Actual source code: umfpack.c
petsc-3.6.1 2015-08-06
2: /*
3: Provides an interface to the UMFPACK sparse solver available through SuiteSparse version 4.2.1
5: When build with PETSC_USE_64BIT_INDICES this will use Suitesparse_long as the
6: integer type in UMFPACK, otherwise it will use int. This means
7: all integers in this file as simply declared as PetscInt. Also it means
8: that one cannot use 64BIT_INDICES on 32bit machines [as Suitesparse_long is 32bit only]
10: */
11: #include <../src/mat/impls/aij/seq/aij.h>
13: #if defined(PETSC_USE_64BIT_INDICES)
14: #if defined(PETSC_USE_COMPLEX)
15: #define umfpack_UMF_free_symbolic umfpack_zl_free_symbolic
16: #define umfpack_UMF_free_numeric umfpack_zl_free_numeric
17: /* the type casts are needed because PetscInt is long long while SuiteSparse_long is long and compilers warn even when they are identical */
18: #define umfpack_UMF_wsolve(a,b,c,d,e,f,g,h,i,j,k,l,m,n) umfpack_zl_wsolve(a,(SuiteSparse_long*)b,(SuiteSparse_long*)c,d,e,f,g,h,i,(SuiteSparse_long*)j,k,l,(SuiteSparse_long*)m,n)
19: #define umfpack_UMF_numeric(a,b,c,d,e,f,g,h) umfpack_zl_numeric((SuiteSparse_long*)a,(SuiteSparse_long*)b,c,d,e,f,g,h)
20: #define umfpack_UMF_report_numeric umfpack_zl_report_numeric
21: #define umfpack_UMF_report_control umfpack_zl_report_control
22: #define umfpack_UMF_report_status umfpack_zl_report_status
23: #define umfpack_UMF_report_info umfpack_zl_report_info
24: #define umfpack_UMF_report_symbolic umfpack_zl_report_symbolic
25: #define umfpack_UMF_qsymbolic(a,b,c,d,e,f,g,h,i,j) umfpack_zl_qsymbolic(a,b,(SuiteSparse_long*)c,(SuiteSparse_long*)d,e,f,(SuiteSparse_long*)g,h,i,j)
26: #define umfpack_UMF_symbolic(a,b,c,d,e,f,g,h,i) umfpack_zl_symbolic(a,b,(SuiteSparse_long*)c,(SuiteSparse_long*)d,e,f,g,h,i)
27: #define umfpack_UMF_defaults umfpack_zl_defaults
29: #else
30: #define umfpack_UMF_free_symbolic umfpack_dl_free_symbolic
31: #define umfpack_UMF_free_numeric umfpack_dl_free_numeric
32: #define umfpack_UMF_wsolve(a,b,c,d,e,f,g,h,i,j,k) umfpack_dl_wsolve(a,(SuiteSparse_long*)b,(SuiteSparse_long*)c,d,e,f,g,h,i,(SuiteSparse_long*)j,k)
33: #define umfpack_UMF_numeric(a,b,c,d,e,f,g) umfpack_dl_numeric((SuiteSparse_long*)a,(SuiteSparse_long*)b,c,d,e,f,g)
34: #define umfpack_UMF_report_numeric umfpack_dl_report_numeric
35: #define umfpack_UMF_report_control umfpack_dl_report_control
36: #define umfpack_UMF_report_status umfpack_dl_report_status
37: #define umfpack_UMF_report_info umfpack_dl_report_info
38: #define umfpack_UMF_report_symbolic umfpack_dl_report_symbolic
39: #define umfpack_UMF_qsymbolic(a,b,c,d,e,f,g,h,i) umfpack_dl_qsymbolic(a,b,(SuiteSparse_long*)c,(SuiteSparse_long*)d,e,(SuiteSparse_long*)f,g,h,i)
40: #define umfpack_UMF_symbolic(a,b,c,d,e,f,g,h) umfpack_dl_symbolic(a,b,(SuiteSparse_long*)c,(SuiteSparse_long*)d,e,f,g,h)
41: #define umfpack_UMF_defaults umfpack_dl_defaults
42: #endif
44: #else
45: #if defined(PETSC_USE_COMPLEX)
46: #define umfpack_UMF_free_symbolic umfpack_zi_free_symbolic
