Actual source code: ml.c

petsc-3.6.1 2015-08-06
Report Typos and Errors
  2: /*
  3:    Provides an interface to the ML smoothed Aggregation
  4:    Note: Something non-obvious breaks -pc_mg_type ADDITIVE for parallel runs
  5:                                     Jed Brown, see [PETSC #18321, #18449].
  6: */
  7: #include <petsc/private/pcimpl.h>   /*I "petscpc.h" I*/
  8: #include <petsc/private/pcmgimpl.h>                    /*I "petscksp.h" I*/
  9: #include <../src/mat/impls/aij/seq/aij.h>
 10: #include <../src/mat/impls/aij/mpi/mpiaij.h>
 11: #include <petscdm.h>            /* for DMDestroy(&pc->mg) hack */

 13: EXTERN_C_BEGIN
 14: /* HAVE_CONFIG_H flag is required by ML include files */
 15: #if !defined(HAVE_CONFIG_H)
 16: #define HAVE_CONFIG_H
 17: #endif
 18: #include <ml_include.h>
 19: #include <ml_viz_stats.h>
 20: EXTERN_C_END

 22: typedef enum {PCML_NULLSPACE_AUTO,PCML_NULLSPACE_USER,PCML_NULLSPACE_BLOCK,PCML_NULLSPACE_SCALAR} PCMLNullSpaceType;
 23: static const char *const PCMLNullSpaceTypes[] = {"AUTO","USER","BLOCK","SCALAR","PCMLNullSpaceType","PCML_NULLSPACE_",0};

 25: /* The context (data structure) at each grid level */
 26: typedef struct {
 27:   Vec x,b,r;                  /* global vectors */
 28:   Mat A,P,R;
 29:   KSP ksp;
 30:   Vec coords;                 /* projected by ML, if PCSetCoordinates is called; values packed by node */
 31: } GridCtx;

 33: /* The context used to input PETSc matrix into ML at fine grid */
 34: typedef struct {
 35:   Mat         A;       /* Petsc matrix in aij format */
 36:   Mat         Aloc;    /* local portion of A to be used by ML */
 37:   Vec         x,y;
 38:   ML_Operator *mlmat;
 39:   PetscScalar *pwork;  /* tmp array used by PetscML_comm() */
 40: } FineGridCtx;

 42: /* The context associates a ML matrix with a PETSc shell matrix */
 43: typedef struct {
 44:   Mat         A;        /* PETSc shell matrix associated with mlmat */
 45:   ML_Operator *mlmat;   /* ML matrix assorciated with A */
 46:   Vec         y, work;
 47: } Mat_MLShell;

 49: /* Private context for the ML preconditioner */
 50: typedef struct {
 51:   ML                *ml_object;
 52:   ML_Aggregate      *agg_object;
 53:   GridCtx           *gridctx;
 54:   FineGridCtx       *PetscMLdata;
 55:   PetscInt          Nlevels,MaxNlevels,MaxCoarseSize,CoarsenScheme,EnergyMinimization,MinPerProc,PutOnSingleProc,RepartitionType,ZoltanScheme;
 56:   PetscReal         Threshold,DampingFactor,EnergyMinimizationDropTol,MaxMinRatio,AuxThreshold;
 57:   PetscBool         SpectralNormScheme_Anorm,BlockScaling,EnergyMinimizationCheap,Symmetrize,OldHierarchy,KeepAggInfo,Reusable,Repartition,Aux;
 58:   PetscBool         reuse_interpolation;
 59:   PCMLNullSpaceType nulltype;
 60:   PetscMPIInt       size; /* size of communicator for pc->pmat */
 61:   PetscInt          dim;  /* data from PCSetCoordinates(_ML) */
 62:   PetscInt          nloc;
 63:   PetscReal         *coords; /* ML has a grid object for each level: the finest grid will point into coords */
 64: } PC_ML;

 68: static int PetscML_getrow(ML_Operator *ML_data, int N_requested_rows, int requested_rows[],int allocated_space, int columns[], double values[], int row_lengths[])
 69: {
 71:   PetscInt       m,i,j,k=0,row,*aj;
 72:   PetscScalar    *aa;
 73:   FineGridCtx    *ml=(FineGridCtx*)ML_Get_MyGetrowData(ML_data);
 74:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)ml->Aloc->data;

 76:   MatGetSize(ml->Aloc,&m,NULL); if (ierr) return(0);
 77:   for (i = 0; i<N_requested_rows; i++) {
 78:     row            = requested_rows[i];
 79:     row_lengths[i] = a->ilen[row];
 80:     if (allocated_space < k+row_lengths[i]) return(0);
 81:     if ((row >= 0) || (row <= (m-1))) {
 82:       aj = a->j + a->i[row];
 83:       aa = a->a + a->i[row];
 84:       for (j=0; j<row_lengths[i]; j++) {
 85:         columns[k]  = aj[j];
 86:         values[k++] = aa[j];
 87:       }
 88:     }
 89:   }
 90:   return(1);
 91: }

 95: static PetscErrorCode PetscML_comm(double p[],void *ML_data)
 96: {
 97:   PetscErrorCode    ierr;
 98:   FineGridCtx       *ml = (FineGridCtx*)ML_data;
 99:   Mat               A   = ml->A;
100:   Mat_MPIAIJ        *a  = (Mat_MPIAIJ*)A->data;
101:   PetscMPIInt       size;
102:   PetscInt          i,in_length=A->rmap->n,out_length=ml->Aloc->cmap->n;
103:   const PetscScalar *array;

106:   MPI_Comm_size(PetscObjectComm((PetscObject)A),&size);
107:   if (size == 1) return 0;

