Actual source code: ex99.c

petsc-3.6.1 2015-08-06
Report Typos and Errors
  1: static char help[] = "Test LAPACK routine DSYGV() or DSYGVX(). \n\
  2: Reads PETSc matrix A and B (or create B=I), \n\
  3: then computes selected eigenvalues, and optionally, eigenvectors of \n\
  4: a real generalized symmetric-definite eigenproblem \n\
  5:  A*x = lambda*B*x \n\
  6: Input parameters include\n\
  7:   -f0 <input_file> : first file to load (small system)\n\
  8:   -fA <input_file> -fB <input_file>: second files to load (larger system) \n\
  9: e.g. ./ex99 -f0 $D/small -fA $D/Eigdftb/dftb_bin/diamond_xxs_A -fB $D/Eigdftb/dftb_bin/diamond_xxs_B -mat_getrow_uppertriangular,\n\
 10:      where $D = /home/petsc/datafiles/matrices/Eigdftb/dftb_bin\n\n";

 12: /* This example only works with real numbers */

 14: #include <petscmat.h>
 15: #include <../src/mat/impls/sbaij/seq/sbaij.h>
 16: #include <petscblaslapack.h>

 18: extern PetscErrorCode CkEigenSolutions(PetscInt*,Mat*,PetscReal*,Vec*,PetscInt*,PetscInt*,PetscReal*);

 22: int main(int argc,char **args)
 23: {
 24:   Mat            A,B,A_dense,B_dense,mats[2],A_sp;
 25:   Vec            *evecs;
 26:   PetscViewer    fd;                /* viewer */
 27:   char           file[3][PETSC_MAX_PATH_LEN];     /* input file name */
 28:   PetscBool      flg,flgA=PETSC_FALSE,flgB=PETSC_FALSE,TestSYGVX=PETSC_TRUE;
 30:   PetscBool      preload=PETSC_TRUE,isSymmetric;
 31:   PetscScalar    sigma,one=1.0,*arrayA,*arrayB,*evecs_array,*work,*evals;
 32:   PetscMPIInt    size;
 33:   PetscInt       m,n,i,j;
 34:   PetscBLASInt   il,iu,nevs,nn;
 35:   PetscLogStage  stages[2];
 36:   PetscReal      vl,vu,abstol=1.e-8;
 37:   PetscBLASInt   *iwork,*ifail,lone=1,lwork,lierr,bn;
 38:   PetscInt       ievbd_loc[2],offset=0,cklvl=2;
 39:   PetscReal      tols[2];
 40:   Mat_SeqSBAIJ   *sbaij;
 41:   PetscScalar    *aa;
 42:   PetscInt       *ai,*aj;
 43:   PetscInt       nzeros[2],nz;
 44:   PetscReal      ratio;

 46:   PetscInitialize(&argc,&args,(char*)0,help);
 47:   MPI_Comm_size(PETSC_COMM_WORLD,&size);
 48:   if (size != 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"This is a uniprocessor example only!");
 49:   PetscLogStageRegister("EigSolve",&stages[0]);
 50:   PetscLogStageRegister("EigCheck",&stages[1]);

 52:   /* Determine files from which we read the two matrices */
 53:   PetscOptionsGetString(NULL,"-f0",file[0],PETSC_MAX_PATH_LEN,&flg);
 54:   if (!flg) {
 55:     PetscOptionsGetString(NULL,"-fA",file[0],PETSC_MAX_PATH_LEN,&flgA);
 56:     if (!flgA) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_USER,"Must indicate binary file with the -fA or -fB options");
 57:     PetscOptionsGetString(NULL,"-fB",file[1],PETSC_MAX_PATH_LEN,&flgB);
 58:     preload = PETSC_FALSE;
 59:   } else {
 60:     PetscOptionsGetString(NULL,"-fA",file[1],PETSC_MAX_PATH_LEN,&flgA);
 61:     if (!flgA) preload = PETSC_FALSE; /* don't bother with second system */
 62:     PetscOptionsGetString(NULL,"-fB",file[2],PETSC_MAX_PATH_LEN,&flgB);
 63:   }