47: #define umfpack_UMF_free_numeric umfpack_zi_free_numeric
48: #define umfpack_UMF_wsolve umfpack_zi_wsolve
49: #define umfpack_UMF_numeric umfpack_zi_numeric
50: #define umfpack_UMF_report_numeric umfpack_zi_report_numeric
51: #define umfpack_UMF_report_control umfpack_zi_report_control
52: #define umfpack_UMF_report_status umfpack_zi_report_status
53: #define umfpack_UMF_report_info umfpack_zi_report_info
54: #define umfpack_UMF_report_symbolic umfpack_zi_report_symbolic
55: #define umfpack_UMF_qsymbolic umfpack_zi_qsymbolic
56: #define umfpack_UMF_symbolic umfpack_zi_symbolic
57: #define umfpack_UMF_defaults umfpack_zi_defaults
59: #else
60: #define umfpack_UMF_free_symbolic umfpack_di_free_symbolic
61: #define umfpack_UMF_free_numeric umfpack_di_free_numeric
62: #define umfpack_UMF_wsolve umfpack_di_wsolve
63: #define umfpack_UMF_numeric umfpack_di_numeric
64: #define umfpack_UMF_report_numeric umfpack_di_report_numeric
65: #define umfpack_UMF_report_control umfpack_di_report_control
66: #define umfpack_UMF_report_status umfpack_di_report_status
67: #define umfpack_UMF_report_info umfpack_di_report_info
68: #define umfpack_UMF_report_symbolic umfpack_di_report_symbolic
69: #define umfpack_UMF_qsymbolic umfpack_di_qsymbolic
70: #define umfpack_UMF_symbolic umfpack_di_symbolic
71: #define umfpack_UMF_defaults umfpack_di_defaults
72: #endif
73: #endif
75: EXTERN_C_BEGIN
76: #include <umfpack.h>
77: EXTERN_C_END
79: static const char *const UmfpackOrderingTypes[] = {"CHOLMOD","AMD","GIVEN","METIS","BEST","NONE","USER","UmfpackOrderingTypes","UMFPACK_ORDERING_",0};
81: typedef struct {
82: void *Symbolic, *Numeric;
83: double Info[UMFPACK_INFO], Control[UMFPACK_CONTROL],*W;
84: PetscInt *Wi,*perm_c;
85: Mat A; /* Matrix used for factorization */
86: MatStructure flg;
87: PetscBool PetscMatOrdering;
89: /* Flag to clean up UMFPACK objects during Destroy */
90: PetscBool CleanUpUMFPACK;
91: } Mat_UMFPACK;
95: static PetscErrorCode MatDestroy_UMFPACK(Mat A)
96: {
98: Mat_UMFPACK *lu=(Mat_UMFPACK*)A->spptr;
101: if (lu && lu->CleanUpUMFPACK) {
102: umfpack_UMF_free_symbolic(&lu->Symbolic);
103: umfpack_UMF_free_numeric(&lu->Numeric);
104: PetscFree(lu->Wi);
105: PetscFree(lu->W);
106: PetscFree(lu->perm_c);
107: }
108: MatDestroy(&lu->A);
109: PetscFree(A->spptr);
110: MatDestroy_SeqAIJ(A);
111: return(0);
112: }
116: static PetscErrorCode MatSolve_UMFPACK_Private(Mat A,Vec b,Vec x,int uflag)
117: {
118: Mat_UMFPACK *lu = (Mat_UMFPACK*)A->spptr;
119: Mat_SeqAIJ *a = (Mat_SeqAIJ*)lu->A->data;
120: PetscScalar *av = a->a,*xa;
121: const PetscScalar *ba;
122: PetscErrorCode ierr;
123: PetscInt *ai = a->i,*aj = a->j,status;
126: /* solve Ax = b by umfpack_*_wsolve */
127: /* ----------------------------------*/
129: if (!lu->Wi) { /* first time, allocate working space for wsolve */
130: PetscMalloc1(A->rmap->n,&lu->Wi);
131: PetscMalloc1(5*A->rmap->n,&lu->W);
132: }
134: VecGetArrayRead(b,&ba);
135: VecGetArray(x,&xa);
136: #if defined(PETSC_USE_COMPLEX)