109:   VecPlaceArray(ml->y,p);
110:   VecScatterBegin(a->Mvctx,ml->y,a->lvec,INSERT_VALUES,SCATTER_FORWARD);
111:   VecScatterEnd(a->Mvctx,ml->y,a->lvec,INSERT_VALUES,SCATTER_FORWARD);
112:   VecResetArray(ml->y);
113:   VecGetArrayRead(a->lvec,&array);
114:   for (i=in_length; i<out_length; i++) p[i] = array[i-in_length];
115:   VecRestoreArrayRead(a->lvec,&array);
116:   return(0);
117: }

121: static int PetscML_matvec(ML_Operator *ML_data,int in_length,double p[],int out_length,double ap[])
122: {
124:   FineGridCtx    *ml = (FineGridCtx*)ML_Get_MyMatvecData(ML_data);
125:   Mat            A   = ml->A, Aloc=ml->Aloc;
126:   PetscMPIInt    size;
127:   PetscScalar    *pwork=ml->pwork;
128:   PetscInt       i;

131:   MPI_Comm_size(PetscObjectComm((PetscObject)A),&size);
132:   if (size == 1) {
133:     VecPlaceArray(ml->x,p);
134:   } else {
135:     for (i=0; i<in_length; i++) pwork[i] = p[i];
136:     PetscML_comm(pwork,ml);
137:     VecPlaceArray(ml->x,pwork);
138:   }
139:   VecPlaceArray(ml->y,ap);
140:   MatMult(Aloc,ml->x,ml->y);
141:   VecResetArray(ml->x);
142:   VecResetArray(ml->y);
143:   return(0);
144: }

148: static PetscErrorCode MatMult_ML(Mat A,Vec x,Vec y)
149: {
150:   PetscErrorCode    ierr;
151:   Mat_MLShell       *shell;
152:   PetscScalar       *yarray;
153:   const PetscScalar *xarray;
154:   PetscInt          x_length,y_length;

157:   MatShellGetContext(A,(void**)&shell);
158:   VecGetArrayRead(x,&xarray);
159:   VecGetArray(y,&yarray);
160:   x_length = shell->mlmat->invec_leng;
161:   y_length = shell->mlmat->outvec_leng;
162:   PetscStackCall("ML_Operator_Apply",ML_Operator_Apply(shell->mlmat,x_length,(PetscScalar*)xarray,y_length,yarray));
163:   VecRestoreArrayRead(x,&xarray);
164:   VecRestoreArray(y,&yarray);
165:   return(0);
166: }

170: /* Computes y = w + A * x
171:    It is possible that w == y, but not x == y
172: */
173: static PetscErrorCode MatMultAdd_ML(Mat A,Vec x,Vec w,Vec y)
174: {
175:   Mat_MLShell       *shell;
176:   PetscScalar       *yarray;
177:   const PetscScalar *xarray;
178:   PetscInt          x_length,y_length;
179:   PetscErrorCode    ierr;

182:   MatShellGetContext(A, (void**) &shell);
183:   if (y == w) {
184:     if (!shell->work) {
185:       VecDuplicate(y, &shell->work);
186:     }
187:     VecGetArrayRead(x,           &xarray);
188:     VecGetArray(shell->work, &yarray);
189:     x_length = shell->mlmat->invec_leng;
190:     y_length = shell->mlmat->outvec_leng;
191:     PetscStackCall("ML_Operator_Apply",ML_Operator_Apply(shell->mlmat, x_length, (PetscScalar*)xarray, y_length, yarray));
192:     VecRestoreArrayRead(x,           &xarray);
193:     VecRestoreArray(shell->work, &yarray);
194:     VecAXPY(y, 1.0, shell->work);
195:   } else {
196:     VecGetArrayRead(x, &xarray);
197:     VecGetArray(y, &yarray);
198:     x_length = shell->mlmat->invec_leng;
199:     y_length = shell->mlmat->outvec_leng;
200:     PetscStackCall("ML_Operator_Apply",ML_Operator_Apply(shell->mlmat, x_length, (PetscScalar *)xarray, y_length, yarray));
201:     VecRestoreArrayRead(x, &xarray);
202:     VecRestoreArray(y, &yarray);
203:     VecAXPY(y, 1.0, w);
204:   }
205:   return(0);
206: }

208: /* newtype is ignored since only handles one case */
211: static PetscErrorCode MatConvert_MPIAIJ_ML(Mat A,MatType newtype,MatReuse scall,Mat *Aloc)
212: {
214:   Mat_MPIAIJ     *mpimat=(Mat_MPIAIJ*)A->data;
215:   Mat_SeqAIJ     *mat,*a=(Mat_SeqAIJ*)(mpimat->A)->data,*b=(Mat_SeqAIJ*)(mpimat->B)->data;
216:   PetscInt       *ai=a->i,*aj=a->j,*bi=b->i,*bj=b->j;
217:   PetscScalar    *aa=a->a,*ba=b->a,*ca;
218:   PetscInt       am =A->rmap->n,an=A->cmap->n,i,j,k;
219:   PetscInt       *ci,*cj,ncols;

222:   if (am != an) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"A must have a square diagonal portion, am: %d != an: %d",am,an);

224:   if (scall == MAT_INITIAL_MATRIX) {
225:     PetscMalloc1(1+am,&ci);
226:     ci[0] = 0;
227:     for (i=0; i<am; i++) ci[i+1] = ci[i] + (ai[i+1] - ai[i]) + (bi[i+1] - bi[i]);
228:     PetscMalloc1(1+ci[am],&cj);
229:     PetscMalloc1(1+ci[am],&ca);

