxm - the number of block rows and their global block indices
1609: .  n, idxn - the number of block columns and their global block indices
1610: -  addv - either ADD_VALUES or INSERT_VALUES, where
1611:    ADD_VALUES adds values to any existing entries, and
1612:    INSERT_VALUES replaces existing entries with new values

1614:    Notes:
1615:    If you create the matrix yourself (that is not with a call to DMCreateMatrix()) then you MUST call
1616:    MatXXXXSetPreallocation() or MatSetUp() before using this routine.

1618:    The m and n count the NUMBER of blocks in the row direction and column direction,
1619:    NOT the total number of rows/columns; for example, if the block size is 2 and
1620:    you are passing in values for rows 2,3,4,5  then m would be 2 (not 4).
1621:    The values in idxm would be 1 2; that is the first index for each block divided by
1622:    the block size.

1624:    Note that you must call MatSetBlockSize() when constructing this matrix (before
1625:    preallocating it).

1627:    By default the values, v, are row-oriented, so the layout of
1628:    v is the same as for MatSetValues(). See MatSetOption() for other options.

1630:    Calls to MatSetValuesBlocked() with the INSERT_VALUES and ADD_VALUES
1631:    options cannot be mixed without intervening calls to the assembly
1632:    routines.

1634:    MatSetValuesBlocked() uses 0-based row and column numbers in Fortran
1635:    as well as in C.

1637:    Negative indices may be passed in idxm and idxn, these rows and columns are
1638:    simply ignored. This allows easily inserting element stiffness matrices
1639:    with homogeneous Dirchlet boundary conditions that you don't want represented
1640:    in the matrix.

1642:    Each time an entry is set within a sparse matrix via MatSetValues(),
1643:    internal searching must be done to determine where to place the the
1644:    data in the matrix storage space.  By instead inserting blocks of
1645:    entries via MatSetValuesBlocked(), the overhead of matrix assembly is
1646:    reduced.

1648:    Example:
1649: $   Suppose m=n=2 and block size(bs) = 2 The array is
1650: $
1651: $   1  2  | 3  4
1652: $   5  6  | 7  8
1653: $   - - - | - - -
1654: $   9  10 | 11 12
1655: $   13 14 | 15 16
1656: $
1657: $   v[] should be passed in like
1658: $   v[] = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
1659: $
1660: $  If you are not using row oriented storage of v (that is you called MatSetOption(mat,MAT_ROW_ORIENTED,PETSC_FALSE)) then
1661: $   v[] = [1,5,9,13,2,6,10,14,3,7,11,15,4,8,12,16]

1663:    Level: intermediate

1665:    Concepts: matrices^putting entries in blocked

1667: .seealso: MatSetBlockSize(), MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValues(), MatSetValuesBlockedLocal()
1668: @*/
1669: PetscErrorCode  MatSetValuesBlocked(Mat mat,PetscInt m,const PetscInt idxm[],PetscInt n,const PetscInt idxn[],const PetscScalar v[],InsertMode addv)
1670: {

1676:   if (!m || !n) return(0); /* no values to insert */
1680:   MatCheckPreallocated(mat,1);
1681:   if (mat->insertmode == NOT_SET_VALUES) {
1682:     mat->insertmode = addv;
1683:   }
1684: #if defined(PETSC_USE_DEBUG)
1685:   else if (mat->insertmode != addv) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Cannot mix add values and insert values");
1686:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
1687:   if (!mat->ops->setvaluesblocked && !mat->ops->setvalues) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
1688: #endif

1690:   if (mat->assembled) {
1691:     mat->was_assembled = PETSC_TRUE;
1692:     mat->assembled     = PETSC_FALSE;
1693:   }
1694:   PetscLogEventBegin(MAT_SetValues,mat,0,0,0);
1695:   if (mat->ops->setvaluesblocked) {
1696:     (*mat->ops->setvaluesblocked)(mat,m,idxm,n,idxn,v,addv);
1697:   } else {
1698:     PetscInt buf[8192],*bufr=0,*bufc=0,*iidxm,*iidxn;
1699:     PetscInt i,j,bs,cbs;
1700:     MatGetBlockSizes(mat,&bs,&cbs);
1701:     if (m*bs+n*cbs <= (PetscInt)(sizeof(buf)/sizeof(PetscInt))) {
1702:       iidxm = buf; iidxn = buf + m*bs;
1703:     } else {
1704:       PetscMalloc2(m*bs,&bufr,n*cbs,&bufc);
1705:       iidxm = bufr; iidxn = bufc;
1706:     }
1707:     for (i=0; i<m; i++) {
1708:       for (j=0; j<bs; j++) {
1709:         iidxm[i*bs+j] = bs*idxm[i] + j;
1710:       }
1711:     }
1712:     for (i=0; i<n; i++) {
1713:       for (j=0; j<cbs; j++) {
1714:         iidxn[i*cbs+j] = cbs*idxn[i] + j;
1715:       }
1716:     }
1717:     MatSetValues(mat,m*bs,iidxm,n*cbs,iidxn,v,addv);
1718:     PetscFree2(bufr,bufc);
1719:   }
1720:   PetscLogEventEnd(MAT_SetValues,mat,0,0,0);
1721: #if defined(PETSC_HAVE_CUSP)
1722:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
1723:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
1724:   }
1725: #endif
1726: #if defined(PETSC_HAVE_VIENNACL)
1727:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
1728:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
1729:   }
1730: #endif
1731:   return(0);
1732: }

1736: /*@
1737:    MatGetValues - Gets a block of values from a matrix.

1739:    Not Collective; currently only returns a local block

1741:    Input Parameters:
1742: +  mat - the matrix
1743: .  v - a logically two-dimensional array for storing the values
1744: .  m, idxm - the number of rows and their global indices
1745: -  n, idxn - the number of columns and their global indices

1747:    Notes:
1748:    The user must allocate space (m*n PetscScalars) for the values, v.
1749:    The values, v, are then returned in a row-oriented format,
1750:    analogous to that used by default in MatSetValues().

1752:    MatGetValues() uses 0-based row and column numbers in
1753:    Fortran as well as in C.

1755:    MatGetValues() requires that the matrix has been assembled
1756:    with MatAssemblyBegin()/MatAssemblyEnd().  Thus, calls to
1757:    MatSetValues() and MatGetValues() CANNOT be made in succession
1758:    without intermediate matrix assembly.

1760:    Negative row or column indices will be ignored and those locations in v[] will be
1761:    left unchanged.

1763:    Level: advanced

1765:    Concepts: matrices^accessing values

1767: .seealso: MatGetRow(), MatGetSubMatrices(), MatSetValues()
1768: @*/
1769: PetscErrorCode  MatGetValues(Mat mat,PetscInt m,const PetscInt idxm[],PetscInt n,const PetscInt idxn[],PetscScalar v[])
1770: {

1776:   if (!m || !n) return(0);
1780:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
1781:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
1782:   if (!mat->ops->getvalues) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
1783:   MatCheckPreallocated(mat,1);

1785:   PetscLogEventBegin(MAT_GetValues,mat,0,0,0);
1786:   (*mat->ops->getvalues)(mat,m,idxm,n,idxn,v);
1787:   PetscLogEventEnd(MAT_GetValues,mat,0,0,0);
1788:   return(0);
1789: }

1793: /*@
1794:   MatSetValuesBatch - Adds (ADD_VALUES) many blocks of values into a matrix at once. The blocks must all be square and
1795:   the same size. Currently, this can only be called once and creates the given matrix.

1797:   Not Collective

1799:   Input Parameters:
1800: + mat - the matrix
1801: . nb - the number of blocks
1802: . bs - the number of rows (and columns) in each block
1803: . rows - a concatenation of the rows for each block
1804: - v - a concatenation of logically two-dimensional arrays of values

1806:   Notes:
1807:   In the future, we will extend this routine to handle rectangular blocks, and to allow multiple calls for a given matrix.

1809:   Level: advanced

1811:   Concepts: matrices^putting entries in

1813: .seealso: MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValuesBlocked(), MatSetValuesLocal(),
1814:           InsertMode, INSERT_VALUES, ADD_VALUES, MatSetValues()
1815: @*/
1816: PetscErrorCode MatSetValuesBatch(Mat mat, PetscInt nb, PetscInt bs, PetscInt rows[], const PetscScalar v[])
1817: {

1825: #if defined(PETSC_USE_DEBUG)
1826:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
1827: #endif

1829:   PetscLogEventBegin(MAT_SetValuesBatch,mat,0,0,0);
1830:   if (mat->ops->setvaluesbatch) {
1831:     (*mat->ops->setvaluesbatch)(mat,nb,bs,rows,v);
1832:   } else {
1833:     PetscInt b;
1834:     for (b = 0; b < nb; ++b) {
1835:       MatSetValues(mat, bs, &rows[b*bs], bs, &rows[b*bs], &v[b*bs*bs], ADD_VALUES);
1836:     }
1837:   }
1838:   PetscLogEventEnd(MAT_SetValuesBatch,mat,0,0,0);
1839:   return(0);
1840: }

1844: /*@
1845:    MatSetLocalToGlobalMapping - Sets a local-to-global numbering for use by
1846:    the routine MatSetValuesLocal() to allow users to insert matrix entries
1847:    using a local (per-processor) numbering.

1849:    Not Collective

1851:    Input Parameters:
1852: +  x - the matrix
1853: .  rmapping - row mapping created with ISLocalToGlobalMappingCreate()   or ISLocalToGlobalMappingCreateIS()
1854: - cmapping - column mapping

1856:    Level: intermediate

1858:    Concepts: matrices^local to global mapping
1859:    Concepts: local to global mapping^for matrices

1861: .seealso:  MatAssemblyBegin(), MatAssemblyEnd(), MatSetValues(), MatSetValuesLocal()
1862: @*/
1863: PetscErrorCode  MatSetLocalToGlobalMapping(Mat x,ISLocalToGlobalMapping rmapping,ISLocalToGlobalMapping cmapping)
1864: {


1873:   if (x->ops->setlocaltoglobalmapping) {
1874:     (*x->ops->setlocaltoglobalmapping)(x,rmapping,cmapping);
1875:   } else {
1876:     PetscLayoutSetISLocalToGlobalMapping(x->rmap,rmapping);
1877:     PetscLayoutSetISLocalToGlobalMapping(x->cmap,cmapping);
1878:   }
1879:   return(0);
1880: }


1885: /*@
1886:    MatGetLocalToGlobalMapping - Gets the local-to-global numbering set by MatSetLocalToGlobalMapping()

1888:    Not Collective

1890:    Input Parameters:
1891: .  A - the matrix

1893:    Output Parameters:
1894: + rmapping - row mapping
1895: - cmapping - column mapping

1897:    Level: advanced

1899:    Concepts: matrices^local to global mapping
1900:    Concepts: local to global mapping^for matrices

1902: .seealso:  MatSetValuesLocal()
1903: @*/
1904: PetscErrorCode  MatGetLocalToGlobalMapping(Mat A,ISLocalToGlobalMapping *rmapping,ISLocalToGlobalMapping *cmapping)
1905: {
1911:   if (rmapping) *rmapping = A->rmap->mapping;
1912:   if (cmapping) *cmapping = A->cmap->mapping;
1913:   return(0);
1914: }

1918: /*@
1919:    MatGetLayouts - Gets the PetscLayout objects for rows and columns

1921:    Not Collective

1923:    Input Parameters:
1924: .  A - the matrix

1926:    Output Parameters:
1927: + rmap - row layout
1928: - cmap - column layout

1930:    Level: advanced

1932: .seealso:  MatCreateVecs(), MatGetLocalToGlobalMapping()
1933: @*/
1934: PetscErrorCode  MatGetLayouts(Mat A,PetscLayout *rmap,PetscLayout *cmap)
1935: {
1941:   if (rmap) *rmap = A->rmap;
1942:   if (cmap) *cmap = A->cmap;
1943:   return(0);
1944: }

1948: /*@
1949:    MatSetValuesLocal - Inserts or adds values into certain locations of a matrix,
1950:    using a local ordering of the nodes.

1952:    Not Collective

1954:    Input Parameters:
1955: +  x - the matrix
1956: .  nrow, irow - number of rows and their local indices
1957: .  ncol, icol - number of columns and their local indices
1958: .  y -  a logically two-dimensional array of values
1959: -  addv - either INSERT_VALUES or ADD_VALUES, where
1960:    ADD_VALUES adds values to any existing entries, and
1961:    INSERT_VALUES replaces existing entries with new values

1963:    Notes:
1964:    If you create the matrix yourself (that is not with a call to DMCreateMatrix()) then you MUST call MatXXXXSetPreallocation() or
1965:       MatSetUp() before using this routine

1967:    If you create the matrix yourself (that is not with a call to DMCreateMatrix()) then you MUST call MatSetLocalToGlobalMapping() before using this routine

1969:    Calls to MatSetValuesLocal() with the INSERT_VALUES and ADD_VALUES
1970:    options cannot be mixed without intervening calls to the assembly
1971:    routines.

1973:    These values may be cached, so MatAssemblyBegin() and MatAssemblyEnd()
1974:    MUST be called after all calls to MatSetValuesLocal() have been completed.

1976:    Level: intermediate

1978:    Concepts: matrices^putting entries in with local numbering

1980: .seealso:  MatAssemblyBegin(), MatAssemblyEnd(), MatSetValues(), MatSetLocalToGlobalMapping(),
1981:            MatSetValueLocal()
1982: @*/
1983: PetscErrorCode  MatSetValuesLocal(Mat mat,PetscInt nrow,const PetscInt irow[],PetscInt ncol,const PetscInt icol[],const PetscScalar y[],InsertMode addv)
1984: {

1990:   MatCheckPreallocated(mat,1);
1991:   if (!nrow || !ncol) return(0); /* no values to insert */
1995:   if (mat->insertmode == NOT_SET_VALUES) {
1996:     mat->insertmode = addv;
1997:   }
1998: #if defined(PETSC_USE_DEBUG)
1999:   else if (mat->insertmode != addv) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Cannot mix add values and insert values");
2000:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2001:   if (!mat->ops->setvalueslocal && !mat->ops->setvalues) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
2002: #endif

2004:   if (mat->assembled) {
2005:     mat->was_assembled = PETSC_TRUE;
2006:     mat->assembled     = PETSC_FALSE;
2007:   }
2008:   PetscLogEventBegin(MAT_SetValues,mat,0,0,0);
2009:   if (mat->ops->setvalueslocal) {
2010:     (*mat->ops->setvalueslocal)(mat,nrow,irow,ncol,icol,y,addv);
2011:   } else {
2012:     PetscInt buf[8192],*bufr=0,*bufc=0,*irowm,*icolm;
2013:     if ((nrow+ncol) <= (PetscInt)(sizeof(buf)/sizeof(PetscInt))) {
2014:       irowm = buf; icolm = buf+nrow;
2015:     } else {
2016:       PetscMalloc2(nrow,&bufr,ncol,&bufc);
2017:       irowm = bufr; icolm = bufc;
2018:     }
2019:     ISLocalToGlobalMappingApply(mat->rmap->mapping,nrow,irow,irowm);
2020:     ISLocalToGlobalMappingApply(mat->cmap->mapping,ncol,icol,icolm);
2021:     MatSetValues(mat,nrow,irowm,ncol,icolm,y,addv);
2022:     PetscFree2(bufr,bufc);
2023:   }
2024:   PetscLogEventEnd(MAT_SetValues,mat,0,0,0);
2025: #if defined(PETSC_HAVE_CUSP)
2026:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
2027:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
2028:   }
2029: #endif
2030: #if defined(PETSC_HAVE_VIENNACL)
2031:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
2032:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
2033:   }
2034: #endif
2035:   return(0);
2036: }

2040: /*@
2041:    MatSetValuesBlockedLocal - Inserts or adds values into certain locations of a matrix,
2042:    using a local ordering of the nodes a block at a time.

2044:    Not Collective

2046:    Input Parameters:
2047: +  x - the matrix
2048: .  nrow, irow - number of rows and their local indices
2049: .  ncol, icol - number of columns and their local indices
2050: .  y -  a logically two-dimensional array of values
2051: -  addv - either INSERT_VALUES or ADD_VALUES, where
2052:    ADD_VALUES adds values to any existing entries, and
2053:    INSERT_VALUES replaces existing entries with new values

2055:    Notes:
2056:    If you create the matrix yourself (that is not with a call to DMCreateMatrix()) then you MUST call MatXXXXSetPreallocation() or
2057:       MatSetUp() before using this routine

2059:    If you create the matrix yourself (that is not with a call to DMCreateMatrix()) then you MUST call MatSetBlockSize() and MatSetLocalToGlobalMapping()
2060:       before using this routineBefore calling MatSetValuesLocal(), the user must first set the

2062:    Calls to MatSetValuesBlockedLocal() with the INSERT_VALUES and ADD_VALUES
2063:    options cannot be mixed without intervening calls to the assembly
2064:    routines.

2066:    These values may be cached, so MatAssemblyBegin() and MatAssemblyEnd()
2067:    MUST be called after all calls to MatSetValuesBlockedLocal() have been completed.

2069:    Level: intermediate

2071:    Concepts: matrices^putting blocked values in with local numbering

2073: .seealso:  MatSetBlockSize(), MatSetLocalToGlobalMapping(), MatAssemblyBegin(), MatAssemblyEnd(),
2074:            MatSetValuesLocal(),  MatSetValuesBlocked()
2075: @*/
2076: PetscErrorCode  MatSetValuesBlockedLocal(Mat mat,PetscInt nrow,const PetscInt irow[],PetscInt ncol,const PetscInt icol[],const PetscScalar y[],InsertMode addv)
2077: {

2083:   MatCheckPreallocated(mat,1);
2084:   if (!nrow || !ncol) return(0); /* no values to insert */
2088:   if (mat->insertmode == NOT_SET_VALUES) {
2089:     mat->insertmode = addv;
2090:   }
2091: #if defined(PETSC_USE_DEBUG)
2092:   else if (mat->insertmode != addv) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Cannot mix add values and insert values");
2093:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2094:   if (!mat->ops->setvaluesblockedlocal && !mat->ops->setvaluesblocked && !mat->ops->setvalueslocal && !mat->ops->setvalues) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
2095: #endif

2097:   if (mat->assembled) {
2098:     mat->was_assembled = PETSC_TRUE;
2099:     mat->assembled     = PETSC_FALSE;
2100:   }
2101:   PetscLogEventBegin(MAT_SetValues,mat,0,0,0);
2102:   if (mat->ops->setvaluesblockedlocal) {
2103:     (*mat->ops->setvaluesblockedlocal)(mat,nrow,irow,ncol,icol,y,addv);
2104:   } else {
2105:     PetscInt buf[8192],*bufr=0,*bufc=0,*irowm,*icolm;
2106:     if ((nrow+ncol) <= (PetscInt)(sizeof(buf)/sizeof(PetscInt))) {
2107:       irowm = buf; icolm = buf + nrow;
2108:     } else {
2109:       PetscMalloc2(nrow,&bufr,ncol,&bufc);
2110:       irowm = bufr; icolm = bufc;
2111:     }
2112:     ISLocalToGlobalMappingApplyBlock(mat->rmap->mapping,nrow,irow,irowm);
2113:     ISLocalToGlobalMappingApplyBlock(mat->cmap->mapping,ncol,icol,icolm);
2114:     MatSetValuesBlocked(mat,nrow,irowm,ncol,icolm,y,addv);
2115:     PetscFree2(bufr,bufc);
2116:   }
2117:   PetscLogEventEnd(MAT_SetValues,mat,0,0,0);
2118: #if defined(PETSC_HAVE_CUSP)
2119:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
2120:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
2121:   }
2122: #endif
2123: #if defined(PETSC_HAVE_VIENNACL)
2124:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
2125:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
2126:   }
2127: #endif
2128:   return(0);
2129: }

2133: /*@
2134:    MatMultDiagonalBlock - Computes the matrix-vector product, y = Dx. Where D is defined by the inode or block structure of the diagonal

2136:    Collective on Mat and Vec

2138:    Input Parameters:
2139: +  mat - the matrix
2140: -  x   - the vector to be multiplied

2142:    Output Parameters:
2143: .  y - the result

2145:    Notes:
2146:    The vectors x and y cannot be the same.  I.e., one cannot
2147:    call MatMult(A,y,y).

2149:    Level: developer

2151:    Concepts: matrix-vector product

2153: .seealso: MatMultTranspose(), MatMultAdd(), MatMultTransposeAdd()
2154: @*/
2155: PetscErrorCode  MatMultDiagonalBlock(Mat mat,Vec x,Vec y)
2156: {


2165:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2166:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2167:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"x and y must be different vectors");
2168:   MatCheckPreallocated(mat,1);

2170:   if (!mat->ops->multdiagonalblock) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"This matrix type does not have a multiply defined");
2171:   (*mat->ops->multdiagonalblock)(mat,x,y);
2172:   PetscObjectStateIncrease((PetscObject)y);
2173:   return(0);
2174: }

2176: /* --------------------------------------------------------*/
2179: /*@
2180:    MatMult - Computes the matrix-vector product, y = Ax.

2182:    Neighbor-wise Collective on Mat and Vec

2184:    Input Parameters:
2185: +  mat - the matrix
2186: -  x   - the vector to be multiplied

2188:    Output Parameters:
2189: .  y - the result

2191:    Notes:
2192:    The vectors x and y cannot be the same.  I.e., one cannot
2193:    call MatMult(A,y,y).

2195:    Level: beginner

2197:    Concepts: matrix-vector product

2199: .seealso: MatMultTranspose(), MatMultAdd(), MatMultTransposeAdd()
2200: @*/
2201: PetscErrorCode  MatMult(Mat mat,Vec x,Vec y)
2202: {

2210:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2211:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2212:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"x and y must be different vectors");
2213: #if !defined(PETSC_HAVE_CONSTRAINTS)
2214:   if (mat->cmap->N != x->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->cmap->N,x->map->N);
2215:   if (mat->rmap->N != y->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: global dim %D %D",mat->rmap->N,y->map->N);
2216:   if (mat->rmap->n != y->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: local dim %D %D",mat->rmap->n,y->map->n);
2217: #endif
2218:   VecLocked(y,3);
2219:   if (mat->erroriffpe) {VecValidValues(x,2,PETSC_TRUE);}
2220:   MatCheckPreallocated(mat,1);

2222:   VecLockPush(x);
2223:   if (!mat->ops->mult) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"This matrix type does not have a multiply defined");
2224:   PetscLogEventBegin(MAT_Mult,mat,x,y,0);
2225:   (*mat->ops->mult)(mat,x,y);
2226:   PetscLogEventEnd(MAT_Mult,mat,x,y,0);
2227:   if (mat->erroriffpe) {VecValidValues(y,3,PETSC_FALSE);}
2228:   VecLockPop(x);
2229:   return(0);
2230: }

2234: /*@
2235:    MatMultTranspose - Computes matrix transpose times a vector.

2237:    Neighbor-wise Collective on Mat and Vec

2239:    Input Parameters:
2240: +  mat - the matrix
2241: -  x   - the vector to be multilplied

2243:    Output Parameters:
2244: .  y - the result

2246:    Notes:
2247:    The vectors x and y cannot be the same.  I.e., one cannot
2248:    call MatMultTranspose(A,y,y).

2250:    For complex numbers this does NOT compute the Hermitian (complex conjugate) transpose multiple,
2251:    use MatMultHermitianTranspose()

2253:    Level: beginner

2255:    Concepts: matrix vector product^transpose

2257: .seealso: MatMult(), MatMultAdd(), MatMultTransposeAdd(), MatMultHermitianTranspose(), MatTranspose()
2258: @*/
2259: PetscErrorCode  MatMultTranspose(Mat mat,Vec x,Vec y)
2260: {


2269:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2270:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2271:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"x and y must be different vectors");
2272: #if !defined(PETSC_HAVE_CONSTRAINTS)
2273:   if (mat->rmap->N != x->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->rmap->N,x->map->N);
2274:   if (mat->cmap->N != y->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: global dim %D %D",mat->cmap->N,y->map->N);
2275: #endif
2276:   if (mat->erroriffpe) {VecValidValues(x,2,PETSC_TRUE);}
2277:   MatCheckPreallocated(mat,1);

2279:   if (!mat->ops->multtranspose) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"This matrix type does not have a multiply tranpose defined");
2280:   PetscLogEventBegin(MAT_MultTranspose,mat,x,y,0);
2281:   VecLockPush(x);
2282:   (*mat->ops->multtranspose)(mat,x,y);
2283:   VecLockPop(x);
2284:   PetscLogEventEnd(MAT_MultTranspose,mat,x,y,0);
2285:   PetscObjectStateIncrease((PetscObject)y);
2286:   if (mat->erroriffpe) {VecValidValues(y,3,PETSC_FALSE);}
2287:   return(0);
2288: }

2292: /*@
2293:    MatMultHermitianTranspose - Computes matrix Hermitian transpose times a vector.

2295:    Neighbor-wise Collective on Mat and Vec

2297:    Input Parameters:
2298: +  mat - the matrix
2299: -  x   - the vector to be multilplied

2301:    Output Parameters:
2302: .  y - the result

2304:    Notes:
2305:    The vectors x and y cannot be the same.  I.e., one cannot
2306:    call MatMultHermitianTranspose(A,y,y).

2308:    Also called the conjugate transpose, complex conjugate transpose, or adjoint.

2310:    For real numbers MatMultTranspose() and MatMultHermitianTranspose() are identical.

2312:    Level: beginner

2314:    Concepts: matrix vector product^transpose

2316: .seealso: MatMult(), MatMultAdd(), MatMultHermitianTransposeAdd(), MatMultTranspose()
2317: @*/
2318: PetscErrorCode  MatMultHermitianTranspose(Mat mat,Vec x,Vec y)
2319: {
2321:   Vec            w;


2329:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2330:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2331:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"x and y must be different vectors");
2332: #if !defined(PETSC_HAVE_CONSTRAINTS)
2333:   if (mat->rmap->N != x->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->rmap->N,x->map->N);
2334:   if (mat->cmap->N != y->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: global dim %D %D",mat->cmap->N,y->map->N);
2335: #endif
2336:   MatCheckPreallocated(mat,1);

2338:   PetscLogEventBegin(MAT_MultHermitianTranspose,mat,x,y,0);
2339:   if (mat->ops->multhermitiantranspose) {
2340:     VecLockPush(x);
2341:     (*mat->ops->multhermitiantranspose)(mat,x,y);
2342:     VecLockPop(x);
2343:   } else {
2344:     VecDuplicate(x,&w);
2345:     VecCopy(x,w);
2346:     VecConjugate(w);
2347:     MatMultTranspose(mat,w,y);
2348:     VecDestroy(&w);
2349:     VecConjugate(y);
2350:   }
2351:   PetscLogEventEnd(MAT_MultHermitianTranspose,mat,x,y,0);
2352:   PetscObjectStateIncrease((PetscObject)y);
2353:   return(0);
2354: }

2358: /*@
2359:     MatMultAdd -  Computes v3 = v2 + A * v1.

2361:     Neighbor-wise Collective on Mat and Vec

2363:     Input Parameters:
2364: +   mat - the matrix
2365: -   v1, v2 - the vectors

2367:     Output Parameters:
2368: .   v3 - the result

2370:     Notes:
2371:     The vectors v1 and v3 cannot be the same.  I.e., one cannot
2372:     call MatMultAdd(A,v1,v2,v1).

2374:     Level: beginner

2376:     Concepts: matrix vector product^addition

2378: .seealso: MatMultTranspose(), MatMult(), MatMultTransposeAdd()
2379: @*/
2380: PetscErrorCode  MatMultAdd(Mat mat,Vec v1,Vec v2,Vec v3)
2381: {


2391:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2392:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2393:   if (mat->cmap->N != v1->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec v1: global dim %D %D",mat->cmap->N,v1->map->N);
2394:   /* if (mat->rmap->N != v2->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec v2: global dim %D %D",mat->rmap->N,v2->map->N);
2395:      if (mat->rmap->N != v3->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec v3: global dim %D %D",mat->rmap->N,v3->map->N); */
2396:   if (mat->rmap->n != v3->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec v3: local dim %D %D",mat->rmap->n,v3->map->n);
2397:   if (mat->rmap->n != v2->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec v2: local dim %D %D",mat->rmap->n,v2->map->n);
2398:   if (v1 == v3) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"v1 and v3 must be different vectors");
2399:   MatCheckPreallocated(mat,1);

2401:   if (!mat->ops->multadd) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"No MatMultAdd() for matrix type '%s'",((PetscObject)mat)->type_name);
2402:   PetscLogEventBegin(MAT_MultAdd,mat,v1,v2,v3);
2403:   VecLockPush(v1);
2404:   (*mat->ops->multadd)(mat,v1,v2,v3);
2405:   VecLockPop(v1);
2406:   PetscLogEventEnd(MAT_MultAdd,mat,v1,v2,v3);
2407:   PetscObjectStateIncrease((PetscObject)v3);
2408:   return(0);
2409: }

2413: /*@
2414:    MatMultTransposeAdd - Computes v3 = v2 + A' * v1.

2416:    Neighbor-wise Collective on Mat and Vec

2418:    Input Parameters:
2419: +  mat - the matrix
2420: -  v1, v2 - the vectors

2422:    Output Parameters:
2423: .  v3 - the result

2425:    Notes:
2426:    The vectors v1 and v3 cannot be the same.  I.e., one cannot
2427:    call MatMultTransposeAdd(A,v1,v2,v1).

2429:    Level: beginner

2431:    Concepts: matrix vector product^transpose and addition

2433: .seealso: MatMultTranspose(), MatMultAdd(), MatMult()
2434: @*/
2435: PetscErrorCode  MatMultTransposeAdd(Mat mat,Vec v1,Vec v2,Vec v3)
2436: {


2446:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2447:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2448:   if (!mat->ops->multtransposeadd) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
2449:   if (v1 == v3) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"v1 and v3 must be different vectors");
2450:   if (mat->rmap->N != v1->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec v1: global dim %D %D",mat->rmap->N,v1->map->N);
2451:   if (mat->cmap->N != v2->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec v2: global dim %D %D",mat->cmap->N,v2->map->N);
2452:   if (mat->cmap->N != v3->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec v3: global dim %D %D",mat->cmap->N,v3->map->N);
2453:   MatCheckPreallocated(mat,1);

2455:   PetscLogEventBegin(MAT_MultTransposeAdd,mat,v1,v2,v3);
2456:   VecLockPush(v1);
2457:   (*mat->ops->multtransposeadd)(mat,v1,v2,v3);
2458:   VecLockPop(v1);
2459:   PetscLogEventEnd(MAT_MultTransposeAdd,mat,v1,v2,v3);
2460:   PetscObjectStateIncrease((PetscObject)v3);
2461:   return(0);
2462: }

2466: /*@
2467:    MatMultHermitianTransposeAdd - Computes v3 = v2 + A^H * v1.

2469:    Neighbor-wise Collective on Mat and Vec

2471:    Input Parameters:
2472: +  mat - the matrix
2473: -  v1, v2 - the vectors

2475:    Output Parameters:
2476: .  v3 - the result

2478:    Notes:
2479:    The vectors v1 and v3 cannot be the same.  I.e., one cannot
2480:    call MatMultHermitianTransposeAdd(A,v1,v2,v1).

2482:    Level: beginner

2484:    Concepts: matrix vector product^transpose and addition

2486: .seealso: MatMultHermitianTranspose(), MatMultTranspose(), MatMultAdd(), MatMult()
2487: @*/
2488: PetscErrorCode  MatMultHermitianTransposeAdd(Mat mat,Vec v1,Vec v2,Vec v3)
2489: {


2499:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2500:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2501:   if (!mat->ops->multhermitiantransposeadd) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
2502:   if (v1 == v3) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"v1 and v3 must be different vectors");
2503:   if (mat->rmap->N != v1->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec v1: global dim %D %D",mat->rmap->N,v1->map->N);
2504:   if (mat->cmap->N != v2->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec v2: global dim %D %D",mat->cmap->N,v2->map->N);
2505:   if (mat->cmap->N != v3->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec v3: global dim %D %D",mat->cmap->N,v3->map->N);
2506:   MatCheckPreallocated(mat,1);

2508:   PetscLogEventBegin(MAT_MultHermitianTransposeAdd,mat,v1,v2,v3);
2509:   VecLockPush(v1);
2510:   (*mat->ops->multhermitiantransposeadd)(mat,v1,v2,v3);
2511:   VecLockPop(v1);
2512:   PetscLogEventEnd(MAT_MultHermitianTransposeAdd,mat,v1,v2,v3);
2513:   PetscObjectStateIncrease((PetscObject)v3);
2514:   return(0);
2515: }

2519: /*@
2520:    MatMultConstrained - The inner multiplication routine for a
2521:    constrained matrix P^T A P.

2523:    Neighbor-wise Collective on Mat and Vec

2525:    Input Parameters:
2526: +  mat - the matrix
2527: -  x   - the vector to be multilplied

2529:    Output Parameters:
2530: .  y - the result

2532:    Notes:
2533:    The vectors x and y cannot be the same.  I.e., one cannot
2534:    call MatMult(A,y,y).

2536:    Level: beginner

2538: .keywords: matrix, multiply, matrix-vector product, constraint
2539: .seealso: MatMult(), MatMultTranspose(), MatMultAdd(), MatMultTransposeAdd()
2540: @*/
2541: PetscErrorCode  MatMultConstrained(Mat mat,Vec x,Vec y)
2542: {

2549:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2550:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2551:   if (x == y) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"x and y must be different vectors");
2552:   if (mat->cmap->N != x->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->cmap->N,x->map->N);
2553:   if (mat->rmap->N != y->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: global dim %D %D",mat->rmap->N,y->map->N);
2554:   if (mat->rmap->n != y->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: local dim %D %D",mat->rmap->n,y->map->n);

2556:   PetscLogEventBegin(MAT_MultConstrained,mat,x,y,0);
2557:   VecLockPush(x);
2558:   (*mat->ops->multconstrained)(mat,x,y);
2559:   VecLockPop(x);
2560:   PetscLogEventEnd(MAT_MultConstrained,mat,x,y,0);
2561:   PetscObjectStateIncrease((PetscObject)y);
2562:   return(0);
2563: }

2567: /*@
2568:    MatMultTransposeConstrained - The inner multiplication routine for a
2569:    constrained matrix P^T A^T P.

2571:    Neighbor-wise Collective on Mat and Vec

2573:    Input Parameters:
2574: +  mat - the matrix
2575: -  x   - the vector to be multilplied

2577:    Output Parameters:
2578: .  y - the result

2580:    Notes:
2581:    The vectors x and y cannot be the same.  I.e., one cannot
2582:    call MatMult(A,y,y).

2584:    Level: beginner

2586: .keywords: matrix, multiply, matrix-vector product, constraint
2587: .seealso: MatMult(), MatMultTranspose(), MatMultAdd(), MatMultTransposeAdd()
2588: @*/
2589: PetscErrorCode  MatMultTransposeConstrained(Mat mat,Vec x,Vec y)
2590: {

2597:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2598:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2599:   if (x == y) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"x and y must be different vectors");
2600:   if (mat->rmap->N != x->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->cmap->N,x->map->N);
2601:   if (mat->cmap->N != y->map->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: global dim %D %D",mat->rmap->N,y->map->N);

2603:   PetscLogEventBegin(MAT_MultConstrained,mat,x,y,0);
2604:   (*mat->ops->multtransposeconstrained)(mat,x,y);
2605:   PetscLogEventEnd(MAT_MultConstrained,mat,x,y,0);
2606:   PetscObjectStateIncrease((PetscObject)y);
2607:   return(0);
2608: }

2612: /*@C
2613:    MatGetFactorType - gets the type of factorization it is

2615:    Note Collective
2616:    as the flag

2618:    Input Parameters:
2619: .  mat - the matrix

2621:    Output Parameters:
2622: .  t - the type, one of MAT_FACTOR_NONE, MAT_FACTOR_LU, MAT_FACTOR_CHOLESKY, MAT_FACTOR_ILU, MAT_FACTOR_ICC,MAT_FACTOR_ILUDT

2624:     Level: intermediate

2626: .seealso:    MatFactorType, MatGetFactor()
2627: @*/
2628: PetscErrorCode  MatGetFactorType(Mat mat,MatFactorType *t)
2629: {
2633:   *t = mat->factortype;
2634:   return(0);
2635: }

2637: /* ------------------------------------------------------------*/
2640: /*@C
2641:    MatGetInfo - Returns information about matrix storage (number of
2642:    nonzeros, memory, etc.).