137: status = umfpack_UMF_wsolve(uflag,ai,aj,(PetscReal*)av,NULL,(PetscReal*)xa,NULL,(PetscReal*)ba,NULL,lu->Numeric,lu->Control,lu->Info,lu->Wi,lu->W);
138: #else
139: status = umfpack_UMF_wsolve(uflag,ai,aj,av,xa,ba,lu->Numeric,lu->Control,lu->Info,lu->Wi,lu->W);
140: #endif
141: umfpack_UMF_report_info(lu->Control, lu->Info);
142: if (status < 0) {
143: umfpack_UMF_report_status(lu->Control, status);
144: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"umfpack_UMF_wsolve failed");
145: }
147: VecRestoreArrayRead(b,&ba);
148: VecRestoreArray(x,&xa);
149: return(0);
150: }
154: static PetscErrorCode MatSolve_UMFPACK(Mat A,Vec b,Vec x)
155: {
159: /* We gave UMFPACK the algebraic transpose (because it assumes column alignment) */
160: MatSolve_UMFPACK_Private(A,b,x,UMFPACK_Aat);
161: return(0);
162: }
166: static PetscErrorCode MatSolveTranspose_UMFPACK(Mat A,Vec b,Vec x)
167: {
171: /* We gave UMFPACK the algebraic transpose (because it assumes column alignment) */
172: MatSolve_UMFPACK_Private(A,b,x,UMFPACK_A);
173: return(0);
174: }
178: static PetscErrorCode MatLUFactorNumeric_UMFPACK(Mat F,Mat A,const MatFactorInfo *info)
179: {
180: Mat_UMFPACK *lu = (Mat_UMFPACK*)(F)->spptr;
181: Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
182: PetscInt *ai = a->i,*aj=a->j,status;
183: PetscScalar *av = a->a;
187: /* numeric factorization of A' */
188: /* ----------------------------*/
190: if (lu->flg == SAME_NONZERO_PATTERN && lu->Numeric) {
191: umfpack_UMF_free_numeric(&lu->Numeric);
192: }
193: #if defined(PETSC_USE_COMPLEX)
194: status = umfpack_UMF_numeric(ai,aj,(double*)av,NULL,lu->Symbolic,&lu->Numeric,lu->Control,lu->Info);
195: #else
196: status = umfpack_UMF_numeric(ai,aj,av,lu->Symbolic,&lu->Numeric,lu->Control,lu->Info);
197: #endif
198: if (status < 0) {
199: umfpack_UMF_report_status(lu->Control, status);
200: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"umfpack_UMF_numeric failed");
201: }
202: /* report numeric factorization of A' when Control[PRL] > 3 */
203: (void) umfpack_UMF_report_numeric(lu->Numeric, lu->Control);
205: PetscObjectReference((PetscObject)A);
206: MatDestroy(&lu->A);
208: lu->A = A;
209: lu->flg = SAME_NONZERO_PATTERN;
210: lu->CleanUpUMFPACK = PETSC_TRUE;
211: F->ops->solve = MatSolve_UMFPACK;
212: F->ops->solvetranspose = MatSolveTranspose_UMFPACK;
213: return(0);
214: }
216: /*
217: Note the r permutation is ignored
218: */
221: static PetscErrorCode MatLUFactorSymbolic_UMFPACK(Mat F,Mat A,IS r,IS c,const MatFactorInfo *info)
222: {
223: Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
224: Mat_UMFPACK *lu = (Mat_UMFPACK*)(F->spptr);
226: PetscInt i,*ai = a->i,*aj = a->j,m=A->rmap->n,n=A->cmap->n;
227: #if !defined(PETSC_USE_COMPLEX)
228: PetscScalar *av = a->a;
229: #endif
230: const PetscInt *ra;
231: PetscInt status;
234: if (lu->PetscMatOrdering) {
235: ISGetIndices(r,&ra);
236: PetscMalloc1(m,&lu->perm_c);
237: /* we cannot simply memcpy on 64 bit archs */
238: for (i = 0; i < m; i++) lu->perm_c[i] = ra[i];
239: ISRestoreIndices(r,&ra);