231:     k = 0;
232:     for (i=0; i<am; i++) {
233:       /* diagonal portion of A */
234:       ncols = ai[i+1] - ai[i];
235:       for (j=0; j<ncols; j++) {
236:         cj[k]   = *aj++;
237:         ca[k++] = *aa++;
238:       }
239:       /* off-diagonal portion of A */
240:       ncols = bi[i+1] - bi[i];
241:       for (j=0; j<ncols; j++) {
242:         cj[k]   = an + (*bj); bj++;
243:         ca[k++] = *ba++;
244:       }
245:     }
246:     if (k != ci[am]) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"k: %d != ci[am]: %d",k,ci[am]);

248:     /* put together the new matrix */
249:     an   = mpimat->A->cmap->n+mpimat->B->cmap->n;
250:     MatCreateSeqAIJWithArrays(PETSC_COMM_SELF,am,an,ci,cj,ca,Aloc);

252:     /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */
253:     /* Since these are PETSc arrays, change flags to free them as necessary. */
254:     mat          = (Mat_SeqAIJ*)(*Aloc)->data;
255:     mat->free_a  = PETSC_TRUE;
256:     mat->free_ij = PETSC_TRUE;

258:     mat->nonew = 0;
259:   } else if (scall == MAT_REUSE_MATRIX) {
260:     mat=(Mat_SeqAIJ*)(*Aloc)->data;
261:     ci = mat->i; cj = mat->j; ca = mat->a;
262:     for (i=0; i<am; i++) {
263:       /* diagonal portion of A */
264:       ncols = ai[i+1] - ai[i];
265:       for (j=0; j<ncols; j++) *ca++ = *aa++;
266:       /* off-diagonal portion of A */
267:       ncols = bi[i+1] - bi[i];
268:       for (j=0; j<ncols; j++) *ca++ = *ba++;
269:     }
270:   } else SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Invalid MatReuse %d",(int)scall);
271:   return(0);
272: }

274: extern PetscErrorCode MatDestroy_Shell(Mat);
277: static PetscErrorCode MatDestroy_ML(Mat A)
278: {
280:   Mat_MLShell    *shell;

283:   MatShellGetContext(A,(void**)&shell);
284:   VecDestroy(&shell->y);
285:   if (shell->work) {VecDestroy(&shell->work);}
286:   PetscFree(shell);
287:   MatDestroy_Shell(A);
288:   PetscObjectChangeTypeName((PetscObject)A,0);
289:   return(0);
290: }

294: static PetscErrorCode MatWrapML_SeqAIJ(ML_Operator *mlmat,MatReuse reuse,Mat *newmat)
295: {
296:   struct ML_CSR_MSRdata *matdata = (struct ML_CSR_MSRdata*)mlmat->data;
297:   PetscErrorCode        ierr;
298:   PetscInt              m       =mlmat->outvec_leng,n=mlmat->invec_leng,*nnz = NULL,nz_max;
299:   PetscInt              *ml_cols=matdata->columns,*ml_rowptr=matdata->rowptr,*aj,i;
300:   PetscScalar           *ml_vals=matdata->values,*aa;

303:   if (!mlmat->getrow) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"mlmat->getrow = NULL");
304:   if (m != n) { /* ML Pmat and Rmat are in CSR format. Pass array pointers into SeqAIJ matrix */
305:     if (reuse) {
306:       Mat_SeqAIJ *aij= (Mat_SeqAIJ*)(*newmat)->data;
307:       aij->i = ml_rowptr;
308:       aij->j = ml_cols;
309:       aij->a = ml_vals;
310:     } else {
311:       /* sort ml_cols and ml_vals */
312:       PetscMalloc1(m+1,&nnz);
313:       for (i=0; i<m; i++) nnz[i] = ml_rowptr[i+1] - ml_rowptr[i];
314:       aj = ml_cols; aa = ml_vals;
315:       for (i=0; i<m; i++) {
316:         PetscSortIntWithScalarArray(nnz[i],aj,aa);
317:         aj  += nnz[i]; aa += nnz[i];
318:       }
319:       MatCreateSeqAIJWithArrays(PETSC_COMM_SELF,m,n,ml_rowptr,ml_cols,ml_vals,newmat);
320:       PetscFree(nnz);
321:     }
322:     return(0);
323:   }

325:   nz_max = PetscMax(1,mlmat->max_nz_per_row);
326:   PetscMalloc2(nz_max,&aa,nz_max,&aj);
327:   if (!reuse) {
328:     MatCreate(PETSC_COMM_SELF,newmat);
329:     MatSetSizes(*newmat,m,n,PETSC_DECIDE,PETSC_DECIDE);
330:     MatSetType(*newmat,MATSEQAIJ);
331:     /* keep track of block size for A matrices */
332:     MatSetBlockSize (*newmat, mlmat->num_PDEs);

334:     PetscMalloc1(m,&nnz);
335:     for (i=0; i<m; i++) {
336:       PetscStackCall("ML_Operator_Getrow",ML_Operator_Getrow(mlmat,1,&i,nz_max,aj,aa,&nnz[i]));
337:     }
338:     MatSeqAIJSetPreallocation(*newmat,0,nnz);
339:   }
340:   for (i=0; i<m; i++) {
341:     PetscInt ncols;

343:     PetscStackCall("ML_Operator_Getrow",ML_Operator_Getrow(mlmat,1,&i,nz_max,aj,aa,&ncols));
344:     MatSetValues(*newmat,1,&i,ncols,aj,aa,INSERT_VALUES);
345:   }
346:   MatAssemblyBegin(*newmat,MAT_FINAL_ASSEMBLY);
347:   MatAssemblyEnd(*newmat,MAT_FINAL_ASSEMBLY);

349:   PetscFree2(aa,aj);
350:   PetscFree(nnz);
351:   return(0);
352: }

356: static PetscErrorCode MatWrapML_SHELL(ML_Operator *mlmat,MatReuse reuse,Mat *newmat)
357: {
359:   PetscInt       m,n;
360:   ML_Comm        *MLcomm;
361:   Mat_MLShell    *shellctx;

