Actual source code: lusol.c
petsc-3.6.1 2015-08-06
2: /*
3: Provides an interface to the LUSOL package of ....
5: */
6: #include <../src/mat/impls/aij/seq/aij.h>
8: #if defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
9: #define LU1FAC lu1fac_
10: #define LU6SOL lu6sol_
11: #define M1PAGE m1page_
12: #define M5SETX m5setx_
13: #define M6RDEL m6rdel_
14: #elif !defined(PETSC_HAVE_FORTRAN_CAPS)
15: #define LU1FAC lu1fac
16: #define LU6SOL lu6sol
17: #define M1PAGE m1page
18: #define M5SETX m5setx
19: #define M6RDEL m6rdel
20: #endif
22: /*
23: Dummy symbols that the MINOS files mi25bfac.f and mi15blas.f may require
24: */
25: PETSC_EXTERN void PETSC_STDCALL M1PAGE()
26: {
27: ;
28: }
29: PETSC_EXTERN void PETSC_STDCALL M5SETX()
30: {
31: ;
32: }
34: PETSC_EXTERN void PETSC_STDCALL M6RDEL()
35: {
36: ;
37: }
39: PETSC_EXTERN void PETSC_STDCALL LU1FAC(int *m, int *n, int *nnz, int *size, int *luparm,
40: double *parmlu, double *data, int *indc, int *indr,
41: int *rowperm, int *colperm, int *collen, int *rowlen,
42: int *colstart, int *rowstart, int *rploc, int *cploc,
43: int *rpinv, int *cpinv, double *w, int *inform);
45: PETSC_EXTERN void PETSC_STDCALL LU6SOL(int *mode, int *m, int *n, double *rhs, double *x,
46: int *size, int *luparm, double *parmlu, double *data,
47: int *indc, int *indr, int *rowperm, int *colperm,
48: int *collen, int *rowlen, int *colstart, int *rowstart,
49: int *inform);
51: extern PetscErrorCode MatDuplicate_LUSOL(Mat,MatDuplicateOption,Mat*);
53: typedef struct {
54: double *data;
55: int *indc;
56: int *indr;
58: int *ip;
59: int *iq;
60: int *lenc;
61: int *lenr;
62: int *locc;
63: int *locr;
64: int *iploc;
65: int *iqloc;
66: int *ipinv;
67: int *iqinv;
68: double *mnsw;
69: double *mnsv;
71: double elbowroom;
72: double luroom; /* Extra space allocated when factor fails */
73: double parmlu[30]; /* Input/output to LUSOL */
75: int n; /* Number of rows/columns in matrix */
76: int nz; /* Number of nonzeros */
77: int nnz; /* Number of nonzeros allocated for factors */
78: int luparm[30]; /* Input/output to LUSOL */
80: PetscBool CleanUpLUSOL;
82: } Mat_LUSOL;
84: /* LUSOL input/Output Parameters (Description uses C-style indexes
85: *
86: * Input parameters Typical value
87: *
88: * luparm(0) = nout File number for printed messages. 6
89: * luparm(1) = lprint Print level. 0
90: * < 0 suppresses output.
91: * = 0 gives error messages.
92: * = 1 gives debug output from some of the
93: * other routines in LUSOL.
94: * >= 2 gives the pivot row and column and the
95: * no. of rows and columns involved at
96: * each elimination step in lu1fac.
97: * luparm(2) = maxcol lu1fac: maximum number of columns 5
98: * searched allowed in a Markowitz-type
99: * search for the next pivot element.
100: * For some of the factorization, the
101: * number of rows searched is
102: * maxrow = maxcol - 1.
103: *
104: *
105: * Output parameters
106: *
107: * luparm(9) = inform Return code from last call to any LU routine.
108: * luparm(10) = nsing No. of singularities marked in the
109: * output array w(*).
110: * luparm(11) = jsing Column index of last singularity.
111: * luparm(12) = minlen Minimum recommended value for lena.
112: * luparm(13) = maxlen ?
113: * luparm(14) = nupdat No. of updates performed by the lu8 routines.
114: * luparm(15) = nrank No. of nonempty rows of U.
115: * luparm(16) = ndens1 No. of columns remaining when the density of
116: * the matrix being factorized reached dens1.
117: * luparm(17) = ndens2 No. of columns remaining when the density of
118: * the matrix being factorized reached dens2.
119: * luparm(18) = jumin The column index associated with dumin.
120: * luparm(19) = numl0 No. of columns in initial L.