240: }
242: /* print the control parameters */
243: if (lu->Control[UMFPACK_PRL] > 1) umfpack_UMF_report_control(lu->Control);
245: /* symbolic factorization of A' */
246: /* ---------------------------------------------------------------------- */
247: if (lu->PetscMatOrdering) { /* use Petsc row ordering */
248: #if !defined(PETSC_USE_COMPLEX)
249: status = umfpack_UMF_qsymbolic(n,m,ai,aj,av,lu->perm_c,&lu->Symbolic,lu->Control,lu->Info);
250: #else
251: status = umfpack_UMF_qsymbolic(n,m,ai,aj,NULL,NULL,lu->perm_c,&lu->Symbolic,lu->Control,lu->Info);
252: #endif
253: } else { /* use Umfpack col ordering */
254: #if !defined(PETSC_USE_COMPLEX)
255: status = umfpack_UMF_symbolic(n,m,ai,aj,av,&lu->Symbolic,lu->Control,lu->Info);
256: #else
257: status = umfpack_UMF_symbolic(n,m,ai,aj,NULL,NULL,&lu->Symbolic,lu->Control,lu->Info);
258: #endif
259: }
260: if (status < 0) {
261: umfpack_UMF_report_info(lu->Control, lu->Info);
262: umfpack_UMF_report_status(lu->Control, status);
263: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"umfpack_UMF_symbolic failed");
264: }
265: /* report sumbolic factorization of A' when Control[PRL] > 3 */
266: (void) umfpack_UMF_report_symbolic(lu->Symbolic, lu->Control);
268: lu->flg = DIFFERENT_NONZERO_PATTERN;
269: lu->CleanUpUMFPACK = PETSC_TRUE;
270: (F)->ops->lufactornumeric = MatLUFactorNumeric_UMFPACK;
271: return(0);
272: }
276: static PetscErrorCode MatFactorInfo_UMFPACK(Mat A,PetscViewer viewer)
277: {
278: Mat_UMFPACK *lu= (Mat_UMFPACK*)A->spptr;
282: /* check if matrix is UMFPACK type */
283: if (A->ops->solve != MatSolve_UMFPACK) return(0);
285: PetscViewerASCIIPrintf(viewer,"UMFPACK run parameters:\n");
286: /* Control parameters used by reporting routiones */
287: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_PRL]: %g\n",lu->Control[UMFPACK_PRL]);
289: /* Control parameters used by symbolic factorization */
290: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_STRATEGY]: %g\n",lu->Control[UMFPACK_STRATEGY]);
291: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_DENSE_COL]: %g\n",lu->Control[UMFPACK_DENSE_COL]);
292: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_DENSE_ROW]: %g\n",lu->Control[UMFPACK_DENSE_ROW]);
293: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_AMD_DENSE]: %g\n",lu->Control[UMFPACK_AMD_DENSE]);
294: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_BLOCK_SIZE]: %g\n",lu->Control[UMFPACK_BLOCK_SIZE]);
295: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_FIXQ]: %g\n",lu->Control[UMFPACK_FIXQ]);
296: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_AGGRESSIVE]: %g\n",lu->Control[UMFPACK_AGGRESSIVE]);
298: /* Control parameters used by numeric factorization */
299: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_PIVOT_TOLERANCE]: %g\n",lu->Control[UMFPACK_PIVOT_TOLERANCE]);
300: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_SYM_PIVOT_TOLERANCE]: %g\n",lu->Control[UMFPACK_SYM_PIVOT_TOLERANCE]);
301: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_SCALE]: %g\n",lu->Control[UMFPACK_SCALE]);