364:   m = mlmat->outvec_leng;
365:   n = mlmat->invec_leng;

367:   if (reuse) {
368:     MatShellGetContext(*newmat,(void**)&shellctx);
369:     shellctx->mlmat = mlmat;
370:     return(0);
371:   }

373:   MLcomm = mlmat->comm;

375:   PetscNew(&shellctx);
376:   MatCreateShell(MLcomm->USR_comm,m,n,PETSC_DETERMINE,PETSC_DETERMINE,shellctx,newmat);
377:   MatShellSetOperation(*newmat,MATOP_MULT,(void(*)(void))MatMult_ML);
378:   MatShellSetOperation(*newmat,MATOP_MULT_ADD,(void(*)(void))MatMultAdd_ML);

380:   shellctx->A         = *newmat;
381:   shellctx->mlmat     = mlmat;
382:   shellctx->work      = NULL;

384:   VecCreate(MLcomm->USR_comm,&shellctx->y);
385:   VecSetSizes(shellctx->y,m,PETSC_DECIDE);
386:   VecSetType(shellctx->y,VECSTANDARD);

388:   (*newmat)->ops->destroy = MatDestroy_ML;
389:   return(0);
390: }

394: static PetscErrorCode MatWrapML_MPIAIJ(ML_Operator *mlmat,MatReuse reuse,Mat *newmat)
395: {
396:   PetscInt       *aj;
397:   PetscScalar    *aa;
399:   PetscInt       i,j,*gordering;
400:   PetscInt       m=mlmat->outvec_leng,n,nz_max,row;
401:   Mat            A;

404:   if (!mlmat->getrow) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"mlmat->getrow = NULL");
405:   n = mlmat->invec_leng;
406:   if (m != n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"m %d must equal to n %d",m,n);

408:   /* create global row numbering for a ML_Operator */
409:   PetscStackCall("ML_build_global_numbering",ML_build_global_numbering(mlmat,&gordering,"rows"));

411:   nz_max = PetscMax(1,mlmat->max_nz_per_row) + 1;
412:   PetscMalloc2(nz_max,&aa,nz_max,&aj);
413:   if (reuse) {
414:     A = *newmat;
415:   } else {
416:     PetscInt *nnzA,*nnzB,*nnz;
417:     PetscInt rstart;
418:     MatCreate(mlmat->comm->USR_comm,&A);
419:     MatSetSizes(A,m,n,PETSC_DECIDE,PETSC_DECIDE);
420:     MatSetType(A,MATMPIAIJ);
421:     /* keep track of block size for A matrices */
422:     MatSetBlockSize (A,mlmat->num_PDEs);
423:     PetscMalloc3(m,&nnzA,m,&nnzB,m,&nnz);
424:     MPI_Scan(&m,&rstart,1,MPIU_INT,MPI_SUM,mlmat->comm->USR_comm);
425:     rstart -= m;

427:     for (i=0; i<m; i++) {
428:       row = gordering[i] - rstart;
429:       PetscStackCall("ML_Operator_Getrow",ML_Operator_Getrow(mlmat,1,&i,nz_max,aj,aa,&nnz[i]));
430:       nnzA[row] = 0;
431:       for (j=0; j<nnz[i]; j++) {
432:         if (aj[j] < m) nnzA[row]++;
433:       }
434:       nnzB[row] = nnz[i] - nnzA[row];
435:     }
436:     MatMPIAIJSetPreallocation(A,0,nnzA,0,nnzB);
437:     PetscFree3(nnzA,nnzB,nnz);
438:   }
439:   for (i=0; i<m; i++) {
440:     PetscInt ncols;
441:     row = gordering[i];

443:     PetscStackCall(",ML_Operator_Getrow",ML_Operator_Getrow(mlmat,1,&i,nz_max,aj,aa,&ncols));
444:     for (j = 0; j < ncols; j++) aj[j] = gordering[aj[j]];
445:     MatSetValues(A,1,&row,ncols,aj,aa,INSERT_VALUES);
446:   }
447:   PetscStackCall("ML_free",ML_free(gordering));
448:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
449:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
450:   *newmat = A;

452:   PetscFree2(aa,aj);
453:   return(0);
454: }

456: /* -------------------------------------------------------------------------- */
457: /*
458:    PCSetCoordinates_ML

460:    Input Parameter:
461:    .  pc - the preconditioner context
462: */
465: static PetscErrorCode PCSetCoordinates_ML(PC pc, PetscInt ndm, PetscInt a_nloc, PetscReal *coords)
466: {
467:   PC_MG          *mg    = (PC_MG*)pc->data;
468:   PC_ML          *pc_ml = (PC_ML*)mg->innerctx;
470:   PetscInt       arrsz,oldarrsz,bs,my0,kk,ii,nloc,Iend;
471:   Mat            Amat = pc->pmat;

473:   /* this function copied and modified from PCSetCoordinates_GEO -TGI */
476:   MatGetBlockSize(Amat, &bs);

478:   MatGetOwnershipRange(Amat, &my0, &Iend);
479:   nloc = (Iend-my0)/bs;

481:   if (nloc!=a_nloc) SETERRQ2(PetscObjectComm((PetscObject)Amat),PETSC_ERR_ARG_WRONG, "Number of local blocks must locations = %d %d.",a_nloc,nloc);
482:   if ((Iend-my0)%bs!=0) SETERRQ1(PetscObjectComm((PetscObject)Amat),PETSC_ERR_ARG_WRONG, "Bad local size %d.",nloc);