2644:    Collective on Mat if MAT_GLOBAL_MAX or MAT_GLOBAL_SUM is used as the flag

2646:    Input Parameters:
2647: .  mat - the matrix

2649:    Output Parameters:
2650: +  flag - flag indicating the type of parameters to be returned
2651:    (MAT_LOCAL - local matrix, MAT_GLOBAL_MAX - maximum over all processors,
2652:    MAT_GLOBAL_SUM - sum over all processors)
2653: -  info - matrix information context

2655:    Notes:
2656:    The MatInfo context contains a variety of matrix data, including
2657:    number of nonzeros allocated and used, number of mallocs during
2658:    matrix assembly, etc.  Additional information for factored matrices
2659:    is provided (such as the fill ratio, number of mallocs during
2660:    factorization, etc.).  Much of this info is printed to PETSC_STDOUT
2661:    when using the runtime options
2662: $       -info -mat_view ::ascii_info

2664:    Example for C/C++ Users:
2665:    See the file ${PETSC_DIR}/include/petscmat.h for a complete list of
2666:    data within the MatInfo context.  For example,
2667: .vb
2668:       MatInfo info;
2669:       Mat     A;
2670:       double  mal, nz_a, nz_u;

2672:       MatGetInfo(A,MAT_LOCAL,&info);
2673:       mal  = info.mallocs;
2674:       nz_a = info.nz_allocated;
2675: .ve

2677:    Example for Fortran Users:
2678:    Fortran users should declare info as a double precision
2679:    array of dimension MAT_INFO_SIZE, and then extract the parameters
2680:    of interest.  See the file ${PETSC_DIR}/include/petsc/finclude/petscmat.h
2681:    a complete list of parameter names.
2682: .vb
2683:       double  precision info(MAT_INFO_SIZE)
2684:       double  precision mal, nz_a
2685:       Mat     A
2686:       integer ierr

2688:       call MatGetInfo(A,MAT_LOCAL,info,ierr)
2689:       mal = info(MAT_INFO_MALLOCS)
2690:       nz_a = info(MAT_INFO_NZ_ALLOCATED)
2691: .ve

2693:     Level: intermediate

2695:     Concepts: matrices^getting information on

2697:     Developer Note: fortran interface is not autogenerated as the f90
2698:     interface defintion cannot be generated correctly [due to MatInfo]

2700: .seealso: MatStashGetInfo()

2702: @*/
2703: PetscErrorCode  MatGetInfo(Mat mat,MatInfoType flag,MatInfo *info)
2704: {

2711:   if (!mat->ops->getinfo) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
2712:   MatCheckPreallocated(mat,1);
2713:   (*mat->ops->getinfo)(mat,flag,info);
2714:   return(0);
2715: }

2717: /* ----------------------------------------------------------*/

2721: /*@C
2722:    MatLUFactor - Performs in-place LU factorization of matrix.

2724:    Collective on Mat

2726:    Input Parameters:
2727: +  mat - the matrix
2728: .  row - row permutation
2729: .  col - column permutation
2730: -  info - options for factorization, includes
2731: $          fill - expected fill as ratio of original fill.
2732: $          dtcol - pivot tolerance (0 no pivot, 1 full column pivoting)
2733: $                   Run with the option -info to determine an optimal value to use

2735:    Notes:
2736:    Most users should employ the simplified KSP interface for linear solvers
2737:    instead of working directly with matrix algebra routines such as this.
2738:    See, e.g., KSPCreate().

2740:    This changes the state of the matrix to a factored matrix; it cannot be used
2741:    for example with MatSetValues() unless one first calls MatSetUnfactored().

2743:    Level: developer

2745:    Concepts: matrices^LU factorization

2747: .seealso: MatLUFactorSymbolic(), MatLUFactorNumeric(), MatCholeskyFactor(),
2748:           MatGetOrdering(), MatSetUnfactored(), MatFactorInfo, MatGetFactor()

2750:     Developer Note: fortran interface is not autogenerated as the f90
2751:     interface defintion cannot be generated correctly [due to MatFactorInfo]

2753: @*/
2754: PetscErrorCode  MatLUFactor(Mat mat,IS row,IS col,const MatFactorInfo *info)
2755: {
2757:   MatFactorInfo  tinfo;

2765:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2766:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2767:   if (!mat->ops->lufactor) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
2768:   MatCheckPreallocated(mat,1);
2769:   if (!info) {
2770:     MatFactorInfoInitialize(&tinfo);
2771:     info = &tinfo;
2772:   }

2774:   PetscLogEventBegin(MAT_LUFactor,mat,row,col,0);
2775:   (*mat->ops->lufactor)(mat,row,col,info);
2776:   PetscLogEventEnd(MAT_LUFactor,mat,row,col,0);
2777:   PetscObjectStateIncrease((PetscObject)mat);
2778:   return(0);
2779: }

2783: /*@C
2784:    MatILUFactor - Performs in-place ILU factorization of matrix.

2786:    Collective on Mat

2788:    Input Parameters:
2789: +  mat - the matrix
2790: .  row - row permutation
2791: .  col - column permutation
2792: -  info - structure containing
2793: $      levels - number of levels of fill.
2794: $      expected fill - as ratio of original fill.
2795: $      1 or 0 - indicating force fill on diagonal (improves robustness for matrices
2796:                 missing diagonal entries)

2798:    Notes:
2799:    Probably really in-place only when level of fill is zero, otherwise allocates
2800:    new space to store factored matrix and deletes previous memory.

2802:    Most users should employ the simplified KSP interface for linear solvers
2803:    instead of working directly with matrix algebra routines such as this.
2804:    See, e.g., KSPCreate().

2806:    Level: developer

2808:    Concepts: matrices^ILU factorization

2810: .seealso: MatILUFactorSymbolic(), MatLUFactorNumeric(), MatCholeskyFactor(), MatFactorInfo

2812:     Developer Note: fortran interface is not autogenerated as the f90
2813:     interface defintion cannot be generated correctly [due to MatFactorInfo]

2815: @*/
2816: PetscErrorCode  MatILUFactor(Mat mat,IS row,IS col,const MatFactorInfo *info)
2817: {

2826:   if (mat->rmap->N != mat->cmap->N) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONG,"matrix must be square");
2827:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2828:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2829:   if (!mat->ops->ilufactor) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
2830:   MatCheckPreallocated(mat,1);

2832:   PetscLogEventBegin(MAT_ILUFactor,mat,row,col,0);
2833:   (*mat->ops->ilufactor)(mat,row,col,info);
2834:   PetscLogEventEnd(MAT_ILUFactor,mat,row,col,0);
2835:   PetscObjectStateIncrease((PetscObject)mat);
2836:   return(0);
2837: }

2841: /*@C
2842:    MatLUFactorSymbolic - Performs symbolic LU factorization of matrix.
2843:    Call this routine before calling MatLUFactorNumeric().

2845:    Collective on Mat

2847:    Input Parameters:
2848: +  fact - the factor matrix obtained with MatGetFactor()
2849: .  mat - the matrix
2850: .  row, col - row and column permutations
2851: -  info - options for factorization, includes
2852: $          fill - expected fill as ratio of original fill.
2853: $          dtcol - pivot tolerance (0 no pivot, 1 full column pivoting)
2854: $                   Run with the option -info to determine an optimal value to use


2857:    Notes: See Users-Manual: ch_mat for additional information about choosing the fill factor for better efficiency.

2859:    Most users should employ the simplified KSP interface for linear solvers
2860:    instead of working directly with matrix algebra routines such as this.
2861:    See, e.g., KSPCreate().

2863:    Level: developer

2865:    Concepts: matrices^LU symbolic factorization

2867: .seealso: MatLUFactor(), MatLUFactorNumeric(), MatCholeskyFactor(), MatFactorInfo, MatFactorInfoInitialize()

2869:     Developer Note: fortran interface is not autogenerated as the f90
2870:     interface defintion cannot be generated correctly [due to MatFactorInfo]

2872: @*/
2873: PetscErrorCode  MatLUFactorSymbolic(Mat fact,Mat mat,IS row,IS col,const MatFactorInfo *info)
2874: {

2884:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2885:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2886:   if (!(fact)->ops->lufactorsymbolic) {
2887:     const MatSolverPackage spackage;
2888:     MatFactorGetSolverPackage(fact,&spackage);
2889:     SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Matrix type %s symbolic LU using solver package %s",((PetscObject)mat)->type_name,spackage);
2890:   }
2891:   MatCheckPreallocated(mat,2);

2893:   PetscLogEventBegin(MAT_LUFactorSymbolic,mat,row,col,0);
2894:   (fact->ops->lufactorsymbolic)(fact,mat,row,col,info);
2895:   PetscLogEventEnd(MAT_LUFactorSymbolic,mat,row,col,0);
2896:   PetscObjectStateIncrease((PetscObject)fact);
2897:   return(0);
2898: }

2902: /*@C
2903:    MatLUFactorNumeric - Performs numeric LU factorization of a matrix.
2904:    Call this routine after first calling MatLUFactorSymbolic().

2906:    Collective on Mat

2908:    Input Parameters:
2909: +  fact - the factor matrix obtained with MatGetFactor()
2910: .  mat - the matrix
2911: -  info - options for factorization

2913:    Notes:
2914:    See MatLUFactor() for in-place factorization.  See
2915:    MatCholeskyFactorNumeric() for the symmetric, positive definite case.

2917:    Most users should employ the simplified KSP interface for linear solvers
2918:    instead of working directly with matrix algebra routines such as this.
2919:    See, e.g., KSPCreate().

2921:    Level: developer

2923:    Concepts: matrices^LU numeric factorization

2925: .seealso: MatLUFactorSymbolic(), MatLUFactor(), MatCholeskyFactor()

2927:     Developer Note: fortran interface is not autogenerated as the f90
2928:     interface defintion cannot be generated correctly [due to MatFactorInfo]

2930: @*/
2931: PetscErrorCode  MatLUFactorNumeric(Mat fact,Mat mat,const MatFactorInfo *info)
2932: {

2940:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2941:   if (mat->rmap->N != (fact)->rmap->N || mat->cmap->N != (fact)->cmap->N) SETERRQ4(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Mat fact: global dimensions are different %D should = %D %D should = %D",mat->rmap->N,(fact)->rmap->N,mat->cmap->N,(fact)->cmap->N);

2943:   if (!(fact)->ops->lufactornumeric) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s numeric LU",((PetscObject)mat)->type_name);
2944:   MatCheckPreallocated(mat,2);
2945:   PetscLogEventBegin(MAT_LUFactorNumeric,mat,fact,0,0);
2946:   (fact->ops->lufactornumeric)(fact,mat,info);
2947:   PetscLogEventEnd(MAT_LUFactorNumeric,mat,fact,0,0);
2948:   MatViewFromOptions(fact,NULL,"-mat_factor_view");
2949:   PetscObjectStateIncrease((PetscObject)fact);
2950:   return(0);
2951: }

2955: /*@C
2956:    MatCholeskyFactor - Performs in-place Cholesky factorization of a
2957:    symmetric matrix.

2959:    Collective on Mat

2961:    Input Parameters:
2962: +  mat - the matrix
2963: .  perm - row and column permutations
2964: -  f - expected fill as ratio of original fill

2966:    Notes:
2967:    See MatLUFactor() for the nonsymmetric case.  See also
2968:    MatCholeskyFactorSymbolic(), and MatCholeskyFactorNumeric().

2970:    Most users should employ the simplified KSP interface for linear solvers
2971:    instead of working directly with matrix algebra routines such as this.
2972:    See, e.g., KSPCreate().

2974:    Level: developer

2976:    Concepts: matrices^Cholesky factorization

2978: .seealso: MatLUFactor(), MatCholeskyFactorSymbolic(), MatCholeskyFactorNumeric()
2979:           MatGetOrdering()

2981:     Developer Note: fortran interface is not autogenerated as the f90
2982:     interface defintion cannot be generated correctly [due to MatFactorInfo]

2984: @*/
2985: PetscErrorCode  MatCholeskyFactor(Mat mat,IS perm,const MatFactorInfo *info)
2986: {

2994:   if (mat->rmap->N != mat->cmap->N) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONG,"Matrix must be square");
2995:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
2996:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
2997:   if (!mat->ops->choleskyfactor) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
2998:   MatCheckPreallocated(mat,1);

3000:   PetscLogEventBegin(MAT_CholeskyFactor,mat,perm,0,0);
3001:   (*mat->ops->choleskyfactor)(mat,perm,info);
3002:   PetscLogEventEnd(MAT_CholeskyFactor,mat,perm,0,0);
3003:   PetscObjectStateIncrease((PetscObject)mat);
3004:   return(0);
3005: }

3009: /*@C
3010:    MatCholeskyFactorSymbolic - Performs symbolic Cholesky factorization
3011:    of a symmetric matrix.

3013:    Collective on Mat

3015:    Input Parameters:
3016: +  fact - the factor matrix obtained with MatGetFactor()
3017: .  mat - the matrix
3018: .  perm - row and column permutations
3019: -  info - options for factorization, includes
3020: $          fill - expected fill as ratio of original fill.
3021: $          dtcol - pivot tolerance (0 no pivot, 1 full column pivoting)
3022: $                   Run with the option -info to determine an optimal value to use

3024:    Notes:
3025:    See MatLUFactorSymbolic() for the nonsymmetric case.  See also
3026:    MatCholeskyFactor() and MatCholeskyFactorNumeric().

3028:    Most users should employ the simplified KSP interface for linear solvers
3029:    instead of working directly with matrix algebra routines such as this.
3030:    See, e.g., KSPCreate().

3032:    Level: developer

3034:    Concepts: matrices^Cholesky symbolic factorization

3036: .seealso: MatLUFactorSymbolic(), MatCholeskyFactor(), MatCholeskyFactorNumeric()
3037:           MatGetOrdering()

3039:     Developer Note: fortran interface is not autogenerated as the f90
3040:     interface defintion cannot be generated correctly [due to MatFactorInfo]

3042: @*/
3043: PetscErrorCode  MatCholeskyFactorSymbolic(Mat fact,Mat mat,IS perm,const MatFactorInfo *info)
3044: {

3053:   if (mat->rmap->N != mat->cmap->N) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONG,"Matrix must be square");
3054:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
3055:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
3056:   if (!(fact)->ops->choleskyfactorsymbolic) {
3057:     const MatSolverPackage spackage;
3058:     MatFactorGetSolverPackage(fact,&spackage);
3059:     SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s symbolic factor Cholesky using solver package %s",((PetscObject)mat)->type_name,spackage);
3060:   }
3061:   MatCheckPreallocated(mat,2);

3063:   PetscLogEventBegin(MAT_CholeskyFactorSymbolic,mat,perm,0,0);
3064:   (fact->ops->choleskyfactorsymbolic)(fact,mat,perm,info);
3065:   PetscLogEventEnd(MAT_CholeskyFactorSymbolic,mat,perm,0,0);
3066:   PetscObjectStateIncrease((PetscObject)fact);
3067:   return(0);
3068: }

3072: /*@C
3073:    MatCholeskyFactorNumeric - Performs numeric Cholesky factorization
3074:    of a symmetric matrix. Call this routine after first calling
3075:    MatCholeskyFactorSymbolic().

3077:    Collective on Mat

3079:    Input Parameters:
3080: +  fact - the factor matrix obtained with MatGetFactor()
3081: .  mat - the initial matrix
3082: .  info - options for factorization
3083: -  fact - the symbolic factor of mat


3086:    Notes:
3087:    Most users should employ the simplified KSP interface for linear solvers
3088:    instead of working directly with matrix algebra routines such as this.
3089:    See, e.g., KSPCreate().

3091:    Level: developer

3093:    Concepts: matrices^Cholesky numeric factorization

3095: .seealso: MatCholeskyFactorSymbolic(), MatCholeskyFactor(), MatLUFactorNumeric()

3097:     Developer Note: fortran interface is not autogenerated as the f90
3098:     interface defintion cannot be generated correctly [due to MatFactorInfo]

3100: @*/
3101: PetscErrorCode  MatCholeskyFactorNumeric(Mat fact,Mat mat,const MatFactorInfo *info)
3102: {

3110:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
3111:   if (!(fact)->ops->choleskyfactornumeric) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s numeric factor Cholesky",((PetscObject)mat)->type_name);
3112:   if (mat->rmap->N != (fact)->rmap->N || mat->cmap->N != (fact)->cmap->N) SETERRQ4(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Mat fact: global dim %D should = %D %D should = %D",mat->rmap->N,(fact)->rmap->N,mat->cmap->N,(fact)->cmap->N);
3113:   MatCheckPreallocated(mat,2);

3115:   PetscLogEventBegin(MAT_CholeskyFactorNumeric,mat,fact,0,0);
3116:   (fact->ops->choleskyfactornumeric)(fact,mat,info);
3117:   PetscLogEventEnd(MAT_CholeskyFactorNumeric,mat,fact,0,0);
3118:   MatViewFromOptions(fact,NULL,"-mat_factor_view");
3119:   PetscObjectStateIncrease((PetscObject)fact);
3120:   return(0);
3121: }

3123: /* ----------------------------------------------------------------*/
3126: /*@
3127:    MatSolve - Solves A x = b, given a factored matrix.

3129:    Neighbor-wise Collective on Mat and Vec

3131:    Input Parameters:
3132: +  mat - the factored matrix
3133: -  b - the right-hand-side vector

3135:    Output Parameter:
3136: .  x - the result vector

3138:    Notes:
3139:    The vectors b and x cannot be the same.  I.e., one cannot
3140:    call MatSolve(A,x,x).

3142:    Notes:
3143:    Most users should employ the simplified KSP interface for linear solvers
3144:    instead of working directly with matrix algebra routines such as this.
3145:    See, e.g., KSPCreate().

3147:    Level: developer

3149:    Concepts: matrices^triangular solves

3151: .seealso: MatSolveAdd(), MatSolveTranspose(), MatSolveTransposeAdd()
3152: @*/
3153: PetscErrorCode  MatSolve(Mat mat,Vec b,Vec x)
3154: {

3164:   if (x == b) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"x and b must be different vectors");
3165:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
3166:   if (mat->cmap->N != x->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->cmap->N,x->map->N);
3167:   if (mat->rmap->N != b->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: global dim %D %D",mat->rmap->N,b->map->N);
3168:   if (mat->rmap->n != b->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: local dim %D %D",mat->rmap->n,b->map->n);
3169:   if (!mat->rmap->N && !mat->cmap->N) return(0);
3170:   if (!mat->ops->solve) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
3171:   MatCheckPreallocated(mat,1);

3173:   PetscLogEventBegin(MAT_Solve,mat,b,x,0);
3174:   (*mat->ops->solve)(mat,b,x);
3175:   PetscLogEventEnd(MAT_Solve,mat,b,x,0);
3176:   PetscObjectStateIncrease((PetscObject)x);
3177:   return(0);
3178: }

3182: PetscErrorCode  MatMatSolve_Basic(Mat A,Mat B,Mat X)
3183: {
3185:   Vec            b,x;
3186:   PetscInt       m,N,i;
3187:   PetscScalar    *bb,*xx;
3188:   PetscBool      flg;

3191:   PetscObjectTypeCompareAny((PetscObject)B,&flg,MATSEQDENSE,MATMPIDENSE,NULL);
3192:   if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Matrix B must be MATDENSE matrix");
3193:   PetscObjectTypeCompareAny((PetscObject)X,&flg,MATSEQDENSE,MATMPIDENSE,NULL);
3194:   if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Matrix X must be MATDENSE matrix");

3196:   MatDenseGetArray(B,&bb);
3197:   MatDenseGetArray(X,&xx);
3198:   MatGetLocalSize(B,&m,NULL);  /* number local rows */
3199:   MatGetSize(B,NULL,&N);       /* total columns in dense matrix */
3200:   MatCreateVecs(A,&x,&b);
3201:   for (i=0; i<N; i++) {
3202:     VecPlaceArray(b,bb + i*m);
3203:     VecPlaceArray(x,xx + i*m);
3204:     MatSolve(A,b,x);
3205:     VecResetArray(x);
3206:     VecResetArray(b);
3207:   }
3208:   VecDestroy(&b);
3209:   VecDestroy(&x);
3210:   MatDenseRestoreArray(B,&bb);
3211:   MatDenseRestoreArray(X,&xx);
3212:   return(0);
3213: }

3217: /*@
3218:    MatMatSolve - Solves A X = B, given a factored matrix.

3220:    Neighbor-wise Collective on Mat

3222:    Input Parameters:
3223: +  A - the factored matrix
3224: -  B - the right-hand-side matrix  (dense matrix)

3226:    Output Parameter:
3227: .  X - the result matrix (dense matrix)

3229:    Notes:
3230:    The matrices b and x cannot be the same.  I.e., one cannot
3231:    call MatMatSolve(A,x,x).

3233:    Notes:
3234:    Most users should usually employ the simplified KSP interface for linear solvers
3235:    instead of working directly with matrix algebra routines such as this.
3236:    See, e.g., KSPCreate(). However KSP can only solve for one vector (column of X)
3237:    at a time.

3239:    When using SuperLU_Dist as a parallel solver PETSc will use the SuperLU_Dist functionality to solve multiple right hand sides simultaneously. For MUMPS
3240:    it calls a separate solve for each right hand side since MUMPS does not yet support distributed right hand sides.

3242:    Since the resulting matrix X must always be dense we do not support sparse representation of the matrix B.

3244:    Level: developer

3246:    Concepts: matrices^triangular solves

3248: .seealso: MatMatSolveAdd(), MatMatSolveTranspose(), MatMatSolveTransposeAdd(), MatLUFactor(), MatCholeskyFactor()
3249: @*/
3250: PetscErrorCode  MatMatSolve(Mat A,Mat B,Mat X)
3251: {

3261:   if (X == B) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_IDN,"X and B must be different matrices");
3262:   if (!A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
3263:   if (A->cmap->N != X->rmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Mat A,Mat X: global dim %D %D",A->cmap->N,X->rmap->N);
3264:   if (A->rmap->N != B->rmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Mat A,Mat B: global dim %D %D",A->rmap->N,B->rmap->N);
3265:   if (A->rmap->n != B->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat A,Mat B: local dim %D %D",A->rmap->n,B->rmap->n);
3266:   if (X->cmap->N < B->cmap->N) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Solution matrix must have same number of columns as rhs matrix");
3267:   if (!A->rmap->N && !A->cmap->N) return(0);
3268:   MatCheckPreallocated(A,1);

3270:   PetscLogEventBegin(MAT_MatSolve,A,B,X,0);
3271:   if (!A->ops->matsolve) {
3272:     PetscInfo1(A,"Mat type %s using basic MatMatSolve\n",((PetscObject)A)->type_name);
3273:     MatMatSolve_Basic(A,B,X);
3274:   } else {
3275:     (*A->ops->matsolve)(A,B,X);
3276:   }
3277:   PetscLogEventEnd(MAT_MatSolve,A,B,X,0);
3278:   PetscObjectStateIncrease((PetscObject)X);
3279:   return(0);
3280: }


3285: /*@
3286:    MatForwardSolve - Solves L x = b, given a factored matrix, A = LU, or
3287:                             U^T*D^(1/2) x = b, given a factored symmetric matrix, A = U^T*D*U,

3289:    Neighbor-wise Collective on Mat and Vec

3291:    Input Parameters:
3292: +  mat - the factored matrix
3293: -  b - the right-hand-side vector

3295:    Output Parameter:
3296: .  x - the result vector

3298:    Notes:
3299:    MatSolve() should be used for most applications, as it performs
3300:    a forward solve followed by a backward solve.

3302:    The vectors b and x cannot be the same,  i.e., one cannot
3303:    call MatForwardSolve(A,x,x).

3305:    For matrix in seqsbaij format with block size larger than 1,
3306:    the diagonal blocks are not implemented as D = D^(1/2) * D^(1/2) yet.
3307:    MatForwardSolve() solves U^T*D y = b, and
3308:    MatBackwardSolve() solves U x = y.
3309:    Thus they do not provide a symmetric preconditioner.

3311:    Most users should employ the simplified KSP interface for linear solvers
3312:    instead of working directly with matrix algebra routines such as this.
3313:    See, e.g., KSPCreate().

3315:    Level: developer

3317:    Concepts: matrices^forward solves

3319: .seealso: MatSolve(), MatBackwardSolve()
3320: @*/
3321: PetscErrorCode  MatForwardSolve(Mat mat,Vec b,Vec x)
3322: {

3332:   if (x == b) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"x and b must be different vectors");
3333:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
3334:   if (!mat->ops->forwardsolve) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
3335:   if (mat->cmap->N != x->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->cmap->N,x->map->N);
3336:   if (mat->rmap->N != b->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: global dim %D %D",mat->rmap->N,b->map->N);
3337:   if (mat->rmap->n != b->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: local dim %D %D",mat->rmap->n,b->map->n);
3338:   MatCheckPreallocated(mat,1);
3339:   PetscLogEventBegin(MAT_ForwardSolve,mat,b,x,0);
3340:   (*mat->ops->forwardsolve)(mat,b,x);
3341:   PetscLogEventEnd(MAT_ForwardSolve,mat,b,x,0);
3342:   PetscObjectStateIncrease((PetscObject)x);
3343:   return(0);
3344: }

3348: /*@
3349:    MatBackwardSolve - Solves U x = b, given a factored matrix, A = LU.
3350:                              D^(1/2) U x = b, given a factored symmetric matrix, A = U^T*D*U,

3352:    Neighbor-wise Collective on Mat and Vec

3354:    Input Parameters:
3355: +  mat - the factored matrix
3356: -  b - the right-hand-side vector

3358:    Output Parameter:
3359: .  x - the result vector

3361:    Notes:
3362:    MatSolve() should be used for most applications, as it performs
3363:    a forward solve followed by a backward solve.

3365:    The vectors b and x cannot be the same.  I.e., one cannot
3366:    call MatBackwardSolve(A,x,x).

3368:    For matrix in seqsbaij format with block size larger than 1,
3369:    the diagonal blocks are not implemented as D = D^(1/2) * D^(1/2) yet.
3370:    MatForwardSolve() solves U^T*D y = b, and
3371:    MatBackwardSolve() solves U x = y.
3372:    Thus they do not provide a symmetric preconditioner.

3374:    Most users should employ the simplified KSP interface for linear solvers
3375:    instead of working directly with matrix algebra routines such as this.
3376:    See, e.g., KSPCreate().

3378:    Level: developer

3380:    Concepts: matrices^backward solves

3382: .seealso: MatSolve(), MatForwardSolve()
3383: @*/
3384: PetscErrorCode  MatBackwardSolve(Mat mat,Vec b,Vec x)
3385: {

3395:   if (x == b) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"x and b must be different vectors");
3396:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
3397:   if (!mat->ops->backwardsolve) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
3398:   if (mat->cmap->N != x->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->cmap->N,x->map->N);
3399:   if (mat->rmap->N != b->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: global dim %D %D",mat->rmap->N,b->map->N);
3400:   if (mat->rmap->n != b->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: local dim %D %D",mat->rmap->n,b->map->n);
3401:   MatCheckPreallocated(mat,1);

3403:   PetscLogEventBegin(MAT_BackwardSolve,mat,b,x,0);
3404:   (*mat->ops->backwardsolve)(mat,b,x);
3405:   PetscLogEventEnd(MAT_BackwardSolve,mat,b,x,0);
3406:   PetscObjectStateIncrease((PetscObject)x);
3407:   return(0);
3408: }

3412: /*@
3413:    MatSolveAdd - Computes x = y + inv(A)*b, given a factored matrix.

3415:    Neighbor-wise Collective on Mat and Vec

3417:    Input Parameters:
3418: +  mat - the factored matrix
3419: .  b - the right-hand-side vector
3420: -  y - the vector to be added to

3422:    Output Parameter:
3423: .  x - the result vector

3425:    Notes:
3426:    The vectors b and x cannot be the same.  I.e., one cannot
3427:    call MatSolveAdd(A,x,y,x).

3429:    Most users should employ the simplified KSP interface for linear solvers
3430:    instead of working directly with matrix algebra routines such as this.
3431:    See, e.g., KSPCreate().

3433:    Level: developer

3435:    Concepts: matrices^triangular solves

3437: .seealso: MatSolve(), MatSolveTranspose(), MatSolveTransposeAdd()
3438: @*/
3439: PetscErrorCode  MatSolveAdd(Mat mat,Vec b,Vec y,Vec x)
3440: {
3441:   PetscScalar    one = 1.0;
3442:   Vec            tmp;

3454:   if (x == b) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"x and b must be different vectors");
3455:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
3456:   if (mat->cmap->N != x->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->cmap->N,x->map->N);
3457:   if (mat->rmap->N != b->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: global dim %D %D",mat->rmap->N,b->map->N);
3458:   if (mat->rmap->N != y->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: global dim %D %D",mat->rmap->N,y->map->N);
3459:   if (mat->rmap->n != b->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: local dim %D %D",mat->rmap->n,b->map->n);
3460:   if (x->map->n != y->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Vec x,Vec y: local dim %D %D",x->map->n,y->map->n);
3461:   MatCheckPreallocated(mat,1);

3463:   PetscLogEventBegin(MAT_SolveAdd,mat,b,x,y);
3464:   if (mat->ops->solveadd) {
3465:     (*mat->ops->solveadd)(mat,b,y,x);
3466:   } else {
3467:     /* do the solve then the add manually */
3468:     if (x != y) {
3469:       MatSolve(mat,b,x);
3470:       VecAXPY(x,one,y);
3471:     } else {
3472:       VecDuplicate(x,&tmp);
3473:       PetscLogObjectParent((PetscObject)mat,(PetscObject)tmp);
3474:       VecCopy(x,tmp);
3475:       MatSolve(mat,b,x);
3476:       VecAXPY(x,one,tmp);
3477:       VecDestroy(&tmp);
3478:     }
3479:   }
3480:   PetscLogEventEnd(MAT_SolveAdd,mat,b,x,y);
3481:   PetscObjectStateIncrease((PetscObject)x);
3482:   return(0);
3483: }

3487: /*@
3488:    MatSolveTranspose - Solves A' x = b, given a factored matrix.

3490:    Neighbor-wise Collective on Mat and Vec

3492:    Input Parameters:
3493: +  mat - the factored matrix
3494: -  b - the right-hand-side vector

3496:    Output Parameter:
3497: .  x - the result vector

3499:    Notes:
3500:    The vectors b and x cannot be the same.  I.e., one cannot
3501:    call MatSolveTranspose(A,x,x).

3503:    Most users should employ the simplified KSP interface for linear solvers
3504:    instead of working directly with matrix algebra routines such as this.
3505:    See, e.g., KSPCreate().

3507:    Level: developer

3509:    Concepts: matrices^triangular solves

3511: .seealso: MatSolve(), MatSolveAdd(), MatSolveTransposeAdd()
3512: @*/
3513: PetscErrorCode  MatSolveTranspose(Mat mat,Vec b,Vec x)
3514: {

3524:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
3525:   if (x == b) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"x and b must be different vectors");
3526:   if (!mat->ops->solvetranspose) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Matrix type %s",((PetscObject)mat)->type_name);
3527:   if (mat->rmap->N != x->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->rmap->N,x->map->N);
3528:   if (mat->cmap->N != b->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: global dim %D %D",mat->cmap->N,b->map->N);
3529:   MatCheckPreallocated(mat,1);
3530:   PetscLogEventBegin(MAT_SolveTranspose,mat,b,x,0);
3531:   (*mat->ops->solvetranspose)(mat,b,x);
3532:   PetscLogEventEnd(MAT_SolveTranspose,mat,b,x,0);
3533:   PetscObjectStateIncrease((PetscObject)x);
3534:   return(0);
3535: }

3539: /*@
3540:    MatSolveTransposeAdd - Computes x = y + inv(Transpose(A)) b, given a
3541:                       factored matrix.

3543:    Neighbor-wise Collective on Mat and Vec

3545:    Input Parameters:
3546: +  mat - the factored matrix
3547: .  b - the right-hand-side vector
3548: -  y - the vector to be added to

3550:    Output Parameter:
3551: .  x - the result vector

3553:    Notes:
3554:    The vectors b and x cannot be the same.  I.e., one cannot
3555:    call MatSolveTransposeAdd(A,x,y,x).

3557:    Most users should employ the simplified KSP interface for linear solvers
3558:    instead of working directly with matrix algebra routines such as this.
3559:    See, e.g., KSPCreate().

3561:    Level: developer

3563:    Concepts: matrices^triangular solves

3565: .seealso: MatSolve(), MatSolveAdd(), MatSolveTranspose()
3566: @*/
3567: PetscErrorCode  MatSolveTransposeAdd(Mat mat,Vec b,Vec y,Vec x)
3568: {
3569:   PetscScalar    one = 1.0;
3571:   Vec            tmp;

3582:   if (x == b) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"x and b must be different vectors");
3583:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
3584:   if (mat->rmap->N != x->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->rmap->N,x->map->N);
3585:   if (mat->cmap->N != b->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: global dim %D %D",mat->cmap->N,b->map->N);
3586:   if (mat->cmap->N != y->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec y: global dim %D %D",mat->cmap->N,y->map->N);
3587:   if (x->map->n != y->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Vec x,Vec y: local dim %D %D",x->map->n,y->map->n);
3588:   MatCheckPreallocated(mat,1);

3590:   PetscLogEventBegin(MAT_SolveTransposeAdd,mat,b,x,y);
3591:   if (mat->ops->solvetransposeadd) {
3592:     (*mat->ops->solvetransposeadd)(mat,b,y,x);
3593:   } else {
3594:     /* do the solve then the add manually */
3595:     if (x != y) {
3596:       MatSolveTranspose(mat,b,x);
3597:       VecAXPY(x,one,y);
3598:     } else {
3599:       VecDuplicate(x,&tmp);
3600:       PetscLogObjectParent((PetscObject)mat,(PetscObject)tmp);
3601:       VecCopy(x,tmp);
3602:       MatSolveTranspose(mat,b,x);
3603:       VecAXPY(x,one,tmp);
3604:       VecDestroy(&tmp);
3605:     }
3606:   }
3607:   PetscLogEventEnd(MAT_SolveTransposeAdd,mat,b,x,y);
3608:   PetscObjectStateIncrease((PetscObject)x);
3609:   return(0);
3610: }
3611: /* ----------------------------------------------------------------*/

3615: /*@
3616:    MatSOR - Computes relaxation (SOR, Gauss-Seidel) sweeps.

3618:    Neighbor-wise Collective on Mat and Vec

3620:    Input Parameters:
3621: +  mat - the matrix
3622: .  b - the right hand side
3623: .  omega - the relaxation factor
3624: .  flag - flag indicating the type of SOR (see below)
3625: .  shift -  diagonal shift
3626: .  its - the number of iterations
3627: -  lits - the number of local iterations

3629:    Output Parameters:
3630: .  x - the solution (can contain an initial guess, use option SOR_ZERO_INITIAL_GUESS to indicate no guess)

3632:    SOR Flags:
3633: .     SOR_FORWARD_SWEEP - forward SOR
3634: .     SOR_BACKWARD_SWEEP - backward SOR
3635: .     SOR_SYMMETRIC_SWEEP - SSOR (symmetric SOR)
3636: .     SOR_LOCAL_FORWARD_SWEEP - local forward SOR
3637: .     SOR_LOCAL_BACKWARD_SWEEP - local forward SOR
3638: .     SOR_LOCAL_SYMMETRIC_SWEEP - local SSOR
3639: .     SOR_APPLY_UPPER, SOR_APPLY_LOWER - applies
3640:          upper/lower triangular part of matrix to
3641:          vector (with omega)
3642: .     SOR_ZERO_INITIAL_GUESS - zero initial guess

3644:    Notes:
3645:    SOR_LOCAL_FORWARD_SWEEP, SOR_LOCAL_BACKWARD_SWEEP, and
3646:    SOR_LOCAL_SYMMETRIC_SWEEP perform separate independent smoothings
3647:    on each processor.

3649:    Application programmers will not generally use MatSOR() directly,
3650:    but instead will employ the KSP/PC interface.

3652:    Notes: for BAIJ, SBAIJ, and AIJ matrices with Inodes this does a block SOR smoothing, otherwise it does a pointwise smoothing

3654:    Notes for Advanced Users:
3655:    The flags are implemented as bitwise inclusive or operations.
3656:    For example, use (SOR_ZERO_INITIAL_GUESS | SOR_SYMMETRIC_SWEEP)
3657:    to specify a zero initial guess for SSOR.

3659:    Most users should employ the simplified KSP interface for linear solvers
3660:    instead of working directly with matrix algebra routines such as this.
3661:    See, e.g., KSPCreate().

3663:    Vectors x and b CANNOT be the same

3665:    Developer Note: We should add block SOR support for AIJ matrices with block size set to great than one and no inodes

3667:    Level: developer

3669:    Concepts: matrices^relaxation
3670:    Concepts: matrices^SOR
3671:    Concepts: matrices^Gauss-Seidel

3673: @*/
3674: PetscErrorCode  MatSOR(Mat mat,Vec b,PetscReal omega,MatSORType flag,PetscReal shift,PetscInt its,PetscInt lits,Vec x)
3675: {

3685:   if (!mat->ops->sor) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
3686:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
3687:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
3688:   if (mat->cmap->N != x->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec x: global dim %D %D",mat->cmap->N,x->map->N);
3689:   if (mat->rmap->N != b->map->N) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: global dim %D %D",mat->rmap->N,b->map->N);
3690:   if (mat->rmap->n != b->map->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat mat,Vec b: local dim %D %D",mat->rmap->n,b->map->n);
3691:   if (its <= 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Relaxation requires global its %D positive",its);
3692:   if (lits <= 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Relaxation requires local its %D positive",lits);
3693:   if (b == x) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_IDN,"b and x vector cannot be the same");

3695:   MatCheckPreallocated(mat,1);
3696:   PetscLogEventBegin(MAT_SOR,mat,b,x,0);
3697:   ierr =(*mat->ops->sor)(mat,b,omega,flag,shift,its,lits,x);
3698:   PetscLogEventEnd(MAT_SOR,mat,b,x,0);
3699:   PetscObjectStateIncrease((PetscObject)x);
3700:   return(0);
3701: }

3705: /*
3706:       Default matrix copy routine.
3707: */
3708: PetscErrorCode MatCopy_Basic(Mat A,Mat B,MatStructure str)
3709: {
3710:   PetscErrorCode    ierr;
3711:   PetscInt          i,rstart = 0,rend = 0,nz;
3712:   const PetscInt    *cwork;
3713:   const PetscScalar *vwork;

3716:   if (B->assembled) {
3717:     MatZeroEntries(B);
3718:   }
3719:   MatGetOwnershipRange(A,&rstart,&rend);
3720:   for (i=rstart; i<rend; i++) {
3721:     MatGetRow(A,i,&nz,&cwork,&vwork);
3722:     MatSetValues(B,1,&i,nz,cwork,vwork,INSERT_VALUES);
3723:     MatRestoreRow(A,i,&nz,&cwork,&vwork);
3724:   }
3725:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
3726:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
3727:   PetscObjectStateIncrease((PetscObject)B);
3728:   return(0);
3729: }

3733: /*@
3734:    MatCopy - Copys a matrix to another matrix.