 65:   PetscPreLoadBegin(preload,"Load system");
 66:   /* Load matrices */
 67:   PetscViewerBinaryOpen(PETSC_COMM_WORLD,file[PetscPreLoadIt],FILE_MODE_READ,&fd);
 68:   MatCreate(PETSC_COMM_WORLD,&A);
 69:   MatSetType(A,MATSBAIJ);
 70:   MatLoad(A,fd);
 71:   PetscViewerDestroy(&fd);
 72:   MatGetSize(A,&m,&n);
 73:   if ((flgB && PetscPreLoadIt) || (flgB && !preload)) {
 74:     PetscViewerBinaryOpen(PETSC_COMM_WORLD,file[PetscPreLoadIt+1],FILE_MODE_READ,&fd);
 75:     MatCreate(PETSC_COMM_WORLD,&B);
 76:     MatSetType(B,MATSBAIJ);
 77:     MatLoad(B,fd);
 78:     PetscViewerDestroy(&fd);
 79:   } else {   /* create B=I */
 80:     MatCreate(PETSC_COMM_WORLD,&B);
 81:     MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,m,n);
 82:     MatSetType(B,MATSEQSBAIJ);
 83:     MatSetFromOptions(B);
 84:     MatSetUp(B);
 85:     for (i=0; i<m; i++) {
 86:       MatSetValues(B,1,&i,1,&i,&one,INSERT_VALUES);
 87:     }
 88:     MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
 89:     MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
 90:   }

 92:   /* Add a shift to A */
 93:   PetscOptionsGetScalar(NULL,"-mat_sigma",&sigma,&flg);
 94:   if (flg) {
 95:     MatAXPY(A,sigma,B,DIFFERENT_NONZERO_PATTERN);   /* A <- sigma*B + A */
 96:   }

 98:   /* Check whether A is symmetric */
 99:   PetscOptionsHasName(NULL, "-check_symmetry", &flg);
100:   if (flg) {
101:     Mat Trans;
102:     MatTranspose(A,MAT_INITIAL_MATRIX, &Trans);
103:     MatEqual(A, Trans, &isSymmetric);
104:     if (!isSymmetric) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_USER,"A must be symmetric");
105:     MatDestroy(&Trans);
106:     if (flgB && PetscPreLoadIt) {
107:       MatTranspose(B,MAT_INITIAL_MATRIX, &Trans);
108:       MatEqual(B, Trans, &isSymmetric);
109:       if (!isSymmetric) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_USER,"B must be symmetric");
110:       MatDestroy(&Trans);
111:     }
112:   }

114:   /* View small entries of A */
115:   PetscOptionsHasName(NULL, "-Asp_view", &flg);
116:   if (flg) {
117:     MatCreate(PETSC_COMM_SELF,&A_sp);
118:     MatSetSizes(A_sp,PETSC_DECIDE,PETSC_DECIDE,m,n);
119:     MatSetType(A_sp,MATSEQSBAIJ);

121:     tols[0]   = 1.e-6, tols[1] = 1.e-9;
122:     sbaij     = (Mat_SeqSBAIJ*)A->data;
123:     ai        = sbaij->i;
124:     aj        = sbaij->j;
125:     aa        = sbaij->a;
126:     nzeros[0] = nzeros[1] = 0;
127:     for (i=0; i<m; i++) {
128:       nz = ai[i+1] - ai[i];
129:       for (j=0; j<nz; j++) {
130:         if (PetscAbsScalar(*aa)<tols[0]) {
131:           MatSetValues(A_sp,1,&i,1,aj,aa,INSERT_VALUES);
132:           nzeros[0]++;
133:         }
134:         if (PetscAbsScalar(*aa)<tols[1]) nzeros[1]++;
135:         aa++; aj++;
136:       }
137:     }
138:     MatAssemblyBegin(A_sp,MAT_FINAL_ASSEMBLY);
139:     MatAssemblyEnd(A_sp,MAT_FINAL_ASSEMBLY);

141:     MatDestroy(&A_sp);

143:     ratio = (PetscReal)nzeros[0]/sbaij->nz;
144:     PetscPrintf(PETSC_COMM_SELF," %D matrix entries < %g, ratio %g of %d nonzeros\n",nzeros[0],(double)tols[0],(double)ratio,sbaij->nz);
145:     PetscPrintf(PETSC_COMM_SELF," %D matrix entries < %g\n",nzeros[1],(double)tols[1]);
146:   }