484:   oldarrsz    = pc_ml->dim * pc_ml->nloc;
485:   pc_ml->dim  = ndm;
486:   pc_ml->nloc = a_nloc;
487:   arrsz       = ndm * a_nloc;

489:   /* create data - syntactic sugar that should be refactored at some point */
490:   if (pc_ml->coords==0 || (oldarrsz != arrsz)) {
491:     PetscFree(pc_ml->coords);
492:     PetscMalloc1(arrsz, &pc_ml->coords);
493:   }
494:   for (kk=0; kk<arrsz; kk++) pc_ml->coords[kk] = -999.;
495:   /* copy data in - column oriented */
496:   for (kk = 0; kk < nloc; kk++) {
497:     for (ii = 0; ii < ndm; ii++) {
498:       pc_ml->coords[ii*nloc + kk] =  coords[kk*ndm + ii];
499:     }
500:   }
501:   return(0);
502: }

504: /* -----------------------------------------------------------------------------*/
505: extern PetscErrorCode PCReset_MG(PC);
508: PetscErrorCode PCReset_ML(PC pc)
509: {
511:   PC_MG          *mg    = (PC_MG*)pc->data;
512:   PC_ML          *pc_ml = (PC_ML*)mg->innerctx;
513:   PetscInt       level,fine_level=pc_ml->Nlevels-1,dim=pc_ml->dim;

516:   if (dim) {
517:     ML_Aggregate_Viz_Stats * grid_info = (ML_Aggregate_Viz_Stats*) pc_ml->ml_object->Grid[0].Grid;

519:     for (level=0; level<=fine_level; level++) {
520:       VecDestroy(&pc_ml->gridctx[level].coords);
521:     }

523:     grid_info->x = 0; /* do this so ML doesn't try to free coordinates */
524:     grid_info->y = 0;
525:     grid_info->z = 0;

527:     PetscStackCall("ML_Operator_Getrow",ML_Aggregate_VizAndStats_Clean(pc_ml->ml_object));
528:   }
529:   PetscStackCall("ML_Aggregate_Destroy",ML_Aggregate_Destroy(&pc_ml->agg_object));
530:   PetscStackCall("ML_Aggregate_Destroy",ML_Destroy(&pc_ml->ml_object));

532:   if (pc_ml->PetscMLdata) {
533:     PetscFree(pc_ml->PetscMLdata->pwork);
534:     MatDestroy(&pc_ml->PetscMLdata->Aloc);
535:     VecDestroy(&pc_ml->PetscMLdata->x);
536:     VecDestroy(&pc_ml->PetscMLdata->y);
537:   }
538:   PetscFree(pc_ml->PetscMLdata);

540:   if (pc_ml->gridctx) {
541:     for (level=0; level<fine_level; level++) {
542:       if (pc_ml->gridctx[level].A) {MatDestroy(&pc_ml->gridctx[level].A);}
543:       if (pc_ml->gridctx[level].P) {MatDestroy(&pc_ml->gridctx[level].P);}
544:       if (pc_ml->gridctx[level].R) {MatDestroy(&pc_ml->gridctx[level].R);}
545:       if (pc_ml->gridctx[level].x) {VecDestroy(&pc_ml->gridctx[level].x);}
546:       if (pc_ml->gridctx[level].b) {VecDestroy(&pc_ml->gridctx[level].b);}
547:       if (pc_ml->gridctx[level+1].r) {VecDestroy(&pc_ml->gridctx[level+1].r);}
548:     }
549:   }
550:   PetscFree(pc_ml->gridctx);
551:   PetscFree(pc_ml->coords);

553:   pc_ml->dim  = 0;
554:   pc_ml->nloc = 0;
555:   PCReset_MG(pc);
556:   return(0);
557: }
558: /* -------------------------------------------------------------------------- */
559: /*
560:    PCSetUp_ML - Prepares for the use of the ML preconditioner
561:                     by setting data structures and options.

563:    Input Parameter:
564: .  pc - the preconditioner context

566:    Application Interface Routine: PCSetUp()

568:    Notes:
569:    The interface routine PCSetUp() is not usually called directly by
570:    the user, but instead is called by PCApply() if necessary.
571: */
572: extern PetscErrorCode PCSetFromOptions_MG(PetscOptions *PetscOptionsObject,PC);
573: extern PetscErrorCode PCReset_MG(PC);

577: PetscErrorCode PCSetUp_ML(PC pc)
578: {
579:   PetscErrorCode   ierr;
580:   PetscMPIInt      size;
581:   FineGridCtx      *PetscMLdata;
582:   ML               *ml_object;
583:   ML_Aggregate     *agg_object;
584:   ML_Operator      *mlmat;
585:   PetscInt         nlocal_allcols,Nlevels,mllevel,level,level1,m,fine_level,bs;
586:   Mat              A,Aloc;
587:   GridCtx          *gridctx;
588:   PC_MG            *mg    = (PC_MG*)pc->data;
589:   PC_ML            *pc_ml = (PC_ML*)mg->innerctx;
590:   PetscBool        isSeq, isMPI;
591:   KSP              smoother;
592:   PC               subpc;
593:   PetscInt         mesh_level, old_mesh_level;
594:   MatInfo          info;
595:   static PetscBool cite = PETSC_FALSE;

598:   PetscCitationsRegister("@TechReport{ml_users_guide,\n  author = {M. Sala and J.J. Hu and R.S. Tuminaro},\n  title = {{ML}3.1 {S}moothed {A}ggregation {U}ser's {G}uide},\n  institution =  {Sandia National Laboratories},\n  number = {SAND2004-4821},\n  year = 2004\n}\n",&cite);
599:   A    = pc->pmat;
600:   MPI_Comm_size(PetscObjectComm((PetscObject)A),&size);