3736:    Collective on Mat

3738:    Input Parameters:
3739: +  A - the matrix
3740: -  str - SAME_NONZERO_PATTERN or DIFFERENT_NONZERO_PATTERN

3742:    Output Parameter:
3743: .  B - where the copy is put

3745:    Notes:
3746:    If you use SAME_NONZERO_PATTERN then the two matrices had better have the
3747:    same nonzero pattern or the routine will crash.

3749:    MatCopy() copies the matrix entries of a matrix to another existing
3750:    matrix (after first zeroing the second matrix).  A related routine is
3751:    MatConvert(), which first creates a new matrix and then copies the data.

3753:    Level: intermediate

3755:    Concepts: matrices^copying

3757: .seealso: MatConvert(), MatDuplicate()

3759: @*/
3760: PetscErrorCode  MatCopy(Mat A,Mat B,MatStructure str)
3761: {
3763:   PetscInt       i;

3771:   MatCheckPreallocated(B,2);
3772:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
3773:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
3774:   if (A->rmap->N != B->rmap->N || A->cmap->N != B->cmap->N) SETERRQ4(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Mat A,Mat B: global dim (%D,%D) (%D,%D)",A->rmap->N,B->rmap->N,A->cmap->N,B->cmap->N);
3775:   MatCheckPreallocated(A,1);

3777:   PetscLogEventBegin(MAT_Copy,A,B,0,0);
3778:   if (A->ops->copy) {
3779:     (*A->ops->copy)(A,B,str);
3780:   } else { /* generic conversion */
3781:     MatCopy_Basic(A,B,str);
3782:   }

3784:   B->stencil.dim = A->stencil.dim;
3785:   B->stencil.noc = A->stencil.noc;
3786:   for (i=0; i<=A->stencil.dim; i++) {
3787:     B->stencil.dims[i]   = A->stencil.dims[i];
3788:     B->stencil.starts[i] = A->stencil.starts[i];
3789:   }

3791:   PetscLogEventEnd(MAT_Copy,A,B,0,0);
3792:   PetscObjectStateIncrease((PetscObject)B);
3793:   return(0);
3794: }

3798: /*@C
3799:    MatConvert - Converts a matrix to another matrix, either of the same
3800:    or different type.

3802:    Collective on Mat

3804:    Input Parameters:
3805: +  mat - the matrix
3806: .  newtype - new matrix type.  Use MATSAME to create a new matrix of the
3807:    same type as the original matrix.
3808: -  reuse - denotes if the destination matrix is to be created or reused.  Currently
3809:    MAT_REUSE_MATRIX is only supported for inplace conversion, otherwise use
3810:    MAT_INITIAL_MATRIX.

3812:    Output Parameter:
3813: .  M - pointer to place new matrix

3815:    Notes:
3816:    MatConvert() first creates a new matrix and then copies the data from
3817:    the first matrix.  A related routine is MatCopy(), which copies the matrix
3818:    entries of one matrix to another already existing matrix context.

3820:    Cannot be used to convert a sequential matrix to parallel or parallel to sequential,
3821:    the MPI communicator of the generated matrix is always the same as the communicator
3822:    of the input matrix.

3824:    Level: intermediate

3826:    Concepts: matrices^converting between storage formats

3828: .seealso: MatCopy(), MatDuplicate()
3829: @*/
3830: PetscErrorCode  MatConvert(Mat mat, MatType newtype,MatReuse reuse,Mat *M)
3831: {
3833:   PetscBool      sametype,issame,flg;
3834:   char           convname[256],mtype[256];
3835:   Mat            B;

3841:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
3842:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
3843:   MatCheckPreallocated(mat,1);
3844:   MatSetOption(mat,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_FALSE);

3846:   PetscOptionsGetString(((PetscObject)mat)->prefix,"-matconvert_type",mtype,256,&flg);
3847:   if (flg) {
3848:     newtype = mtype;
3849:   }
3850:   PetscObjectTypeCompare((PetscObject)mat,newtype,&sametype);
3851:   PetscStrcmp(newtype,"same",&issame);
3852:   if ((reuse == MAT_REUSE_MATRIX) && (mat != *M)) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"MAT_REUSE_MATRIX only supported for in-place conversion currently");

3854:   if ((reuse == MAT_REUSE_MATRIX) && (issame || sametype)) return(0);

3856:   if ((sametype || issame) && (reuse==MAT_INITIAL_MATRIX) && mat->ops->duplicate) {
3857:     (*mat->ops->duplicate)(mat,MAT_COPY_VALUES,M);
3858:   } else {
3859:     PetscErrorCode (*conv)(Mat, MatType,MatReuse,Mat*)=NULL;
3860:     const char     *prefix[3] = {"seq","mpi",""};
3861:     PetscInt       i;
3862:     /*
3863:        Order of precedence:
3864:        1) See if a specialized converter is known to the current matrix.
3865:        2) See if a specialized converter is known to the desired matrix class.
3866:        3) See if a good general converter is registered for the desired class
3867:           (as of 6/27/03 only MATMPIADJ falls into this category).
3868:        4) See if a good general converter is known for the current matrix.
3869:        5) Use a really basic converter.
3870:     */

3872:     /* 1) See if a specialized converter is known to the current matrix and the desired class */
3873:     for (i=0; i<3; i++) {
3874:       PetscStrcpy(convname,"MatConvert_");
3875:       PetscStrcat(convname,((PetscObject)mat)->type_name);
3876:       PetscStrcat(convname,"_");
3877:       PetscStrcat(convname,prefix[i]);
3878:       PetscStrcat(convname,issame ? ((PetscObject)mat)->type_name : newtype);
3879:       PetscStrcat(convname,"_C");
3880:       PetscObjectQueryFunction((PetscObject)mat,convname,&conv);
3881:       if (conv) goto foundconv;
3882:     }

3884:     /* 2)  See if a specialized converter is known to the desired matrix class. */
3885:     MatCreate(PetscObjectComm((PetscObject)mat),&B);
3886:     MatSetSizes(B,mat->rmap->n,mat->cmap->n,mat->rmap->N,mat->cmap->N);
3887:     MatSetType(B,newtype);
3888:     for (i=0; i<3; i++) {
3889:       PetscStrcpy(convname,"MatConvert_");
3890:       PetscStrcat(convname,((PetscObject)mat)->type_name);
3891:       PetscStrcat(convname,"_");
3892:       PetscStrcat(convname,prefix[i]);
3893:       PetscStrcat(convname,newtype);
3894:       PetscStrcat(convname,"_C");
3895:       PetscObjectQueryFunction((PetscObject)B,convname,&conv);
3896:       if (conv) {
3897:         MatDestroy(&B);
3898:         goto foundconv;
3899:       }
3900:     }

3902:     /* 3) See if a good general converter is registered for the desired class */
3903:     conv = B->ops->convertfrom;
3904:     MatDestroy(&B);
3905:     if (conv) goto foundconv;

3907:     /* 4) See if a good general converter is known for the current matrix */
3908:     if (mat->ops->convert) {
3909:       conv = mat->ops->convert;
3910:     }
3911:     if (conv) goto foundconv;

3913:     /* 5) Use a really basic converter. */
3914:     conv = MatConvert_Basic;

3916: foundconv:
3917:     PetscLogEventBegin(MAT_Convert,mat,0,0,0);
3918:     (*conv)(mat,newtype,reuse,M);
3919:     PetscLogEventEnd(MAT_Convert,mat,0,0,0);
3920:   }
3921:   PetscObjectStateIncrease((PetscObject)*M);

3923:   /* Copy Mat options */
3924:   if (mat->symmetric) {MatSetOption(*M,MAT_SYMMETRIC,PETSC_TRUE);}
3925:   if (mat->hermitian) {MatSetOption(*M,MAT_HERMITIAN,PETSC_TRUE);}
3926:   return(0);
3927: }

3931: /*@C
3932:    MatFactorGetSolverPackage - Returns name of the package providing the factorization routines

3934:    Not Collective

3936:    Input Parameter:
3937: .  mat - the matrix, must be a factored matrix

3939:    Output Parameter:
3940: .   type - the string name of the package (do not free this string)

3942:    Notes:
3943:       In Fortran you pass in a empty string and the package name will be copied into it.
3944:     (Make sure the string is long enough)

3946:    Level: intermediate

3948: .seealso: MatCopy(), MatDuplicate(), MatGetFactorAvailable(), MatGetFactor()
3949: @*/
3950: PetscErrorCode  MatFactorGetSolverPackage(Mat mat, const MatSolverPackage *type)
3951: {
3952:   PetscErrorCode ierr, (*conv)(Mat,const MatSolverPackage*);

3957:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Only for factored matrix");
3958:   PetscObjectQueryFunction((PetscObject)mat,"MatFactorGetSolverPackage_C",&conv);
3959:   if (!conv) {
3960:     *type = MATSOLVERPETSC;
3961:   } else {
3962:     (*conv)(mat,type);
3963:   }
3964:   return(0);
3965: }

3967: typedef struct _MatSolverPackageForSpecifcType* MatSolverPackageForSpecifcType;
3968: struct _MatSolverPackageForSpecifcType {
3969:   MatType                        mtype;
3970:   PetscErrorCode                 (*getfactor[4])(Mat,MatFactorType,Mat*);
3971:   MatSolverPackageForSpecifcType next;
3972: };

3974: typedef struct _MatSolverPackageHolder* MatSolverPackageHolder;
3975: struct _MatSolverPackageHolder {
3976:   char                           *name;
3977:   MatSolverPackageForSpecifcType handlers;
3978:   MatSolverPackageHolder         next;
3979: };

3981: static MatSolverPackageHolder MatSolverPackageHolders = NULL;

3985: /*@C
3986:    MatSolvePackageRegister - Registers a MatSolverPackage that works for a particular matrix type

3988:    Input Parameters:
3989: +    package - name of the package, for example petsc or superlu
3990: .    mtype - the matrix type that works with this package
3991: .    ftype - the type of factorization supported by the package
3992: -    getfactor - routine that will create the factored matrix ready to be used

3994:     Level: intermediate

3996: .seealso: MatCopy(), MatDuplicate(), MatGetFactorAvailable()
3997: @*/
3998: PetscErrorCode  MatSolverPackageRegister(const MatSolverPackage package,const MatType mtype,MatFactorType ftype,PetscErrorCode (*getfactor)(Mat,MatFactorType,Mat*))
3999: {
4000:   PetscErrorCode                 ierr;
4001:   MatSolverPackageHolder         next = MatSolverPackageHolders,prev;
4002:   PetscBool                      flg;
4003:   MatSolverPackageForSpecifcType inext,iprev = NULL;

4006:   if (!MatSolverPackageHolders) {
4007:     PetscNew(&MatSolverPackageHolders);
4008:     PetscStrallocpy(package,&MatSolverPackageHolders->name);
4009:     PetscNew(&MatSolverPackageHolders->handlers);
4010:     PetscStrallocpy(mtype,(char **)&MatSolverPackageHolders->handlers->mtype);
4011:     MatSolverPackageHolders->handlers->getfactor[(int)ftype-1] = getfactor;
4012:     return(0);
4013:   }
4014:   while (next) {
4015:     PetscStrcasecmp(package,next->name,&flg);
4016:     if (flg) {
4017:       inext = next->handlers;
4018:       while (inext) {
4019:         PetscStrcasecmp(mtype,inext->mtype,&flg);
4020:         if (flg) {
4021:           inext->getfactor[(int)ftype-1] = getfactor;
4022:           return(0);
4023:         }
4024:         iprev = inext;
4025:         inext = inext->next;
4026:       }
4027:       PetscNew(&iprev->next);
4028:       PetscStrallocpy(mtype,(char **)&iprev->next->mtype);
4029:       iprev->next->getfactor[(int)ftype-1] = getfactor;
4030:       return(0);
4031:     }
4032:     prev = next;
4033:     next = next->next;
4034:   }
4035:   PetscNew(&prev->next);
4036:   PetscStrallocpy(package,&prev->next->name);
4037:   PetscNew(&prev->next->handlers);
4038:   PetscStrallocpy(mtype,(char **)&prev->next->handlers->mtype);
4039:   prev->next->handlers->getfactor[(int)ftype-1] = getfactor;
4040:   return(0);
4041: }

4045: /*@C
4046:    MatSolvePackageGet - Get's the function that creates the factor matrix if it exist

4048:    Input Parameters:
4049: +    package - name of the package, for example petsc or superlu
4050: .    ftype - the type of factorization supported by the package
4051: -    mtype - the matrix type that works with this package

4053:    Output Parameters:
4054: +   foundpackage - PETSC_TRUE if the package was registered
4055: .   foundmtype - PETSC_TRUE if the package supports the requested mtype
4056: -   getfactor - routine that will create the factored matrix ready to be used or NULL if not found

4058:     Level: intermediate

4060: .seealso: MatCopy(), MatDuplicate(), MatGetFactorAvailable()
4061: @*/
4062: PetscErrorCode  MatSolverPackageGet(const MatSolverPackage package,const MatType mtype,MatFactorType ftype,PetscBool *foundpackage,PetscBool *foundmtype,PetscErrorCode (**getfactor)(Mat,MatFactorType,Mat*))
4063: {
4064:   PetscErrorCode                 ierr;
4065:   MatSolverPackageHolder         next = MatSolverPackageHolders;
4066:   PetscBool                      flg;
4067:   MatSolverPackageForSpecifcType inext;

4070:   if (foundpackage) *foundpackage = PETSC_FALSE;
4071:   if (foundmtype)   *foundmtype   = PETSC_FALSE;
4072:   if (getfactor)    *getfactor    = NULL;
4073:   while (next) {
4074:     PetscStrcasecmp(package,next->name,&flg);
4075:     if (flg) {
4076:       if (foundpackage) *foundpackage = PETSC_TRUE;
4077:       inext = next->handlers;
4078:       while (inext) {
4079:         PetscStrcasecmp(mtype,inext->mtype,&flg);
4080:         if (flg) {
4081:           if (foundmtype) *foundmtype = PETSC_TRUE;
4082:           if (getfactor)  *getfactor  = inext->getfactor[(int)ftype-1];
4083:           return(0);
4084:         }
4085:         inext = inext->next;
4086:       }
4087:     }
4088:     next = next->next;
4089:   }
4090:   return(0);
4091: }

4095: PetscErrorCode  MatSolverPackageDestroy(void)
4096: {
4097:   PetscErrorCode                 ierr;
4098:   MatSolverPackageHolder         next = MatSolverPackageHolders,prev;
4099:   MatSolverPackageForSpecifcType inext,iprev;

4102:   while (next) {
4103:     PetscFree(next->name);
4104:     inext = next->handlers;
4105:     while (inext) {
4106:       PetscFree(inext->mtype);
4107:       iprev = inext;
4108:       inext = inext->next;
4109:       PetscFree(iprev);
4110:     }
4111:     prev = next;
4112:     next = next->next;
4113:     PetscFree(prev);
4114:   }
4115:   MatSolverPackageHolders = NULL;
4116:   return(0);
4117: }

4121: /*@C
4122:    MatGetFactor - Returns a matrix suitable to calls to MatXXFactorSymbolic()

4124:    Collective on Mat

4126:    Input Parameters:
4127: +  mat - the matrix
4128: .  type - name of solver type, for example, superlu, petsc (to use PETSc's default)
4129: -  ftype - factor type, MAT_FACTOR_LU, MAT_FACTOR_CHOLESKY, MAT_FACTOR_ICC, MAT_FACTOR_ILU,

4131:    Output Parameters:
4132: .  f - the factor matrix used with MatXXFactorSymbolic() calls

4134:    Notes:
4135:       Some PETSc matrix formats have alternative solvers available that are contained in alternative packages
4136:      such as pastix, superlu, mumps etc.

4138:       PETSc must have been ./configure to use the external solver, using the option --download-package

4140:    Level: intermediate

4142: .seealso: MatCopy(), MatDuplicate(), MatGetFactorAvailable()
4143: @*/
4144: PetscErrorCode  MatGetFactor(Mat mat, const MatSolverPackage type,MatFactorType ftype,Mat *f)
4145: {
4146:   PetscErrorCode ierr,(*conv)(Mat,MatFactorType,Mat*);
4147:   PetscBool      foundpackage,foundmtype;


4153:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
4154:   MatCheckPreallocated(mat,1);

4156:   MatSolverPackageGet(type,((PetscObject)mat)->type_name,ftype,&foundpackage,&foundmtype,&conv);
4157:   if (!foundpackage) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_MISSING_FACTOR,"Could not locate solver package %s. Perhaps you must ./configure with --download-%s",type,type);
4158:   if (!foundmtype) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_MISSING_FACTOR,"MatSolverPackage %s does not support matrix type %s",type,((PetscObject)mat)->type_name);
4159:   if (!conv) SETERRQ3(PetscObjectComm((PetscObject)mat),PETSC_ERR_MISSING_FACTOR,"MatSolverPackage %s does not support factorization type %s for  matrix type %s",type,MatFactorTypes[ftype],((PetscObject)mat)->type_name);

4161:   (*conv)(mat,ftype,f);
4162:   return(0);
4163: }

4167: /*@C
4168:    MatGetFactorAvailable - Returns a a flag if matrix supports particular package and factor type

4170:    Not Collective

4172:    Input Parameters:
4173: +  mat - the matrix
4174: .  type - name of solver type, for example, superlu, petsc (to use PETSc's default)
4175: -  ftype - factor type, MAT_FACTOR_LU, MAT_FACTOR_CHOLESKY, MAT_FACTOR_ICC, MAT_FACTOR_ILU,

4177:    Output Parameter:
4178: .    flg - PETSC_TRUE if the factorization is available

4180:    Notes:
4181:       Some PETSc matrix formats have alternative solvers available that are contained in alternative packages
4182:      such as pastix, superlu, mumps etc.

4184:       PETSc must have been ./configure to use the external solver, using the option --download-package

4186:    Level: intermediate

4188: .seealso: MatCopy(), MatDuplicate(), MatGetFactor()
4189: @*/
4190: PetscErrorCode  MatGetFactorAvailable(Mat mat, const MatSolverPackage type,MatFactorType ftype,PetscBool  *flg)
4191: {
4192:   PetscErrorCode ierr, (*gconv)(Mat,MatFactorType,Mat*);


4198:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
4199:   MatCheckPreallocated(mat,1);

4201:   *flg = PETSC_FALSE;
4202:   MatSolverPackageGet(type,((PetscObject)mat)->type_name,ftype,NULL,NULL,&gconv);
4203:   if (gconv) {
4204:     *flg = PETSC_TRUE;
4205:   }
4206:   return(0);
4207: }

4209: #include <petscdmtypes.h>

4213: /*@
4214:    MatDuplicate - Duplicates a matrix including the non-zero structure.

4216:    Collective on Mat

4218:    Input Parameters:
4219: +  mat - the matrix
4220: -  op - either MAT_DO_NOT_COPY_VALUES or MAT_COPY_VALUES, cause it to copy the numerical values in the matrix
4221:         MAT_SHARE_NONZERO_PATTERN to share the nonzero patterns with the previous matrix and not copy them.

4223:    Output Parameter:
4224: .  M - pointer to place new matrix

4226:    Level: intermediate

4228:    Concepts: matrices^duplicating

4230:     Notes: You cannot change the nonzero pattern for the parent or child matrix if you use MAT_SHARE_NONZERO_PATTERN.

4232: .seealso: MatCopy(), MatConvert()
4233: @*/
4234: PetscErrorCode  MatDuplicate(Mat mat,MatDuplicateOption op,Mat *M)
4235: {
4237:   Mat            B;
4238:   PetscInt       i;
4239:   DM             dm;

4245:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4246:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
4247:   MatCheckPreallocated(mat,1);

4249:   *M = 0;
4250:   if (!mat->ops->duplicate) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Not written for this matrix type");
4251:   PetscLogEventBegin(MAT_Convert,mat,0,0,0);
4252:   (*mat->ops->duplicate)(mat,op,M);
4253:   B    = *M;

4255:   B->stencil.dim = mat->stencil.dim;
4256:   B->stencil.noc = mat->stencil.noc;
4257:   for (i=0; i<=mat->stencil.dim; i++) {
4258:     B->stencil.dims[i]   = mat->stencil.dims[i];
4259:     B->stencil.starts[i] = mat->stencil.starts[i];
4260:   }

4262:   B->nooffproczerorows = mat->nooffproczerorows;
4263:   B->nooffprocentries  = mat->nooffprocentries;

4265:   PetscObjectQuery((PetscObject) mat, "__PETSc_dm", (PetscObject*) &dm);
4266:   if (dm) {
4267:     PetscObjectCompose((PetscObject) B, "__PETSc_dm", (PetscObject) dm);
4268:   }
4269:   PetscLogEventEnd(MAT_Convert,mat,0,0,0);
4270:   PetscObjectStateIncrease((PetscObject)B);
4271:   return(0);
4272: }

4276: /*@
4277:    MatGetDiagonal - Gets the diagonal of a matrix.

4279:    Logically Collective on Mat and Vec

4281:    Input Parameters:
4282: +  mat - the matrix
4283: -  v - the vector for storing the diagonal

4285:    Output Parameter:
4286: .  v - the diagonal of the matrix

4288:    Level: intermediate

4290:    Note:
4291:    Currently only correct in parallel for square matrices.

4293:    Concepts: matrices^accessing diagonals

4295: .seealso: MatGetRow(), MatGetSubMatrices(), MatGetSubmatrix(), MatGetRowMaxAbs()
4296: @*/
4297: PetscErrorCode  MatGetDiagonal(Mat mat,Vec v)
4298: {

4305:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4306:   if (!mat->ops->getdiagonal) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4307:   MatCheckPreallocated(mat,1);

4309:   (*mat->ops->getdiagonal)(mat,v);
4310:   PetscObjectStateIncrease((PetscObject)v);
4311:   return(0);
4312: }

4316: /*@C
4317:    MatGetRowMin - Gets the minimum value (of the real part) of each
4318:         row of the matrix

4320:    Logically Collective on Mat and Vec

4322:    Input Parameters:
4323: .  mat - the matrix

4325:    Output Parameter:
4326: +  v - the vector for storing the maximums
4327: -  idx - the indices of the column found for each row (optional)

4329:    Level: intermediate

4331:    Notes: The result of this call are the same as if one converted the matrix to dense format
4332:       and found the minimum value in each row (i.e. the implicit zeros are counted as zeros).

4334:     This code is only implemented for a couple of matrix formats.

4336:    Concepts: matrices^getting row maximums

4338: .seealso: MatGetDiagonal(), MatGetSubMatrices(), MatGetSubmatrix(), MatGetRowMaxAbs(),
4339:           MatGetRowMax()
4340: @*/
4341: PetscErrorCode  MatGetRowMin(Mat mat,Vec v,PetscInt idx[])
4342: {

4349:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4350:   if (!mat->ops->getrowmax) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4351:   MatCheckPreallocated(mat,1);

4353:   (*mat->ops->getrowmin)(mat,v,idx);
4354:   PetscObjectStateIncrease((PetscObject)v);
4355:   return(0);
4356: }

4360: /*@C
4361:    MatGetRowMinAbs - Gets the minimum value (in absolute value) of each
4362:         row of the matrix

4364:    Logically Collective on Mat and Vec

4366:    Input Parameters:
4367: .  mat - the matrix

4369:    Output Parameter:
4370: +  v - the vector for storing the minimums
4371: -  idx - the indices of the column found for each row (or NULL if not needed)

4373:    Level: intermediate

4375:    Notes: if a row is completely empty or has only 0.0 values then the idx[] value for that
4376:     row is 0 (the first column).

4378:     This code is only implemented for a couple of matrix formats.

4380:    Concepts: matrices^getting row maximums

4382: .seealso: MatGetDiagonal(), MatGetSubMatrices(), MatGetSubmatrix(), MatGetRowMax(), MatGetRowMaxAbs(), MatGetRowMin()
4383: @*/
4384: PetscErrorCode  MatGetRowMinAbs(Mat mat,Vec v,PetscInt idx[])
4385: {

4392:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4393:   if (!mat->ops->getrowminabs) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4394:   MatCheckPreallocated(mat,1);
4395:   if (idx) {PetscMemzero(idx,mat->rmap->n*sizeof(PetscInt));}

4397:   (*mat->ops->getrowminabs)(mat,v,idx);
4398:   PetscObjectStateIncrease((PetscObject)v);
4399:   return(0);
4400: }

4404: /*@C
4405:    MatGetRowMax - Gets the maximum value (of the real part) of each
4406:         row of the matrix

4408:    Logically Collective on Mat and Vec

4410:    Input Parameters:
4411: .  mat - the matrix

4413:    Output Parameter:
4414: +  v - the vector for storing the maximums
4415: -  idx - the indices of the column found for each row (optional)

4417:    Level: intermediate

4419:    Notes: The result of this call are the same as if one converted the matrix to dense format
4420:       and found the minimum value in each row (i.e. the implicit zeros are counted as zeros).

4422:     This code is only implemented for a couple of matrix formats.

4424:    Concepts: matrices^getting row maximums

4426: .seealso: MatGetDiagonal(), MatGetSubMatrices(), MatGetSubmatrix(), MatGetRowMaxAbs(), MatGetRowMin()
4427: @*/
4428: PetscErrorCode  MatGetRowMax(Mat mat,Vec v,PetscInt idx[])
4429: {

4436:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4437:   if (!mat->ops->getrowmax) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4438:   MatCheckPreallocated(mat,1);

4440:   (*mat->ops->getrowmax)(mat,v,idx);
4441:   PetscObjectStateIncrease((PetscObject)v);
4442:   return(0);
4443: }

4447: /*@C
4448:    MatGetRowMaxAbs - Gets the maximum value (in absolute value) of each
4449:         row of the matrix

4451:    Logically Collective on Mat and Vec

4453:    Input Parameters:
4454: .  mat - the matrix

4456:    Output Parameter:
4457: +  v - the vector for storing the maximums
4458: -  idx - the indices of the column found for each row (or NULL if not needed)

4460:    Level: intermediate

4462:    Notes: if a row is completely empty or has only 0.0 values then the idx[] value for that
4463:     row is 0 (the first column).

4465:     This code is only implemented for a couple of matrix formats.

4467:    Concepts: matrices^getting row maximums

4469: .seealso: MatGetDiagonal(), MatGetSubMatrices(), MatGetSubmatrix(), MatGetRowMax(), MatGetRowMin()
4470: @*/
4471: PetscErrorCode  MatGetRowMaxAbs(Mat mat,Vec v,PetscInt idx[])
4472: {

4479:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4480:   if (!mat->ops->getrowmaxabs) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4481:   MatCheckPreallocated(mat,1);
4482:   if (idx) {PetscMemzero(idx,mat->rmap->n*sizeof(PetscInt));}

4484:   (*mat->ops->getrowmaxabs)(mat,v,idx);
4485:   PetscObjectStateIncrease((PetscObject)v);
4486:   return(0);
4487: }

4491: /*@
4492:    MatGetRowSum - Gets the sum of each row of the matrix

4494:    Logically Collective on Mat and Vec

4496:    Input Parameters:
4497: .  mat - the matrix

4499:    Output Parameter:
4500: .  v - the vector for storing the sum of rows

4502:    Level: intermediate

4504:    Notes: This code is slow since it is not currently specialized for different formats

4506:    Concepts: matrices^getting row sums

4508: .seealso: MatGetDiagonal(), MatGetSubMatrices(), MatGetSubmatrix(), MatGetRowMax(), MatGetRowMin()
4509: @*/
4510: PetscErrorCode  MatGetRowSum(Mat mat, Vec v)
4511: {
4512:   PetscInt       start = 0, end = 0, row;
4513:   PetscScalar    *array;

4520:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4521:   MatCheckPreallocated(mat,1);
4522:   MatGetOwnershipRange(mat, &start, &end);
4523:   VecGetArray(v, &array);
4524:   for (row = start; row < end; ++row) {
4525:     PetscInt          ncols, col;
4526:     const PetscInt    *cols;
4527:     const PetscScalar *vals;

4529:     array[row - start] = 0.0;

4531:     MatGetRow(mat, row, &ncols, &cols, &vals);
4532:     for (col = 0; col < ncols; col++) {
4533:       array[row - start] += vals[col];
4534:     }
4535:     MatRestoreRow(mat, row, &ncols, &cols, &vals);
4536:   }
4537:   VecRestoreArray(v, &array);
4538:   PetscObjectStateIncrease((PetscObject) v);
4539:   return(0);
4540: }

4544: /*@
4545:    MatTranspose - Computes an in-place or out-of-place transpose of a matrix.

4547:    Collective on Mat

4549:    Input Parameter:
4550: +  mat - the matrix to transpose
4551: -  reuse - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX

4553:    Output Parameters:
4554: .  B - the transpose

4556:    Notes:
4557:      If you  pass in &mat for B the transpose will be done in place, for example MatTranspose(mat,MAT_REUSE_MATRIX,&mat);

4559:      Consider using MatCreateTranspose() instead if you only need a matrix that behaves like the transpose, but don't need the storage to be changed.

4561:    Level: intermediate

4563:    Concepts: matrices^transposing

4565: .seealso: MatMultTranspose(), MatMultTransposeAdd(), MatIsTranspose(), MatReuse
4566: @*/
4567: PetscErrorCode  MatTranspose(Mat mat,MatReuse reuse,Mat *B)
4568: {

4574:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4575:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
4576:   if (!mat->ops->transpose) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4577:   MatCheckPreallocated(mat,1);

4579:   PetscLogEventBegin(MAT_Transpose,mat,0,0,0);
4580:   (*mat->ops->transpose)(mat,reuse,B);
4581:   PetscLogEventEnd(MAT_Transpose,mat,0,0,0);
4582:   if (B) {PetscObjectStateIncrease((PetscObject)*B);}
4583:   return(0);
4584: }

4588: /*@
4589:    MatIsTranspose - Test whether a matrix is another one's transpose,
4590:         or its own, in which case it tests symmetry.

4592:    Collective on Mat

4594:    Input Parameter:
4595: +  A - the matrix to test
4596: -  B - the matrix to test against, this can equal the first parameter

4598:    Output Parameters:
4599: .  flg - the result

4601:    Notes:
4602:    Only available for SeqAIJ/MPIAIJ matrices. The sequential algorithm
4603:    has a running time of the order of the number of nonzeros; the parallel
4604:    test involves parallel copies of the block-offdiagonal parts of the matrix.

4606:    Level: intermediate

4608:    Concepts: matrices^transposing, matrix^symmetry

4610: .seealso: MatTranspose(), MatIsSymmetric(), MatIsHermitian()
4611: @*/
4612: PetscErrorCode  MatIsTranspose(Mat A,Mat B,PetscReal tol,PetscBool  *flg)
4613: {
4614:   PetscErrorCode ierr,(*f)(Mat,Mat,PetscReal,PetscBool*),(*g)(Mat,Mat,PetscReal,PetscBool*);

4620:   PetscObjectQueryFunction((PetscObject)A,"MatIsTranspose_C",&f);
4621:   PetscObjectQueryFunction((PetscObject)B,"MatIsTranspose_C",&g);
4622:   *flg = PETSC_FALSE;
4623:   if (f && g) {
4624:     if (f == g) {
4625:       (*f)(A,B,tol,flg);
4626:     } else SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_NOTSAMETYPE,"Matrices do not have the same comparator for symmetry test");
4627:   } else {
4628:     MatType mattype;
4629:     if (!f) {
4630:       MatGetType(A,&mattype);
4631:     } else {
4632:       MatGetType(B,&mattype);
4633:     }
4634:     SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Matrix of type <%s> does not support checking for transpose",mattype);
4635:   }
4636:   return(0);
4637: }

4641: /*@
4642:    MatHermitianTranspose - Computes an in-place or out-of-place transpose of a matrix in complex conjugate.

4644:    Collective on Mat

4646:    Input Parameter:
4647: +  mat - the matrix to transpose and complex conjugate
4648: -  reuse - store the transpose matrix in the provided B

4650:    Output Parameters:
4651: .  B - the Hermitian

4653:    Notes:
4654:      If you  pass in &mat for B the Hermitian will be done in place

4656:    Level: intermediate

4658:    Concepts: matrices^transposing, complex conjugatex

4660: .seealso: MatTranspose(), MatMultTranspose(), MatMultTransposeAdd(), MatIsTranspose(), MatReuse
4661: @*/
4662: PetscErrorCode  MatHermitianTranspose(Mat mat,MatReuse reuse,Mat *B)
4663: {

4667:   MatTranspose(mat,reuse,B);
4668: #if defined(PETSC_USE_COMPLEX)
4669:   MatConjugate(*B);
4670: #endif
4671:   return(0);
4672: }

4676: /*@
4677:    MatIsHermitianTranspose - Test whether a matrix is another one's Hermitian transpose,

4679:    Collective on Mat

4681:    Input Parameter:
4682: +  A - the matrix to test
4683: -  B - the matrix to test against, this can equal the first parameter

4685:    Output Parameters:
4686: .  flg - the result

4688:    Notes:
4689:    Only available for SeqAIJ/MPIAIJ matrices. The sequential algorithm
4690:    has a running time of the order of the number of nonzeros; the parallel
4691:    test involves parallel copies of the block-offdiagonal parts of the matrix.

4693:    Level: intermediate

4695:    Concepts: matrices^transposing, matrix^symmetry

4697: .seealso: MatTranspose(), MatIsSymmetric(), MatIsHermitian(), MatIsTranspose()
4698: @*/
4699: PetscErrorCode  MatIsHermitianTranspose(Mat A,Mat B,PetscReal tol,PetscBool  *flg)
4700: {
4701:   PetscErrorCode ierr,(*f)(Mat,Mat,PetscReal,PetscBool*),(*g)(Mat,Mat,PetscReal,PetscBool*);

4707:   PetscObjectQueryFunction((PetscObject)A,"MatIsHermitianTranspose_C",&f);
4708:   PetscObjectQueryFunction((PetscObject)B,"MatIsHermitianTranspose_C",&g);
4709:   if (f && g) {
4710:     if (f==g) {
4711:       (*f)(A,B,tol,flg);
4712:     } else SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_NOTSAMETYPE,"Matrices do not have the same comparator for Hermitian test");
4713:   }
4714:   return(0);
4715: }

4719: /*@
4720:    MatPermute - Creates a new matrix with rows and columns permuted from the
4721:    original.

4723:    Collective on Mat

4725:    Input Parameters:
4726: +  mat - the matrix to permute
4727: .  row - row permutation, each processor supplies only the permutation for its rows
4728: -  col - column permutation, each processor supplies only the permutation for its columns

4730:    Output Parameters:
4731: .  B - the permuted matrix

4733:    Level: advanced

4735:    Note:
4736:    The index sets map from row/col of permuted matrix to row/col of original matrix.
4737:    The index sets should be on the same communicator as Mat and have the same local sizes.

4739:    Concepts: matrices^permuting

4741: .seealso: MatGetOrdering(), ISAllGather()

4743: @*/
4744: PetscErrorCode  MatPermute(Mat mat,IS row,IS col,Mat *B)
4745: {

4754:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4755:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
4756:   if (!mat->ops->permute) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"MatPermute not available for Mat type %s",((PetscObject)mat)->type_name);
4757:   MatCheckPreallocated(mat,1);

4759:   (*mat->ops->permute)(mat,row,col,B);
4760:   PetscObjectStateIncrease((PetscObject)*B);
4761:   return(0);
4762: }

4766: /*@
4767:    MatEqual - Compares two matrices.

4769:    Collective on Mat

4771:    Input Parameters:
4772: +  A - the first matrix
4773: -  B - the second matrix

4775:    Output Parameter:
4776: .  flg - PETSC_TRUE if the matrices are equal; PETSC_FALSE otherwise.

4778:    Level: intermediate

4780:    Concepts: matrices^equality between
4781: @*/
4782: PetscErrorCode  MatEqual(Mat A,Mat B,PetscBool  *flg)
4783: {

4793:   MatCheckPreallocated(B,2);
4794:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4795:   if (!B->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4796:   if (A->rmap->N != B->rmap->N || A->cmap->N != B->cmap->N) SETERRQ4(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Mat A,Mat B: global dim %D %D %D %D",A->rmap->N,B->rmap->N,A->cmap->N,B->cmap->N);
4797:   if (!A->ops->equal) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Mat type %s",((PetscObject)A)->type_name);
4798:   if (!B->ops->equal) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Mat type %s",((PetscObject)B)->type_name);
4799:   if (A->ops->equal != B->ops->equal) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"A is type: %s\nB is type: %s",((PetscObject)A)->type_name,((PetscObject)B)->type_name);
4800:   MatCheckPreallocated(A,1);

4802:   (*A->ops->equal)(A,B,flg);
4803:   return(0);
4804: }

4808: /*@
4809:    MatDiagonalScale - Scales a matrix on the left and right by diagonal
4810:    matrices that are stored as vectors.  Either of the two scaling
4811:    matrices can be NULL.

4813:    Collective on Mat

4815:    Input Parameters:
4816: +  mat - the matrix to be scaled
4817: .  l - the left scaling vector (or NULL)
4818: -  r - the right scaling vector (or NULL)

4820:    Notes:
4821:    MatDiagonalScale() computes A = LAR, where
4822:    L = a diagonal matrix (stored as a vector), R = a diagonal matrix (stored as a vector)
4823:    The L scales the rows of the matrix, the R scales the columns of the matrix.