148:   /* Convert aij matrix to MATSEQDENSE for LAPACK */
149:   PetscObjectTypeCompare((PetscObject)A,MATSEQDENSE,&flg);
150:   if (!flg) {
151:     MatConvert(A,MATSEQDENSE,MAT_INITIAL_MATRIX,&A_dense);
152:   }
153:   PetscObjectTypeCompare((PetscObject)B,MATSEQDENSE,&flg);
154:   if (!flg) {MatConvert(B,MATSEQDENSE,MAT_INITIAL_MATRIX,&B_dense);}

156:   /* Solve eigenvalue problem: A*x = lambda*B*x */
157:   /*============================================*/
158:   PetscBLASIntCast(8*n,&lwork);
159:   PetscBLASIntCast(n,&bn);
160:   PetscMalloc1(n,&evals);
161:   PetscMalloc1(lwork,&work);
162:   MatDenseGetArray(A_dense,&arrayA);
163:   MatDenseGetArray(B_dense,&arrayB);

165:   if (!TestSYGVX) {   /* test sygv()  */
166:     evecs_array = arrayA;
167:     LAPACKsygv_(&lone,"V","U",&bn,arrayA,&bn,arrayB,&bn,evals,work,&lwork,&lierr);
168:     nevs = m;
169:     il   =1;
170:   } else {   /* test sygvx()  */
171:     il    = 1;
172:     PetscBLASIntCast((PetscInt).6*m,&iu);
173:     PetscBLASIntCast(n,&nn);
174:     PetscMalloc1(m*n+1,&evecs_array);
175:     PetscMalloc1(6*n+1,&iwork);
176:     ifail = iwork + 5*n;
177:     if (PetscPreLoadIt) {PetscLogStagePush(stages[0]);}
178:     /* in the case "I", vl and vu are not referenced */
179:     LAPACKsygvx_(&lone,"V","I","U",&bn,arrayA,&bn,arrayB,&bn,&vl,&vu,&il,&iu,&abstol,&nevs,evals,evecs_array,&nn,work,&lwork,iwork,ifail,&lierr);
180:     if (PetscPreLoadIt) PetscLogStagePop();
181:     PetscFree(iwork);
182:   }
183:   MatDenseRestoreArray(A_dense,&arrayA);
184:   MatDenseRestoreArray(B_dense,&arrayB);

186:   if (nevs <= 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_CONV_FAILED, "nev=%d, no eigensolution has found", nevs);
187:   /* View evals */
188:   PetscOptionsHasName(NULL, "-eig_view", &flg);
189:   if (flg) {
190:     PetscPrintf(PETSC_COMM_SELF," %D evals: \n",nevs);
191:     for (i=0; i<nevs; i++) {
192:       PetscPrintf(PETSC_COMM_SELF,"%D  %g\n",i+il,(double)evals[i]);
193:     }
194:   }

196:   /* Check residuals and orthogonality */
197:   if (PetscPreLoadIt) {
198:     mats[0] = A; mats[1] = B;
199:     one     = (PetscInt)one;
200:     PetscMalloc1(nevs+1,&evecs);
201:     for (i=0; i<nevs; i++) {
202:       VecCreate(PETSC_COMM_SELF,&evecs[i]);
203:       VecSetSizes(evecs[i],PETSC_DECIDE,n);
204:       VecSetFromOptions(evecs[i]);
205:       VecPlaceArray(evecs[i],evecs_array+i*n);
206:     }

208:     ievbd_loc[0] = 0; ievbd_loc[1] = nevs-1;
209:     tols[0]      = 1.e-8;  tols[1] = 1.e-8;

211:     PetscLogStagePush(stages[1]);
212:     CkEigenSolutions(&cklvl,mats,evals,evecs,ievbd_loc,&offset,tols);
213:     PetscLogStagePop();
214:     for (i=0; i<nevs; i++) { VecDestroy(&evecs[i]);}
215:     PetscFree(evecs);
216:   }

218:   /* Free work space. */
219:   if (TestSYGVX) {PetscFree(evecs_array);}

221:   PetscFree(evals);
222:   PetscFree(work);