602:   if (pc->setupcalled) {
603:     if (pc->flag == SAME_NONZERO_PATTERN && pc_ml->reuse_interpolation) {
604:       /*
605:        Reuse interpolaton instead of recomputing aggregates and updating the whole hierarchy. This is less expensive for
606:        multiple solves in which the matrix is not changing too quickly.
607:        */
608:       ml_object             = pc_ml->ml_object;
609:       gridctx               = pc_ml->gridctx;
610:       Nlevels               = pc_ml->Nlevels;
611:       fine_level            = Nlevels - 1;
612:       gridctx[fine_level].A = A;

614:       PetscObjectTypeCompare((PetscObject) A, MATSEQAIJ, &isSeq);
615:       PetscObjectTypeCompare((PetscObject) A, MATMPIAIJ, &isMPI);
616:       if (isMPI) {
617:         MatConvert_MPIAIJ_ML(A,NULL,MAT_INITIAL_MATRIX,&Aloc);
618:       } else if (isSeq) {
619:         Aloc = A;
620:         PetscObjectReference((PetscObject)Aloc);
621:       } else SETERRQ1(PetscObjectComm((PetscObject)pc),PETSC_ERR_ARG_WRONG, "Matrix type '%s' cannot be used with ML. ML can only handle AIJ matrices.",((PetscObject)A)->type_name);

623:       MatGetSize(Aloc,&m,&nlocal_allcols);
624:       PetscMLdata       = pc_ml->PetscMLdata;
625:       MatDestroy(&PetscMLdata->Aloc);
626:       PetscMLdata->A    = A;
627:       PetscMLdata->Aloc = Aloc;
628:       PetscStackCall("ML_Aggregate_Destroy",ML_Init_Amatrix(ml_object,0,m,m,PetscMLdata));
629:       PetscStackCall("ML_Set_Amatrix_Matvec",ML_Set_Amatrix_Matvec(ml_object,0,PetscML_matvec));

631:       mesh_level = ml_object->ML_finest_level;
632:       while (ml_object->SingleLevel[mesh_level].Rmat->to) {
633:         old_mesh_level = mesh_level;
634:         mesh_level     = ml_object->SingleLevel[mesh_level].Rmat->to->levelnum;

636:         /* clean and regenerate A */
637:         mlmat = &(ml_object->Amat[mesh_level]);
638:         PetscStackCall("ML_Operator_Clean",ML_Operator_Clean(mlmat));
639:         PetscStackCall("ML_Operator_Init",ML_Operator_Init(mlmat,ml_object->comm));
640:         PetscStackCall("ML_Gen_AmatrixRAP",ML_Gen_AmatrixRAP(ml_object, old_mesh_level, mesh_level));
641:       }

643:       level = fine_level - 1;
644:       if (size == 1) { /* convert ML P, R and A into seqaij format */
645:         for (mllevel=1; mllevel<Nlevels; mllevel++) {
646:           mlmat = &(ml_object->Amat[mllevel]);
647:           MatWrapML_SeqAIJ(mlmat,MAT_REUSE_MATRIX,&gridctx[level].A);
648:           level--;
649:         }
650:       } else { /* convert ML P and R into shell format, ML A into mpiaij format */
651:         for (mllevel=1; mllevel<Nlevels; mllevel++) {
652:           mlmat  = &(ml_object->Amat[mllevel]);
653:           MatWrapML_MPIAIJ(mlmat,MAT_REUSE_MATRIX,&gridctx[level].A);
654:           level--;
655:         }
656:       }

658:       for (level=0; level<fine_level; level++) {
659:         if (level > 0) {
660:           PCMGSetResidual(pc,level,PCMGResidualDefault,gridctx[level].A);
661:         }
662:         KSPSetOperators(gridctx[level].ksp,gridctx[level].A,gridctx[level].A);
663:       }
664:       PCMGSetResidual(pc,fine_level,PCMGResidualDefault,gridctx[fine_level].A);
665:       KSPSetOperators(gridctx[fine_level].ksp,gridctx[level].A,gridctx[fine_level].A);

667:       PCSetUp_MG(pc);
668:       return(0);
669:     } else {
670:       /* since ML can change the size of vectors/matrices at any level we must destroy everything */
671:       PCReset_ML(pc);
672:     }
673:   }

675:   /* setup special features of PCML */
676:   /*--------------------------------*/
677:   /* covert A to Aloc to be used by ML at fine grid */
678:   pc_ml->size = size;
679:   PetscObjectTypeCompare((PetscObject) A, MATSEQAIJ, &isSeq);
680:   PetscObjectTypeCompare((PetscObject) A, MATMPIAIJ, &isMPI);
681:   if (isMPI) {
682:     MatConvert_MPIAIJ_ML(A,NULL,MAT_INITIAL_MATRIX,&Aloc);
683:   } else if (isSeq) {
684:     Aloc = A;
685:     PetscObjectReference((PetscObject)Aloc);
686:   } else SETERRQ1(PetscObjectComm((PetscObject)pc),PETSC_ERR_ARG_WRONG, "Matrix type '%s' cannot be used with ML. ML can only handle AIJ matrices.",((PetscObject)A)->type_name);

688:   /* create and initialize struct 'PetscMLdata' */
689:   PetscNewLog(pc,&PetscMLdata);
690:   pc_ml->PetscMLdata = PetscMLdata;
691:   PetscMalloc1(Aloc->cmap->n+1,&PetscMLdata->pwork);

693:   VecCreate(PETSC_COMM_SELF,&PetscMLdata->x);
694:   VecSetSizes(PetscMLdata->x,Aloc->cmap->n,Aloc->cmap->n);
695:   VecSetType(PetscMLdata->x,VECSEQ);