4825:    Level: intermediate

4827:    Concepts: matrices^diagonal scaling
4828:    Concepts: diagonal scaling of matrices

4830: .seealso: MatScale()
4831: @*/
4832: PetscErrorCode  MatDiagonalScale(Mat mat,Vec l,Vec r)
4833: {

4839:   if (!mat->ops->diagonalscale) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4842:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4843:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
4844:   MatCheckPreallocated(mat,1);

4846:   PetscLogEventBegin(MAT_Scale,mat,0,0,0);
4847:   (*mat->ops->diagonalscale)(mat,l,r);
4848:   PetscLogEventEnd(MAT_Scale,mat,0,0,0);
4849:   PetscObjectStateIncrease((PetscObject)mat);
4850: #if defined(PETSC_HAVE_CUSP)
4851:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
4852:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
4853:   }
4854: #endif
4855: #if defined(PETSC_HAVE_VIENNACL)
4856:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
4857:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
4858:   }
4859: #endif
4860:   return(0);
4861: }

4865: /*@
4866:     MatScale - Scales all elements of a matrix by a given number.

4868:     Logically Collective on Mat

4870:     Input Parameters:
4871: +   mat - the matrix to be scaled
4872: -   a  - the scaling value

4874:     Output Parameter:
4875: .   mat - the scaled matrix

4877:     Level: intermediate

4879:     Concepts: matrices^scaling all entries

4881: .seealso: MatDiagonalScale()
4882: @*/
4883: PetscErrorCode  MatScale(Mat mat,PetscScalar a)
4884: {

4890:   if (a != (PetscScalar)1.0 && !mat->ops->scale) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4891:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4892:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
4894:   MatCheckPreallocated(mat,1);

4896:   PetscLogEventBegin(MAT_Scale,mat,0,0,0);
4897:   if (a != (PetscScalar)1.0) {
4898:     (*mat->ops->scale)(mat,a);
4899:     PetscObjectStateIncrease((PetscObject)mat);
4900:   }
4901:   PetscLogEventEnd(MAT_Scale,mat,0,0,0);
4902: #if defined(PETSC_HAVE_CUSP)
4903:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
4904:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
4905:   }
4906: #endif
4907: #if defined(PETSC_HAVE_VIENNACL)
4908:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
4909:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
4910:   }
4911: #endif
4912:   return(0);
4913: }

4917: /*@
4918:    MatNorm - Calculates various norms of a matrix.

4920:    Collective on Mat

4922:    Input Parameters:
4923: +  mat - the matrix
4924: -  type - the type of norm, NORM_1, NORM_FROBENIUS, NORM_INFINITY

4926:    Output Parameters:
4927: .  nrm - the resulting norm

4929:    Level: intermediate

4931:    Concepts: matrices^norm
4932:    Concepts: norm^of matrix
4933: @*/
4934: PetscErrorCode  MatNorm(Mat mat,NormType type,PetscReal *nrm)
4935: {


4943:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
4944:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
4945:   if (!mat->ops->norm) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
4946:   MatCheckPreallocated(mat,1);

4948:   (*mat->ops->norm)(mat,type,nrm);
4949:   return(0);
4950: }

4952: /*
4953:      This variable is used to prevent counting of MatAssemblyBegin() that
4954:    are called from within a MatAssemblyEnd().
4955: */
4956: static PetscInt MatAssemblyEnd_InUse = 0;
4959: /*@
4960:    MatAssemblyBegin - Begins assembling the matrix.  This routine should
4961:    be called after completing all calls to MatSetValues().

4963:    Collective on Mat

4965:    Input Parameters:
4966: +  mat - the matrix
4967: -  type - type of assembly, either MAT_FLUSH_ASSEMBLY or MAT_FINAL_ASSEMBLY

4969:    Notes:
4970:    MatSetValues() generally caches the values.  The matrix is ready to
4971:    use only after MatAssemblyBegin() and MatAssemblyEnd() have been called.
4972:    Use MAT_FLUSH_ASSEMBLY when switching between ADD_VALUES and INSERT_VALUES
4973:    in MatSetValues(); use MAT_FINAL_ASSEMBLY for the final assembly before
4974:    using the matrix.

4976:    ALL processes that share a matrix MUST call MatAssemblyBegin() and MatAssemblyEnd() the SAME NUMBER of times, and each time with the
4977:    same flag of MAT_FLUSH_ASSEMBLY or MAT_FINAL_ASSEMBLY for all processes. Thus you CANNOT locally change from ADD_VALUES to INSERT_VALUES, that is
4978:    a global collective operation requring all processes that share the matrix.

4980:    Space for preallocated nonzeros that is not filled by a call to MatSetValues() or a related routine are compressed
4981:    out by assembly. If you intend to use that extra space on a subsequent assembly, be sure to insert explicit zeros
4982:    before MAT_FINAL_ASSEMBLY so the space is not compressed out.

4984:    Level: beginner

4986:    Concepts: matrices^assembling

4988: .seealso: MatAssemblyEnd(), MatSetValues(), MatAssembled()
4989: @*/
4990: PetscErrorCode  MatAssemblyBegin(Mat mat,MatAssemblyType type)
4991: {

4997:   MatCheckPreallocated(mat,1);
4998:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix.\nDid you forget to call MatSetUnfactored()?");
4999:   if (mat->assembled) {
5000:     mat->was_assembled = PETSC_TRUE;
5001:     mat->assembled     = PETSC_FALSE;
5002:   }
5003:   if (!MatAssemblyEnd_InUse) {
5004:     PetscLogEventBegin(MAT_AssemblyBegin,mat,0,0,0);
5005:     if (mat->ops->assemblybegin) {(*mat->ops->assemblybegin)(mat,type);}
5006:     PetscLogEventEnd(MAT_AssemblyBegin,mat,0,0,0);
5007:   } else if (mat->ops->assemblybegin) {
5008:     (*mat->ops->assemblybegin)(mat,type);
5009:   }
5010:   return(0);
5011: }

5015: /*@
5016:    MatAssembled - Indicates if a matrix has been assembled and is ready for
5017:      use; for example, in matrix-vector product.

5019:    Not Collective

5021:    Input Parameter:
5022: .  mat - the matrix

5024:    Output Parameter:
5025: .  assembled - PETSC_TRUE or PETSC_FALSE

5027:    Level: advanced

5029:    Concepts: matrices^assembled?

5031: .seealso: MatAssemblyEnd(), MatSetValues(), MatAssemblyBegin()
5032: @*/
5033: PetscErrorCode  MatAssembled(Mat mat,PetscBool  *assembled)
5034: {
5039:   *assembled = mat->assembled;
5040:   return(0);
5041: }

5045: /*@
5046:    MatAssemblyEnd - Completes assembling the matrix.  This routine should
5047:    be called after MatAssemblyBegin().

5049:    Collective on Mat

5051:    Input Parameters:
5052: +  mat - the matrix
5053: -  type - type of assembly, either MAT_FLUSH_ASSEMBLY or MAT_FINAL_ASSEMBLY

5055:    Options Database Keys:
5056: +  -mat_view ::ascii_info - Prints info on matrix at conclusion of MatEndAssembly()
5057: .  -mat_view ::ascii_info_detail - Prints more detailed info
5058: .  -mat_view - Prints matrix in ASCII format
5059: .  -mat_view ::ascii_matlab - Prints matrix in Matlab format
5060: .  -mat_view draw - PetscDraws nonzero structure of matrix, using MatView() and PetscDrawOpenX().
5061: .  -display <name> - Sets display name (default is host)
5062: .  -draw_pause <sec> - Sets number of seconds to pause after display
5063: .  -mat_view socket - Sends matrix to socket, can be accessed from Matlab (See Users-Manual: Chapter 11 Using MATLAB with PETSc )
5064: .  -viewer_socket_machine <machine> - Machine to use for socket
5065: .  -viewer_socket_port <port> - Port number to use for socket
5066: -  -mat_view binary:filename[:append] - Save matrix to file in binary format

5068:    Notes:
5069:    MatSetValues() generally caches the values.  The matrix is ready to
5070:    use only after MatAssemblyBegin() and MatAssemblyEnd() have been called.
5071:    Use MAT_FLUSH_ASSEMBLY when switching between ADD_VALUES and INSERT_VALUES
5072:    in MatSetValues(); use MAT_FINAL_ASSEMBLY for the final assembly before
5073:    using the matrix.

5075:    Space for preallocated nonzeros that is not filled by a call to MatSetValues() or a related routine are compressed
5076:    out by assembly. If you intend to use that extra space on a subsequent assembly, be sure to insert explicit zeros
5077:    before MAT_FINAL_ASSEMBLY so the space is not compressed out.

5079:    Level: beginner

5081: .seealso: MatAssemblyBegin(), MatSetValues(), PetscDrawOpenX(), PetscDrawCreate(), MatView(), MatAssembled(), PetscViewerSocketOpen()
5082: @*/
5083: PetscErrorCode  MatAssemblyEnd(Mat mat,MatAssemblyType type)
5084: {
5085:   PetscErrorCode  ierr;
5086:   static PetscInt inassm = 0;
5087:   PetscBool       flg    = PETSC_FALSE;


5093:   inassm++;
5094:   MatAssemblyEnd_InUse++;
5095:   if (MatAssemblyEnd_InUse == 1) { /* Do the logging only the first time through */
5096:     PetscLogEventBegin(MAT_AssemblyEnd,mat,0,0,0);
5097:     if (mat->ops->assemblyend) {
5098:       (*mat->ops->assemblyend)(mat,type);
5099:     }
5100:     PetscLogEventEnd(MAT_AssemblyEnd,mat,0,0,0);
5101:   } else if (mat->ops->assemblyend) {
5102:     (*mat->ops->assemblyend)(mat,type);
5103:   }

5105:   /* Flush assembly is not a true assembly */
5106:   if (type != MAT_FLUSH_ASSEMBLY) {
5107:     mat->assembled = PETSC_TRUE; mat->num_ass++;
5108:   }
5109:   mat->insertmode = NOT_SET_VALUES;
5110:   MatAssemblyEnd_InUse--;
5111:   PetscObjectStateIncrease((PetscObject)mat);
5112:   if (!mat->symmetric_eternal) {
5113:     mat->symmetric_set              = PETSC_FALSE;
5114:     mat->hermitian_set              = PETSC_FALSE;
5115:     mat->structurally_symmetric_set = PETSC_FALSE;
5116:   }
5117: #if defined(PETSC_HAVE_CUSP)
5118:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
5119:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
5120:   }
5121: #endif
5122: #if defined(PETSC_HAVE_VIENNACL)
5123:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
5124:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
5125:   }
5126: #endif
5127:   if (inassm == 1 && type != MAT_FLUSH_ASSEMBLY) {
5128:     MatViewFromOptions(mat,NULL,"-mat_view");

5130:     if (mat->checksymmetryonassembly) {
5131:       MatIsSymmetric(mat,mat->checksymmetrytol,&flg);
5132:       if (flg) {
5133:         PetscPrintf(PetscObjectComm((PetscObject)mat),"Matrix is symmetric (tolerance %g)\n",(double)mat->checksymmetrytol);
5134:       } else {
5135:         PetscPrintf(PetscObjectComm((PetscObject)mat),"Matrix is not symmetric (tolerance %g)\n",(double)mat->checksymmetrytol);
5136:       }
5137:     }
5138:     if (mat->nullsp && mat->checknullspaceonassembly) {
5139:       MatNullSpaceTest(mat->nullsp,mat,NULL);
5140:     }
5141:   }
5142:   inassm--;
5143:   return(0);
5144: }

5148: /*@
5149:    MatSetOption - Sets a parameter option for a matrix. Some options
5150:    may be specific to certain storage formats.  Some options
5151:    determine how values will be inserted (or added). Sorted,
5152:    row-oriented input will generally assemble the fastest. The default
5153:    is row-oriented.

5155:    Logically Collective on Mat for certain operations, such as MAT_SPD, not collective for MAT_ROW_ORIENTED, see MatOption

5157:    Input Parameters:
5158: +  mat - the matrix
5159: .  option - the option, one of those listed below (and possibly others),
5160: -  flg - turn the option on (PETSC_TRUE) or off (PETSC_FALSE)

5162:   Options Describing Matrix Structure:
5163: +    MAT_SPD - symmetric positive definite
5164: .    MAT_SYMMETRIC - symmetric in terms of both structure and value
5165: .    MAT_HERMITIAN - transpose is the complex conjugation
5166: .    MAT_STRUCTURALLY_SYMMETRIC - symmetric nonzero structure
5167: -    MAT_SYMMETRY_ETERNAL - if you would like the symmetry/Hermitian flag
5168:                             you set to be kept with all future use of the matrix
5169:                             including after MatAssemblyBegin/End() which could
5170:                             potentially change the symmetry structure, i.e. you
5171:                             KNOW the matrix will ALWAYS have the property you set.


5174:    Options For Use with MatSetValues():
5175:    Insert a logically dense subblock, which can be
5176: .    MAT_ROW_ORIENTED - row-oriented (default)

5178:    Note these options reflect the data you pass in with MatSetValues(); it has
5179:    nothing to do with how the data is stored internally in the matrix
5180:    data structure.

5182:    When (re)assembling a matrix, we can restrict the input for
5183:    efficiency/debugging purposes.  These options include:
5184: +    MAT_NEW_NONZERO_LOCATIONS - additional insertions will be allowed if they generate a new nonzero (slow)
5185: .    MAT_NEW_DIAGONALS - new diagonals will be allowed (for block diagonal format only)
5186: .    MAT_IGNORE_OFF_PROC_ENTRIES - drops off-processor entries
5187: .    MAT_NEW_NONZERO_LOCATION_ERR - generates an error for new matrix entry
5188: .    MAT_USE_HASH_TABLE - uses a hash table to speed up matrix assembly
5189: +    MAT_NO_OFF_PROC_ENTRIES - you know each process will only set values for its own rows, will generate an error if
5190:         any process sets values for another process. This avoids all reductions in the MatAssembly routines and thus improves
5191:         performance for very large process counts.

5193:    Notes:
5194:    Some options are relevant only for particular matrix types and
5195:    are thus ignored by others.  Other options are not supported by
5196:    certain matrix types and will generate an error message if set.

5198:    If using a Fortran 77 module to compute a matrix, one may need to
5199:    use the column-oriented option (or convert to the row-oriented
5200:    format).

5202:    MAT_NEW_NONZERO_LOCATIONS set to PETSC_FALSE indicates that any add or insertion
5203:    that would generate a new entry in the nonzero structure is instead
5204:    ignored.  Thus, if memory has not alredy been allocated for this particular
5205:    data, then the insertion is ignored. For dense matrices, in which
5206:    the entire array is allocated, no entries are ever ignored.
5207:    Set after the first MatAssemblyEnd()

5209:    MAT_NEW_NONZERO_LOCATION_ERR set to PETSC_TRUE indicates that any add or insertion
5210:    that would generate a new entry in the nonzero structure instead produces
5211:    an error. (Currently supported for AIJ and BAIJ formats only.)

5213:    MAT_NEW_NONZERO_ALLOCATION_ERR set to PETSC_TRUE indicates that any add or insertion
5214:    that would generate a new entry that has not been preallocated will
5215:    instead produce an error. (Currently supported for AIJ and BAIJ formats
5216:    only.) This is a useful flag when debugging matrix memory preallocation.

5218:    MAT_IGNORE_OFF_PROC_ENTRIES set to PETSC_TRUE indicates entries destined for
5219:    other processors should be dropped, rather than stashed.
5220:    This is useful if you know that the "owning" processor is also
5221:    always generating the correct matrix entries, so that PETSc need
5222:    not transfer duplicate entries generated on another processor.

5224:    MAT_USE_HASH_TABLE indicates that a hash table be used to improve the
5225:    searches during matrix assembly. When this flag is set, the hash table
5226:    is created during the first Matrix Assembly. This hash table is
5227:    used the next time through, during MatSetVaules()/MatSetVaulesBlocked()
5228:    to improve the searching of indices. MAT_NEW_NONZERO_LOCATIONS flag
5229:    should be used with MAT_USE_HASH_TABLE flag. This option is currently
5230:    supported by MATMPIBAIJ format only.

5232:    MAT_KEEP_NONZERO_PATTERN indicates when MatZeroRows() is called the zeroed entries
5233:    are kept in the nonzero structure

5235:    MAT_IGNORE_ZERO_ENTRIES - for AIJ/IS matrices this will stop zero values from creating
5236:    a zero location in the matrix

5238:    MAT_USE_INODES - indicates using inode version of the code - works with AIJ and
5239:    ROWBS matrix types

5241:    MAT_NO_OFF_PROC_ZERO_ROWS - you know each process will only zero its own rows. This avoids all reductions in the
5242:         zero row routines and thus improves performance for very large process counts.

5244:    MAT_IGNORE_LOWER_TRIANGULAR - For SBAIJ matrices will ignore any insertions you make in the lower triangular
5245:         part of the matrix (since they should match the upper triangular part).

5247:    Notes: Can only be called after MatSetSizes() and MatSetType() have been set.

5249:    Level: intermediate

5251:    Concepts: matrices^setting options

5253: .seealso:  MatOption, Mat

5255: @*/
5256: PetscErrorCode  MatSetOption(Mat mat,MatOption op,PetscBool flg)
5257: {

5263:   if (op > 0) {
5266:   }

5268:   if (((int) op) <= MAT_OPTION_MIN || ((int) op) >= MAT_OPTION_MAX) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_OUTOFRANGE,"Options %d is out of range",(int)op);
5269:   if (!((PetscObject)mat)->type_name) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_TYPENOTSET,"Cannot set options until type and size have been set, see MatSetType() and MatSetSizes()");

5271:   switch (op) {
5272:   case MAT_NO_OFF_PROC_ENTRIES:
5273:     mat->nooffprocentries = flg;
5274:     return(0);
5275:     break;
5276:   case MAT_NO_OFF_PROC_ZERO_ROWS:
5277:     mat->nooffproczerorows = flg;
5278:     return(0);
5279:     break;
5280:   case MAT_SPD:
5281:     mat->spd_set = PETSC_TRUE;
5282:     mat->spd     = flg;
5283:     if (flg) {
5284:       mat->symmetric                  = PETSC_TRUE;
5285:       mat->structurally_symmetric     = PETSC_TRUE;
5286:       mat->symmetric_set              = PETSC_TRUE;
5287:       mat->structurally_symmetric_set = PETSC_TRUE;
5288:     }
5289:     break;
5290:   case MAT_SYMMETRIC:
5291:     mat->symmetric = flg;
5292:     if (flg) mat->structurally_symmetric = PETSC_TRUE;
5293:     mat->symmetric_set              = PETSC_TRUE;
5294:     mat->structurally_symmetric_set = flg;
5295:     break;
5296:   case MAT_HERMITIAN:
5297:     mat->hermitian = flg;
5298:     if (flg) mat->structurally_symmetric = PETSC_TRUE;
5299:     mat->hermitian_set              = PETSC_TRUE;
5300:     mat->structurally_symmetric_set = flg;
5301:     break;
5302:   case MAT_STRUCTURALLY_SYMMETRIC:
5303:     mat->structurally_symmetric     = flg;
5304:     mat->structurally_symmetric_set = PETSC_TRUE;
5305:     break;
5306:   case MAT_SYMMETRY_ETERNAL:
5307:     mat->symmetric_eternal = flg;
5308:     break;
5309:   default:
5310:     break;
5311:   }
5312:   if (mat->ops->setoption) {
5313:     (*mat->ops->setoption)(mat,op,flg);
5314:   }
5315:   return(0);
5316: }

5320: /*@
5321:    MatGetOption - Gets a parameter option that has been set for a matrix.

5323:    Logically Collective on Mat for certain operations, such as MAT_SPD, not collective for MAT_ROW_ORIENTED, see MatOption

5325:    Input Parameters:
5326: +  mat - the matrix
5327: -  option - the option, this only responds to certain options, check the code for which ones

5329:    Output Parameter:
5330: .  flg - turn the option on (PETSC_TRUE) or off (PETSC_FALSE)

5332:     Notes: Can only be called after MatSetSizes() and MatSetType() have been set.

5334:    Level: intermediate

5336:    Concepts: matrices^setting options

5338: .seealso:  MatOption, MatSetOption()

5340: @*/
5341: PetscErrorCode  MatGetOption(Mat mat,MatOption op,PetscBool *flg)
5342: {

5347:   if (((int) op) <= MAT_OPTION_MIN || ((int) op) >= MAT_OPTION_MAX) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_OUTOFRANGE,"Options %d is out of range",(int)op);
5348:   if (!((PetscObject)mat)->type_name) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_TYPENOTSET,"Cannot get options until type and size have been set, see MatSetType() and MatSetSizes()");

5350:   switch (op) {
5351:   case MAT_NO_OFF_PROC_ENTRIES:
5352:     *flg = mat->nooffprocentries;
5353:     break;
5354:   case MAT_NO_OFF_PROC_ZERO_ROWS:
5355:     *flg = mat->nooffproczerorows;
5356:     break;
5357:   case MAT_SYMMETRIC:
5358:     *flg = mat->symmetric;
5359:     break;
5360:   case MAT_HERMITIAN:
5361:     *flg = mat->hermitian;
5362:     break;
5363:   case MAT_STRUCTURALLY_SYMMETRIC:
5364:     *flg = mat->structurally_symmetric;
5365:     break;
5366:   case MAT_SYMMETRY_ETERNAL:
5367:     *flg = mat->symmetric_eternal;
5368:     break;
5369:   default:
5370:     break;
5371:   }
5372:   return(0);
5373: }

5377: /*@
5378:    MatZeroEntries - Zeros all entries of a matrix.  For sparse matrices
5379:    this routine retains the old nonzero structure.

5381:    Logically Collective on Mat

5383:    Input Parameters:
5384: .  mat - the matrix

5386:    Level: intermediate

5388:    Notes: If the matrix was not preallocated then a default, likely poor preallocation will be set in the matrix, so this should be called after the preallocation phase.
5389:    See the Performance chapter of the users manual for information on preallocating matrices.

5391:    Concepts: matrices^zeroing

5393: .seealso: MatZeroRows()
5394: @*/
5395: PetscErrorCode  MatZeroEntries(Mat mat)
5396: {

5402:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
5403:   if (mat->insertmode != NOT_SET_VALUES) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for matrices where you have set values but not yet assembled");
5404:   if (!mat->ops->zeroentries) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
5405:   MatCheckPreallocated(mat,1);

5407:   PetscLogEventBegin(MAT_ZeroEntries,mat,0,0,0);
5408:   (*mat->ops->zeroentries)(mat);
5409:   PetscLogEventEnd(MAT_ZeroEntries,mat,0,0,0);
5410:   PetscObjectStateIncrease((PetscObject)mat);
5411: #if defined(PETSC_HAVE_CUSP)
5412:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
5413:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
5414:   }
5415: #endif
5416: #if defined(PETSC_HAVE_VIENNACL)
5417:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
5418:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
5419:   }
5420: #endif
5421:   return(0);
5422: }

5426: /*@C
5427:    MatZeroRowsColumns - Zeros all entries (except possibly the main diagonal)
5428:    of a set of rows and columns of a matrix.

5430:    Collective on Mat

5432:    Input Parameters:
5433: +  mat - the matrix
5434: .  numRows - the number of rows to remove
5435: .  rows - the global row indices
5436: .  diag - value put in all diagonals of eliminated rows (0.0 will even eliminate diagonal entry)
5437: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
5438: -  b - optional vector of right hand side, that will be adjusted by provided solution

5440:    Notes:
5441:    This does not change the nonzero structure of the matrix, it merely zeros those entries in the matrix.

5443:    The user can set a value in the diagonal entry (or for the AIJ and
5444:    row formats can optionally remove the main diagonal entry from the
5445:    nonzero structure as well, by passing 0.0 as the final argument).

5447:    For the parallel case, all processes that share the matrix (i.e.,
5448:    those in the communicator used for matrix creation) MUST call this
5449:    routine, regardless of whether any rows being zeroed are owned by
5450:    them.

5452:    Each processor can indicate any rows in the entire matrix to be zeroed (i.e. each process does NOT have to
5453:    list only rows local to itself).

5455:    The option MAT_NO_OFF_PROC_ZERO_ROWS does not apply to this routine.

5457:    Level: intermediate

5459:    Concepts: matrices^zeroing rows

5461: .seealso: MatZeroRowsIS(), MatZeroRowsStencil(), MatZeroEntries(), MatZeroRowsLocal(), MatSetOption(), MatZeroRowsColumnsIS()
5462: @*/
5463: PetscErrorCode  MatZeroRowsColumns(Mat mat,PetscInt numRows,const PetscInt rows[],PetscScalar diag,Vec x,Vec b)
5464: {

5471:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
5472:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
5473:   if (!mat->ops->zerorowscolumns) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
5474:   MatCheckPreallocated(mat,1);

5476:   (*mat->ops->zerorowscolumns)(mat,numRows,rows,diag,x,b);
5477:   MatViewFromOptions(mat,NULL,"-mat_view");
5478:   PetscObjectStateIncrease((PetscObject)mat);
5479: #if defined(PETSC_HAVE_CUSP)
5480:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
5481:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
5482:   }
5483: #endif
5484: #if defined(PETSC_HAVE_VIENNACL)
5485:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
5486:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
5487:   }
5488: #endif
5489:   return(0);
5490: }

5494: /*@C
5495:    MatZeroRowsColumnsIS - Zeros all entries (except possibly the main diagonal)
5496:    of a set of rows and columns of a matrix.

5498:    Collective on Mat

5500:    Input Parameters:
5501: +  mat - the matrix
5502: .  is - the rows to zero
5503: .  diag - value put in all diagonals of eliminated rows (0.0 will even eliminate diagonal entry)
5504: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
5505: -  b - optional vector of right hand side, that will be adjusted by provided solution

5507:    Notes:
5508:    This does not change the nonzero structure of the matrix, it merely zeros those entries in the matrix.

5510:    The user can set a value in the diagonal entry (or for the AIJ and
5511:    row formats can optionally remove the main diagonal entry from the
5512:    nonzero structure as well, by passing 0.0 as the final argument).

5514:    For the parallel case, all processes that share the matrix (i.e.,
5515:    those in the communicator used for matrix creation) MUST call this
5516:    routine, regardless of whether any rows being zeroed are owned by
5517:    them.

5519:    Each processor can indicate any rows in the entire matrix to be zeroed (i.e. each process does NOT have to
5520:    list only rows local to itself).

5522:    The option MAT_NO_OFF_PROC_ZERO_ROWS does not apply to this routine.

5524:    Level: intermediate

5526:    Concepts: matrices^zeroing rows

5528: .seealso: MatZeroRowsIS(), MatZeroRowsStencil(), MatZeroEntries(), MatZeroRowsLocal(), MatSetOption(), MatZeroRowsColumns()
5529: @*/
5530: PetscErrorCode  MatZeroRowsColumnsIS(Mat mat,IS is,PetscScalar diag,Vec x,Vec b)
5531: {
5533:   PetscInt       numRows;
5534:   const PetscInt *rows;

5541:   ISGetLocalSize(is,&numRows);
5542:   ISGetIndices(is,&rows);
5543:   MatZeroRowsColumns(mat,numRows,rows,diag,x,b);
5544:   ISRestoreIndices(is,&rows);
5545:   return(0);
5546: }

5550: /*@C
5551:    MatZeroRows - Zeros all entries (except possibly the main diagonal)
5552:    of a set of rows of a matrix.

5554:    Collective on Mat

5556:    Input Parameters:
5557: +  mat - the matrix
5558: .  numRows - the number of rows to remove
5559: .  rows - the global row indices
5560: .  diag - value put in all diagonals of eliminated rows (0.0 will even eliminate diagonal entry)
5561: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
5562: -  b - optional vector of right hand side, that will be adjusted by provided solution

5564:    Notes:
5565:    For the AIJ and BAIJ matrix formats this removes the old nonzero structure,
5566:    but does not release memory.  For the dense and block diagonal
5567:    formats this does not alter the nonzero structure.

5569:    If the option MatSetOption(mat,MAT_KEEP_NONZERO_PATTERN,PETSC_TRUE) the nonzero structure
5570:    of the matrix is not changed (even for AIJ and BAIJ matrices) the values are
5571:    merely zeroed.

5573:    The user can set a value in the diagonal entry (or for the AIJ and
5574:    row formats can optionally remove the main diagonal entry from the
5575:    nonzero structure as well, by passing 0.0 as the final argument).

5577:    For the parallel case, all processes that share the matrix (i.e.,
5578:    those in the communicator used for matrix creation) MUST call this
5579:    routine, regardless of whether any rows being zeroed are owned by
5580:    them.

5582:    Each processor can indicate any rows in the entire matrix to be zeroed (i.e. each process does NOT have to
5583:    list only rows local to itself).

5585:    You can call MatSetOption(mat,MAT_NO_OFF_PROC_ZERO_ROWS,PETSC_TRUE) if each process indicates only rows it
5586:    owns that are to be zeroed. This saves a global synchronization in the implementation.

5588:    Level: intermediate

5590:    Concepts: matrices^zeroing rows

5592: .seealso: MatZeroRowsIS(), MatZeroRowsStencil(), MatZeroEntries(), MatZeroRowsLocal(), MatSetOption()
5593: @*/
5594: PetscErrorCode  MatZeroRows(Mat mat,PetscInt numRows,const PetscInt rows[],PetscScalar diag,Vec x,Vec b)
5595: {

5602:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
5603:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
5604:   if (!mat->ops->zerorows) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
5605:   MatCheckPreallocated(mat,1);

5607:   (*mat->ops->zerorows)(mat,numRows,rows,diag,x,b);
5608:   MatViewFromOptions(mat,NULL,"-mat_view");
5609:   PetscObjectStateIncrease((PetscObject)mat);
5610: #if defined(PETSC_HAVE_CUSP)
5611:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
5612:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
5613:   }
5614: #endif
5615: #if defined(PETSC_HAVE_VIENNACL)
5616:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
5617:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
5618:   }
5619: #endif
5620:   return(0);
5621: }

5625: /*@C
5626:    MatZeroRowsIS - Zeros all entries (except possibly the main diagonal)
5627:    of a set of rows of a matrix.

5629:    Collective on Mat

5631:    Input Parameters:
5632: +  mat - the matrix
5633: .  is - index set of rows to remove
5634: .  diag - value put in all diagonals of eliminated rows
5635: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
5636: -  b - optional vector of right hand side, that will be adjusted by provided solution

5638:    Notes:
5639:    For the AIJ and BAIJ matrix formats this removes the old nonzero structure,
5640:    but does not release memory.  For the dense and block diagonal
5641:    formats this does not alter the nonzero structure.

5643:    If the option MatSetOption(mat,MAT_KEEP_NONZERO_PATTERN,PETSC_TRUE) the nonzero structure
5644:    of the matrix is not changed (even for AIJ and BAIJ matrices) the values are
5645:    merely zeroed.

5647:    The user can set a value in the diagonal entry (or for the AIJ and
5648:    row formats can optionally remove the main diagonal entry from the
5649:    nonzero structure as well, by passing 0.0 as the final argument).

5651:    For the parallel case, all processes that share the matrix (i.e.,
5652:    those in the communicator used for matrix creation) MUST call this
5653:    routine, regardless of whether any rows being zeroed are owned by
5654:    them.

5656:    Each processor can indicate any rows in the entire matrix to be zeroed (i.e. each process does NOT have to
5657:    list only rows local to itself).

5659:    You can call MatSetOption(mat,MAT_NO_OFF_PROC_ZERO_ROWS,PETSC_TRUE) if each process indicates only rows it
5660:    owns that are to be zeroed. This saves a global synchronization in the implementation.

5662:    Level: intermediate

5664:    Concepts: matrices^zeroing rows

5666: .seealso: MatZeroRows(), MatZeroRowsStencil(), MatZeroEntries(), MatZeroRowsLocal(), MatSetOption()
5667: @*/
5668: PetscErrorCode  MatZeroRowsIS(Mat mat,IS is,PetscScalar diag,Vec x,Vec b)
5669: {
5670:   PetscInt       numRows;
5671:   const PetscInt *rows;

5678:   ISGetLocalSize(is,&numRows);
5679:   ISGetIndices(is,&rows);
5680:   MatZeroRows(mat,numRows,rows,diag,x,b);
5681:   ISRestoreIndices(is,&rows);
5682:   return(0);
5683: }

5687: /*@C
5688:    MatZeroRowsStencil - Zeros all entries (except possibly the main diagonal)
5689:    of a set of rows of a matrix. These rows must be local to the process.

5691:    Collective on Mat

5693:    Input Parameters:
5694: +  mat - the matrix
5695: .  numRows - the number of rows to remove
5696: .  rows - the grid coordinates (and component number when dof > 1) for matrix rows
5697: .  diag - value put in all diagonals of eliminated rows (0.0 will even eliminate diagonal entry)
5698: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
5699: -  b - optional vector of right hand side, that will be adjusted by provided solution

5701:    Notes:
5702:    For the AIJ and BAIJ matrix formats this removes the old nonzero structure,
5703:    but does not release memory.  For the dense and block diagonal
5704:    formats this does not alter the nonzero structure.

5706:    If the option MatSetOption(mat,MAT_KEEP_NONZERO_PATTERN,PETSC_TRUE) the nonzero structure
5707:    of the matrix is not changed (even for AIJ and BAIJ matrices) the values are
5708:    merely zeroed.

5710:    The user can set a value in the diagonal entry (or for the AIJ and
5711:    row formats can optionally remove the main diagonal entry from the
5712:    nonzero structure as well, by passing 0.0 as the final argument).

5714:    For the parallel case, all processes that share the matrix (i.e.,
5715:    those in the communicator used for matrix creation) MUST call this
5716:    routine, regardless of whether any rows being zeroed are owned by
5717:    them.

5719:    Each processor can indicate any rows in the entire matrix to be zeroed (i.e. each process does NOT have to
5720:    list only rows local to itself).

5722:    The grid coordinates are across the entire grid, not just the local portion

5724:    In Fortran idxm and idxn should be declared as
5725: $     MatStencil idxm(4,m)
5726:    and the values inserted using
5727: $    idxm(MatStencil_i,1) = i
5728: $    idxm(MatStencil_j,1) = j
5729: $    idxm(MatStencil_k,1) = k
5730: $    idxm(MatStencil_c,1) = c
5731:    etc

5733:    For periodic boundary conditions use negative indices for values to the left (below 0; that are to be
5734:    obtained by wrapping values from right edge). For values to the right of the last entry using that index plus one
5735:    etc to obtain values that obtained by wrapping the values from the left edge. This does not work for anything but the
5736:    DM_BOUNDARY_PERIODIC boundary type.

5738:    For indices that don't mean anything for your case (like the k index when working in 2d) or the c index when you have
5739:    a single value per point) you can skip filling those indices.

5741:    Level: intermediate

5743:    Concepts: matrices^zeroing rows

5745: .seealso: MatZeroRows(), MatZeroRowsIS(), MatZeroEntries(), MatZeroRowsLocal(), MatSetOption()
5746: @*/
5747: PetscErrorCode  MatZeroRowsStencil(Mat mat,PetscInt numRows,const MatStencil rows[],PetscScalar diag,Vec x,Vec b)
5748: {
5749:   PetscInt       dim     = mat->stencil.dim;
5750:   PetscInt       sdim    = dim - (1 - (PetscInt) mat->stencil.noc);
5751:   PetscInt       *dims   = mat->stencil.dims+1;
5752:   PetscInt       *starts = mat->stencil.starts;
5753:   PetscInt       *dxm    = (PetscInt*) rows;
5754:   PetscInt       *jdxm, i, j, tmp, numNewRows = 0;


5762:   PetscMalloc1(numRows, &jdxm);
5763:   for (i = 0; i < numRows; ++i) {
5764:     /* Skip unused dimensions (they are ordered k, j, i, c) */
5765:     for (j = 0; j < 3-sdim; ++j) dxm++;
5766:     /* Local index in X dir */
5767:     tmp = *dxm++ - starts[0];
5768:     /* Loop over remaining dimensions */
5769:     for (j = 0; j < dim-1; ++j) {
5770:       /* If nonlocal, set index to be negative */
5771:       if ((*dxm++ - starts[j+1]) < 0 || tmp < 0) tmp = PETSC_MIN_INT;
5772:       /* Update local index */
5773:       else tmp = tmp*dims[j] + *(dxm-1) - starts[j+1];
5774:     }
5775:     /* Skip component slot if necessary */
5776:     if (mat->stencil.noc) dxm++;
5777:     /* Local row number */
5778:     if (tmp >= 0) {
5779:       jdxm[numNewRows++] = tmp;
5780:     }
5781:   }
5782:   MatZeroRowsLocal(mat,numNewRows,jdxm,diag,x,b);
5783:   PetscFree(jdxm);
5784:   return(0);
5785: }

5789: /*@C
5790:    MatZeroRowsColumnsStencil - Zeros all row and column entries (except possibly the main diagonal)
5791:    of a set of rows and columns of a matrix.

5793:    Collective on Mat

5795:    Input Parameters:
5796: +  mat - the matrix
5797: .  numRows - the number of rows/columns to remove
5798: .  rows - the grid coordinates (and component number when dof > 1) for matrix rows
5799: .  diag - value put in all diagonals of eliminated rows (0.0 will even eliminate diagonal entry)
5800: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
5801: -  b - optional vector of right hand side, that will be adjusted by provided solution

5803:    Notes:
5804:    For the AIJ and BAIJ matrix formats this removes the old nonzero structure,
5805:    but does not release memory.  For the dense and block diagonal
5806:    formats this does not alter the nonzero structure.

5808:    If the option MatSetOption(mat,MAT_KEEP_NONZERO_PATTERN,PETSC_TRUE) the nonzero structure
5809:    of the matrix is not changed (even for AIJ and BAIJ matrices) the values are
5810:    merely zeroed.

5812:    The user can set a value in the diagonal entry (or for the AIJ and
5813:    row formats can optionally remove the main diagonal entry from the
5814:    nonzero structure as well, by passing 0.0 as the final argument).

5816:    For the parallel case, all processes that share the matrix (i.e.,
5817:    those in the communicator used for matrix creation) MUST call this
5818:    routine, regardless of whether any rows being zeroed are owned by
5819:    them.