121: * luparm(20) = lenl0 Size of initial L (no. of nonzeros).
122: * luparm(21) = lenu0 Size of initial U.
123: * luparm(22) = lenl Size of current L.
124: * luparm(23) = lenu Size of current U.
125: * luparm(24) = lrow Length of row file.
126: * luparm(25) = ncp No. of compressions of LU data structures.
127: * luparm(26) = mersum lu1fac: sum of Markowitz merit counts.
128: * luparm(27) = nutri lu1fac: triangular rows in U.
129: * luparm(28) = nltri lu1fac: triangular rows in L.
130: * luparm(29) =
131: *
132: *
133: * Input parameters Typical value
134: *
135: * parmlu(0) = elmax1 Max multiplier allowed in L 10.0
136: * during factor.
137: * parmlu(1) = elmax2 Max multiplier allowed in L 10.0
138: * during updates.
139: * parmlu(2) = small Absolute tolerance for eps**0.8
140: * treating reals as zero. IBM double: 3.0d-13
141: * parmlu(3) = utol1 Absolute tol for flagging eps**0.66667
142: * small diagonals of U. IBM double: 3.7d-11
143: * parmlu(4) = utol2 Relative tol for flagging eps**0.66667
144: * small diagonals of U. IBM double: 3.7d-11
145: * parmlu(5) = uspace Factor limiting waste space in U. 3.0
146: * In lu1fac, the row or column lists
147: * are compressed if their length
148: * exceeds uspace times the length of
149: * either file after the last compression.
150: * parmlu(6) = dens1 The density at which the Markowitz 0.3
151: * strategy should search maxcol columns
152: * and no rows.
153: * parmlu(7) = dens2 the density at which the Markowitz 0.6
154: * strategy should search only 1 column
155: * or (preferably) use a dense LU for
156: * all the remaining rows and columns.
157: *
158: *
159: * Output parameters
160: *
161: * parmlu(9) = amax Maximum element in A.
162: * parmlu(10) = elmax Maximum multiplier in current L.
163: * parmlu(11) = umax Maximum element in current U.
164: * parmlu(12) = dumax Maximum diagonal in U.
165: * parmlu(13) = dumin Minimum diagonal in U.
166: * parmlu(14) =
167: * parmlu(15) =
168: * parmlu(16) =
169: * parmlu(17) =
170: * parmlu(18) =
171: * parmlu(19) = resid lu6sol: residual after solve with U or U'.
172: * ...
173: * parmlu(29) =
174: */
176: #define Factorization_Tolerance 1e-1
177: #define Factorization_Pivot_Tolerance pow(2.2204460492503131E-16, 2.0 / 3.0)
178: #define Factorization_Small_Tolerance 1e-15 /* pow(DBL_EPSILON, 0.8) */
182: PetscErrorCode MatDestroy_LUSOL(Mat A)
183: {
185: Mat_LUSOL *lusol=(Mat_LUSOL*)A->spptr;
188: if (lusol && lusol->CleanUpLUSOL) {
189: PetscFree(lusol->ip);
190: PetscFree(lusol->iq);
191: PetscFree(lusol->lenc);
192: PetscFree(lusol->lenr);
193: PetscFree(lusol->locc);
194: PetscFree(lusol->locr);
195: PetscFree(lusol->iploc);
196: PetscFree(lusol->iqloc);
197: PetscFree(lusol->ipinv);
198: PetscFree(lusol->iqinv);
199: PetscFree(lusol->mnsw);
200: PetscFree(lusol->mnsv);
201: PetscFree3(lusol->data,lusol->indc,lusol->indr);
202: }
203: PetscFree(A->spptr);
204: MatDestroy_SeqAIJ(A);
205: return(0);
206: }
210: PetscErrorCode MatSolve_LUSOL(Mat A,Vec b,Vec x)
211: {
212: Mat_LUSOL *lusol=(Mat_LUSOL*)A->spptr;
213: double *xx;
214: const double *bb;
215: int mode=5;
217: int i,m,n,nnz,status;
220: VecGetArray(x, &xx);
221: VecGetArrayRead(b, &bb);
223: m = n = lusol->n;
224: nnz = lusol->nnz;
226: for (i = 0; i < m; i++) lusol->mnsv[i] = bb[i];
228: LU6SOL(&mode, &m, &n, lusol->mnsv, xx, &nnz,
229: lusol->luparm, lusol->parmlu, lusol->data,
230: lusol->indc, lusol->indr, lusol->ip, lusol->iq,
231: lusol->lenc, lusol->lenr, lusol->locc, lusol->locr, &status);
233: if (status) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"solve failed, error code %d",status);
235: VecRestoreArray(x, &xx);