302: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_ALLOC_INIT]: %g\n",lu->Control[UMFPACK_ALLOC_INIT]);
303: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_DROPTOL]: %g\n",lu->Control[UMFPACK_DROPTOL]);
305: /* Control parameters used by solve */
306: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_IRSTEP]: %g\n",lu->Control[UMFPACK_IRSTEP]);
308: /* mat ordering */
309: if (!lu->PetscMatOrdering) {
310: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_ORDERING]: %s (not using the PETSc ordering)\n",UmfpackOrderingTypes[(int)lu->Control[UMFPACK_ORDERING]]);
311: }
312: return(0);
313: }
317: static PetscErrorCode MatView_UMFPACK(Mat A,PetscViewer viewer)
318: {
319: PetscErrorCode ierr;
320: PetscBool iascii;
321: PetscViewerFormat format;
324: MatView_SeqAIJ(A,viewer);
326: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
327: if (iascii) {
328: PetscViewerGetFormat(viewer,&format);
329: if (format == PETSC_VIEWER_ASCII_INFO) {
330: MatFactorInfo_UMFPACK(A,viewer);
331: }
332: }
333: return(0);
334: }
338: PetscErrorCode MatFactorGetSolverPackage_seqaij_umfpack(Mat A,const MatSolverPackage *type)
339: {
341: *type = MATSOLVERUMFPACK;
342: return(0);
343: }
346: /*MC
347: MATSOLVERUMFPACK = "umfpack" - A matrix type providing direct solvers (LU) for sequential matrices
348: via the external package UMFPACK.
350: Use ./configure --download-suitesparse to install PETSc to use UMFPACK
352: Use -pc_type lu -pc_factor_mat_solver_package umfpack to us this direct solver
354: Consult UMFPACK documentation for more information about the Control parameters
355: which correspond to the options database keys below.
357: Options Database Keys:
358: + -mat_umfpack_ordering - CHOLMOD, AMD, GIVEN, METIS, BEST, NONE
359: . -mat_umfpack_prl - UMFPACK print level: Control[UMFPACK_PRL]
360: . -mat_umfpack_strategy <AUTO> - (choose one of) AUTO UNSYMMETRIC SYMMETRIC 2BY2
361: . -mat_umfpack_dense_col <alpha_c> - UMFPACK dense column threshold: Control[UMFPACK_DENSE_COL]
362: . -mat_umfpack_dense_row <0.2> - Control[UMFPACK_DENSE_ROW]
363: . -mat_umfpack_amd_dense <10> - Control[UMFPACK_AMD_DENSE]
364: . -mat_umfpack_block_size <bs> - UMFPACK block size for BLAS-Level 3 calls: Control[UMFPACK_BLOCK_SIZE]
365: . -mat_umfpack_2by2_tolerance <0.01> - Control[UMFPACK_2BY2_TOLERANCE]
366: . -mat_umfpack_fixq <0> - Control[UMFPACK_FIXQ]
367: . -mat_umfpack_aggressive <1> - Control[UMFPACK_AGGRESSIVE]
368: . -mat_umfpack_pivot_tolerance <delta> - UMFPACK partial pivot tolerance: Control[UMFPACK_PIVOT_TOLERANCE]
369: . -mat_umfpack_sym_pivot_tolerance <0.001> - Control[UMFPACK_SYM_PIVOT_TOLERANCE]
370: . -mat_umfpack_scale <NONE> - (choose one of) NONE SUM MAX
371: . -mat_umfpack_alloc_init <delta> - UMFPACK factorized matrix allocation modifier: Control[UMFPACK_ALLOC_INIT]
372: . -mat_umfpack_droptol <0> - Control[UMFPACK_DROPTOL]
373: - -mat_umfpack_irstep <maxit> - UMFPACK maximum number of iterative refinement steps: Control[UMFPACK_IRSTEP]