5821:    Each processor can indicate any rows in the entire matrix to be zeroed (i.e. each process does NOT have to
5822:    list only rows local to itself, but the row/column numbers are given in local numbering).

5824:    The grid coordinates are across the entire grid, not just the local portion

5826:    In Fortran idxm and idxn should be declared as
5827: $     MatStencil idxm(4,m)
5828:    and the values inserted using
5829: $    idxm(MatStencil_i,1) = i
5830: $    idxm(MatStencil_j,1) = j
5831: $    idxm(MatStencil_k,1) = k
5832: $    idxm(MatStencil_c,1) = c
5833:    etc

5835:    For periodic boundary conditions use negative indices for values to the left (below 0; that are to be
5836:    obtained by wrapping values from right edge). For values to the right of the last entry using that index plus one
5837:    etc to obtain values that obtained by wrapping the values from the left edge. This does not work for anything but the
5838:    DM_BOUNDARY_PERIODIC boundary type.

5840:    For indices that don't mean anything for your case (like the k index when working in 2d) or the c index when you have
5841:    a single value per point) you can skip filling those indices.

5843:    Level: intermediate

5845:    Concepts: matrices^zeroing rows

5847: .seealso: MatZeroRows(), MatZeroRowsIS(), MatZeroEntries(), MatZeroRowsLocal(), MatSetOption()
5848: @*/
5849: PetscErrorCode  MatZeroRowsColumnsStencil(Mat mat,PetscInt numRows,const MatStencil rows[],PetscScalar diag,Vec x,Vec b)
5850: {
5851:   PetscInt       dim     = mat->stencil.dim;
5852:   PetscInt       sdim    = dim - (1 - (PetscInt) mat->stencil.noc);
5853:   PetscInt       *dims   = mat->stencil.dims+1;
5854:   PetscInt       *starts = mat->stencil.starts;
5855:   PetscInt       *dxm    = (PetscInt*) rows;
5856:   PetscInt       *jdxm, i, j, tmp, numNewRows = 0;


5864:   PetscMalloc1(numRows, &jdxm);
5865:   for (i = 0; i < numRows; ++i) {
5866:     /* Skip unused dimensions (they are ordered k, j, i, c) */
5867:     for (j = 0; j < 3-sdim; ++j) dxm++;
5868:     /* Local index in X dir */
5869:     tmp = *dxm++ - starts[0];
5870:     /* Loop over remaining dimensions */
5871:     for (j = 0; j < dim-1; ++j) {
5872:       /* If nonlocal, set index to be negative */
5873:       if ((*dxm++ - starts[j+1]) < 0 || tmp < 0) tmp = PETSC_MIN_INT;
5874:       /* Update local index */
5875:       else tmp = tmp*dims[j] + *(dxm-1) - starts[j+1];
5876:     }
5877:     /* Skip component slot if necessary */
5878:     if (mat->stencil.noc) dxm++;
5879:     /* Local row number */
5880:     if (tmp >= 0) {
5881:       jdxm[numNewRows++] = tmp;
5882:     }
5883:   }
5884:   MatZeroRowsColumnsLocal(mat,numNewRows,jdxm,diag,x,b);
5885:   PetscFree(jdxm);
5886:   return(0);
5887: }

5891: /*@C
5892:    MatZeroRowsLocal - Zeros all entries (except possibly the main diagonal)
5893:    of a set of rows of a matrix; using local numbering of rows.

5895:    Collective on Mat

5897:    Input Parameters:
5898: +  mat - the matrix
5899: .  numRows - the number of rows to remove
5900: .  rows - the global row indices
5901: .  diag - value put in all diagonals of eliminated rows
5902: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
5903: -  b - optional vector of right hand side, that will be adjusted by provided solution

5905:    Notes:
5906:    Before calling MatZeroRowsLocal(), the user must first set the
5907:    local-to-global mapping by calling MatSetLocalToGlobalMapping().

5909:    For the AIJ matrix formats this removes the old nonzero structure,
5910:    but does not release memory.  For the dense and block diagonal
5911:    formats this does not alter the nonzero structure.

5913:    If the option MatSetOption(mat,MAT_KEEP_NONZERO_PATTERN,PETSC_TRUE) the nonzero structure
5914:    of the matrix is not changed (even for AIJ and BAIJ matrices) the values are
5915:    merely zeroed.

5917:    The user can set a value in the diagonal entry (or for the AIJ and
5918:    row formats can optionally remove the main diagonal entry from the
5919:    nonzero structure as well, by passing 0.0 as the final argument).

5921:    You can call MatSetOption(mat,MAT_NO_OFF_PROC_ZERO_ROWS,PETSC_TRUE) if each process indicates only rows it
5922:    owns that are to be zeroed. This saves a global synchronization in the implementation.

5924:    Level: intermediate

5926:    Concepts: matrices^zeroing

5928: .seealso: MatZeroRows(), MatZeroRowsLocalIS(), MatZeroEntries(), MatZeroRows(), MatSetLocalToGlobalMapping
5929: @*/
5930: PetscErrorCode  MatZeroRowsLocal(Mat mat,PetscInt numRows,const PetscInt rows[],PetscScalar diag,Vec x,Vec b)
5931: {

5938:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
5939:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
5940:   MatCheckPreallocated(mat,1);

5942:   if (mat->ops->zerorowslocal) {
5943:     (*mat->ops->zerorowslocal)(mat,numRows,rows,diag,x,b);
5944:   } else {
5945:     IS             is, newis;
5946:     const PetscInt *newRows;

5948:     if (!mat->rmap->mapping) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Need to provide local to global mapping to matrix first");
5949:     ISCreateGeneral(PETSC_COMM_SELF,numRows,rows,PETSC_COPY_VALUES,&is);
5950:     ISLocalToGlobalMappingApplyIS(mat->rmap->mapping,is,&newis);
5951:     ISGetIndices(newis,&newRows);
5952:     (*mat->ops->zerorows)(mat,numRows,newRows,diag,x,b);
5953:     ISRestoreIndices(newis,&newRows);
5954:     ISDestroy(&newis);
5955:     ISDestroy(&is);
5956:   }
5957:   PetscObjectStateIncrease((PetscObject)mat);
5958: #if defined(PETSC_HAVE_CUSP)
5959:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
5960:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
5961:   }
5962: #endif
5963: #if defined(PETSC_HAVE_VIENNACL)
5964:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
5965:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
5966:   }
5967: #endif
5968:   return(0);
5969: }

5973: /*@C
5974:    MatZeroRowsLocalIS - Zeros all entries (except possibly the main diagonal)
5975:    of a set of rows of a matrix; using local numbering of rows.

5977:    Collective on Mat

5979:    Input Parameters:
5980: +  mat - the matrix
5981: .  is - index set of rows to remove
5982: .  diag - value put in all diagonals of eliminated rows
5983: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
5984: -  b - optional vector of right hand side, that will be adjusted by provided solution

5986:    Notes:
5987:    Before calling MatZeroRowsLocalIS(), the user must first set the
5988:    local-to-global mapping by calling MatSetLocalToGlobalMapping().

5990:    For the AIJ matrix formats this removes the old nonzero structure,
5991:    but does not release memory.  For the dense and block diagonal
5992:    formats this does not alter the nonzero structure.

5994:    If the option MatSetOption(mat,MAT_KEEP_NONZERO_PATTERN,PETSC_TRUE) the nonzero structure
5995:    of the matrix is not changed (even for AIJ and BAIJ matrices) the values are
5996:    merely zeroed.

5998:    The user can set a value in the diagonal entry (or for the AIJ and
5999:    row formats can optionally remove the main diagonal entry from the
6000:    nonzero structure as well, by passing 0.0 as the final argument).

6002:    You can call MatSetOption(mat,MAT_NO_OFF_PROC_ZERO_ROWS,PETSC_TRUE) if each process indicates only rows it
6003:    owns that are to be zeroed. This saves a global synchronization in the implementation.

6005:    Level: intermediate

6007:    Concepts: matrices^zeroing

6009: .seealso: MatZeroRows(), MatZeroRowsLocal(), MatZeroEntries(), MatZeroRows(), MatSetLocalToGlobalMapping
6010: @*/
6011: PetscErrorCode  MatZeroRowsLocalIS(Mat mat,IS is,PetscScalar diag,Vec x,Vec b)
6012: {
6014:   PetscInt       numRows;
6015:   const PetscInt *rows;

6021:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
6022:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6023:   MatCheckPreallocated(mat,1);

6025:   ISGetLocalSize(is,&numRows);
6026:   ISGetIndices(is,&rows);
6027:   MatZeroRowsLocal(mat,numRows,rows,diag,x,b);
6028:   ISRestoreIndices(is,&rows);
6029:   return(0);
6030: }

6034: /*@C
6035:    MatZeroRowsColumnsLocal - Zeros all entries (except possibly the main diagonal)
6036:    of a set of rows and columns of a matrix; using local numbering of rows.

6038:    Collective on Mat

6040:    Input Parameters:
6041: +  mat - the matrix
6042: .  numRows - the number of rows to remove
6043: .  rows - the global row indices
6044: .  diag - value put in all diagonals of eliminated rows
6045: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
6046: -  b - optional vector of right hand side, that will be adjusted by provided solution

6048:    Notes:
6049:    Before calling MatZeroRowsColumnsLocal(), the user must first set the
6050:    local-to-global mapping by calling MatSetLocalToGlobalMapping().

6052:    The user can set a value in the diagonal entry (or for the AIJ and
6053:    row formats can optionally remove the main diagonal entry from the
6054:    nonzero structure as well, by passing 0.0 as the final argument).

6056:    Level: intermediate

6058:    Concepts: matrices^zeroing

6060: .seealso: MatZeroRows(), MatZeroRowsLocalIS(), MatZeroEntries(), MatZeroRows(), MatSetLocalToGlobalMapping
6061: @*/
6062: PetscErrorCode  MatZeroRowsColumnsLocal(Mat mat,PetscInt numRows,const PetscInt rows[],PetscScalar diag,Vec x,Vec b)
6063: {
6065:   IS             is, newis;
6066:   const PetscInt *newRows;

6072:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
6073:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6074:   MatCheckPreallocated(mat,1);

6076:   if (!mat->cmap->mapping) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Need to provide local to global mapping to matrix first");
6077:   ISCreateGeneral(PETSC_COMM_SELF,numRows,rows,PETSC_COPY_VALUES,&is);
6078:   ISLocalToGlobalMappingApplyIS(mat->cmap->mapping,is,&newis);
6079:   ISGetIndices(newis,&newRows);
6080:   (*mat->ops->zerorowscolumns)(mat,numRows,newRows,diag,x,b);
6081:   ISRestoreIndices(newis,&newRows);
6082:   ISDestroy(&newis);
6083:   ISDestroy(&is);
6084:   PetscObjectStateIncrease((PetscObject)mat);
6085: #if defined(PETSC_HAVE_CUSP)
6086:   if (mat->valid_GPU_matrix != PETSC_CUSP_UNALLOCATED) {
6087:     mat->valid_GPU_matrix = PETSC_CUSP_CPU;
6088:   }
6089: #endif
6090: #if defined(PETSC_HAVE_VIENNACL)
6091:   if (mat->valid_GPU_matrix != PETSC_VIENNACL_UNALLOCATED) {
6092:     mat->valid_GPU_matrix = PETSC_VIENNACL_CPU;
6093:   }
6094: #endif
6095:   return(0);
6096: }

6100: /*@C
6101:    MatZeroRowsColumnsLocalIS - Zeros all entries (except possibly the main diagonal)
6102:    of a set of rows and columns of a matrix; using local numbering of rows.

6104:    Collective on Mat

6106:    Input Parameters:
6107: +  mat - the matrix
6108: .  is - index set of rows to remove
6109: .  diag - value put in all diagonals of eliminated rows
6110: .  x - optional vector of solutions for zeroed rows (other entries in vector are not used)
6111: -  b - optional vector of right hand side, that will be adjusted by provided solution

6113:    Notes:
6114:    Before calling MatZeroRowsColumnsLocalIS(), the user must first set the
6115:    local-to-global mapping by calling MatSetLocalToGlobalMapping().

6117:    The user can set a value in the diagonal entry (or for the AIJ and
6118:    row formats can optionally remove the main diagonal entry from the
6119:    nonzero structure as well, by passing 0.0 as the final argument).

6121:    Level: intermediate

6123:    Concepts: matrices^zeroing

6125: .seealso: MatZeroRows(), MatZeroRowsLocal(), MatZeroEntries(), MatZeroRows(), MatSetLocalToGlobalMapping
6126: @*/
6127: PetscErrorCode  MatZeroRowsColumnsLocalIS(Mat mat,IS is,PetscScalar diag,Vec x,Vec b)
6128: {
6130:   PetscInt       numRows;
6131:   const PetscInt *rows;

6137:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
6138:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6139:   MatCheckPreallocated(mat,1);

6141:   ISGetLocalSize(is,&numRows);
6142:   ISGetIndices(is,&rows);
6143:   MatZeroRowsColumnsLocal(mat,numRows,rows,diag,x,b);
6144:   ISRestoreIndices(is,&rows);
6145:   return(0);
6146: }

6150: /*@
6151:    MatGetSize - Returns the numbers of rows and columns in a matrix.

6153:    Not Collective

6155:    Input Parameter:
6156: .  mat - the matrix

6158:    Output Parameters:
6159: +  m - the number of global rows
6160: -  n - the number of global columns

6162:    Note: both output parameters can be NULL on input.

6164:    Level: beginner

6166:    Concepts: matrices^size

6168: .seealso: MatGetLocalSize()
6169: @*/
6170: PetscErrorCode  MatGetSize(Mat mat,PetscInt *m,PetscInt *n)
6171: {
6174:   if (m) *m = mat->rmap->N;
6175:   if (n) *n = mat->cmap->N;
6176:   return(0);
6177: }

6181: /*@
6182:    MatGetLocalSize - Returns the number of rows and columns in a matrix
6183:    stored locally.  This information may be implementation dependent, so
6184:    use with care.

6186:    Not Collective

6188:    Input Parameters:
6189: .  mat - the matrix

6191:    Output Parameters:
6192: +  m - the number of local rows
6193: -  n - the number of local columns

6195:    Note: both output parameters can be NULL on input.

6197:    Level: beginner

6199:    Concepts: matrices^local size

6201: .seealso: MatGetSize()
6202: @*/
6203: PetscErrorCode  MatGetLocalSize(Mat mat,PetscInt *m,PetscInt *n)
6204: {
6209:   if (m) *m = mat->rmap->n;
6210:   if (n) *n = mat->cmap->n;
6211:   return(0);
6212: }

6216: /*@
6217:    MatGetOwnershipRangeColumn - Returns the range of matrix columns associated with rows of a vector one multiplies by that owned by
6218:    this processor. (The columns of the "diagonal block")

6220:    Not Collective, unless matrix has not been allocated, then collective on Mat

6222:    Input Parameters:
6223: .  mat - the matrix

6225:    Output Parameters:
6226: +  m - the global index of the first local column
6227: -  n - one more than the global index of the last local column

6229:    Notes: both output parameters can be NULL on input.

6231:    Level: developer

6233:    Concepts: matrices^column ownership

6235: .seealso:  MatGetOwnershipRange(), MatGetOwnershipRanges(), MatGetOwnershipRangesColumn()

6237: @*/
6238: PetscErrorCode  MatGetOwnershipRangeColumn(Mat mat,PetscInt *m,PetscInt *n)
6239: {
6245:   MatCheckPreallocated(mat,1);
6246:   if (m) *m = mat->cmap->rstart;
6247:   if (n) *n = mat->cmap->rend;
6248:   return(0);
6249: }

6253: /*@
6254:    MatGetOwnershipRange - Returns the range of matrix rows owned by
6255:    this processor, assuming that the matrix is laid out with the first
6256:    n1 rows on the first processor, the next n2 rows on the second, etc.
6257:    For certain parallel layouts this range may not be well defined.

6259:    Not Collective

6261:    Input Parameters:
6262: .  mat - the matrix

6264:    Output Parameters:
6265: +  m - the global index of the first local row
6266: -  n - one more than the global index of the last local row

6268:    Note: Both output parameters can be NULL on input.
6269: $  This function requires that the matrix be preallocated. If you have not preallocated, consider using
6270: $    PetscSplitOwnership(MPI_Comm comm, PetscInt *n, PetscInt *N)
6271: $  and then MPI_Scan() to calculate prefix sums of the local sizes.

6273:    Level: beginner

6275:    Concepts: matrices^row ownership

6277: .seealso:   MatGetOwnershipRanges(), MatGetOwnershipRangeColumn(), MatGetOwnershipRangesColumn(), PetscSplitOwnership(), PetscSplitOwnershipBlock()

6279: @*/
6280: PetscErrorCode  MatGetOwnershipRange(Mat mat,PetscInt *m,PetscInt *n)
6281: {
6287:   MatCheckPreallocated(mat,1);
6288:   if (m) *m = mat->rmap->rstart;
6289:   if (n) *n = mat->rmap->rend;
6290:   return(0);
6291: }

6295: /*@C
6296:    MatGetOwnershipRanges - Returns the range of matrix rows owned by
6297:    each process

6299:    Not Collective, unless matrix has not been allocated, then collective on Mat

6301:    Input Parameters:
6302: .  mat - the matrix

6304:    Output Parameters:
6305: .  ranges - start of each processors portion plus one more then the total length at the end

6307:    Level: beginner

6309:    Concepts: matrices^row ownership

6311: .seealso:   MatGetOwnershipRange(), MatGetOwnershipRangeColumn(), MatGetOwnershipRangesColumn()

6313: @*/
6314: PetscErrorCode  MatGetOwnershipRanges(Mat mat,const PetscInt **ranges)
6315: {

6321:   MatCheckPreallocated(mat,1);
6322:   PetscLayoutGetRanges(mat->rmap,ranges);
6323:   return(0);
6324: }

6328: /*@C
6329:    MatGetOwnershipRangesColumn - Returns the range of matrix columns associated with rows of a vector one multiplies by that owned by
6330:    this processor. (The columns of the "diagonal blocks" for each process)

6332:    Not Collective, unless matrix has not been allocated, then collective on Mat

6334:    Input Parameters:
6335: .  mat - the matrix

6337:    Output Parameters:
6338: .  ranges - start of each processors portion plus one more then the total length at the end

6340:    Level: beginner

6342:    Concepts: matrices^column ownership

6344: .seealso:   MatGetOwnershipRange(), MatGetOwnershipRangeColumn(), MatGetOwnershipRanges()

6346: @*/
6347: PetscErrorCode  MatGetOwnershipRangesColumn(Mat mat,const PetscInt **ranges)
6348: {

6354:   MatCheckPreallocated(mat,1);
6355:   PetscLayoutGetRanges(mat->cmap,ranges);
6356:   return(0);
6357: }

6361: /*@C
6362:    MatGetOwnershipIS - Get row and column ownership as index sets

6364:    Not Collective

6366:    Input Arguments:
6367: .  A - matrix of type Elemental

6369:    Output Arguments:
6370: +  rows - rows in which this process owns elements
6371: .  cols - columns in which this process owns elements

6373:    Level: intermediate

6375: .seealso: MatGetOwnershipRange(), MatGetOwnershipRangeColumn(), MatSetValues(), MATELEMENTAL, MatSetValues()
6376: @*/
6377: PetscErrorCode MatGetOwnershipIS(Mat A,IS *rows,IS *cols)
6378: {
6379:   PetscErrorCode ierr,(*f)(Mat,IS*,IS*);

6382:   MatCheckPreallocated(A,1);
6383:   PetscObjectQueryFunction((PetscObject)A,"MatGetOwnershipIS_C",&f);
6384:   if (f) {
6385:     (*f)(A,rows,cols);
6386:   } else {   /* Create a standard row-based partition, each process is responsible for ALL columns in their row block */
6387:     if (rows) {ISCreateStride(PETSC_COMM_SELF,A->rmap->n,A->rmap->rstart,1,rows);}
6388:     if (cols) {ISCreateStride(PETSC_COMM_SELF,A->cmap->N,0,1,cols);}
6389:   }
6390:   return(0);
6391: }

6395: /*@C
6396:    MatILUFactorSymbolic - Performs symbolic ILU factorization of a matrix.
6397:    Uses levels of fill only, not drop tolerance. Use MatLUFactorNumeric()
6398:    to complete the factorization.

6400:    Collective on Mat

6402:    Input Parameters:
6403: +  mat - the matrix
6404: .  row - row permutation
6405: .  column - column permutation
6406: -  info - structure containing
6407: $      levels - number of levels of fill.
6408: $      expected fill - as ratio of original fill.
6409: $      1 or 0 - indicating force fill on diagonal (improves robustness for matrices
6410:                 missing diagonal entries)

6412:    Output Parameters:
6413: .  fact - new matrix that has been symbolically factored

6415:    Notes: See Users-Manual: ch_mat for additional information about choosing the fill factor for better efficiency.

6417:    Most users should employ the simplified KSP interface for linear solvers
6418:    instead of working directly with matrix algebra routines such as this.
6419:    See, e.g., KSPCreate().

6421:    Level: developer

6423:   Concepts: matrices^symbolic LU factorization
6424:   Concepts: matrices^factorization
6425:   Concepts: LU^symbolic factorization

6427: .seealso: MatLUFactorSymbolic(), MatLUFactorNumeric(), MatCholeskyFactor()
6428:           MatGetOrdering(), MatFactorInfo

6430:     Developer Note: fortran interface is not autogenerated as the f90
6431:     interface defintion cannot be generated correctly [due to MatFactorInfo]

6433: @*/
6434: PetscErrorCode  MatILUFactorSymbolic(Mat fact,Mat mat,IS row,IS col,const MatFactorInfo *info)
6435: {

6445:   if (info->levels < 0) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_OUTOFRANGE,"Levels of fill negative %D",(PetscInt)info->levels);
6446:   if (info->fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_OUTOFRANGE,"Expected fill less than 1.0 %g",(double)info->fill);
6447:   if (!(fact)->ops->ilufactorsymbolic) {
6448:     const MatSolverPackage spackage;
6449:     MatFactorGetSolverPackage(fact,&spackage);
6450:     SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Matrix type %s symbolic ILU using solver package %s",((PetscObject)mat)->type_name,spackage);
6451:   }
6452:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
6453:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6454:   MatCheckPreallocated(mat,2);

6456:   PetscLogEventBegin(MAT_ILUFactorSymbolic,mat,row,col,0);
6457:   (fact->ops->ilufactorsymbolic)(fact,mat,row,col,info);
6458:   PetscLogEventEnd(MAT_ILUFactorSymbolic,mat,row,col,0);
6459:   return(0);
6460: }

6464: /*@C
6465:    MatICCFactorSymbolic - Performs symbolic incomplete
6466:    Cholesky factorization for a symmetric matrix.  Use
6467:    MatCholeskyFactorNumeric() to complete the factorization.

6469:    Collective on Mat

6471:    Input Parameters:
6472: +  mat - the matrix
6473: .  perm - row and column permutation
6474: -  info - structure containing
6475: $      levels - number of levels of fill.
6476: $      expected fill - as ratio of original fill.

6478:    Output Parameter:
6479: .  fact - the factored matrix

6481:    Notes:
6482:    Most users should employ the KSP interface for linear solvers
6483:    instead of working directly with matrix algebra routines such as this.
6484:    See, e.g., KSPCreate().

6486:    Level: developer

6488:   Concepts: matrices^symbolic incomplete Cholesky factorization
6489:   Concepts: matrices^factorization
6490:   Concepts: Cholsky^symbolic factorization

6492: .seealso: MatCholeskyFactorNumeric(), MatCholeskyFactor(), MatFactorInfo

6494:     Developer Note: fortran interface is not autogenerated as the f90
6495:     interface defintion cannot be generated correctly [due to MatFactorInfo]

6497: @*/
6498: PetscErrorCode  MatICCFactorSymbolic(Mat fact,Mat mat,IS perm,const MatFactorInfo *info)
6499: {

6508:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6509:   if (info->levels < 0) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_OUTOFRANGE,"Levels negative %D",(PetscInt) info->levels);
6510:   if (info->fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_OUTOFRANGE,"Expected fill less than 1.0 %g",(double)info->fill);
6511:   if (!(fact)->ops->iccfactorsymbolic) {
6512:     const MatSolverPackage spackage;
6513:     MatFactorGetSolverPackage(fact,&spackage);
6514:     SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Matrix type %s symbolic ICC using solver package %s",((PetscObject)mat)->type_name,spackage);
6515:   }
6516:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
6517:   MatCheckPreallocated(mat,2);

6519:   PetscLogEventBegin(MAT_ICCFactorSymbolic,mat,perm,0,0);
6520:   (fact->ops->iccfactorsymbolic)(fact,mat,perm,info);
6521:   PetscLogEventEnd(MAT_ICCFactorSymbolic,mat,perm,0,0);
6522:   return(0);
6523: }

6527: /*@C
6528:    MatGetSubMatrices - Extracts several submatrices from a matrix. If submat
6529:    points to an array of valid matrices, they may be reused to store the new
6530:    submatrices.

6532:    Collective on Mat

6534:    Input Parameters:
6535: +  mat - the matrix
6536: .  n   - the number of submatrixes to be extracted (on this processor, may be zero)
6537: .  irow, icol - index sets of rows and columns to extract
6538: -  scall - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX

6540:    Output Parameter:
6541: .  submat - the array of submatrices

6543:    Notes:
6544:    MatGetSubMatrices() can extract ONLY sequential submatrices
6545:    (from both sequential and parallel matrices). Use MatGetSubMatrix()
6546:    to extract a parallel submatrix.

6548:    Some matrix types place restrictions on the row and column
6549:    indices, such as that they be sorted or that they be equal to each other.

6551:    The index sets may not have duplicate entries.

6553:    When extracting submatrices from a parallel matrix, each processor can
6554:    form a different submatrix by setting the rows and columns of its
6555:    individual index sets according to the local submatrix desired.

6557:    When finished using the submatrices, the user should destroy
6558:    them with MatDestroyMatrices().

6560:    MAT_REUSE_MATRIX can only be used when the nonzero structure of the
6561:    original matrix has not changed from that last call to MatGetSubMatrices().

6563:    This routine creates the matrices in submat; you should NOT create them before
6564:    calling it. It also allocates the array of matrix pointers submat.

6566:    For BAIJ matrices the index sets must respect the block structure, that is if they
6567:    request one row/column in a block, they must request all rows/columns that are in
6568:    that block. For example, if the block size is 2 you cannot request just row 0 and
6569:    column 0.

6571:    Fortran Note:
6572:    The Fortran interface is slightly different from that given below; it
6573:    requires one to pass in  as submat a Mat (integer) array of size at least m.

6575:    Level: advanced

6577:    Concepts: matrices^accessing submatrices
6578:    Concepts: submatrices

6580: .seealso: MatDestroyMatrices(), MatGetSubMatrix(), MatGetRow(), MatGetDiagonal(), MatReuse
6581: @*/
6582: PetscErrorCode  MatGetSubMatrices(Mat mat,PetscInt n,const IS irow[],const IS icol[],MatReuse scall,Mat *submat[])
6583: {
6585:   PetscInt       i;
6586:   PetscBool      eq;

6591:   if (n) {
6596:   }
6598:   if (n && scall == MAT_REUSE_MATRIX) {
6601:   }
6602:   if (!mat->ops->getsubmatrices) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
6603:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
6604:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6605:   MatCheckPreallocated(mat,1);

6607:   PetscLogEventBegin(MAT_GetSubMatrices,mat,0,0,0);
6608:   (*mat->ops->getsubmatrices)(mat,n,irow,icol,scall,submat);
6609:   PetscLogEventEnd(MAT_GetSubMatrices,mat,0,0,0);
6610:   for (i=0; i<n; i++) {
6611:     (*submat)[i]->factortype = MAT_FACTOR_NONE;  /* in case in place factorization was previously done on submatrix */
6612:     if (mat->symmetric || mat->structurally_symmetric || mat->hermitian) {
6613:       ISEqual(irow[i],icol[i],&eq);
6614:       if (eq) {
6615:         if (mat->symmetric) {
6616:           MatSetOption((*submat)[i],MAT_SYMMETRIC,PETSC_TRUE);
6617:         } else if (mat->hermitian) {
6618:           MatSetOption((*submat)[i],MAT_HERMITIAN,PETSC_TRUE);
6619:         } else if (mat->structurally_symmetric) {
6620:           MatSetOption((*submat)[i],MAT_STRUCTURALLY_SYMMETRIC,PETSC_TRUE);
6621:         }
6622:       }
6623:     }
6624:   }
6625:   return(0);
6626: }

6630: PetscErrorCode  MatGetSubMatricesMPI(Mat mat,PetscInt n,const IS irow[],const IS icol[],MatReuse scall,Mat *submat[])
6631: {
6633:   PetscInt       i;
6634:   PetscBool      eq;

6639:   if (n) {
6644:   }
6646:   if (n && scall == MAT_REUSE_MATRIX) {
6649:   }
6650:   if (!mat->ops->getsubmatricesmpi) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
6651:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
6652:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6653:   MatCheckPreallocated(mat,1);

6655:   PetscLogEventBegin(MAT_GetSubMatrices,mat,0,0,0);
6656:   (*mat->ops->getsubmatricesmpi)(mat,n,irow,icol,scall,submat);
6657:   PetscLogEventEnd(MAT_GetSubMatrices,mat,0,0,0);
6658:   for (i=0; i<n; i++) {
6659:     if (mat->symmetric || mat->structurally_symmetric || mat->hermitian) {
6660:       ISEqual(irow[i],icol[i],&eq);
6661:       if (eq) {
6662:         if (mat->symmetric) {
6663:           MatSetOption((*submat)[i],MAT_SYMMETRIC,PETSC_TRUE);
6664:         } else if (mat->hermitian) {
6665:           MatSetOption((*submat)[i],MAT_HERMITIAN,PETSC_TRUE);
6666:         } else if (mat->structurally_symmetric) {
6667:           MatSetOption((*submat)[i],MAT_STRUCTURALLY_SYMMETRIC,PETSC_TRUE);
6668:         }
6669:       }
6670:     }
6671:   }
6672:   return(0);
6673: }

6677: /*@C
6678:    MatDestroyMatrices - Destroys a set of matrices obtained with MatGetSubMatrices().

6680:    Collective on Mat

6682:    Input Parameters:
6683: +  n - the number of local matrices
6684: -  mat - the matrices (note that this is a pointer to the array of matrices, just to match the calling
6685:                        sequence of MatGetSubMatrices())

6687:    Level: advanced

6689:     Notes: Frees not only the matrices, but also the array that contains the matrices
6690:            In Fortran will not free the array.

6692: .seealso: MatGetSubMatrices()
6693: @*/
6694: PetscErrorCode  MatDestroyMatrices(PetscInt n,Mat *mat[])
6695: {
6697:   PetscInt       i;

6700:   if (!*mat) return(0);
6701:   if (n < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Trying to destroy negative number of matrices %D",n);
6703:   for (i=0; i<n; i++) {
6704:     MatDestroy(&(*mat)[i]);
6705:   }
6706:   /* memory is allocated even if n = 0 */
6707:   PetscFree(*mat);
6708:   *mat = NULL;
6709:   return(0);
6710: }

6714: /*@C
6715:    MatGetSeqNonzeroStructure - Extracts the sequential nonzero structure from a matrix.

6717:    Collective on Mat

6719:    Input Parameters:
6720: .  mat - the matrix

6722:    Output Parameter:
6723: .  matstruct - the sequential matrix with the nonzero structure of mat

6725:   Level: intermediate

6727: .seealso: MatDestroySeqNonzeroStructure(), MatGetSubMatrices(), MatDestroyMatrices()
6728: @*/
6729: PetscErrorCode  MatGetSeqNonzeroStructure(Mat mat,Mat *matstruct)
6730: {


6738:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6739:   MatCheckPreallocated(mat,1);

6741:   if (!mat->ops->getseqnonzerostructure) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Not for matrix type %s\n",((PetscObject)mat)->type_name);
6742:   PetscLogEventBegin(MAT_GetSeqNonzeroStructure,mat,0,0,0);
6743:   (*mat->ops->getseqnonzerostructure)(mat,matstruct);
6744:   PetscLogEventEnd(MAT_GetSeqNonzeroStructure,mat,0,0,0);
6745:   return(0);
6746: }

6750: /*@C
6751:    MatDestroySeqNonzeroStructure - Destroys matrix obtained with MatGetSeqNonzeroStructure().

6753:    Collective on Mat

6755:    Input Parameters:
6756: .  mat - the matrix (note that this is a pointer to the array of matrices, just to match the calling
6757:                        sequence of MatGetSequentialNonzeroStructure())

6759:    Level: advanced

6761:     Notes: Frees not only the matrices, but also the array that contains the matrices

6763: .seealso: MatGetSeqNonzeroStructure()
6764: @*/
6765: PetscErrorCode  MatDestroySeqNonzeroStructure(Mat *mat)
6766: {

6771:   MatDestroy(mat);
6772:   return(0);
6773: }

6777: /*@
6778:    MatIncreaseOverlap - Given a set of submatrices indicated by index sets,
6779:    replaces the index sets by larger ones that represent submatrices with
6780:    additional overlap.

6782:    Collective on Mat

6784:    Input Parameters:
6785: +  mat - the matrix
6786: .  n   - the number of index sets
6787: .  is  - the array of index sets (these index sets will changed during the call)
6788: -  ov  - the additional overlap requested

6790:    Level: developer

6792:    Concepts: overlap
6793:    Concepts: ASM^computing overlap

6795: .seealso: MatGetSubMatrices()
6796: @*/
6797: PetscErrorCode  MatIncreaseOverlap(Mat mat,PetscInt n,IS is[],PetscInt ov)
6798: {

6804:   if (n < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Must have one or more domains, you have %D",n);
6805:   if (n) {
6808:   }
6809:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
6810:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
6811:   MatCheckPreallocated(mat,1);

6813:   if (!ov) return(0);
6814:   if (!mat->ops->increaseoverlap) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
6815:   PetscLogEventBegin(MAT_IncreaseOverlap,mat,0,0,0);
6816:   (*mat->ops->increaseoverlap)(mat,n,is,ov);
6817:   PetscLogEventEnd(MAT_IncreaseOverlap,mat,0,0,0);
6818:   return(0);
6819: }

6823: /*@
6824:    MatGetBlockSize - Returns the matrix block size.

6826:    Not Collective

6828:    Input Parameter:
6829: .  mat - the matrix

6831:    Output Parameter:
6832: .  bs - block size

6834:    Notes:
6835:     Block row formats are MATSEQBAIJ, MATMPIBAIJ, MATSEQSBAIJ, MATMPISBAIJ. These formats ALWAYS have square block storage in the matrix.

6837:    If the block size has not been set yet this routine returns 1.

6839:    Level: intermediate

6841:    Concepts: matrices^block size

6843: .seealso: MatCreateSeqBAIJ(), MatCreateBAIJ(), MatGetBlockSizes()
6844: @*/
6845: PetscErrorCode  MatGetBlockSize(Mat mat,PetscInt *bs)
6846: {
6850:   *bs = PetscAbs(mat->rmap->bs);
6851:   return(0);
6852: }

6856: /*@
6857:    MatGetBlockSizes - Returns the matrix block row and column sizes.

6859:    Not Collective

6861:    Input Parameter:
6862: .  mat - the matrix

6864:    Output Parameter:
6865: .  rbs - row block size
6866: .  cbs - coumn block size

6868:    Notes:
6869:     Block row formats are MATSEQBAIJ, MATMPIBAIJ, MATSEQSBAIJ, MATMPISBAIJ. These formats ALWAYS have square block storage in the matrix.
6870:     If you pass a different block size for the columns than the rows, the row block size determines the square block storage.

6872:    If a block size has not been set yet this routine returns 1.

6874:    Level: intermediate

6876:    Concepts: matrices^block size

6878: .seealso: MatCreateSeqBAIJ(), MatCreateBAIJ(), MatGetBlockSize(), MatSetBlockSize(), MatSetBlockSizes()
6879: @*/
6880: PetscErrorCode  MatGetBlockSizes(Mat mat,PetscInt *rbs, PetscInt *cbs)
6881: {
6886:   if (rbs) *rbs = PetscAbs(mat->rmap->bs);
6887:   if (cbs) *cbs = PetscAbs(mat->cmap->bs);
6888:   return(0);
6889: }

6893: /*@
6894:    MatSetBlockSize - Sets the matrix block size.

6896:    Logically Collective on Mat

6898:    Input Parameters:
6899: +  mat - the matrix
6900: -  bs - block size

6902:    Notes:
6903:     Block row formats are MATSEQBAIJ, MATMPIBAIJ, MATSEQSBAIJ, MATMPISBAIJ. These formats ALWAYS have square block storage in the matrix.

6905:      This must be called before MatSetUp() or MatXXXSetPreallocation() (or will default to 1) and the block size cannot be changed later

6907:    Level: intermediate

6909:    Concepts: matrices^block size

6911: .seealso: MatCreateSeqBAIJ(), MatCreateBAIJ(), MatGetBlockSize(), MatSetBlockSizes(), MatGetBlockSizes()
6912: @*/
6913: PetscErrorCode  MatSetBlockSize(Mat mat,PetscInt bs)
6914: {

6920:   PetscLayoutSetBlockSize(mat->rmap,bs);
6921:   PetscLayoutSetBlockSize(mat->cmap,bs);
6922:   return(0);
6923: }

6927: /*@
6928:    MatSetBlockSizes - Sets the matrix block row and column sizes.

6930:    Logically Collective on Mat

6932:    Input Parameters:
6933: +  mat - the matrix
6934: -  rbs - row block size
6935: -  cbs - column block size

6937:    Notes:
6938:     Block row formats are MATSEQBAIJ, MATMPIBAIJ, MATSEQSBAIJ, MATMPISBAIJ. These formats ALWAYS have square block storage in the matrix.
6939:     If you pass a different block size for the columns than the rows, the row block size determines the square block storage.