236: VecRestoreArrayRead(b, &bb);
237: return(0);
238: }
242: PetscErrorCode MatLUFactorNumeric_LUSOL(Mat F,Mat A,const MatFactorInfo *info)
243: {
244: Mat_SeqAIJ *a;
245: Mat_LUSOL *lusol = (Mat_LUSOL*)F->spptr;
247: int m, n, nz, nnz, status;
248: int i, rs, re;
249: int factorizations;
252: MatGetSize(A,&m,&n);
253: a = (Mat_SeqAIJ*)A->data;
255: if (m != lusol->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"factorization struct inconsistent");
257: factorizations = 0;
258: do {
259: /*******************************************************************/
260: /* Check the workspace allocation. */
261: /*******************************************************************/
263: nz = a->nz;
264: nnz = PetscMax(lusol->nnz, (int)(lusol->elbowroom*nz));
265: nnz = PetscMax(nnz, 5*n);
267: if (nnz < lusol->luparm[12]) {
268: nnz = (int)(lusol->luroom * lusol->luparm[12]);
269: } else if ((factorizations > 0) && (lusol->luroom < 6)) {
270: lusol->luroom += 0.1;
271: }
273: nnz = PetscMax(nnz, (int)(lusol->luroom*(lusol->luparm[22] + lusol->luparm[23])));
275: if (nnz > lusol->nnz) {
276: PetscFree3(lusol->data,lusol->indc,lusol->indr);
277: PetscMalloc3(nnz,&lusol->data,nnz,&lusol->indc,nnz,&lusol->indr);
278: lusol->nnz = nnz;
279: }
281: /*******************************************************************/
282: /* Fill in the data for the problem. (1-based Fortran style) */
283: /*******************************************************************/
285: nz = 0;
286: for (i = 0; i < n; i++) {
287: rs = a->i[i];
288: re = a->i[i+1];
290: while (rs < re) {
291: if (a->a[rs] != 0.0) {
292: lusol->indc[nz] = i + 1;
293: lusol->indr[nz] = a->j[rs] + 1;
294: lusol->data[nz] = a->a[rs];
295: nz++;
296: }
297: rs++;
298: }
299: }
301: /*******************************************************************/
302: /* Do the factorization. */
303: /*******************************************************************/
305: LU1FAC(&m, &n, &nz, &nnz,
306: lusol->luparm, lusol->parmlu, lusol->data,
307: lusol->indc, lusol->indr, lusol->ip, lusol->iq,
308: lusol->lenc, lusol->lenr, lusol->locc, lusol->locr,
309: lusol->iploc, lusol->iqloc, lusol->ipinv,
310: lusol->iqinv, lusol->mnsw, &status);
312: switch (status) {
313: case 0: /* factored */
314: break;
316: case 7: /* insufficient memory */
317: break;
319: case 1:
320: case -1: /* singular */
321: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"Singular matrix");
323: case 3:
324: case 4: /* error conditions */
325: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"matrix error");
327: default: /* unknown condition */
328: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"matrix unknown return code");
329: }
331: factorizations++;
332: } while (status == 7);
333: F->ops->solve = MatSolve_LUSOL;
334: F->assembled = PETSC_TRUE;
335: F->preallocated = PETSC_TRUE;
336: return(0);
337: }
341: PetscErrorCode MatLUFactorSymbolic_LUSOL(Mat F,Mat A, IS r, IS c,const MatFactorInfo *info)
342: {
343: /************************************************************************/
344: /* Input */
345: /* A - matrix to factor */
346: /* r - row permutation (ignored) */
347: /* c - column permutation (ignored) */
348: /* */
349: /* Output */
350: /* F - matrix storing the factorization; */
351: /************************************************************************/
352: Mat_LUSOL *lusol;
354: int i, m, n, nz, nnz;
357: /************************************************************************/
358: /* Check the arguments. */
359: /************************************************************************/
361: MatGetSize(A, &m, &n);
362: nz = ((Mat_SeqAIJ*)A->data)->nz;