697:   VecCreate(PETSC_COMM_SELF,&PetscMLdata->y);
698:   VecSetSizes(PetscMLdata->y,A->rmap->n,PETSC_DECIDE);
699:   VecSetType(PetscMLdata->y,VECSEQ);
700:   PetscMLdata->A    = A;
701:   PetscMLdata->Aloc = Aloc;
702:   if (pc_ml->dim) { /* create vecs around the coordinate data given */
703:     PetscInt  i,j,dim=pc_ml->dim;
704:     PetscInt  nloc = pc_ml->nloc,nlocghost;
705:     PetscReal *ghostedcoords;

707:     MatGetBlockSize(A,&bs);
708:     nlocghost = Aloc->cmap->n / bs;
709:     PetscMalloc1(dim*nlocghost,&ghostedcoords);
710:     for (i = 0; i < dim; i++) {
711:       /* copy coordinate values into first component of pwork */
712:       for (j = 0; j < nloc; j++) {
713:         PetscMLdata->pwork[bs * j] = pc_ml->coords[nloc * i + j];
714:       }
715:       /* get the ghost values */
716:       PetscML_comm(PetscMLdata->pwork,PetscMLdata);
717:       /* write into the vector */
718:       for (j = 0; j < nlocghost; j++) {
719:         ghostedcoords[i * nlocghost + j] = PetscMLdata->pwork[bs * j];
720:       }
721:     }
722:     /* replace the original coords with the ghosted coords, because these are
723:      * what ML needs */
724:     PetscFree(pc_ml->coords);
725:     pc_ml->coords = ghostedcoords;
726:   }

728:   /* create ML discretization matrix at fine grid */
729:   /* ML requires input of fine-grid matrix. It determines nlevels. */
730:   MatGetSize(Aloc,&m,&nlocal_allcols);
731:   MatGetBlockSize(A,&bs);
732:   PetscStackCall("ML_Create",ML_Create(&ml_object,pc_ml->MaxNlevels));
733:   PetscStackCall("ML_Comm_Set_UsrComm",ML_Comm_Set_UsrComm(ml_object->comm,PetscObjectComm((PetscObject)A)));
734:   pc_ml->ml_object = ml_object;
735:   PetscStackCall("ML_Init_Amatrix",ML_Init_Amatrix(ml_object,0,m,m,PetscMLdata));
736:   PetscStackCall("ML_Set_Amatrix_Getrow",ML_Set_Amatrix_Getrow(ml_object,0,PetscML_getrow,PetscML_comm,nlocal_allcols));
737:   PetscStackCall("ML_Set_Amatrix_Matvec",ML_Set_Amatrix_Matvec(ml_object,0,PetscML_matvec));

739:   PetscStackCall("ML_Set_Symmetrize",ML_Set_Symmetrize(ml_object,pc_ml->Symmetrize ? ML_YES : ML_NO));

741:   /* aggregation */
742:   PetscStackCall("ML_Aggregate_Create",ML_Aggregate_Create(&agg_object));
743:   pc_ml->agg_object = agg_object;

745:   {
746:     MatNullSpace mnull;
747:     MatGetNearNullSpace(A,&mnull);
748:     if (pc_ml->nulltype == PCML_NULLSPACE_AUTO) {
749:       if (mnull) pc_ml->nulltype = PCML_NULLSPACE_USER;
750:       else if (bs > 1) pc_ml->nulltype = PCML_NULLSPACE_BLOCK;
751:       else pc_ml->nulltype = PCML_NULLSPACE_SCALAR;
752:     }
753:     switch (pc_ml->nulltype) {
754:     case PCML_NULLSPACE_USER: {
755:       PetscScalar       *nullvec;
756:       const PetscScalar *v;
757:       PetscBool         has_const;
758:       PetscInt          i,j,mlocal,nvec,M;
759:       const Vec         *vecs;

761:       if (!mnull) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_USER,"Must provide explicit null space using MatSetNearNullSpace() to use user-specified null space");
762:       MatGetSize(A,&M,NULL);
763:       MatGetLocalSize(Aloc,&mlocal,NULL);
764:       MatNullSpaceGetVecs(mnull,&has_const,&nvec,&vecs);
765:       PetscMalloc1((nvec+!!has_const)*mlocal,&nullvec);
766:       if (has_const) for (i=0; i<mlocal; i++) nullvec[i] = 1.0/M;
767:       for (i=0; i<nvec; i++) {
768:         VecGetArrayRead(vecs[i],&v);
769:         for (j=0; j<mlocal; j++) nullvec[(i+!!has_const)*mlocal + j] = v[j];
770:         VecRestoreArrayRead(vecs[i],&v);
771:       }
772:       PetscStackCall("ML_Aggregate_Create",ML_Aggregate_Set_NullSpace(agg_object,bs,nvec+!!has_const,nullvec,mlocal);CHKERRQ(ierr));
773:       PetscFree(nullvec);
774:     } break;
775:     case PCML_NULLSPACE_BLOCK:
776:       PetscStackCall("ML_Aggregate_Set_NullSpace",ML_Aggregate_Set_NullSpace(agg_object,bs,bs,0,0);CHKERRQ(ierr));
777:       break;
778:     case PCML_NULLSPACE_SCALAR:
779:       break;
780:     default: SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_SUP,"Unknown null space type");
781:     }
782:   }
783:   PetscStackCall("ML_Aggregate_Set_MaxCoarseSize",ML_Aggregate_Set_MaxCoarseSize(agg_object,pc_ml->MaxCoarseSize));
784:   /* set options */
785:   switch (pc_ml->CoarsenScheme) {
786:   case 1:
787:     PetscStackCall("ML_Aggregate_Set_CoarsenScheme_Coupled",ML_Aggregate_Set_CoarsenScheme_Coupled(agg_object));break;
788:   case 2:
789:     PetscStackCall("ML_Aggregate_Set_CoarsenScheme_MIS",ML_Aggregate_Set_CoarsenScheme_MIS(agg_object));break;
790:   case 3:
791:     PetscStackCall("ML_Aggregate_Set_CoarsenScheme_METIS",ML_Aggregate_Set_CoarsenScheme_METIS(agg_object));break;
792:   }
793:   PetscStackCall("ML_Aggregate_Set_Threshold",ML_Aggregate_Set_Threshold(agg_object,pc_ml->Threshold));
794:   PetscStackCall("ML_Aggregate_Set_DampingFactor",ML_Aggregate_Set_DampingFactor(agg_object,pc_ml->DampingFactor));
795:   if (pc_ml->SpectralNormScheme_Anorm) {
796:     PetscStackCall("ML_Set_SpectralNormScheme_Anorm",ML_Set_SpectralNormScheme_Anorm(ml_object));
797:   }
798:   agg_object->keep_agg_information      = (int)pc_ml->KeepAggInfo;
799:   agg_object->keep_P_tentative          = (int)pc_ml->Reusable;
800:   agg_object->block_scaled_SA           = (int)pc_ml->BlockScaling;
801:   agg_object->minimizing_energy         = (int)pc_ml->EnergyMinimization;
802:   agg_object->minimizing_energy_droptol = (double)pc_ml->EnergyMinimizationDropTol;
803:   agg_object->cheap_minimizing_energy   = (int)pc_ml->EnergyMinimizationCheap;