375: Level: beginner
377: Note: UMFPACK is part of SuiteSparse http://faculty.cse.tamu.edu/davis/suitesparse.html
379: .seealso: PCLU, MATSOLVERSUPERLU, MATSOLVERMUMPS, PCFactorSetMatSolverPackage(), MatSolverPackage
380: M*/
384: PETSC_EXTERN PetscErrorCode MatGetFactor_seqaij_umfpack(Mat A,MatFactorType ftype,Mat *F)
385: {
386: Mat B;
387: Mat_UMFPACK *lu;
389: PetscInt m=A->rmap->n,n=A->cmap->n,idx;
391: const char *strategy[]={"AUTO","UNSYMMETRIC","SYMMETRIC"};
392: const char *scale[] ={"NONE","SUM","MAX"};
393: PetscBool flg;
396: /* Create the factorization matrix F */
397: MatCreate(PetscObjectComm((PetscObject)A),&B);
398: MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,m,n);
399: MatSetType(B,((PetscObject)A)->type_name);
400: MatSeqAIJSetPreallocation(B,0,NULL);
401: PetscNewLog(B,&lu);
403: B->spptr = lu;
404: B->ops->lufactorsymbolic = MatLUFactorSymbolic_UMFPACK;
405: B->ops->destroy = MatDestroy_UMFPACK;
406: B->ops->view = MatView_UMFPACK;
407: B->ops->matsolve = NULL;
409: PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverPackage_C",MatFactorGetSolverPackage_seqaij_umfpack);
411: B->factortype = MAT_FACTOR_LU;
412: B->assembled = PETSC_TRUE; /* required by -ksp_view */
413: B->preallocated = PETSC_TRUE;
415: /* initializations */
416: /* ------------------------------------------------*/
417: /* get the default control parameters */
418: umfpack_UMF_defaults(lu->Control);
419: lu->perm_c = NULL; /* use defaul UMFPACK col permutation */
420: lu->Control[UMFPACK_IRSTEP] = 0; /* max num of iterative refinement steps to attempt */
422: PetscOptionsBegin(PetscObjectComm((PetscObject)A),((PetscObject)A)->prefix,"UMFPACK Options","Mat");
423: /* Control parameters used by reporting routiones */
424: PetscOptionsReal("-mat_umfpack_prl","Control[UMFPACK_PRL]","None",lu->Control[UMFPACK_PRL],&lu->Control[UMFPACK_PRL],NULL);
426: /* Control parameters for symbolic factorization */
427: PetscOptionsEList("-mat_umfpack_strategy","ordering and pivoting strategy","None",strategy,3,strategy[0],&idx,&flg);
428: if (flg) {
429: switch (idx) {
430: case 0: lu->Control[UMFPACK_STRATEGY] = UMFPACK_STRATEGY_AUTO; break;
431: case 1: lu->Control[UMFPACK_STRATEGY] = UMFPACK_STRATEGY_UNSYMMETRIC; break;
432: case 2: lu->Control[UMFPACK_STRATEGY] = UMFPACK_STRATEGY_SYMMETRIC; break;
433: }
434: }
435: PetscOptionsEList("-mat_umfpack_ordering","Internal ordering method","None",UmfpackOrderingTypes,sizeof(UmfpackOrderingTypes)/sizeof(UmfpackOrderingTypes[0]),UmfpackOrderingTypes[(int)lu->Control[UMFPACK_ORDERING]],&idx,&flg);
436: if (flg) lu->Control[UMFPACK_ORDERING] = (int)idx;
437: PetscOptionsReal("-mat_umfpack_dense_col","Control[UMFPACK_DENSE_COL]","None",lu->Control[UMFPACK_DENSE_COL],&lu->Control[UMFPACK_DENSE_COL],NULL);
438: PetscOptionsReal("-mat_umfpack_dense_row","Control[UMFPACK_DENSE_ROW]","None",lu->Control[UMFPACK_DENSE_ROW],&lu->Control[UMFPACK_DENSE_ROW],NULL);