6941:     This must be called before MatSetUp() or MatXXXSetPreallocation() (or will default to 1) and the block size cannot be changed later

6943:     The row and column block size determine the blocksize of the "row" and "column" vectors returned by MatCreateVecs().

6945:    Level: intermediate

6947:    Concepts: matrices^block size

6949: .seealso: MatCreateSeqBAIJ(), MatCreateBAIJ(), MatGetBlockSize(), MatSetBlockSize(), MatGetBlockSizes()
6950: @*/
6951: PetscErrorCode  MatSetBlockSizes(Mat mat,PetscInt rbs,PetscInt cbs)
6952: {

6959:   PetscLayoutSetBlockSize(mat->rmap,rbs);
6960:   PetscLayoutSetBlockSize(mat->cmap,cbs);
6961:   return(0);
6962: }

6966: /*@
6967:    MatSetBlockSizesFromMats - Sets the matrix block row and column sizes to match a pair of matrices

6969:    Logically Collective on Mat

6971:    Input Parameters:
6972: +  mat - the matrix
6973: .  fromRow - matrix from which to copy row block size
6974: -  fromCol - matrix from which to copy column block size (can be same as fromRow)

6976:    Level: developer

6978:    Concepts: matrices^block size

6980: .seealso: MatCreateSeqBAIJ(), MatCreateBAIJ(), MatGetBlockSize(), MatSetBlockSizes()
6981: @*/
6982: PetscErrorCode  MatSetBlockSizesFromMats(Mat mat,Mat fromRow,Mat fromCol)
6983: {

6990:   if (fromRow->rmap->bs > 0) {PetscLayoutSetBlockSize(mat->rmap,fromRow->rmap->bs);}
6991:   if (fromCol->cmap->bs > 0) {PetscLayoutSetBlockSize(mat->cmap,fromCol->cmap->bs);}
6992:   return(0);
6993: }

6997: /*@
6998:    MatResidual - Default routine to calculate the residual.

7000:    Collective on Mat and Vec

7002:    Input Parameters:
7003: +  mat - the matrix
7004: .  b   - the right-hand-side
7005: -  x   - the approximate solution

7007:    Output Parameter:
7008: .  r - location to store the residual

7010:    Level: developer

7012: .keywords: MG, default, multigrid, residual

7014: .seealso: PCMGSetResidual()
7015: @*/
7016: PetscErrorCode  MatResidual(Mat mat,Vec b,Vec x,Vec r)
7017: {

7026:   MatCheckPreallocated(mat,1);
7027:   PetscLogEventBegin(MAT_Residual,mat,0,0,0);
7028:   if (!mat->ops->residual) {
7029:     MatMult(mat,x,r);
7030:     VecAYPX(r,-1.0,b);
7031:   } else {
7032:     (*mat->ops->residual)(mat,b,x,r);
7033:   }
7034:   PetscLogEventEnd(MAT_Residual,mat,0,0,0);
7035:   return(0);
7036: }

7040: /*@C
7041:     MatGetRowIJ - Returns the compressed row storage i and j indices for sequential matrices.

7043:    Collective on Mat

7045:     Input Parameters:
7046: +   mat - the matrix
7047: .   shift -  0 or 1 indicating we want the indices starting at 0 or 1
7048: .   symmetric - PETSC_TRUE or PETSC_FALSE indicating the matrix data structure should be   symmetrized
7049: -   inodecompressed - PETSC_TRUE or PETSC_FALSE  indicating if the nonzero structure of the
7050:                  inodes or the nonzero elements is wanted. For BAIJ matrices the compressed version is
7051:                  always used.

7053:     Output Parameters:
7054: +   n - number of rows in the (possibly compressed) matrix
7055: .   ia - the row pointers [of length n+1]
7056: .   ja - the column indices
7057: -   done - indicates if the routine actually worked and returned appropriate ia[] and ja[] arrays; callers
7058:            are responsible for handling the case when done == PETSC_FALSE and ia and ja are not set

7060:     Level: developer

7062:     Notes: You CANNOT change any of the ia[] or ja[] values.

7064:            Use MatRestoreRowIJ() when you are finished accessing the ia[] and ja[] values

7066:     Fortran Node

7068:            In Fortran use
7069: $           PetscInt ia(1), ja(1)
7070: $           PetscOffset iia, jja
7071: $      call MatGetRowIJ(mat,shift,symmetric,inodecompressed,n,ia,iia,ja,jja,done,ierr)
7072: $
7073: $          or
7074: $
7075: $           PetscScalar, pointer :: xx_v(:)
7076: $    call  MatGetRowIJF90(mat,shift,symmetric,inodecompressed,n,ia,ja,done,ierr)


7079:        Acess the ith and jth entries via ia(iia + i) and ja(jja + j)

7081: .seealso: MatGetColumnIJ(), MatRestoreRowIJ(), MatSeqAIJGetArray()
7082: @*/
7083: PetscErrorCode MatGetRowIJ(Mat mat,PetscInt shift,PetscBool symmetric,PetscBool inodecompressed,PetscInt *n,const PetscInt *ia[],const PetscInt *ja[],PetscBool  *done)
7084: {

7094:   MatCheckPreallocated(mat,1);
7095:   if (!mat->ops->getrowij) *done = PETSC_FALSE;
7096:   else {
7097:     *done = PETSC_TRUE;
7098:     PetscLogEventBegin(MAT_GetRowIJ,mat,0,0,0);
7099:     (*mat->ops->getrowij)(mat,shift,symmetric,inodecompressed,n,ia,ja,done);
7100:     PetscLogEventEnd(MAT_GetRowIJ,mat,0,0,0);
7101:   }
7102:   return(0);
7103: }

7107: /*@C
7108:     MatGetColumnIJ - Returns the compressed column storage i and j indices for sequential matrices.

7110:     Collective on Mat

7112:     Input Parameters:
7113: +   mat - the matrix
7114: .   shift - 1 or zero indicating we want the indices starting at 0 or 1
7115: .   symmetric - PETSC_TRUE or PETSC_FALSE indicating the matrix data structure should be
7116:                 symmetrized
7117: .   inodecompressed - PETSC_TRUE or PETSC_FALSE indicating if the nonzero structure of the
7118:                  inodes or the nonzero elements is wanted. For BAIJ matrices the compressed version is
7119:                  always used.
7120: .   n - number of columns in the (possibly compressed) matrix
7121: .   ia - the column pointers
7122: -   ja - the row indices

7124:     Output Parameters:
7125: .   done - PETSC_TRUE or PETSC_FALSE, indicating whether the values have been returned

7127:     Note:
7128:     This routine zeros out n, ia, and ja. This is to prevent accidental
7129:     us of the array after it has been restored. If you pass NULL, it will
7130:     not zero the pointers.  Use of ia or ja after MatRestoreColumnIJ() is invalid.

7132:     Level: developer

7134: .seealso: MatGetRowIJ(), MatRestoreColumnIJ()
7135: @*/
7136: PetscErrorCode MatGetColumnIJ(Mat mat,PetscInt shift,PetscBool symmetric,PetscBool inodecompressed,PetscInt *n,const PetscInt *ia[],const PetscInt *ja[],PetscBool  *done)
7137: {

7147:   MatCheckPreallocated(mat,1);
7148:   if (!mat->ops->getcolumnij) *done = PETSC_FALSE;
7149:   else {
7150:     *done = PETSC_TRUE;
7151:     (*mat->ops->getcolumnij)(mat,shift,symmetric,inodecompressed,n,ia,ja,done);
7152:   }
7153:   return(0);
7154: }

7158: /*@C
7159:     MatRestoreRowIJ - Call after you are completed with the ia,ja indices obtained with
7160:     MatGetRowIJ().

7162:     Collective on Mat

7164:     Input Parameters:
7165: +   mat - the matrix
7166: .   shift - 1 or zero indicating we want the indices starting at 0 or 1
7167: .   symmetric - PETSC_TRUE or PETSC_FALSE indicating the matrix data structure should be
7168:                 symmetrized
7169: .   inodecompressed -  PETSC_TRUE or PETSC_FALSE indicating if the nonzero structure of the
7170:                  inodes or the nonzero elements is wanted. For BAIJ matrices the compressed version is
7171:                  always used.
7172: .   n - size of (possibly compressed) matrix
7173: .   ia - the row pointers
7174: -   ja - the column indices

7176:     Output Parameters:
7177: .   done - PETSC_TRUE or PETSC_FALSE indicated that the values have been returned

7179:     Note:
7180:     This routine zeros out n, ia, and ja. This is to prevent accidental
7181:     us of the array after it has been restored. If you pass NULL, it will
7182:     not zero the pointers.  Use of ia or ja after MatRestoreRowIJ() is invalid.

7184:     Level: developer

7186: .seealso: MatGetRowIJ(), MatRestoreColumnIJ()
7187: @*/
7188: PetscErrorCode MatRestoreRowIJ(Mat mat,PetscInt shift,PetscBool symmetric,PetscBool inodecompressed,PetscInt *n,const PetscInt *ia[],const PetscInt *ja[],PetscBool  *done)
7189: {

7198:   MatCheckPreallocated(mat,1);

7200:   if (!mat->ops->restorerowij) *done = PETSC_FALSE;
7201:   else {
7202:     *done = PETSC_TRUE;
7203:     (*mat->ops->restorerowij)(mat,shift,symmetric,inodecompressed,n,ia,ja,done);
7204:     if (n)  *n = 0;
7205:     if (ia) *ia = NULL;
7206:     if (ja) *ja = NULL;
7207:   }
7208:   return(0);
7209: }

7213: /*@C
7214:     MatRestoreColumnIJ - Call after you are completed with the ia,ja indices obtained with
7215:     MatGetColumnIJ().

7217:     Collective on Mat

7219:     Input Parameters:
7220: +   mat - the matrix
7221: .   shift - 1 or zero indicating we want the indices starting at 0 or 1
7222: -   symmetric - PETSC_TRUE or PETSC_FALSE indicating the matrix data structure should be
7223:                 symmetrized
7224: -   inodecompressed - PETSC_TRUE or PETSC_FALSE indicating if the nonzero structure of the
7225:                  inodes or the nonzero elements is wanted. For BAIJ matrices the compressed version is
7226:                  always used.

7228:     Output Parameters:
7229: +   n - size of (possibly compressed) matrix
7230: .   ia - the column pointers
7231: .   ja - the row indices
7232: -   done - PETSC_TRUE or PETSC_FALSE indicated that the values have been returned

7234:     Level: developer

7236: .seealso: MatGetColumnIJ(), MatRestoreRowIJ()
7237: @*/
7238: PetscErrorCode MatRestoreColumnIJ(Mat mat,PetscInt shift,PetscBool symmetric,PetscBool inodecompressed,PetscInt *n,const PetscInt *ia[],const PetscInt *ja[],PetscBool  *done)
7239: {

7248:   MatCheckPreallocated(mat,1);

7250:   if (!mat->ops->restorecolumnij) *done = PETSC_FALSE;
7251:   else {
7252:     *done = PETSC_TRUE;
7253:     (*mat->ops->restorecolumnij)(mat,shift,symmetric,inodecompressed,n,ia,ja,done);
7254:     if (n)  *n = 0;
7255:     if (ia) *ia = NULL;
7256:     if (ja) *ja = NULL;
7257:   }
7258:   return(0);
7259: }

7263: /*@C
7264:     MatColoringPatch -Used inside matrix coloring routines that
7265:     use MatGetRowIJ() and/or MatGetColumnIJ().

7267:     Collective on Mat

7269:     Input Parameters:
7270: +   mat - the matrix
7271: .   ncolors - max color value
7272: .   n   - number of entries in colorarray
7273: -   colorarray - array indicating color for each column

7275:     Output Parameters:
7276: .   iscoloring - coloring generated using colorarray information

7278:     Level: developer

7280: .seealso: MatGetRowIJ(), MatGetColumnIJ()

7282: @*/
7283: PetscErrorCode  MatColoringPatch(Mat mat,PetscInt ncolors,PetscInt n,ISColoringValue colorarray[],ISColoring *iscoloring)
7284: {

7292:   MatCheckPreallocated(mat,1);

7294:   if (!mat->ops->coloringpatch) {
7295:     ISColoringCreate(PetscObjectComm((PetscObject)mat),ncolors,n,colorarray,PETSC_OWN_POINTER,iscoloring);
7296:   } else {
7297:     (*mat->ops->coloringpatch)(mat,ncolors,n,colorarray,iscoloring);
7298:   }
7299:   return(0);
7300: }


7305: /*@
7306:    MatSetUnfactored - Resets a factored matrix to be treated as unfactored.

7308:    Logically Collective on Mat

7310:    Input Parameter:
7311: .  mat - the factored matrix to be reset

7313:    Notes:
7314:    This routine should be used only with factored matrices formed by in-place
7315:    factorization via ILU(0) (or by in-place LU factorization for the MATSEQDENSE
7316:    format).  This option can save memory, for example, when solving nonlinear
7317:    systems with a matrix-free Newton-Krylov method and a matrix-based, in-place
7318:    ILU(0) preconditioner.

7320:    Note that one can specify in-place ILU(0) factorization by calling
7321: .vb
7322:      PCType(pc,PCILU);
7323:      PCFactorSeUseInPlace(pc);
7324: .ve
7325:    or by using the options -pc_type ilu -pc_factor_in_place

7327:    In-place factorization ILU(0) can also be used as a local
7328:    solver for the blocks within the block Jacobi or additive Schwarz
7329:    methods (runtime option: -sub_pc_factor_in_place).  See Users-Manual: ch_pc
7330:    for details on setting local solver options.

7332:    Most users should employ the simplified KSP interface for linear solvers
7333:    instead of working directly with matrix algebra routines such as this.
7334:    See, e.g., KSPCreate().

7336:    Level: developer

7338: .seealso: PCFactorSetUseInPlace(), PCFactorGetUseInPlace()

7340:    Concepts: matrices^unfactored

7342: @*/
7343: PetscErrorCode  MatSetUnfactored(Mat mat)
7344: {

7350:   MatCheckPreallocated(mat,1);
7351:   mat->factortype = MAT_FACTOR_NONE;
7352:   if (!mat->ops->setunfactored) return(0);
7353:   (*mat->ops->setunfactored)(mat);
7354:   return(0);
7355: }

7357: /*MC
7358:     MatDenseGetArrayF90 - Accesses a matrix array from Fortran90.

7360:     Synopsis:
7361:     MatDenseGetArrayF90(Mat x,{Scalar, pointer :: xx_v(:,:)},integer ierr)

7363:     Not collective

7365:     Input Parameter:
7366: .   x - matrix

7368:     Output Parameters:
7369: +   xx_v - the Fortran90 pointer to the array
7370: -   ierr - error code

7372:     Example of Usage:
7373: .vb
7374:       PetscScalar, pointer xx_v(:,:)
7375:       ....
7376:       call MatDenseGetArrayF90(x,xx_v,ierr)
7377:       a = xx_v(3)
7378:       call MatDenseRestoreArrayF90(x,xx_v,ierr)
7379: .ve

7381:     Level: advanced

7383: .seealso:  MatDenseRestoreArrayF90(), MatDenseGetArray(), MatDenseRestoreArray(), MatSeqAIJGetArrayF90()

7385:     Concepts: matrices^accessing array

7387: M*/

7389: /*MC
7390:     MatDenseRestoreArrayF90 - Restores a matrix array that has been
7391:     accessed with MatDenseGetArrayF90().

7393:     Synopsis:
7394:     MatDenseRestoreArrayF90(Mat x,{Scalar, pointer :: xx_v(:)},integer ierr)

7396:     Not collective

7398:     Input Parameters:
7399: +   x - matrix
7400: -   xx_v - the Fortran90 pointer to the array

7402:     Output Parameter:
7403: .   ierr - error code

7405:     Example of Usage:
7406: .vb
7407:        PetscScalar, pointer xx_v(:)
7408:        ....
7409:        call MatDenseGetArrayF90(x,xx_v,ierr)
7410:        a = xx_v(3)
7411:        call MatDenseRestoreArrayF90(x,xx_v,ierr)
7412: .ve

7414:     Level: advanced

7416: .seealso:  MatDenseGetArrayF90(), MatDenseGetArray(), MatDenseRestoreArray(), MatSeqAIJRestoreArrayF90()

7418: M*/


7421: /*MC
7422:     MatSeqAIJGetArrayF90 - Accesses a matrix array from Fortran90.

7424:     Synopsis:
7425:     MatSeqAIJGetArrayF90(Mat x,{Scalar, pointer :: xx_v(:,:)},integer ierr)

7427:     Not collective

7429:     Input Parameter:
7430: .   x - matrix

7432:     Output Parameters:
7433: +   xx_v - the Fortran90 pointer to the array
7434: -   ierr - error code

7436:     Example of Usage:
7437: .vb
7438:       PetscScalar, pointer xx_v(:,:)
7439:       ....
7440:       call MatSeqAIJGetArrayF90(x,xx_v,ierr)
7441:       a = xx_v(3)
7442:       call MatSeqAIJRestoreArrayF90(x,xx_v,ierr)
7443: .ve

7445:     Level: advanced

7447: .seealso:  MatSeqAIJRestoreArrayF90(), MatSeqAIJGetArray(), MatSeqAIJRestoreArray(), MatDenseGetArrayF90()

7449:     Concepts: matrices^accessing array

7451: M*/

7453: /*MC
7454:     MatSeqAIJRestoreArrayF90 - Restores a matrix array that has been
7455:     accessed with MatSeqAIJGetArrayF90().

7457:     Synopsis:
7458:     MatSeqAIJRestoreArrayF90(Mat x,{Scalar, pointer :: xx_v(:)},integer ierr)

7460:     Not collective

7462:     Input Parameters:
7463: +   x - matrix
7464: -   xx_v - the Fortran90 pointer to the array

7466:     Output Parameter:
7467: .   ierr - error code

7469:     Example of Usage:
7470: .vb
7471:        PetscScalar, pointer xx_v(:)
7472:        ....
7473:        call MatSeqAIJGetArrayF90(x,xx_v,ierr)
7474:        a = xx_v(3)
7475:        call MatSeqAIJRestoreArrayF90(x,xx_v,ierr)
7476: .ve

7478:     Level: advanced

7480: .seealso:  MatSeqAIJGetArrayF90(), MatSeqAIJGetArray(), MatSeqAIJRestoreArray(), MatDenseRestoreArrayF90()

7482: M*/


7487: /*@
7488:     MatGetSubMatrix - Gets a single submatrix on the same number of processors
7489:                       as the original matrix.

7491:     Collective on Mat

7493:     Input Parameters:
7494: +   mat - the original matrix
7495: .   isrow - parallel IS containing the rows this processor should obtain
7496: .   iscol - parallel IS containing all columns you wish to keep. Each process should list the columns that will be in IT's "diagonal part" in the new matrix.
7497: -   cll - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX

7499:     Output Parameter:
7500: .   newmat - the new submatrix, of the same type as the old

7502:     Level: advanced

7504:     Notes:
7505:     The submatrix will be able to be multiplied with vectors using the same layout as iscol.

7507:     Some matrix types place restrictions on the row and column indices, such
7508:     as that they be sorted or that they be equal to each other.

7510:     The index sets may not have duplicate entries.

7512:       The first time this is called you should use a cll of MAT_INITIAL_MATRIX,
7513:    the MatGetSubMatrix() routine will create the newmat for you. Any additional calls
7514:    to this routine with a mat of the same nonzero structure and with a call of MAT_REUSE_MATRIX
7515:    will reuse the matrix generated the first time.  You should call MatDestroy() on newmat when
7516:    you are finished using it.

7518:     The communicator of the newly obtained matrix is ALWAYS the same as the communicator of
7519:     the input matrix.

7521:     If iscol is NULL then all columns are obtained (not supported in Fortran).

7523:    Example usage:
7524:    Consider the following 8x8 matrix with 34 non-zero values, that is
7525:    assembled across 3 processors. Let's assume that proc0 owns 3 rows,
7526:    proc1 owns 3 rows, proc2 owns 2 rows. This division can be shown
7527:    as follows:

7529: .vb
7530:             1  2  0  |  0  3  0  |  0  4
7531:     Proc0   0  5  6  |  7  0  0  |  8  0
7532:             9  0 10  | 11  0  0  | 12  0
7533:     -------------------------------------
7534:            13  0 14  | 15 16 17  |  0  0
7535:     Proc1   0 18  0  | 19 20 21  |  0  0
7536:             0  0  0  | 22 23  0  | 24  0
7537:     -------------------------------------
7538:     Proc2  25 26 27  |  0  0 28  | 29  0
7539:            30  0  0  | 31 32 33  |  0 34
7540: .ve

7542:     Suppose isrow = [0 1 | 4 | 6 7] and iscol = [1 2 | 3 4 5 | 6].  The resulting submatrix is

7544: .vb
7545:             2  0  |  0  3  0  |  0
7546:     Proc0   5  6  |  7  0  0  |  8
7547:     -------------------------------
7548:     Proc1  18  0  | 19 20 21  |  0
7549:     -------------------------------
7550:     Proc2  26 27  |  0  0 28  | 29
7551:             0  0  | 31 32 33  |  0
7552: .ve


7555:     Concepts: matrices^submatrices

7557: .seealso: MatGetSubMatrices()
7558: @*/
7559: PetscErrorCode  MatGetSubMatrix(Mat mat,IS isrow,IS iscol,MatReuse cll,Mat *newmat)
7560: {
7562:   PetscMPIInt    size;
7563:   Mat            *local;
7564:   IS             iscoltmp;

7573:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
7574:   if (cll == MAT_IGNORE_MATRIX) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Cannot use MAT_IGNORE_MATRIX");

7576:   MatCheckPreallocated(mat,1);
7577:   MPI_Comm_size(PetscObjectComm((PetscObject)mat),&size);

7579:   if (!iscol || isrow == iscol) {
7580:     PetscBool   stride;
7581:     PetscMPIInt grabentirematrix = 0,grab;
7582:     PetscObjectTypeCompare((PetscObject)isrow,ISSTRIDE,&stride);
7583:     if (stride) {
7584:       PetscInt first,step,n,rstart,rend;
7585:       ISStrideGetInfo(isrow,&first,&step);
7586:       if (step == 1) {
7587:         MatGetOwnershipRange(mat,&rstart,&rend);
7588:         if (rstart == first) {
7589:           ISGetLocalSize(isrow,&n);
7590:           if (n == rend-rstart) {
7591:             grabentirematrix = 1;
7592:           }
7593:         }
7594:       }
7595:     }
7596:     MPI_Allreduce(&grabentirematrix,&grab,1,MPI_INT,MPI_MIN,PetscObjectComm((PetscObject)mat));
7597:     if (grab) {
7598:       PetscInfo(mat,"Getting entire matrix as submatrix\n");
7599:       if (cll == MAT_INITIAL_MATRIX) {
7600:         *newmat = mat;
7601:         PetscObjectReference((PetscObject)mat);
7602:       }
7603:       return(0);
7604:     }
7605:   }

7607:   if (!iscol) {
7608:     ISCreateStride(PetscObjectComm((PetscObject)mat),mat->cmap->n,mat->cmap->rstart,1,&iscoltmp);
7609:   } else {
7610:     iscoltmp = iscol;
7611:   }

7613:   /* if original matrix is on just one processor then use submatrix generated */
7614:   if (mat->ops->getsubmatrices && !mat->ops->getsubmatrix && size == 1 && cll == MAT_REUSE_MATRIX) {
7615:     MatGetSubMatrices(mat,1,&isrow,&iscoltmp,MAT_REUSE_MATRIX,&newmat);
7616:     if (!iscol) {ISDestroy(&iscoltmp);}
7617:     return(0);
7618:   } else if (mat->ops->getsubmatrices && !mat->ops->getsubmatrix && size == 1) {
7619:     MatGetSubMatrices(mat,1,&isrow,&iscoltmp,MAT_INITIAL_MATRIX,&local);
7620:     *newmat = *local;
7621:     PetscFree(local);
7622:     if (!iscol) {ISDestroy(&iscoltmp);}
7623:     return(0);
7624:   } else if (!mat->ops->getsubmatrix) {
7625:     /* Create a new matrix type that implements the operation using the full matrix */
7626:     PetscLogEventBegin(MAT_GetSubMatrix,mat,0,0,0);
7627:     switch (cll) {
7628:     case MAT_INITIAL_MATRIX:
7629:       MatCreateSubMatrix(mat,isrow,iscoltmp,newmat);
7630:       break;
7631:     case MAT_REUSE_MATRIX:
7632:       MatSubMatrixUpdate(*newmat,mat,isrow,iscoltmp);
7633:       break;
7634:     default: SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_OUTOFRANGE,"Invalid MatReuse, must be either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX");
7635:     }
7636:     PetscLogEventEnd(MAT_GetSubMatrix,mat,0,0,0);
7637:     if (!iscol) {ISDestroy(&iscoltmp);}
7638:     return(0);
7639:   }

7641:   if (!mat->ops->getsubmatrix) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
7642:   PetscLogEventBegin(MAT_GetSubMatrix,mat,0,0,0);
7643:   (*mat->ops->getsubmatrix)(mat,isrow,iscoltmp,cll,newmat);
7644:   PetscLogEventEnd(MAT_GetSubMatrix,mat,0,0,0);
7645:   if (!iscol) {ISDestroy(&iscoltmp);}
7646:   if (*newmat && cll == MAT_INITIAL_MATRIX) {PetscObjectStateIncrease((PetscObject)*newmat);}
7647:   return(0);
7648: }

7652: /*@
7653:    MatStashSetInitialSize - sets the sizes of the matrix stash, that is
7654:    used during the assembly process to store values that belong to
7655:    other processors.

7657:    Not Collective

7659:    Input Parameters:
7660: +  mat   - the matrix
7661: .  size  - the initial size of the stash.
7662: -  bsize - the initial size of the block-stash(if used).

7664:    Options Database Keys:
7665: +   -matstash_initial_size <size> or <size0,size1,...sizep-1>
7666: -   -matstash_block_initial_size <bsize>  or <bsize0,bsize1,...bsizep-1>

7668:    Level: intermediate

7670:    Notes:
7671:      The block-stash is used for values set with MatSetValuesBlocked() while
7672:      the stash is used for values set with MatSetValues()

7674:      Run with the option -info and look for output of the form
7675:      MatAssemblyBegin_MPIXXX:Stash has MM entries, uses nn mallocs.
7676:      to determine the appropriate value, MM, to use for size and
7677:      MatAssemblyBegin_MPIXXX:Block-Stash has BMM entries, uses nn mallocs.
7678:      to determine the value, BMM to use for bsize

7680:    Concepts: stash^setting matrix size
7681:    Concepts: matrices^stash

7683: .seealso: MatAssemblyBegin(), MatAssemblyEnd(), Mat, MatStashGetInfo()

7685: @*/
7686: PetscErrorCode  MatStashSetInitialSize(Mat mat,PetscInt size, PetscInt bsize)
7687: {

7693:   MatStashSetInitialSize_Private(&mat->stash,size);
7694:   MatStashSetInitialSize_Private(&mat->bstash,bsize);
7695:   return(0);
7696: }

7700: /*@
7701:    MatInterpolateAdd - w = y + A*x or A'*x depending on the shape of
7702:      the matrix

7704:    Neighbor-wise Collective on Mat

7706:    Input Parameters:
7707: +  mat   - the matrix
7708: .  x,y - the vectors
7709: -  w - where the result is stored

7711:    Level: intermediate

7713:    Notes:
7714:     w may be the same vector as y.

7716:     This allows one to use either the restriction or interpolation (its transpose)
7717:     matrix to do the interpolation

7719:     Concepts: interpolation

7721: .seealso: MatMultAdd(), MatMultTransposeAdd(), MatRestrict()

7723: @*/
7724: PetscErrorCode  MatInterpolateAdd(Mat A,Vec x,Vec y,Vec w)
7725: {
7727:   PetscInt       M,N,Ny;

7735:   MatCheckPreallocated(A,1);
7736:   MatGetSize(A,&M,&N);
7737:   VecGetSize(y,&Ny);
7738:   if (M == Ny) {
7739:     MatMultAdd(A,x,y,w);
7740:   } else {
7741:     MatMultTransposeAdd(A,x,y,w);
7742:   }
7743:   return(0);
7744: }

7748: /*@
7749:    MatInterpolate - y = A*x or A'*x depending on the shape of
7750:      the matrix

7752:    Neighbor-wise Collective on Mat

7754:    Input Parameters:
7755: +  mat   - the matrix
7756: -  x,y - the vectors

7758:    Level: intermediate

7760:    Notes:
7761:     This allows one to use either the restriction or interpolation (its transpose)
7762:     matrix to do the interpolation

7764:    Concepts: matrices^interpolation

7766: .seealso: MatMultAdd(), MatMultTransposeAdd(), MatRestrict()

7768: @*/
7769: PetscErrorCode  MatInterpolate(Mat A,Vec x,Vec y)
7770: {
7772:   PetscInt       M,N,Ny;

7779:   MatCheckPreallocated(A,1);
7780:   MatGetSize(A,&M,&N);
7781:   VecGetSize(y,&Ny);
7782:   if (M == Ny) {
7783:     MatMult(A,x,y);
7784:   } else {
7785:     MatMultTranspose(A,x,y);
7786:   }
7787:   return(0);
7788: }

7792: /*@
7793:    MatRestrict - y = A*x or A'*x

7795:    Neighbor-wise Collective on Mat

7797:    Input Parameters:
7798: +  mat   - the matrix
7799: -  x,y - the vectors

7801:    Level: intermediate

7803:    Notes:
7804:     This allows one to use either the restriction or interpolation (its transpose)
7805:     matrix to do the restriction

7807:    Concepts: matrices^restriction

7809: .seealso: MatMultAdd(), MatMultTransposeAdd(), MatInterpolate()

7811: @*/
7812: PetscErrorCode  MatRestrict(Mat A,Vec x,Vec y)
7813: {
7815:   PetscInt       M,N,Ny;

7822:   MatCheckPreallocated(A,1);

7824:   MatGetSize(A,&M,&N);
7825:   VecGetSize(y,&Ny);
7826:   if (M == Ny) {
7827:     MatMult(A,x,y);
7828:   } else {
7829:     MatMultTranspose(A,x,y);
7830:   }
7831:   return(0);
7832: }

7836: /*@
7837:    MatGetNullSpace - retrieves the null space to a matrix.

7839:    Logically Collective on Mat and MatNullSpace

7841:    Input Parameters:
7842: +  mat - the matrix
7843: -  nullsp - the null space object

7845:    Level: developer

7847:    Concepts: null space^attaching to matrix

7849: .seealso: MatCreate(), MatNullSpaceCreate(), MatSetNearNullSpace(), MatSetNullSpace()
7850: @*/
7851: PetscErrorCode MatGetNullSpace(Mat mat, MatNullSpace *nullsp)
7852: {
7857:   *nullsp = mat->nullsp;
7858:   return(0);
7859: }

7863: /*@
7864:    MatSetNullSpace - attaches a null space to a matrix.

7866:    Logically Collective on Mat and MatNullSpace

7868:    Input Parameters:
7869: +  mat - the matrix
7870: -  nullsp - the null space object

7872:    Level: advanced

7874:    Notes:
7875:       This null space is used by the linear solvers. Overwrites any previous null space that may have been attached

7877:       For inconsistent singular systems (linear systems where the right hand side is not in the range of the operator) you also likely should
7878:       call MatSetTransposeNullSpace(). This allows the linear system to be solved in a least squares sense.


7881:       The fundamental theorem of linear algebra (Gilbert Strang, Introduction to Applied Mathematics, page 72) states that
7882:    the domain of a matrix A (from R^n to R^m (m rows, n columns) R^n = the direct sum of the null space of A, n(A), + the range of A^T, R(A^T).
7883:    Similarly R^m = direct sum n(A^T) + R(A).  Hence the linear system A x = b has a solution only if b in R(A) (or correspondingly b is orthogonal to
7884:    n(A^T)) and if x is a solution then x + alpha n(A) is a solution for any alpha. The minimum norm solution is orthogonal to n(A). For problems without a solution
7885:    the solution that minimizes the norm of the residual (the least squares solution) can be obtained by solving A x = \hat{b} where \hat{b} is b orthogonalized to the n(A^T).

7887:       Krylov solvers can produce the minimal norm solution to the least squares problem by utilizing MatNullSpaceRemove().

7889:    Concepts: null space^attaching to matrix

7891: .seealso: MatCreate(), MatNullSpaceCreate(), MatSetNearNullSpace(), MatGetNullSpace(), MatSetTransposeNullSpace(), MatGetTransposeNullSpace(), MatNullSpaceRemove()
7892: @*/
7893: PetscErrorCode  MatSetNullSpace(Mat mat,MatNullSpace nullsp)
7894: {

7901:   MatCheckPreallocated(mat,1);
7902:   PetscObjectReference((PetscObject)nullsp);
7903:   MatNullSpaceDestroy(&mat->nullsp);
7904:   mat->nullsp = nullsp;
7905:   return(0);
7906: }

7910: /*@
7911:    MatGetTransposeNullSpace - retrieves the null space to a matrix.

7913:    Logically Collective on Mat and MatNullSpace

7915:    Input Parameters:
7916: +  mat - the matrix
7917: -  nullsp - the null space object

7919:    Level: developer

7921:    Notes:
7922:       This null space is used by solvers. Overwrites any previous null space that may have been attached

7924:    Concepts: null space^attaching to matrix

7926: .seealso: MatCreate(), MatNullSpaceCreate(), MatSetNearNullSpace()
7927: @*/
7928: PetscErrorCode MatGetTransposeNullSpace(Mat mat, MatNullSpace *nullsp)
7929: {
7934:   *nullsp = mat->transnullsp;
7935:   return(0);
7936: }

7940: /*@
7941:    MatSetTransposeNullSpace - attaches a null space to a matrix.

7943:    Logically Collective on Mat and MatNullSpace

7945:    Input Parameters:
7946: +  mat - the matrix
7947: -  nullsp - the null space object

7949:    Level: advanced

7951:    Notes:
7952:       For inconsistent singular systems (linear systems where the right hand side is not in the range of the operator) this allows the linear system to be solved in a least squares sense.
7953:       You must also call MatSetNullSpace()


7956:       The fundamental theorem of linear algebra (Gilbert Strang, Introduction to Applied Mathematics, page 72) states that
7957:    the domain of a matrix A (from R^n to R^m (m rows, n columns) R^n = the direct sum of the null space of A, n(A), + the range of A^T, R(A^T).
7958:    Similarly R^m = direct sum n(A^T) + R(A).  Hence the linear system A x = b has a solution only if b in R(A) (or correspondingly b is orthogonal to
7959:    n(A^T)) and if x is a solution then x + alpha n(A) is a solution for any alpha. The minimum norm solution is orthogonal to n(A). For problems without a solution
7960:    the solution that minimizes the norm of the residual (the least squares solution) can be obtained by solving A x = \hat{b} where \hat{b} is b orthogonalized to the n(A^T).

7962:       Krylov solvers can produce the minimal norm solution to the least squares problem by utilizing MatNullSpaceRemove().

7964:    Concepts: null space^attaching to matrix

7966: .seealso: MatCreate(), MatNullSpaceCreate(), MatSetNearNullSpace(), MatGetNullSpace(), MatSetNullSpace(), MatGetNullSpace(), MatNullSpaceRemove()
7967: @*/
7968: PetscErrorCode  MatSetTransposeNullSpace(Mat mat,MatNullSpace nullsp)
7969: {

7976:   MatCheckPreallocated(mat,1);
7977:   PetscObjectReference((PetscObject)nullsp);
7978:   MatNullSpaceDestroy(&mat->transnullsp);
7979:   mat->transnullsp = nullsp;
7980:   return(0);
7981: }

7985: /*@
7986:    MatSetNearNullSpace - attaches a null space to a matrix.
7987:         This null space will be used to provide near null space vectors to a multigrid preconditioner built from this matrix.

7989:    Logically Collective on Mat and MatNullSpace

7991:    Input Parameters:
7992: +  mat - the matrix
7993: -  nullsp - the null space object

7995:    Level: advanced

7997:    Notes:
7998:       Overwrites any previous near null space that may have been attached

8000:    Concepts: null space^attaching to matrix

8002: .seealso: MatCreate(), MatNullSpaceCreate(), MatSetNullSpace()
8003: @*/
8004: PetscErrorCode MatSetNearNullSpace(Mat mat,MatNullSpace nullsp)
8005: {

8012:   MatCheckPreallocated(mat,1);
8013:   PetscObjectReference((PetscObject)nullsp);
8014:   MatNullSpaceDestroy(&mat->nearnullsp);

8016:   mat->nearnullsp = nullsp;
8017:   return(0);
8018: }

8022: /*@
8023:    MatGetNearNullSpace -Get null space attached with MatSetNearNullSpace()

8025:    Not Collective

8027:    Input Parameters:
8028: .  mat - the matrix

8030:    Output Parameters:
8031: .  nullsp - the null space object, NULL if not set

8033:    Level: developer

8035:    Concepts: null space^attaching to matrix

8037: .seealso: MatSetNearNullSpace(), MatGetNullSpace()
8038: @*/
8039: PetscErrorCode MatGetNearNullSpace(Mat mat,MatNullSpace *nullsp)
8040: {
8045:   MatCheckPreallocated(mat,1);
8046:   *nullsp = mat->nearnullsp;
8047:   return(0);
8048: }

8052: /*@C
8053:    MatICCFactor - Performs in-place incomplete Cholesky factorization of matrix.