224:   MatDestroy(&A_dense);
225:   MatDestroy(&B_dense);
226:   MatDestroy(&B);
227:   MatDestroy(&A);

229:   PetscPreLoadEnd();
230:   PetscFinalize();
231:   return 0;
232: }
233: /*------------------------------------------------
234:   Check the accuracy of the eigen solution
235:   ----------------------------------------------- */
236: /*
237:   input:
238:      cklvl      - check level:
239:                     1: check residual
240:                     2: 1 and check B-orthogonality locally
241:      mats       - matrix pencil
242:      eval, evec - eigenvalues and eigenvectors stored in this process
243:      ievbd_loc  - local eigenvalue bounds, see eigc()
244:      offset     - see eigc()
245:      tols[0]    - reporting tol_res: || A evec[i] - eval[i] B evec[i]||
246:      tols[1]    - reporting tol_orth: evec[i] B evec[j] - delta_ij
247: */
248: #undef DEBUG_CkEigenSolutions
251: PetscErrorCode CkEigenSolutions(PetscInt *fcklvl,Mat *mats,PetscReal *eval,Vec *evec,PetscInt *ievbd_loc,PetscInt *offset,PetscReal *tols)
252: {
253:   PetscInt  ierr,cklvl=*fcklvl,nev_loc,i,j;
254:   Mat       A=mats[0], B=mats[1];
255:   Vec       vt1,vt2;    /* tmp vectors */
256:   PetscReal norm,tmp,dot,norm_max,dot_max;

259:   nev_loc = ievbd_loc[1] - ievbd_loc[0];
260:   if (nev_loc == 0) return(0);

262:   nev_loc += (*offset);
263:   VecDuplicate(evec[*offset],&vt1);
264:   VecDuplicate(evec[*offset],&vt2);

266:   switch (cklvl) {
267:   case 2:
268:     dot_max = 0.0;
269:     for (i = *offset; i<nev_loc; i++) {
270:       MatMult(B, evec[i], vt1);
271:       for (j=i; j<nev_loc; j++) {
272:         VecDot(evec[j],vt1,&dot);
273:         if (j == i) {
274:           dot = PetscAbsScalar(dot - 1.0);
275:         } else {
276:           dot = PetscAbsScalar(dot);
277:         }
278:         if (dot > dot_max) dot_max = dot;
279: #if defined(DEBUG_CkEigenSolutions)
280:         if (dot > tols[1]) {
281:           VecNorm(evec[i],NORM_INFINITY,&norm);
282:           PetscPrintf(PETSC_COMM_SELF,"|delta(%D,%D)|: %g, norm: %g\n",i,j,(double)ndot,(double)nnorm);
283:         }
284: #endif
285:       } /* for (j=i; j<nev_loc; j++) */
286:     }
287:     PetscPrintf(PETSC_COMM_SELF,"    max|(x_j*B*x_i) - delta_ji|: %g\n",(double)dot_max);

289:   case 1:
290:     norm_max = 0.0;
291:     for (i = *offset; i< nev_loc; i++) {
292:       MatMult(A, evec[i], vt1);
293:       MatMult(B, evec[i], vt2);
294:       tmp  = -eval[i];
295:       VecAXPY(vt1,tmp,vt2);
296:       VecNorm(vt1, NORM_INFINITY, &norm);
297:       norm = PetscAbsScalar(norm);
298:       if (norm > norm_max) norm_max = norm;
299: #if defined(DEBUG_CkEigenSolutions)
300:       /* sniff, and bark if necessary */
301:       if (norm > tols[0]) {
302:         PetscPrintf(PETSC_COMM_SELF,"  residual violation: %D, resi: %g\n",i, (double)nnorm);
303:       }
304: #endif
305:     }

307:     PetscPrintf(PETSC_COMM_SELF,"    max_resi:                    %g\n", (double)norm_max);

309:     break;
310:   default:
311:     PetscPrintf(PETSC_COMM_SELF,"Error: cklvl=%D is not supported \n",cklvl);
312:   }
313:   VecDestroy(&vt2);
314:   VecDestroy(&vt1);
315:   return(0);
316: }