439: PetscOptionsReal("-mat_umfpack_amd_dense","Control[UMFPACK_AMD_DENSE]","None",lu->Control[UMFPACK_AMD_DENSE],&lu->Control[UMFPACK_AMD_DENSE],NULL);
440: PetscOptionsReal("-mat_umfpack_block_size","Control[UMFPACK_BLOCK_SIZE]","None",lu->Control[UMFPACK_BLOCK_SIZE],&lu->Control[UMFPACK_BLOCK_SIZE],NULL);
441: PetscOptionsReal("-mat_umfpack_fixq","Control[UMFPACK_FIXQ]","None",lu->Control[UMFPACK_FIXQ],&lu->Control[UMFPACK_FIXQ],NULL);
442: PetscOptionsReal("-mat_umfpack_aggressive","Control[UMFPACK_AGGRESSIVE]","None",lu->Control[UMFPACK_AGGRESSIVE],&lu->Control[UMFPACK_AGGRESSIVE],NULL);
444: /* Control parameters used by numeric factorization */
445: PetscOptionsReal("-mat_umfpack_pivot_tolerance","Control[UMFPACK_PIVOT_TOLERANCE]","None",lu->Control[UMFPACK_PIVOT_TOLERANCE],&lu->Control[UMFPACK_PIVOT_TOLERANCE],NULL);
446: PetscOptionsReal("-mat_umfpack_sym_pivot_tolerance","Control[UMFPACK_SYM_PIVOT_TOLERANCE]","None",lu->Control[UMFPACK_SYM_PIVOT_TOLERANCE],&lu->Control[UMFPACK_SYM_PIVOT_TOLERANCE],NULL);
447: PetscOptionsEList("-mat_umfpack_scale","Control[UMFPACK_SCALE]","None",scale,3,scale[0],&idx,&flg);
448: if (flg) {
449: switch (idx) {
450: case 0: lu->Control[UMFPACK_SCALE] = UMFPACK_SCALE_NONE; break;
451: case 1: lu->Control[UMFPACK_SCALE] = UMFPACK_SCALE_SUM; break;
452: case 2: lu->Control[UMFPACK_SCALE] = UMFPACK_SCALE_MAX; break;
453: }
454: }
455: PetscOptionsReal("-mat_umfpack_alloc_init","Control[UMFPACK_ALLOC_INIT]","None",lu->Control[UMFPACK_ALLOC_INIT],&lu->Control[UMFPACK_ALLOC_INIT],NULL);
456: PetscOptionsReal("-mat_umfpack_front_alloc_init","Control[UMFPACK_FRONT_ALLOC_INIT]","None",lu->Control[UMFPACK_FRONT_ALLOC_INIT],&lu->Control[UMFPACK_ALLOC_INIT],NULL);
457: PetscOptionsReal("-mat_umfpack_droptol","Control[UMFPACK_DROPTOL]","None",lu->Control[UMFPACK_DROPTOL],&lu->Control[UMFPACK_DROPTOL],NULL);
459: /* Control parameters used by solve */
460: PetscOptionsReal("-mat_umfpack_irstep","Control[UMFPACK_IRSTEP]","None",lu->Control[UMFPACK_IRSTEP],&lu->Control[UMFPACK_IRSTEP],NULL);
462: /* use Petsc mat ordering (note: size is for the transpose, and PETSc r = Umfpack perm_c) */
463: PetscOptionsHasName(NULL,"-pc_factor_mat_ordering_type",&lu->PetscMatOrdering);
464: PetscOptionsEnd();
465: *F = B;
466: return(0);
467: }
469: PETSC_EXTERN PetscErrorCode MatGetFactor_seqaij_cholmod(Mat,MatFactorType,Mat*);
470: PETSC_EXTERN PetscErrorCode MatGetFactor_seqsbaij_cholmod(Mat,MatFactorType,Mat*);
471: PETSC_EXTERN PetscErrorCode MatGetFactor_seqaij_klu(Mat,MatFactorType,Mat*);
475: PETSC_EXTERN PetscErrorCode MatSolverPackageRegister_SuiteSparse(void)
476: {
480: MatSolverPackageRegister(MATSOLVERUMFPACK,MATSEQAIJ, MAT_FACTOR_LU,MatGetFactor_seqaij_umfpack);
481: MatSolverPackageRegister(MATSOLVERCHOLMOD,MATSEQAIJ, MAT_FACTOR_CHOLESKY,MatGetFactor_seqaij_cholmod);
482: MatSolverPackageRegister(MATSOLVERCHOLMOD,MATSEQSBAIJ, MAT_FACTOR_CHOLESKY,MatGetFactor_seqsbaij_cholmod);
483: MatSolverPackageRegister(MATSOLVERKLU,MATSEQAIJ, MAT_FACTOR_LU,MatGetFactor_seqaij_klu);
484: return(0);
485: }