8055:    Collective on Mat

8057:    Input Parameters:
8058: +  mat - the matrix
8059: .  row - row/column permutation
8060: .  fill - expected fill factor >= 1.0
8061: -  level - level of fill, for ICC(k)

8063:    Notes:
8064:    Probably really in-place only when level of fill is zero, otherwise allocates
8065:    new space to store factored matrix and deletes previous memory.

8067:    Most users should employ the simplified KSP interface for linear solvers
8068:    instead of working directly with matrix algebra routines such as this.
8069:    See, e.g., KSPCreate().

8071:    Level: developer

8073:    Concepts: matrices^incomplete Cholesky factorization
8074:    Concepts: Cholesky factorization

8076: .seealso: MatICCFactorSymbolic(), MatLUFactorNumeric(), MatCholeskyFactor()

8078:     Developer Note: fortran interface is not autogenerated as the f90
8079:     interface defintion cannot be generated correctly [due to MatFactorInfo]

8081: @*/
8082: PetscErrorCode  MatICCFactor(Mat mat,IS row,const MatFactorInfo *info)
8083: {

8091:   if (mat->rmap->N != mat->cmap->N) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONG,"matrix must be square");
8092:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8093:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8094:   if (!mat->ops->iccfactor) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
8095:   MatCheckPreallocated(mat,1);
8096:   (*mat->ops->iccfactor)(mat,row,info);
8097:   PetscObjectStateIncrease((PetscObject)mat);
8098:   return(0);
8099: }

8103: /*@
8104:    MatSetValuesAdifor - Sets values computed with automatic differentiation into a matrix.

8106:    Not Collective

8108:    Input Parameters:
8109: +  mat - the matrix
8110: .  nl - leading dimension of v
8111: -  v - the values compute with ADIFOR

8113:    Level: developer

8115:    Notes:
8116:      Must call MatSetColoring() before using this routine. Also this matrix must already
8117:      have its nonzero pattern determined.

8119: .seealso: MatSetOption(), MatAssemblyBegin(), MatAssemblyEnd(), MatSetValuesBlocked(), MatSetValuesLocal(),
8120:           MatSetValues(), MatSetColoring()
8121: @*/
8122: PetscErrorCode  MatSetValuesAdifor(Mat mat,PetscInt nl,void *v)
8123: {


8131:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Matrix must be already assembled");
8132:   PetscLogEventBegin(MAT_SetValues,mat,0,0,0);
8133:   if (!mat->ops->setvaluesadifor) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
8134:   (*mat->ops->setvaluesadifor)(mat,nl,v);
8135:   PetscLogEventEnd(MAT_SetValues,mat,0,0,0);
8136:   PetscObjectStateIncrease((PetscObject)mat);
8137:   return(0);
8138: }

8142: /*@
8143:    MatDiagonalScaleLocal - Scales columns of a matrix given the scaling values including the
8144:          ghosted ones.

8146:    Not Collective

8148:    Input Parameters:
8149: +  mat - the matrix
8150: -  diag = the diagonal values, including ghost ones

8152:    Level: developer

8154:    Notes: Works only for MPIAIJ and MPIBAIJ matrices

8156: .seealso: MatDiagonalScale()
8157: @*/
8158: PetscErrorCode  MatDiagonalScaleLocal(Mat mat,Vec diag)
8159: {
8161:   PetscMPIInt    size;


8168:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Matrix must be already assembled");
8169:   PetscLogEventBegin(MAT_Scale,mat,0,0,0);
8170:   MPI_Comm_size(PetscObjectComm((PetscObject)mat),&size);
8171:   if (size == 1) {
8172:     PetscInt n,m;
8173:     VecGetSize(diag,&n);
8174:     MatGetSize(mat,0,&m);
8175:     if (m == n) {
8176:       MatDiagonalScale(mat,0,diag);
8177:     } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Only supported for sequential matrices when no ghost points/periodic conditions");
8178:   } else {
8179:     PetscUseMethod(mat,"MatDiagonalScaleLocal_C",(Mat,Vec),(mat,diag));
8180:   }
8181:   PetscLogEventEnd(MAT_Scale,mat,0,0,0);
8182:   PetscObjectStateIncrease((PetscObject)mat);
8183:   return(0);
8184: }

8188: /*@
8189:    MatGetInertia - Gets the inertia from a factored matrix

8191:    Collective on Mat

8193:    Input Parameter:
8194: .  mat - the matrix

8196:    Output Parameters:
8197: +   nneg - number of negative eigenvalues
8198: .   nzero - number of zero eigenvalues
8199: -   npos - number of positive eigenvalues

8201:    Level: advanced

8203:    Notes: Matrix must have been factored by MatCholeskyFactor()


8206: @*/
8207: PetscErrorCode  MatGetInertia(Mat mat,PetscInt *nneg,PetscInt *nzero,PetscInt *npos)
8208: {

8214:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
8215:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Numeric factor mat is not assembled");
8216:   if (!mat->ops->getinertia) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
8217:   (*mat->ops->getinertia)(mat,nneg,nzero,npos);
8218:   return(0);
8219: }

8221: /* ----------------------------------------------------------------*/
8224: /*@C
8225:    MatSolves - Solves A x = b, given a factored matrix, for a collection of vectors

8227:    Neighbor-wise Collective on Mat and Vecs

8229:    Input Parameters:
8230: +  mat - the factored matrix
8231: -  b - the right-hand-side vectors

8233:    Output Parameter:
8234: .  x - the result vectors

8236:    Notes:
8237:    The vectors b and x cannot be the same.  I.e., one cannot
8238:    call MatSolves(A,x,x).

8240:    Notes:
8241:    Most users should employ the simplified KSP interface for linear solvers
8242:    instead of working directly with matrix algebra routines such as this.
8243:    See, e.g., KSPCreate().

8245:    Level: developer

8247:    Concepts: matrices^triangular solves

8249: .seealso: MatSolveAdd(), MatSolveTranspose(), MatSolveTransposeAdd(), MatSolve()
8250: @*/
8251: PetscErrorCode  MatSolves(Mat mat,Vecs b,Vecs x)
8252: {

8258:   if (x == b) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_IDN,"x and b must be different vectors");
8259:   if (!mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Unfactored matrix");
8260:   if (!mat->rmap->N && !mat->cmap->N) return(0);

8262:   if (!mat->ops->solves) SETERRQ1(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)mat)->type_name);
8263:   MatCheckPreallocated(mat,1);
8264:   PetscLogEventBegin(MAT_Solves,mat,0,0,0);
8265:   (*mat->ops->solves)(mat,b,x);
8266:   PetscLogEventEnd(MAT_Solves,mat,0,0,0);
8267:   return(0);
8268: }

8272: /*@
8273:    MatIsSymmetric - Test whether a matrix is symmetric

8275:    Collective on Mat

8277:    Input Parameter:
8278: +  A - the matrix to test
8279: -  tol - difference between value and its transpose less than this amount counts as equal (use 0.0 for exact transpose)

8281:    Output Parameters:
8282: .  flg - the result

8284:    Notes: For real numbers MatIsSymmetric() and MatIsHermitian() return identical results

8286:    Level: intermediate

8288:    Concepts: matrix^symmetry

8290: .seealso: MatTranspose(), MatIsTranspose(), MatIsHermitian(), MatIsStructurallySymmetric(), MatSetOption(), MatIsSymmetricKnown()
8291: @*/
8292: PetscErrorCode  MatIsSymmetric(Mat A,PetscReal tol,PetscBool  *flg)
8293: {


8300:   if (!A->symmetric_set) {
8301:     if (!A->ops->issymmetric) {
8302:       MatType mattype;
8303:       MatGetType(A,&mattype);
8304:       SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Matrix of type <%s> does not support checking for symmetric",mattype);
8305:     }
8306:     (*A->ops->issymmetric)(A,tol,flg);
8307:     if (!tol) {
8308:       A->symmetric_set = PETSC_TRUE;
8309:       A->symmetric     = *flg;
8310:       if (A->symmetric) {
8311:         A->structurally_symmetric_set = PETSC_TRUE;
8312:         A->structurally_symmetric     = PETSC_TRUE;
8313:       }
8314:     }
8315:   } else if (A->symmetric) {
8316:     *flg = PETSC_TRUE;
8317:   } else if (!tol) {
8318:     *flg = PETSC_FALSE;
8319:   } else {
8320:     if (!A->ops->issymmetric) {
8321:       MatType mattype;
8322:       MatGetType(A,&mattype);
8323:       SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Matrix of type <%s> does not support checking for symmetric",mattype);
8324:     }
8325:     (*A->ops->issymmetric)(A,tol,flg);
8326:   }
8327:   return(0);
8328: }

8332: /*@
8333:    MatIsHermitian - Test whether a matrix is Hermitian

8335:    Collective on Mat

8337:    Input Parameter:
8338: +  A - the matrix to test
8339: -  tol - difference between value and its transpose less than this amount counts as equal (use 0.0 for exact Hermitian)

8341:    Output Parameters:
8342: .  flg - the result

8344:    Level: intermediate

8346:    Concepts: matrix^symmetry

8348: .seealso: MatTranspose(), MatIsTranspose(), MatIsHermitian(), MatIsStructurallySymmetric(), MatSetOption(),
8349:           MatIsSymmetricKnown(), MatIsSymmetric()
8350: @*/
8351: PetscErrorCode  MatIsHermitian(Mat A,PetscReal tol,PetscBool  *flg)
8352: {


8359:   if (!A->hermitian_set) {
8360:     if (!A->ops->ishermitian) {
8361:       MatType mattype;
8362:       MatGetType(A,&mattype);
8363:       SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Matrix of type <%s> does not support checking for hermitian",mattype);
8364:     }
8365:     (*A->ops->ishermitian)(A,tol,flg);
8366:     if (!tol) {
8367:       A->hermitian_set = PETSC_TRUE;
8368:       A->hermitian     = *flg;
8369:       if (A->hermitian) {
8370:         A->structurally_symmetric_set = PETSC_TRUE;
8371:         A->structurally_symmetric     = PETSC_TRUE;
8372:       }
8373:     }
8374:   } else if (A->hermitian) {
8375:     *flg = PETSC_TRUE;
8376:   } else if (!tol) {
8377:     *flg = PETSC_FALSE;
8378:   } else {
8379:     if (!A->ops->ishermitian) {
8380:       MatType mattype;
8381:       MatGetType(A,&mattype);
8382:       SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Matrix of type <%s> does not support checking for hermitian",mattype);
8383:     }
8384:     (*A->ops->ishermitian)(A,tol,flg);
8385:   }
8386:   return(0);
8387: }

8391: /*@
8392:    MatIsSymmetricKnown - Checks the flag on the matrix to see if it is symmetric.

8394:    Not Collective

8396:    Input Parameter:
8397: .  A - the matrix to check

8399:    Output Parameters:
8400: +  set - if the symmetric flag is set (this tells you if the next flag is valid)
8401: -  flg - the result

8403:    Level: advanced

8405:    Concepts: matrix^symmetry

8407:    Note: Does not check the matrix values directly, so this may return unknown (set = PETSC_FALSE). Use MatIsSymmetric()
8408:          if you want it explicitly checked

8410: .seealso: MatTranspose(), MatIsTranspose(), MatIsHermitian(), MatIsStructurallySymmetric(), MatSetOption(), MatIsSymmetric()
8411: @*/
8412: PetscErrorCode  MatIsSymmetricKnown(Mat A,PetscBool  *set,PetscBool  *flg)
8413: {
8418:   if (A->symmetric_set) {
8419:     *set = PETSC_TRUE;
8420:     *flg = A->symmetric;
8421:   } else {
8422:     *set = PETSC_FALSE;
8423:   }
8424:   return(0);
8425: }

8429: /*@
8430:    MatIsHermitianKnown - Checks the flag on the matrix to see if it is hermitian.

8432:    Not Collective

8434:    Input Parameter:
8435: .  A - the matrix to check

8437:    Output Parameters:
8438: +  set - if the hermitian flag is set (this tells you if the next flag is valid)
8439: -  flg - the result

8441:    Level: advanced

8443:    Concepts: matrix^symmetry

8445:    Note: Does not check the matrix values directly, so this may return unknown (set = PETSC_FALSE). Use MatIsHermitian()
8446:          if you want it explicitly checked

8448: .seealso: MatTranspose(), MatIsTranspose(), MatIsHermitian(), MatIsStructurallySymmetric(), MatSetOption(), MatIsSymmetric()
8449: @*/
8450: PetscErrorCode  MatIsHermitianKnown(Mat A,PetscBool  *set,PetscBool  *flg)
8451: {
8456:   if (A->hermitian_set) {
8457:     *set = PETSC_TRUE;
8458:     *flg = A->hermitian;
8459:   } else {
8460:     *set = PETSC_FALSE;
8461:   }
8462:   return(0);
8463: }

8467: /*@
8468:    MatIsStructurallySymmetric - Test whether a matrix is structurally symmetric

8470:    Collective on Mat

8472:    Input Parameter:
8473: .  A - the matrix to test

8475:    Output Parameters:
8476: .  flg - the result

8478:    Level: intermediate

8480:    Concepts: matrix^symmetry

8482: .seealso: MatTranspose(), MatIsTranspose(), MatIsHermitian(), MatIsSymmetric(), MatSetOption()
8483: @*/
8484: PetscErrorCode  MatIsStructurallySymmetric(Mat A,PetscBool  *flg)
8485: {

8491:   if (!A->structurally_symmetric_set) {
8492:     if (!A->ops->isstructurallysymmetric) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Matrix does not support checking for structural symmetric");
8493:     (*A->ops->isstructurallysymmetric)(A,&A->structurally_symmetric);

8495:     A->structurally_symmetric_set = PETSC_TRUE;
8496:   }
8497:   *flg = A->structurally_symmetric;
8498:   return(0);
8499: }

8503: extern PetscErrorCode MatStashGetInfo_Private(MatStash*,PetscInt*,PetscInt*);
8504: /*@
8505:    MatStashGetInfo - Gets how many values are currently in the matrix stash, i.e. need
8506:        to be communicated to other processors during the MatAssemblyBegin/End() process

8508:     Not collective

8510:    Input Parameter:
8511: .   vec - the vector

8513:    Output Parameters:
8514: +   nstash   - the size of the stash
8515: .   reallocs - the number of additional mallocs incurred.
8516: .   bnstash   - the size of the block stash
8517: -   breallocs - the number of additional mallocs incurred.in the block stash

8519:    Level: advanced

8521: .seealso: MatAssemblyBegin(), MatAssemblyEnd(), Mat, MatStashSetInitialSize()

8523: @*/
8524: PetscErrorCode  MatStashGetInfo(Mat mat,PetscInt *nstash,PetscInt *reallocs,PetscInt *bnstash,PetscInt *breallocs)
8525: {

8529:   MatStashGetInfo_Private(&mat->stash,nstash,reallocs);
8530:   MatStashGetInfo_Private(&mat->bstash,bnstash,breallocs);
8531:   return(0);
8532: }

8536: /*@C
8537:    MatCreateVecs - Get vector(s) compatible with the matrix, i.e. with the same
8538:      parallel layout

8540:    Collective on Mat

8542:    Input Parameter:
8543: .  mat - the matrix

8545:    Output Parameter:
8546: +   right - (optional) vector that the matrix can be multiplied against
8547: -   left - (optional) vector that the matrix vector product can be stored in

8549:    Notes:
8550:     The blocksize of the returned vectors is determined by the row and column block sizes set with MatSetBlockSizes() or the single blocksize (same for both) set by MatSetBlockSize().

8552:   Notes: These are new vectors which are not owned by the Mat, they should be destroyed in VecDestroy() when no longer needed

8554:   Level: advanced

8556: .seealso: MatCreate(), VecDestroy()
8557: @*/
8558: PetscErrorCode  MatCreateVecs(Mat mat,Vec *right,Vec *left)
8559: {

8565:   MatCheckPreallocated(mat,1);
8566:   if (mat->ops->getvecs) {
8567:     (*mat->ops->getvecs)(mat,right,left);
8568:   } else {
8569:     PetscMPIInt size;
8570:     PetscInt    rbs,cbs;
8571:     MPI_Comm_size(PetscObjectComm((PetscObject)mat), &size);
8572:     MatGetBlockSizes(mat,&rbs,&cbs);
8573:     if (right) {
8574:       VecCreate(PetscObjectComm((PetscObject)mat),right);
8575:       VecSetSizes(*right,mat->cmap->n,PETSC_DETERMINE);
8576:       VecSetBlockSize(*right,cbs);
8577:       VecSetType(*right,VECSTANDARD);
8578:       PetscLayoutReference(mat->cmap,&(*right)->map);
8579:     }
8580:     if (left) {
8581:       VecCreate(PetscObjectComm((PetscObject)mat),left);
8582:       VecSetSizes(*left,mat->rmap->n,PETSC_DETERMINE);
8583:       VecSetBlockSize(*left,rbs);
8584:       VecSetType(*left,VECSTANDARD);
8585:       PetscLayoutReference(mat->rmap,&(*left)->map);
8586:     }
8587:   }
8588:   return(0);
8589: }

8593: /*@C
8594:    MatFactorInfoInitialize - Initializes a MatFactorInfo data structure
8595:      with default values.

8597:    Not Collective

8599:    Input Parameters:
8600: .    info - the MatFactorInfo data structure


8603:    Notes: The solvers are generally used through the KSP and PC objects, for example
8604:           PCLU, PCILU, PCCHOLESKY, PCICC

8606:    Level: developer

8608: .seealso: MatFactorInfo

8610:     Developer Note: fortran interface is not autogenerated as the f90
8611:     interface defintion cannot be generated correctly [due to MatFactorInfo]

8613: @*/

8615: PetscErrorCode  MatFactorInfoInitialize(MatFactorInfo *info)
8616: {

8620:   PetscMemzero(info,sizeof(MatFactorInfo));
8621:   return(0);
8622: }

8626: /*@
8627:    MatPtAP - Creates the matrix product C = P^T * A * P

8629:    Neighbor-wise Collective on Mat

8631:    Input Parameters:
8632: +  A - the matrix
8633: .  P - the projection matrix
8634: .  scall - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX
8635: -  fill - expected fill as ratio of nnz(C)/(nnz(A) + nnz(P))

8637:    Output Parameters:
8638: .  C - the product matrix

8640:    Notes:
8641:    C will be created and must be destroyed by the user with MatDestroy().

8643:    This routine is currently only implemented for pairs of AIJ matrices and classes
8644:    which inherit from AIJ.

8646:    Level: intermediate

8648: .seealso: MatPtAPSymbolic(), MatPtAPNumeric(), MatMatMult(), MatRARt()
8649: @*/
8650: PetscErrorCode  MatPtAP(Mat A,Mat P,MatReuse scall,PetscReal fill,Mat *C)
8651: {
8653:   PetscErrorCode (*fA)(Mat,Mat,MatReuse,PetscReal,Mat*);
8654:   PetscErrorCode (*fP)(Mat,Mat,MatReuse,PetscReal,Mat*);
8655:   PetscErrorCode (*ptap)(Mat,Mat,MatReuse,PetscReal,Mat*)=NULL;
8656:   PetscBool      viatranspose=PETSC_FALSE,viamatmatmatmult=PETSC_FALSE;

8659:   PetscOptionsGetBool(((PetscObject)A)->prefix,"-matptap_viatranspose",&viatranspose,NULL);
8660:   PetscOptionsGetBool(((PetscObject)A)->prefix,"-matptap_viamatmatmatmult",&viamatmatmatmult,NULL);

8664:   MatCheckPreallocated(A,1);
8665:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8666:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8669:   MatCheckPreallocated(P,2);
8670:   if (!P->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8671:   if (P->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");

8673:   if (P->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",P->rmap->N,A->cmap->N);
8674:   if (fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be >= 1.0",(double)fill);

8676:   if (scall == MAT_REUSE_MATRIX) {
8679:     if (viatranspose || viamatmatmatmult) {
8680:       Mat Pt;
8681:       MatTranspose(P,MAT_INITIAL_MATRIX,&Pt);
8682:       if (viamatmatmatmult) {
8683:         MatMatMatMult(Pt,A,P,scall,fill,C);
8684:       } else {
8685:         Mat AP;
8686:         MatMatMult(A,P,MAT_INITIAL_MATRIX,fill,&AP);
8687:         MatMatMult(Pt,AP,scall,fill,C);
8688:         MatDestroy(&AP);
8689:       }
8690:       MatDestroy(&Pt);
8691:     } else {
8692:       PetscLogEventBegin(MAT_PtAP,A,P,0,0);
8693:       PetscLogEventBegin(MAT_PtAPNumeric,A,P,0,0);
8694:       (*(*C)->ops->ptapnumeric)(A,P,*C);
8695:       PetscLogEventEnd(MAT_PtAPNumeric,A,P,0,0);
8696:       PetscLogEventEnd(MAT_PtAP,A,P,0,0);
8697:     }
8698:     return(0);
8699:   }

8701:   if (fill == PETSC_DEFAULT || fill == PETSC_DECIDE) fill = 2.0;
8702:   if (fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be >= 1.0",(double)fill);

8704:   fA = A->ops->ptap;
8705:   fP = P->ops->ptap;
8706:   if (fP == fA) {
8707:     if (!fA) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"MatPtAP not supported for A of type %s",((PetscObject)A)->type_name);
8708:     ptap = fA;
8709:   } else {
8710:     /* dispatch based on the type of A and P from their PetscObject's PetscFunctionLists. */
8711:     char ptapname[256];
8712:     PetscStrcpy(ptapname,"MatPtAP_");
8713:     PetscStrcat(ptapname,((PetscObject)A)->type_name);
8714:     PetscStrcat(ptapname,"_");
8715:     PetscStrcat(ptapname,((PetscObject)P)->type_name);
8716:     PetscStrcat(ptapname,"_C"); /* e.g., ptapname = "MatPtAP_seqdense_seqaij_C" */
8717:     PetscObjectQueryFunction((PetscObject)P,ptapname,&ptap);
8718:     if (!ptap) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"MatPtAP requires A, %s, to be compatible with P, %s",((PetscObject)A)->type_name,((PetscObject)P)->type_name);
8719:   }

8721:   if (viatranspose || viamatmatmatmult) {
8722:     Mat Pt;
8723:     MatTranspose(P,MAT_INITIAL_MATRIX,&Pt);
8724:     if (viamatmatmatmult) {
8725:       MatMatMatMult(Pt,A,P,scall,fill,C);
8726:       PetscInfo(*C,"MatPtAP via MatMatMatMult\n");
8727:     } else {
8728:       Mat AP;
8729:       MatMatMult(A,P,MAT_INITIAL_MATRIX,fill,&AP);
8730:       MatMatMult(Pt,AP,scall,fill,C);
8731:       MatDestroy(&AP);
8732:       PetscInfo(*C,"MatPtAP via MatTranspose and MatMatMult\n");
8733:     }
8734:     MatDestroy(&Pt);
8735:   } else {
8736:     PetscLogEventBegin(MAT_PtAP,A,P,0,0);
8737:     (*ptap)(A,P,scall,fill,C);
8738:     PetscLogEventEnd(MAT_PtAP,A,P,0,0);
8739:   }
8740:   return(0);
8741: }

8745: /*@
8746:    MatPtAPNumeric - Computes the matrix product C = P^T * A * P

8748:    Neighbor-wise Collective on Mat

8750:    Input Parameters:
8751: +  A - the matrix
8752: -  P - the projection matrix

8754:    Output Parameters:
8755: .  C - the product matrix

8757:    Notes:
8758:    C must have been created by calling MatPtAPSymbolic and must be destroyed by
8759:    the user using MatDeatroy().

8761:    This routine is currently only implemented for pairs of AIJ matrices and classes
8762:    which inherit from AIJ.  C will be of type MATAIJ.

8764:    Level: intermediate

8766: .seealso: MatPtAP(), MatPtAPSymbolic(), MatMatMultNumeric()
8767: @*/
8768: PetscErrorCode  MatPtAPNumeric(Mat A,Mat P,Mat C)
8769: {

8775:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8776:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8779:   MatCheckPreallocated(P,2);
8780:   if (!P->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8781:   if (P->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8784:   MatCheckPreallocated(C,3);
8785:   if (C->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8786:   if (P->cmap->N!=C->rmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",P->cmap->N,C->rmap->N);
8787:   if (P->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",P->rmap->N,A->cmap->N);
8788:   if (A->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix 'A' must be square, %D != %D",A->rmap->N,A->cmap->N);
8789:   if (P->cmap->N!=C->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",P->cmap->N,C->cmap->N);
8790:   MatCheckPreallocated(A,1);

8792:   PetscLogEventBegin(MAT_PtAPNumeric,A,P,0,0);
8793:   (*C->ops->ptapnumeric)(A,P,C);
8794:   PetscLogEventEnd(MAT_PtAPNumeric,A,P,0,0);
8795:   return(0);
8796: }

8800: /*@
8801:    MatPtAPSymbolic - Creates the (i,j) structure of the matrix product C = P^T * A * P

8803:    Neighbor-wise Collective on Mat

8805:    Input Parameters:
8806: +  A - the matrix
8807: -  P - the projection matrix

8809:    Output Parameters:
8810: .  C - the (i,j) structure of the product matrix

8812:    Notes:
8813:    C will be created and must be destroyed by the user with MatDestroy().

8815:    This routine is currently only implemented for pairs of SeqAIJ matrices and classes
8816:    which inherit from SeqAIJ.  C will be of type MATSEQAIJ.  The product is computed using
8817:    this (i,j) structure by calling MatPtAPNumeric().

8819:    Level: intermediate

8821: .seealso: MatPtAP(), MatPtAPNumeric(), MatMatMultSymbolic()
8822: @*/
8823: PetscErrorCode  MatPtAPSymbolic(Mat A,Mat P,PetscReal fill,Mat *C)
8824: {

8830:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8831:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8832:   if (fill <1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be >= 1.0",(double)fill);
8835:   MatCheckPreallocated(P,2);
8836:   if (!P->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8837:   if (P->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");

8840:   if (P->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",P->rmap->N,A->cmap->N);
8841:   if (A->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix 'A' must be square, %D != %D",A->rmap->N,A->cmap->N);
8842:   MatCheckPreallocated(A,1);
8843:   PetscLogEventBegin(MAT_PtAPSymbolic,A,P,0,0);
8844:   (*A->ops->ptapsymbolic)(A,P,fill,C);
8845:   PetscLogEventEnd(MAT_PtAPSymbolic,A,P,0,0);

8847:   /* MatSetBlockSize(*C,A->rmap->bs); NO! this is not always true -ma */
8848:   return(0);
8849: }

8853: /*@
8854:    MatRARt - Creates the matrix product C = R * A * R^T

8856:    Neighbor-wise Collective on Mat

8858:    Input Parameters:
8859: +  A - the matrix
8860: .  R - the projection matrix
8861: .  scall - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX
8862: -  fill - expected fill as ratio of nnz(C)/nnz(A)

8864:    Output Parameters:
8865: .  C - the product matrix

8867:    Notes:
8868:    C will be created and must be destroyed by the user with MatDestroy().

8870:    This routine is currently only implemented for pairs of AIJ matrices and classes
8871:    which inherit from AIJ.

8873:    Level: intermediate

8875: .seealso: MatRARtSymbolic(), MatRARtNumeric(), MatMatMult(), MatPtAP()
8876: @*/
8877: PetscErrorCode  MatRARt(Mat A,Mat R,MatReuse scall,PetscReal fill,Mat *C)
8878: {

8884:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8885:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8888:   MatCheckPreallocated(R,2);
8889:   if (!R->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8890:   if (R->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8892:   if (R->cmap->N!=A->rmap->N) SETERRQ2(PetscObjectComm((PetscObject)R),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",R->cmap->N,A->rmap->N);
8893:   if (fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be >= 1.0",(double)fill);
8894:   MatCheckPreallocated(A,1);

8896:   if (!A->ops->rart) {
8897:     MatType mattype;
8898:     MatGetType(A,&mattype);
8899:     SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Matrix of type <%s> does not support RARt",mattype);
8900:   }
8901:   PetscLogEventBegin(MAT_RARt,A,R,0,0);
8902:   (*A->ops->rart)(A,R,scall,fill,C);
8903:   PetscLogEventEnd(MAT_RARt,A,R,0,0);
8904:   return(0);
8905: }

8909: /*@
8910:    MatRARtNumeric - Computes the matrix product C = R * A * R^T

8912:    Neighbor-wise Collective on Mat

8914:    Input Parameters:
8915: +  A - the matrix
8916: -  R - the projection matrix

8918:    Output Parameters:
8919: .  C - the product matrix

8921:    Notes:
8922:    C must have been created by calling MatRARtSymbolic and must be destroyed by
8923:    the user using MatDeatroy().

8925:    This routine is currently only implemented for pairs of AIJ matrices and classes
8926:    which inherit from AIJ.  C will be of type MATAIJ.

8928:    Level: intermediate

8930: .seealso: MatRARt(), MatRARtSymbolic(), MatMatMultNumeric()
8931: @*/
8932: PetscErrorCode  MatRARtNumeric(Mat A,Mat R,Mat C)
8933: {

8939:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8940:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8943:   MatCheckPreallocated(R,2);
8944:   if (!R->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8945:   if (R->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8948:   MatCheckPreallocated(C,3);
8949:   if (C->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8950:   if (R->rmap->N!=C->rmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",R->rmap->N,C->rmap->N);
8951:   if (R->cmap->N!=A->rmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",R->cmap->N,A->rmap->N);
8952:   if (A->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix 'A' must be square, %D != %D",A->rmap->N,A->cmap->N);
8953:   if (R->rmap->N!=C->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",R->rmap->N,C->cmap->N);
8954:   MatCheckPreallocated(A,1);

8956:   PetscLogEventBegin(MAT_RARtNumeric,A,R,0,0);
8957:   (*A->ops->rartnumeric)(A,R,C);
8958:   PetscLogEventEnd(MAT_RARtNumeric,A,R,0,0);
8959:   return(0);
8960: }

8964: /*@
8965:    MatRARtSymbolic - Creates the (i,j) structure of the matrix product C = R * A * R^T

8967:    Neighbor-wise Collective on Mat

8969:    Input Parameters:
8970: +  A - the matrix
8971: -  R - the projection matrix

8973:    Output Parameters:
8974: .  C - the (i,j) structure of the product matrix

8976:    Notes:
8977:    C will be created and must be destroyed by the user with MatDestroy().

8979:    This routine is currently only implemented for pairs of SeqAIJ matrices and classes
8980:    which inherit from SeqAIJ.  C will be of type MATSEQAIJ.  The product is computed using
8981:    this (i,j) structure by calling MatRARtNumeric().

8983:    Level: intermediate

8985: .seealso: MatRARt(), MatRARtNumeric(), MatMatMultSymbolic()
8986: @*/
8987: PetscErrorCode  MatRARtSymbolic(Mat A,Mat R,PetscReal fill,Mat *C)
8988: {

8994:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
8995:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
8996:   if (fill <1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be >= 1.0",(double)fill);
8999:   MatCheckPreallocated(R,2);
9000:   if (!R->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9001:   if (R->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");

9004:   if (R->cmap->N!=A->rmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",R->cmap->N,A->rmap->N);
9005:   if (A->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix 'A' must be square, %D != %D",A->rmap->N,A->cmap->N);
9006:   MatCheckPreallocated(A,1);
9007:   PetscLogEventBegin(MAT_RARtSymbolic,A,R,0,0);
9008:   (*A->ops->rartsymbolic)(A,R,fill,C);
9009:   PetscLogEventEnd(MAT_RARtSymbolic,A,R,0,0);

9011:   MatSetBlockSizes(*C,PetscAbs(R->rmap->bs),PetscAbs(R->rmap->bs));
9012:   return(0);
9013: }

9017: /*@
9018:    MatMatMult - Performs Matrix-Matrix Multiplication C=A*B.

9020:    Neighbor-wise Collective on Mat

9022:    Input Parameters:
9023: +  A - the left matrix
9024: .  B - the right matrix
9025: .  scall - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX
9026: -  fill - expected fill as ratio of nnz(C)/(nnz(A) + nnz(B)), use PETSC_DEFAULT if you do not have a good estimate
9027:           if the result is a dense matrix this is irrelevent

9029:    Output Parameters:
9030: .  C - the product matrix

9032:    Notes:
9033:    Unless scall is MAT_REUSE_MATRIX C will be created.

9035:    MAT_REUSE_MATRIX can only be used if the matrices A and B have the same nonzero pattern as in the previous call

9037:    To determine the correct fill value, run with -info and search for the string "Fill ratio" to see the value
9038:    actually needed.

9040:    If you have many matrices with the same non-zero structure to multiply, you
9041:    should either
9042: $   1) use MAT_REUSE_MATRIX in all calls but the first or
9043: $   2) call MatMatMultSymbolic() once and then MatMatMultNumeric() for each product needed

9045:    Level: intermediate

9047: .seealso: MatMatMultSymbolic(), MatMatMultNumeric(), MatTransposeMatMult(),  MatMatTransposeMult(), MatPtAP()
9048: @*/
9049: PetscErrorCode  MatMatMult(Mat A,Mat B,MatReuse scall,PetscReal fill,Mat *C)
9050: {
9052:   PetscErrorCode (*fA)(Mat,Mat,MatReuse,PetscReal,Mat*);
9053:   PetscErrorCode (*fB)(Mat,Mat,MatReuse,PetscReal,Mat*);
9054:   PetscErrorCode (*mult)(Mat,Mat,MatReuse,PetscReal,Mat*)=NULL;

9059:   MatCheckPreallocated(A,1);
9060:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9061:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9064:   MatCheckPreallocated(B,2);
9065:   if (!B->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9066:   if (B->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9068:   if (B->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",B->rmap->N,A->cmap->N);
9069:   if (scall == MAT_REUSE_MATRIX) {
9072:     PetscLogEventBegin(MAT_MatMult,A,B,0,0);
9073:     PetscLogEventBegin(MAT_MatMultNumeric,A,B,0,0);
9074:     (*(*C)->ops->matmultnumeric)(A,B,*C);
9075:     PetscLogEventEnd(MAT_MatMultNumeric,A,B,0,0);
9076:     PetscLogEventEnd(MAT_MatMult,A,B,0,0);
9077:     return(0);
9078:   }
9079:   if (fill == PETSC_DEFAULT || fill == PETSC_DECIDE) fill = 2.0;
9080:   if (fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be >= 1.0",(double)fill);

9082:   fA = A->ops->matmult;
9083:   fB = B->ops->matmult;
9084:   if (fB == fA) {
9085:     if (!fB) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"MatMatMult not supported for B of type %s",((PetscObject)B)->type_name);
9086:     mult = fB;
9087:   } else {
9088:     /* dispatch based on the type of A and B from their PetscObject's PetscFunctionLists. */
9089:     char multname[256];
9090:     PetscStrcpy(multname,"MatMatMult_");
9091:     PetscStrcat(multname,((PetscObject)A)->type_name);
9092:     PetscStrcat(multname,"_");
9093:     PetscStrcat(multname,((PetscObject)B)->type_name);
9094:     PetscStrcat(multname,"_C"); /* e.g., multname = "MatMatMult_seqdense_seqaij_C" */
9095:     PetscObjectQueryFunction((PetscObject)B,multname,&mult);
9096:     if (!mult) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"MatMatMult requires A, %s, to be compatible with B, %s",((PetscObject)A)->type_name,((PetscObject)B)->type_name);
9097:   }
9098:   PetscLogEventBegin(MAT_MatMult,A,B,0,0);
9099:   (*mult)(A,B,scall,fill,C);
9100:   PetscLogEventEnd(MAT_MatMult,A,B,0,0);
9101:   return(0);
9102: }

9106: /*@
9107:    MatMatMultSymbolic - Performs construction, preallocation, and computes the ij structure
9108:    of the matrix-matrix product C=A*B.  Call this routine before calling MatMatMultNumeric().

9110:    Neighbor-wise Collective on Mat

9112:    Input Parameters:
9113: +  A - the left matrix
9114: .  B - the right matrix
9115: -  fill - expected fill as ratio of nnz(C)/(nnz(A) + nnz(B)), use PETSC_DEFAULT if you do not have a good estimate,
9116:       if C is a dense matrix this is irrelevent

9118:    Output Parameters:
9119: .  C - the product matrix

9121:    Notes:
9122:    Unless scall is MAT_REUSE_MATRIX C will be created.

9124:    To determine the correct fill value, run with -info and search for the string "Fill ratio" to see the value
9125:    actually needed.

9127:    This routine is currently implemented for
9128:     - pairs of AIJ matrices and classes which inherit from AIJ, C will be of type AIJ
9129:     - pairs of AIJ (A) and Dense (B) matrix, C will be of type Dense.
9130:     - pairs of Dense (A) and AIJ (B) matrix, C will be of type Dense.

9132:    Level: intermediate

9134:    Developers Note: There are ways to estimate the number of nonzeros in the resulting product, see for example, http://arxiv.org/abs/1006.4173
9135:      We should incorporate them into PETSc.