364: /************************************************************************/
365: /* Create the factorization. */
366: /************************************************************************/
368: F->ops->lufactornumeric = MatLUFactorNumeric_LUSOL;
369: lusol = (Mat_LUSOL*)(F->spptr);
371: /************************************************************************/
372: /* Initialize parameters */
373: /************************************************************************/
375: for (i = 0; i < 30; i++) {
376: lusol->luparm[i] = 0;
377: lusol->parmlu[i] = 0;
378: }
380: lusol->luparm[1] = -1;
381: lusol->luparm[2] = 5;
382: lusol->luparm[7] = 1;
384: lusol->parmlu[0] = 1 / Factorization_Tolerance;
385: lusol->parmlu[1] = 1 / Factorization_Tolerance;
386: lusol->parmlu[2] = Factorization_Small_Tolerance;
387: lusol->parmlu[3] = Factorization_Pivot_Tolerance;
388: lusol->parmlu[4] = Factorization_Pivot_Tolerance;
389: lusol->parmlu[5] = 3.0;
390: lusol->parmlu[6] = 0.3;
391: lusol->parmlu[7] = 0.6;
393: /************************************************************************/
394: /* Allocate the workspace needed by LUSOL. */
395: /************************************************************************/
397: lusol->elbowroom = PetscMax(lusol->elbowroom, info->fill);
398: nnz = PetscMax((int)(lusol->elbowroom*nz), 5*n);
400: lusol->n = n;
401: lusol->nz = nz;
402: lusol->nnz = nnz;
403: lusol->luroom = 1.75;
405: PetscMalloc(sizeof(int)*n,&lusol->ip);
406: PetscMalloc(sizeof(int)*n,&lusol->iq);
407: PetscMalloc(sizeof(int)*n,&lusol->lenc);
408: PetscMalloc(sizeof(int)*n,&lusol->lenr);
409: PetscMalloc(sizeof(int)*n,&lusol->locc);
410: PetscMalloc(sizeof(int)*n,&lusol->locr);
411: PetscMalloc(sizeof(int)*n,&lusol->iploc);
412: PetscMalloc(sizeof(int)*n,&lusol->iqloc);
413: PetscMalloc(sizeof(int)*n,&lusol->ipinv);
414: PetscMalloc(sizeof(int)*n,&lusol->iqinv);
415: PetscMalloc(sizeof(double)*n,&lusol->mnsw);
416: PetscMalloc(sizeof(double)*n,&lusol->mnsv);
418: PetscMalloc3(nnz,&lusol->data,nnz,&lusol->indc,nnz,&lusol->indr);
420: lusol->CleanUpLUSOL = PETSC_TRUE;
421: F->ops->lufactornumeric = MatLUFactorNumeric_LUSOL;
422: return(0);
423: }
427: PetscErrorCode MatFactorGetSolverPackage_seqaij_lusol(Mat A,const MatSolverPackage *type)
428: {
430: *type = MATSOLVERLUSOL;
431: return(0);
432: }
436: PETSC_EXTERN PetscErrorCode MatGetFactor_seqaij_lusol(Mat A,MatFactorType ftype,Mat *F)
437: {
438: Mat B;
439: Mat_LUSOL *lusol;
441: int m, n;
444: MatGetSize(A, &m, &n);
445: MatCreate(PetscObjectComm((PetscObject)A),&B);
446: MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,m,n);
447: MatSetType(B,((PetscObject)A)->type_name);
448: MatSeqAIJSetPreallocation(B,0,NULL);
450: PetscNewLog(B,&lusol);
451: B->spptr = lusol;
453: B->ops->lufactorsymbolic = MatLUFactorSymbolic_LUSOL;
454: B->ops->destroy = MatDestroy_LUSOL;
456: PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverPackage_C",MatFactorGetSolverPackage_seqaij_lusol);
458: B->factortype = MAT_FACTOR_LU;
459: return(0);
460: }
464: PETSC_EXTERN PetscErrorCode MatSolverPackageRegister_Lusol(void)
465: {
469: MatSolverPackageRegister(MATSOLVERLUSOL,MATSEQAIJ, MAT_FACTOR_LU,MatGetFactor_seqaij_lusol);
470: return(0);
471: }
473: /*MC
474: MATSOLVERLUSOL - "lusol" - Provides direct solvers (LU) for sequential matrices
475: via the external package LUSOL.
477: If LUSOL is installed (see the manual for
478: instructions on how to declare the existence of external packages),
480: Works with MATSEQAIJ matrices
482: Level: beginner
484: .seealso: PCLU, PCFactorSetMatSolverPackage(), MatSolverPackage
486: M*/