9137: .seealso: MatMatMult(), MatMatMultNumeric()
9138: @*/
9139: PetscErrorCode  MatMatMultSymbolic(Mat A,Mat B,PetscReal fill,Mat *C)
9140: {
9142:   PetscErrorCode (*Asymbolic)(Mat,Mat,PetscReal,Mat*);
9143:   PetscErrorCode (*Bsymbolic)(Mat,Mat,PetscReal,Mat*);
9144:   PetscErrorCode (*symbolic)(Mat,Mat,PetscReal,Mat*)=NULL;

9149:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9150:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");

9154:   MatCheckPreallocated(B,2);
9155:   if (!B->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9156:   if (B->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");

9159:   if (B->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",B->rmap->N,A->cmap->N);
9160:   if (fill == PETSC_DEFAULT) fill = 2.0;
9161:   if (fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be > 1.0",(double)fill);
9162:   MatCheckPreallocated(A,1);

9164:   Asymbolic = A->ops->matmultsymbolic;
9165:   Bsymbolic = B->ops->matmultsymbolic;
9166:   if (Asymbolic == Bsymbolic) {
9167:     if (!Bsymbolic) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"C=A*B not implemented for B of type %s",((PetscObject)B)->type_name);
9168:     symbolic = Bsymbolic;
9169:   } else { /* dispatch based on the type of A and B */
9170:     char symbolicname[256];
9171:     PetscStrcpy(symbolicname,"MatMatMultSymbolic_");
9172:     PetscStrcat(symbolicname,((PetscObject)A)->type_name);
9173:     PetscStrcat(symbolicname,"_");
9174:     PetscStrcat(symbolicname,((PetscObject)B)->type_name);
9175:     PetscStrcat(symbolicname,"_C");
9176:     PetscObjectQueryFunction((PetscObject)B,symbolicname,&symbolic);
9177:     if (!symbolic) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"MatMatMultSymbolic requires A, %s, to be compatible with B, %s",((PetscObject)A)->type_name,((PetscObject)B)->type_name);
9178:   }
9179:   PetscLogEventBegin(MAT_MatMultSymbolic,A,B,0,0);
9180:   (*symbolic)(A,B,fill,C);
9181:   PetscLogEventEnd(MAT_MatMultSymbolic,A,B,0,0);
9182:   return(0);
9183: }

9187: /*@
9188:    MatMatMultNumeric - Performs the numeric matrix-matrix product.
9189:    Call this routine after first calling MatMatMultSymbolic().

9191:    Neighbor-wise Collective on Mat

9193:    Input Parameters:
9194: +  A - the left matrix
9195: -  B - the right matrix

9197:    Output Parameters:
9198: .  C - the product matrix, which was created by from MatMatMultSymbolic() or a call to MatMatMult().

9200:    Notes:
9201:    C must have been created with MatMatMultSymbolic().

9203:    This routine is currently implemented for
9204:     - pairs of AIJ matrices and classes which inherit from AIJ, C will be of type MATAIJ.
9205:     - pairs of AIJ (A) and Dense (B) matrix, C will be of type Dense.
9206:     - pairs of Dense (A) and AIJ (B) matrix, C will be of type Dense.

9208:    Level: intermediate

9210: .seealso: MatMatMult(), MatMatMultSymbolic()
9211: @*/
9212: PetscErrorCode  MatMatMultNumeric(Mat A,Mat B,Mat C)
9213: {

9217:   MatMatMult(A,B,MAT_REUSE_MATRIX,0.0,&C);
9218:   return(0);
9219: }

9223: /*@
9224:    MatMatTransposeMult - Performs Matrix-Matrix Multiplication C=A*B^T.

9226:    Neighbor-wise Collective on Mat

9228:    Input Parameters:
9229: +  A - the left matrix
9230: .  B - the right matrix
9231: .  scall - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX
9232: -  fill - expected fill as ratio of nnz(C)/(nnz(A) + nnz(B)), use PETSC_DEFAULT if not known

9234:    Output Parameters:
9235: .  C - the product matrix

9237:    Notes:
9238:    C will be created if MAT_INITIAL_MATRIX and must be destroyed by the user with MatDestroy().

9240:    MAT_REUSE_MATRIX can only be used if the matrices A and B have the same nonzero pattern as in the previous call

9242:   To determine the correct fill value, run with -info and search for the string "Fill ratio" to see the value
9243:    actually needed.

9245:    This routine is currently only implemented for pairs of SeqAIJ matrices.  C will be of type MATSEQAIJ.

9247:    Level: intermediate

9249: .seealso: MatMatTransposeMultSymbolic(), MatMatTransposeMultNumeric(), MatMatMult(), MatTransposeMatMult() MatPtAP()
9250: @*/
9251: PetscErrorCode  MatMatTransposeMult(Mat A,Mat B,MatReuse scall,PetscReal fill,Mat *C)
9252: {
9254:   PetscErrorCode (*fA)(Mat,Mat,MatReuse,PetscReal,Mat*);
9255:   PetscErrorCode (*fB)(Mat,Mat,MatReuse,PetscReal,Mat*);

9260:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9261:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9264:   MatCheckPreallocated(B,2);
9265:   if (!B->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9266:   if (B->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9268:   if (B->cmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, AN %D != BN %D",A->cmap->N,B->cmap->N);
9269:   if (fill == PETSC_DEFAULT || fill == PETSC_DECIDE) fill = 2.0;
9270:   if (fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be > 1.0",(double)fill);
9271:   MatCheckPreallocated(A,1);

9273:   fA = A->ops->mattransposemult;
9274:   if (!fA) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"MatMatTransposeMult not supported for A of type %s",((PetscObject)A)->type_name);
9275:   fB = B->ops->mattransposemult;
9276:   if (!fB) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"MatMatTransposeMult not supported for B of type %s",((PetscObject)B)->type_name);
9277:   if (fB!=fA) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"MatMatTransposeMult requires A, %s, to be compatible with B, %s",((PetscObject)A)->type_name,((PetscObject)B)->type_name);

9279:   PetscLogEventBegin(MAT_MatTransposeMult,A,B,0,0);
9280:   if (scall == MAT_INITIAL_MATRIX) {
9281:     PetscLogEventBegin(MAT_MatTransposeMultSymbolic,A,B,0,0);
9282:     (*A->ops->mattransposemultsymbolic)(A,B,fill,C);
9283:     PetscLogEventEnd(MAT_MatTransposeMultSymbolic,A,B,0,0);
9284:   }
9285:   PetscLogEventBegin(MAT_MatTransposeMultNumeric,A,B,0,0);
9286:   (*A->ops->mattransposemultnumeric)(A,B,*C);
9287:   PetscLogEventEnd(MAT_MatTransposeMultNumeric,A,B,0,0);
9288:   PetscLogEventEnd(MAT_MatTransposeMult,A,B,0,0);
9289:   return(0);
9290: }

9294: /*@
9295:    MatTransposeMatMult - Performs Matrix-Matrix Multiplication C=A^T*B.

9297:    Neighbor-wise Collective on Mat

9299:    Input Parameters:
9300: +  A - the left matrix
9301: .  B - the right matrix
9302: .  scall - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX
9303: -  fill - expected fill as ratio of nnz(C)/(nnz(A) + nnz(B)), use PETSC_DEFAULT if not known

9305:    Output Parameters:
9306: .  C - the product matrix

9308:    Notes:
9309:    C will be created if MAT_INITIAL_MATRIX and must be destroyed by the user with MatDestroy().

9311:    MAT_REUSE_MATRIX can only be used if the matrices A and B have the same nonzero pattern as in the previous call

9313:   To determine the correct fill value, run with -info and search for the string "Fill ratio" to see the value
9314:    actually needed.

9316:    This routine is currently implemented for pairs of AIJ matrices and pairs of SeqDense matrices and classes
9317:    which inherit from SeqAIJ.  C will be of same type as the input matrices.

9319:    Level: intermediate

9321: .seealso: MatTransposeMatMultSymbolic(), MatTransposeMatMultNumeric(), MatMatMult(), MatMatTransposeMult(), MatPtAP()
9322: @*/
9323: PetscErrorCode  MatTransposeMatMult(Mat A,Mat B,MatReuse scall,PetscReal fill,Mat *C)
9324: {
9326:   PetscErrorCode (*fA)(Mat,Mat,MatReuse,PetscReal,Mat*);
9327:   PetscErrorCode (*fB)(Mat,Mat,MatReuse,PetscReal,Mat*);
9328:   PetscErrorCode (*transposematmult)(Mat,Mat,MatReuse,PetscReal,Mat*) = NULL;

9333:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9334:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9337:   MatCheckPreallocated(B,2);
9338:   if (!B->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9339:   if (B->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9341:   if (B->rmap->N!=A->rmap->N) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",B->rmap->N,A->rmap->N);
9342:   if (fill == PETSC_DEFAULT || fill == PETSC_DECIDE) fill = 2.0;
9343:   if (fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be > 1.0",(double)fill);
9344:   MatCheckPreallocated(A,1);

9346:   fA = A->ops->transposematmult;
9347:   fB = B->ops->transposematmult;
9348:   if (fB==fA) {
9349:     if (!fA) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"MatTransposeMatMult not supported for A of type %s",((PetscObject)A)->type_name);
9350:     transposematmult = fA;
9351:   } else {
9352:     /* dispatch based on the type of A and B from their PetscObject's PetscFunctionLists. */
9353:     char multname[256];
9354:     PetscStrcpy(multname,"MatTransposeMatMult_");
9355:     PetscStrcat(multname,((PetscObject)A)->type_name);
9356:     PetscStrcat(multname,"_");
9357:     PetscStrcat(multname,((PetscObject)B)->type_name);
9358:     PetscStrcat(multname,"_C"); /* e.g., multname = "MatMatMult_seqdense_seqaij_C" */
9359:     PetscObjectQueryFunction((PetscObject)B,multname,&transposematmult);
9360:     if (!transposematmult) SETERRQ2(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"MatTransposeMatMult requires A, %s, to be compatible with B, %s",((PetscObject)A)->type_name,((PetscObject)B)->type_name);
9361:   }
9362:   PetscLogEventBegin(MAT_TransposeMatMult,A,B,0,0);
9363:   (*transposematmult)(A,B,scall,fill,C);
9364:   PetscLogEventEnd(MAT_TransposeMatMult,A,B,0,0);
9365:   return(0);
9366: }

9370: /*@
9371:    MatMatMatMult - Performs Matrix-Matrix-Matrix Multiplication D=A*B*C.

9373:    Neighbor-wise Collective on Mat

9375:    Input Parameters:
9376: +  A - the left matrix
9377: .  B - the middle matrix
9378: .  C - the right matrix
9379: .  scall - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX
9380: -  fill - expected fill as ratio of nnz(D)/(nnz(A) + nnz(B)+nnz(C)), use PETSC_DEFAULT if you do not have a good estimate
9381:           if the result is a dense matrix this is irrelevent

9383:    Output Parameters:
9384: .  D - the product matrix

9386:    Notes:
9387:    Unless scall is MAT_REUSE_MATRIX D will be created.

9389:    MAT_REUSE_MATRIX can only be used if the matrices A, B and C have the same nonzero pattern as in the previous call

9391:    To determine the correct fill value, run with -info and search for the string "Fill ratio" to see the value
9392:    actually needed.

9394:    If you have many matrices with the same non-zero structure to multiply, you
9395:    should either
9396: $   1) use MAT_REUSE_MATRIX in all calls but the first or
9397: $   2) call MatMatMatMultSymbolic() once and then MatMatMatMultNumeric() for each product needed

9399:    Level: intermediate

9401: .seealso: MatMatMult, MatPtAP()
9402: @*/
9403: PetscErrorCode  MatMatMatMult(Mat A,Mat B,Mat C,MatReuse scall,PetscReal fill,Mat *D)
9404: {
9406:   PetscErrorCode (*fA)(Mat,Mat,Mat,MatReuse,PetscReal,Mat*);
9407:   PetscErrorCode (*fB)(Mat,Mat,Mat,MatReuse,PetscReal,Mat*);
9408:   PetscErrorCode (*fC)(Mat,Mat,Mat,MatReuse,PetscReal,Mat*);
9409:   PetscErrorCode (*mult)(Mat,Mat,Mat,MatReuse,PetscReal,Mat*)=NULL;

9414:   MatCheckPreallocated(A,1);
9415:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9416:   if (A->factortype) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9419:   MatCheckPreallocated(B,2);
9420:   if (!B->assembled) SETERRQ(PetscObjectComm((PetscObject)B),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9421:   if (B->factortype) SETERRQ(PetscObjectComm((PetscObject)B),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9424:   MatCheckPreallocated(C,3);
9425:   if (!C->assembled) SETERRQ(PetscObjectComm((PetscObject)C),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9426:   if (C->factortype) SETERRQ(PetscObjectComm((PetscObject)C),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9427:   if (B->rmap->N!=A->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)B),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",B->rmap->N,A->cmap->N);
9428:   if (C->rmap->N!=B->cmap->N) SETERRQ2(PetscObjectComm((PetscObject)C),PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",C->rmap->N,B->cmap->N);
9429:   if (scall == MAT_REUSE_MATRIX) {
9432:     PetscLogEventBegin(MAT_MatMatMult,A,B,0,0);
9433:     (*(*D)->ops->matmatmult)(A,B,C,scall,fill,D);
9434:     PetscLogEventEnd(MAT_MatMatMult,A,B,0,0);
9435:     return(0);
9436:   }
9437:   if (fill == PETSC_DEFAULT || fill == PETSC_DECIDE) fill = 2.0;
9438:   if (fill < 1.0) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_SIZ,"Expected fill=%g must be >= 1.0",(double)fill);

9440:   fA = A->ops->matmatmult;
9441:   fB = B->ops->matmatmult;
9442:   fC = C->ops->matmatmult;
9443:   if (fA == fB && fA == fC) {
9444:     if (!fA) SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"MatMatMatMult not supported for A of type %s",((PetscObject)A)->type_name);
9445:     mult = fA;
9446:   } else {
9447:     /* dispatch based on the type of A, B and C from their PetscObject's PetscFunctionLists. */
9448:     char multname[256];
9449:     PetscStrcpy(multname,"MatMatMatMult_");
9450:     PetscStrcat(multname,((PetscObject)A)->type_name);
9451:     PetscStrcat(multname,"_");
9452:     PetscStrcat(multname,((PetscObject)B)->type_name);
9453:     PetscStrcat(multname,"_");
9454:     PetscStrcat(multname,((PetscObject)C)->type_name);
9455:     PetscStrcat(multname,"_C");
9456:     PetscObjectQueryFunction((PetscObject)B,multname,&mult);
9457:     if (!mult) SETERRQ3(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_INCOMP,"MatMatMatMult requires A, %s, to be compatible with B, %s, C, %s",((PetscObject)A)->type_name,((PetscObject)B)->type_name,((PetscObject)C)->type_name);
9458:   }
9459:   PetscLogEventBegin(MAT_MatMatMult,A,B,0,0);
9460:   (*mult)(A,B,C,scall,fill,D);
9461:   PetscLogEventEnd(MAT_MatMatMult,A,B,0,0);
9462:   return(0);
9463: }

9467: /*@C
9468:    MatCreateRedundantMatrix - Create redundant matrices and put them into processors of subcommunicators.

9470:    Collective on Mat

9472:    Input Parameters:
9473: +  mat - the matrix
9474: .  nsubcomm - the number of subcommunicators (= number of redundant parallel or sequential matrices)
9475: .  subcomm - MPI communicator split from the communicator where mat resides in (or MPI_COMM_NULL if nsubcomm is used)
9476: -  reuse - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX

9478:    Output Parameter:
9479: .  matredundant - redundant matrix

9481:    Notes:
9482:    MAT_REUSE_MATRIX can only be used when the nonzero structure of the
9483:    original matrix has not changed from that last call to MatCreateRedundantMatrix().

9485:    This routine creates the duplicated matrices in subcommunicators; you should NOT create them before
9486:    calling it.

9488:    Level: advanced

9490:    Concepts: subcommunicator
9491:    Concepts: duplicate matrix

9493: .seealso: MatDestroy()
9494: @*/
9495: PetscErrorCode MatCreateRedundantMatrix(Mat mat,PetscInt nsubcomm,MPI_Comm subcomm,MatReuse reuse,Mat *matredundant)
9496: {
9498:   MPI_Comm       comm;
9499:   PetscMPIInt    size;
9500:   PetscInt       mloc_sub,rstart,rend,M=mat->rmap->N,N=mat->cmap->N,bs=mat->rmap->bs;
9501:   Mat_Redundant  *redund=NULL;
9502:   PetscSubcomm   psubcomm=NULL;
9503:   MPI_Comm       subcomm_in=subcomm;
9504:   Mat            *matseq;
9505:   IS             isrow,iscol;
9506:   PetscBool      newsubcomm=PETSC_FALSE;

9509:   MPI_Comm_size(PetscObjectComm((PetscObject)mat),&size);
9510:   if (size == 1 || nsubcomm == 1) {
9511:     if (reuse == MAT_INITIAL_MATRIX) {
9512:       MatDuplicate(mat,MAT_COPY_VALUES,matredundant);
9513:     } else {
9514:       MatCopy(mat,*matredundant,SAME_NONZERO_PATTERN);
9515:     }
9516:     return(0);
9517:   }

9520:   if (nsubcomm && reuse == MAT_REUSE_MATRIX) {
9523:   }
9524:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9525:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9526:   MatCheckPreallocated(mat,1);

9528:   PetscLogEventBegin(MAT_RedundantMat,mat,0,0,0);
9529:   if (subcomm_in == MPI_COMM_NULL && reuse == MAT_INITIAL_MATRIX) { /* get subcomm if user does not provide subcomm */
9530:     /* create psubcomm, then get subcomm */
9531:     PetscObjectGetComm((PetscObject)mat,&comm);
9532:     MPI_Comm_size(comm,&size);
9533:     if (nsubcomm < 1 || nsubcomm > size) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"nsubcomm must between 1 and %D",size);

9535:     PetscSubcommCreate(comm,&psubcomm);
9536:     PetscSubcommSetNumber(psubcomm,nsubcomm);
9537:     PetscSubcommSetType(psubcomm,PETSC_SUBCOMM_CONTIGUOUS);
9538:     PetscSubcommSetFromOptions(psubcomm);
9539:     PetscCommDuplicate(PetscSubcommChild(psubcomm),&subcomm,NULL);
9540:     newsubcomm = PETSC_TRUE;
9541:     PetscSubcommDestroy(&psubcomm);
9542:   }

9544:   /* get isrow, iscol and a local sequential matrix matseq[0] */
9545:   if (reuse == MAT_INITIAL_MATRIX) {
9546:     mloc_sub = PETSC_DECIDE;
9547:     if (bs < 1) {
9548:       PetscSplitOwnership(subcomm,&mloc_sub,&M);
9549:     } else {
9550:       PetscSplitOwnershipBlock(subcomm,bs,&mloc_sub,&M);
9551:     }
9552:     MPI_Scan(&mloc_sub,&rend,1,MPIU_INT,MPI_SUM,subcomm);
9553:     rstart = rend - mloc_sub;
9554:     ISCreateStride(PETSC_COMM_SELF,mloc_sub,rstart,1,&isrow);
9555:     ISCreateStride(PETSC_COMM_SELF,N,0,1,&iscol);
9556:   } else { /* reuse == MAT_REUSE_MATRIX */
9557:     /* retrieve subcomm */
9558:     PetscObjectGetComm((PetscObject)(*matredundant),&subcomm);
9559:     redund = (*matredundant)->redundant;
9560:     isrow  = redund->isrow;
9561:     iscol  = redund->iscol;
9562:     matseq = redund->matseq;
9563:   }
9564:   MatGetSubMatrices(mat,1,&isrow,&iscol,reuse,&matseq);

9566:   /* get matredundant over subcomm */
9567:   if (reuse == MAT_INITIAL_MATRIX) {
9568:     MatCreateMPIMatConcatenateSeqMat(subcomm,matseq[0],mloc_sub,reuse,matredundant);

9570:     /* create a supporting struct and attach it to C for reuse */
9571:     PetscNewLog(*matredundant,&redund);
9572:     (*matredundant)->redundant = redund;
9573:     redund->isrow              = isrow;
9574:     redund->iscol              = iscol;
9575:     redund->matseq             = matseq;
9576:     if (newsubcomm) {
9577:       redund->subcomm          = subcomm;
9578:     } else {
9579:       redund->subcomm          = MPI_COMM_NULL;
9580:     }
9581:   } else {
9582:     MatCreateMPIMatConcatenateSeqMat(subcomm,matseq[0],PETSC_DECIDE,reuse,matredundant);
9583:   }
9584:   PetscLogEventEnd(MAT_RedundantMat,mat,0,0,0);
9585:   return(0);
9586: }

9590: /*@C
9591:    MatGetMultiProcBlock - Create multiple [bjacobi] 'parallel submatrices' from
9592:    a given 'mat' object. Each submatrix can span multiple procs.

9594:    Collective on Mat

9596:    Input Parameters:
9597: +  mat - the matrix
9598: .  subcomm - the subcommunicator obtained by com_split(comm)
9599: -  scall - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX

9601:    Output Parameter:
9602: .  subMat - 'parallel submatrices each spans a given subcomm

9604:   Notes:
9605:   The submatrix partition across processors is dictated by 'subComm' a
9606:   communicator obtained by com_split(comm). The comm_split
9607:   is not restriced to be grouped with consecutive original ranks.

9609:   Due the comm_split() usage, the parallel layout of the submatrices
9610:   map directly to the layout of the original matrix [wrt the local
9611:   row,col partitioning]. So the original 'DiagonalMat' naturally maps
9612:   into the 'DiagonalMat' of the subMat, hence it is used directly from
9613:   the subMat. However the offDiagMat looses some columns - and this is
9614:   reconstructed with MatSetValues()

9616:   Level: advanced

9618:   Concepts: subcommunicator
9619:   Concepts: submatrices

9621: .seealso: MatGetSubMatrices()
9622: @*/
9623: PetscErrorCode   MatGetMultiProcBlock(Mat mat, MPI_Comm subComm, MatReuse scall,Mat *subMat)
9624: {
9626:   PetscMPIInt    commsize,subCommSize;

9629:   MPI_Comm_size(PetscObjectComm((PetscObject)mat),&commsize);
9630:   MPI_Comm_size(subComm,&subCommSize);
9631:   if (subCommSize > commsize) SETERRQ2(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_OUTOFRANGE,"CommSize %D < SubCommZize %D",commsize,subCommSize);

9633:   PetscLogEventBegin(MAT_GetMultiProcBlock,mat,0,0,0);
9634:   (*mat->ops->getmultiprocblock)(mat,subComm,scall,subMat);
9635:   PetscLogEventEnd(MAT_GetMultiProcBlock,mat,0,0,0);
9636:   return(0);
9637: }

9641: /*@
9642:    MatGetLocalSubMatrix - Gets a reference to a submatrix specified in local numbering

9644:    Not Collective

9646:    Input Arguments:
9647:    mat - matrix to extract local submatrix from
9648:    isrow - local row indices for submatrix
9649:    iscol - local column indices for submatrix

9651:    Output Arguments:
9652:    submat - the submatrix

9654:    Level: intermediate

9656:    Notes:
9657:    The submat should be returned with MatRestoreLocalSubMatrix().

9659:    Depending on the format of mat, the returned submat may not implement MatMult().  Its communicator may be
9660:    the same as mat, it may be PETSC_COMM_SELF, or some other subcomm of mat's.

9662:    The submat always implements MatSetValuesLocal().  If isrow and iscol have the same block size, then
9663:    MatSetValuesBlockedLocal() will also be implemented.

9665: .seealso: MatRestoreLocalSubMatrix(), MatCreateLocalRef()
9666: @*/
9667: PetscErrorCode  MatGetLocalSubMatrix(Mat mat,IS isrow,IS iscol,Mat *submat)
9668: {


9678:   if (mat->ops->getlocalsubmatrix) {
9679:     (*mat->ops->getlocalsubmatrix)(mat,isrow,iscol,submat);
9680:   } else {
9681:     MatCreateLocalRef(mat,isrow,iscol,submat);
9682:   }
9683:   return(0);
9684: }

9688: /*@
9689:    MatRestoreLocalSubMatrix - Restores a reference to a submatrix specified in local numbering

9691:    Not Collective

9693:    Input Arguments:
9694:    mat - matrix to extract local submatrix from
9695:    isrow - local row indices for submatrix
9696:    iscol - local column indices for submatrix
9697:    submat - the submatrix

9699:    Level: intermediate

9701: .seealso: MatGetLocalSubMatrix()
9702: @*/
9703: PetscErrorCode  MatRestoreLocalSubMatrix(Mat mat,IS isrow,IS iscol,Mat *submat)
9704: {

9713:   if (*submat) {
9715:   }

9717:   if (mat->ops->restorelocalsubmatrix) {
9718:     (*mat->ops->restorelocalsubmatrix)(mat,isrow,iscol,submat);
9719:   } else {
9720:     MatDestroy(submat);
9721:   }
9722:   *submat = NULL;
9723:   return(0);
9724: }

9726: /* --------------------------------------------------------*/
9729: /*@
9730:    MatFindZeroDiagonals - Finds all the rows of a matrix that have zero or no entry in the matrix

9732:    Collective on Mat

9734:    Input Parameter:
9735: .  mat - the matrix

9737:    Output Parameter:
9738: .  is - if any rows have zero diagonals this contains the list of them

9740:    Level: developer

9742:    Concepts: matrix-vector product

9744: .seealso: MatMultTranspose(), MatMultAdd(), MatMultTransposeAdd()
9745: @*/
9746: PetscErrorCode  MatFindZeroDiagonals(Mat mat,IS *is)
9747: {

9753:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9754:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");

9756:   if (!mat->ops->findzerodiagonals) {
9757:     Vec                diag;
9758:     const PetscScalar *a;
9759:     PetscInt          *rows;
9760:     PetscInt           rStart, rEnd, r, nrow = 0;

9762:     MatCreateVecs(mat, &diag, NULL);
9763:     MatGetDiagonal(mat, diag);
9764:     MatGetOwnershipRange(mat, &rStart, &rEnd);
9765:     VecGetArrayRead(diag, &a);
9766:     for (r = 0; r < rEnd-rStart; ++r) if (a[r] == 0.0) ++nrow;
9767:     PetscMalloc1(nrow, &rows);
9768:     nrow = 0;
9769:     for (r = 0; r < rEnd-rStart; ++r) if (a[r] == 0.0) rows[nrow++] = r+rStart;
9770:     VecRestoreArrayRead(diag, &a);
9771:     VecDestroy(&diag);
9772:     ISCreateGeneral(PetscObjectComm((PetscObject) mat), nrow, rows, PETSC_OWN_POINTER, is);
9773:   } else {
9774:     (*mat->ops->findzerodiagonals)(mat, is);
9775:   }
9776:   return(0);
9777: }

9781: /*@
9782:    MatFindOffBlockDiagonalEntries - Finds all the rows of a matrix that have entries outside of the main diagonal block (defined by the matrix block size)

9784:    Collective on Mat

9786:    Input Parameter:
9787: .  mat - the matrix

9789:    Output Parameter:
9790: .  is - contains the list of rows with off block diagonal entries

9792:    Level: developer

9794:    Concepts: matrix-vector product

9796: .seealso: MatMultTranspose(), MatMultAdd(), MatMultTransposeAdd()
9797: @*/
9798: PetscErrorCode  MatFindOffBlockDiagonalEntries(Mat mat,IS *is)
9799: {

9805:   if (!mat->assembled) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9806:   if (mat->factortype) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");

9808:   if (!mat->ops->findoffblockdiagonalentries) SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"This matrix type does not have a find off block diagonal entries defined");
9809:   (*mat->ops->findoffblockdiagonalentries)(mat,is);
9810:   return(0);
9811: }

9815: /*@C
9816:   MatInvertBlockDiagonal - Inverts the block diagonal entries.

9818:   Collective on Mat

9820:   Input Parameters:
9821: . mat - the matrix

9823:   Output Parameters:
9824: . values - the block inverses in column major order (FORTRAN-like)

9826:    Note:
9827:    This routine is not available from Fortran.

9829:   Level: advanced
9830: @*/
9831: PetscErrorCode MatInvertBlockDiagonal(Mat mat,const PetscScalar **values)
9832: {

9837:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
9838:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
9839:   if (!mat->ops->invertblockdiagonal) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Not supported");
9840:   (*mat->ops->invertblockdiagonal)(mat,values);
9841:   return(0);
9842: }

9846: /*@C
9847:     MatTransposeColoringDestroy - Destroys a coloring context for matrix product C=A*B^T that was created
9848:     via MatTransposeColoringCreate().

9850:     Collective on MatTransposeColoring

9852:     Input Parameter:
9853: .   c - coloring context

9855:     Level: intermediate

9857: .seealso: MatTransposeColoringCreate()
9858: @*/
9859: PetscErrorCode  MatTransposeColoringDestroy(MatTransposeColoring *c)
9860: {
9861:   PetscErrorCode       ierr;
9862:   MatTransposeColoring matcolor=*c;

9865:   if (!matcolor) return(0);
9866:   if (--((PetscObject)matcolor)->refct > 0) {matcolor = 0; return(0);}

9868:   PetscFree3(matcolor->ncolumns,matcolor->nrows,matcolor->colorforrow);
9869:   PetscFree(matcolor->rows);
9870:   PetscFree(matcolor->den2sp);
9871:   PetscFree(matcolor->colorforcol);
9872:   PetscFree(matcolor->columns);
9873:   if (matcolor->brows>0) {
9874:     PetscFree(matcolor->lstart);
9875:   }
9876:   PetscHeaderDestroy(c);
9877:   return(0);
9878: }

9882: /*@C
9883:     MatTransColoringApplySpToDen - Given a symbolic matrix product C=A*B^T for which
9884:     a MatTransposeColoring context has been created, computes a dense B^T by Apply
9885:     MatTransposeColoring to sparse B.

9887:     Collective on MatTransposeColoring

9889:     Input Parameters:
9890: +   B - sparse matrix B
9891: .   Btdense - symbolic dense matrix B^T
9892: -   coloring - coloring context created with MatTransposeColoringCreate()

9894:     Output Parameter:
9895: .   Btdense - dense matrix B^T

9897:     Options Database Keys:
9898: +    -mat_transpose_coloring_view - Activates basic viewing or coloring
9899: .    -mat_transpose_coloring_view_draw - Activates drawing of coloring
9900: -    -mat_transpose_coloring_view_info - Activates viewing of coloring info

9902:     Level: intermediate

9904: .seealso: MatTransposeColoringCreate(), MatTransposeColoringDestroy()

9906: .keywords: coloring
9907: @*/
9908: PetscErrorCode MatTransColoringApplySpToDen(MatTransposeColoring coloring,Mat B,Mat Btdense)
9909: {


9917:   if (!B->ops->transcoloringapplysptoden) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Not supported for this matrix type %s",((PetscObject)B)->type_name);
9918:   (B->ops->transcoloringapplysptoden)(coloring,B,Btdense);
9919:   return(0);
9920: }

9924: /*@C
9925:     MatTransColoringApplyDenToSp - Given a symbolic matrix product Csp=A*B^T for which
9926:     a MatTransposeColoring context has been created and a dense matrix Cden=A*Btdense
9927:     in which Btdens is obtained from MatTransColoringApplySpToDen(), recover sparse matrix
9928:     Csp from Cden.

9930:     Collective on MatTransposeColoring

9932:     Input Parameters:
9933: +   coloring - coloring context created with MatTransposeColoringCreate()
9934: -   Cden - matrix product of a sparse matrix and a dense matrix Btdense

9936:     Output Parameter:
9937: .   Csp - sparse matrix

9939:     Options Database Keys:
9940: +    -mat_multtranspose_coloring_view - Activates basic viewing or coloring
9941: .    -mat_multtranspose_coloring_view_draw - Activates drawing of coloring
9942: -    -mat_multtranspose_coloring_view_info - Activates viewing of coloring info

9944:     Level: intermediate

9946: .seealso: MatTransposeColoringCreate(), MatTransposeColoringDestroy(), MatTransColoringApplySpToDen()

9948: .keywords: coloring
9949: @*/
9950: PetscErrorCode MatTransColoringApplyDenToSp(MatTransposeColoring matcoloring,Mat Cden,Mat Csp)
9951: {


9959:   if (!Csp->ops->transcoloringapplydentosp) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Not supported for this matrix type %s",((PetscObject)Csp)->type_name);
9960:   (Csp->ops->transcoloringapplydentosp)(matcoloring,Cden,Csp);
9961:   return(0);
9962: }

9966: /*@C
9967:    MatTransposeColoringCreate - Creates a matrix coloring context for matrix product C=A*B^T.

9969:    Collective on Mat

9971:    Input Parameters:
9972: +  mat - the matrix product C
9973: -  iscoloring - the coloring of the matrix; usually obtained with MatColoringCreate() or DMCreateColoring()

9975:     Output Parameter:
9976: .   color - the new coloring context

9978:     Level: intermediate

9980: .seealso: MatTransposeColoringDestroy(), MatTransposeColoringSetFromOptions(), MatTransColoringApplySpToDen(),
9981:            MatTransColoringApplyDenToSp(), MatTransposeColoringView(),
9982: @*/
9983: PetscErrorCode  MatTransposeColoringCreate(Mat mat,ISColoring iscoloring,MatTransposeColoring *color)
9984: {
9985:   MatTransposeColoring c;
9986:   MPI_Comm             comm;
9987:   PetscErrorCode       ierr;

9990:   PetscLogEventBegin(MAT_TransposeColoringCreate,mat,0,0,0);
9991:   PetscObjectGetComm((PetscObject)mat,&comm);
9992:   PetscHeaderCreate(c,MAT_TRANSPOSECOLORING_CLASSID,"MatTransposeColoring","Matrix product C=A*B^T via coloring","Mat",comm,MatTransposeColoringDestroy,NULL);

9994:   c->ctype = iscoloring->ctype;
9995:   if (mat->ops->transposecoloringcreate) {
9996:     (*mat->ops->transposecoloringcreate)(mat,iscoloring,c);
9997:   } else SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"Code not yet written for this matrix type");

9999:   *color = c;
10000:   PetscLogEventEnd(MAT_TransposeColoringCreate,mat,0,0,0);
10001:   return(0);
10002: }

10006: /*@
10007:       MatGetNonzeroState - Returns a 64 bit integer representing the current state of nonzeros in the matrix. If the
10008:         matrix has had no new nonzero locations added to the matrix since the previous call then the value will be the
10009:         same, otherwise it will be larger

10011:      Not Collective

10013:   Input Parameter:
10014: .    A  - the matrix

10016:   Output Parameter:
10017: .    state - the current state

10019:   Notes: You can only compare states from two different calls to the SAME matrix, you cannot compare calls between
10020:          different matrices

10022:   Level: intermediate

10024: @*/
10025: PetscErrorCode MatGetNonzeroState(Mat mat,PetscObjectState *state)
10026: {
10029:   *state = mat->nonzerostate;
10030:   return(0);
10031: }

10035: /*@
10036:       MatCreateMPIMatConcatenateSeqMat - Creates a single large PETSc matrix by concatenating sequential
10037:                  matrices from each processor

10039:     Collective on MPI_Comm

10041:    Input Parameters:
10042: +    comm - the communicators the parallel matrix will live on
10043: .    seqmat - the input sequential matrices
10044: .    n - number of local columns (or PETSC_DECIDE)
10045: -    reuse - either MAT_INITIAL_MATRIX or MAT_REUSE_MATRIX

10047:    Output Parameter:
10048: .    mpimat - the parallel matrix generated

10050:     Level: advanced

10052:    Notes: The number of columns of the matrix in EACH processor MUST be the same.

10054: @*/
10055: PetscErrorCode MatCreateMPIMatConcatenateSeqMat(MPI_Comm comm,Mat seqmat,PetscInt n,MatReuse reuse,Mat *mpimat)
10056: {
10058:   PetscMPIInt    size;

10061:   MPI_Comm_size(comm,&size);
10062:   if (size == 1) {
10063:     if (reuse == MAT_INITIAL_MATRIX) {
10064:       MatDuplicate(seqmat,MAT_COPY_VALUES,mpimat);
10065:     } else {
10066:       MatCopy(seqmat,*mpimat,SAME_NONZERO_PATTERN);
10067:     }
10068:     return(0);
10069:   }

10071:   if (!seqmat->ops->creatempimatconcatenateseqmat) SETERRQ1(PetscObjectComm((PetscObject)seqmat),PETSC_ERR_SUP,"Mat type %s",((PetscObject)seqmat)->type_name);
10072:   PetscLogEventBegin(MAT_Merge,seqmat,0,0,0);
10073:   (*seqmat->ops->creatempimatconcatenateseqmat)(comm,seqmat,n,reuse,mpimat);
10074:   PetscLogEventEnd(MAT_Merge,seqmat,0,0,0);
10075:   return(0);
10076: }

10080: /*@
10081:      MatSubdomainsCreateCoalesce - Creates index subdomains by coalescing adjacent
10082:                  ranks' ownership ranges.

10084:     Collective on A

10086:    Input Parameters:
10087: +    A   - the matrix to create subdomains from
10088: -    N   - requested number of subdomains


10091:    Output Parameters:
10092: +    n   - number of subdomains resulting on this rank
10093: -    iss - IS list with indices of subdomains on this rank

10095:     Level: advanced

10097:     Notes: number of subdomains must be smaller than the communicator size
10098: @*/
10099: PetscErrorCode  MatSubdomainsCreateCoalesce(Mat A,PetscInt N,PetscInt *n,IS *iss[])
10100: {
10101:   MPI_Comm        comm,subcomm;
10102:   PetscMPIInt     size,rank,color,subsize,subrank;
10103:   PetscInt        rstart,rend,k;
10104:   PetscErrorCode  ierr;

10107:   PetscObjectGetComm((PetscObject)A,&comm);
10108:   MPI_Comm_size(comm,&size);
10109:   MPI_Comm_rank(comm,&rank);
10110:   if (N < 1 || N >= (PetscInt)size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"number of subdomains must be > 0 and < %D, got N = %D",size,N);
10111:   *n = 1;
10112:   k = ((PetscInt)size)/N + ((PetscInt)size%N>0); /* There are up to k ranks to a color */
10113:   color = rank/k;
10114:   MPI_Comm_split(comm,color,rank,&subcomm);
10115:   MPI_Comm_size(subcomm,&subsize);
10116:   MPI_Comm_size(subcomm,&subrank);
10117:   PetscMalloc1(1,iss);
10118:   MatGetOwnershipRange(A,&rstart,&rend);
10119:   ISCreateStride(subcomm,rend-rstart,rstart,1,*iss);
10120:   return(0);
10121: }