805:   if (pc_ml->Aux) {
806:     if (!pc_ml->dim) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_USER,"Auxiliary matrix requires coordinates");
807:     ml_object->Amat[0].aux_data->threshold = pc_ml->AuxThreshold;
808:     ml_object->Amat[0].aux_data->enable    = 1;
809:     ml_object->Amat[0].aux_data->max_level = 10;
810:     ml_object->Amat[0].num_PDEs            = bs;
811:   }

813:   MatGetInfo(A,MAT_LOCAL,&info);
814:   ml_object->Amat[0].N_nonzeros = (int) info.nz_used;

816:   if (pc_ml->dim) {
817:     PetscInt               i,dim = pc_ml->dim;
818:     ML_Aggregate_Viz_Stats *grid_info;
819:     PetscInt               nlocghost;

821:     MatGetBlockSize(A,&bs);
822:     nlocghost = Aloc->cmap->n / bs;

824:     PetscStackCall("ML_Aggregate_VizAndStats_Setup(",ML_Aggregate_VizAndStats_Setup(ml_object)); /* create ml info for coords */
825:     grid_info = (ML_Aggregate_Viz_Stats*) ml_object->Grid[0].Grid;
826:     for (i = 0; i < dim; i++) {
827:       /* set the finest level coordinates to point to the column-order array
828:        * in pc_ml */
829:       /* NOTE: must point away before VizAndStats_Clean so ML doesn't free */
830:       switch (i) {
831:       case 0: grid_info->x = pc_ml->coords + nlocghost * i; break;
832:       case 1: grid_info->y = pc_ml->coords + nlocghost * i; break;
833:       case 2: grid_info->z = pc_ml->coords + nlocghost * i; break;
834:       default: SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_ARG_SIZ,"PCML coordinate dimension must be <= 3");
835:       }
836:     }
837:     grid_info->Ndim = dim;
838:   }

840:   /* repartitioning */
841:   if (pc_ml->Repartition) {
842:     PetscStackCall("ML_Repartition_Activate",ML_Repartition_Activate(ml_object));
843:     PetscStackCall("ML_Repartition_Set_LargestMinMaxRatio",ML_Repartition_Set_LargestMinMaxRatio(ml_object,pc_ml->MaxMinRatio));
844:     PetscStackCall("ML_Repartition_Set_MinPerProc",ML_Repartition_Set_MinPerProc(ml_object,pc_ml->MinPerProc));
845:     PetscStackCall("ML_Repartition_Set_PutOnSingleProc",ML_Repartition_Set_PutOnSingleProc(ml_object,pc_ml->PutOnSingleProc));
846: #if 0                           /* Function not yet defined in ml-6.2 */
847:     /* I'm not sure what compatibility issues might crop up if we partitioned
848:      * on the finest level, so to be safe repartition starts on the next
849:      * finest level (reflection default behavior in
850:      * ml_MultiLevelPreconditioner) */
851:     PetscStackCall("ML_Repartition_Set_StartLevel",ML_Repartition_Set_StartLevel(ml_object,1));
852: #endif

854:     if (!pc_ml->RepartitionType) {
855:       PetscInt i;

857:       if (!pc_ml->dim) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_USER,"ML Zoltan repartitioning requires coordinates");
858:       PetscStackCall("ML_Repartition_Set_Partitioner",ML_Repartition_Set_Partitioner(ml_object,ML_USEZOLTAN));
859:       PetscStackCall("ML_Aggregate_Set_Dimensions",ML_Aggregate_Set_Dimensions(agg_object, pc_ml->dim));

861:       for (i = 0; i < ml_object->ML_num_levels; i++) {
862:         ML_Aggregate_Viz_Stats *grid_info = (ML_Aggregate_Viz_Stats*)ml_object->Grid[i].Grid;
863:         grid_info->zoltan_type = pc_ml->ZoltanScheme + 1; /* ml numbers options 1, 2, 3 */
864:         /* defaults from ml_agg_info.c */
865:         grid_info->zoltan_estimated_its = 40; /* only relevant to hypergraph / fast hypergraph */
866:         grid_info->zoltan_timers        = 0;
867:         grid_info->smoothing_steps      = 4;  /* only relevant to hypergraph / fast hypergraph */
868:       }
869:     } else {
870:       PetscStackCall("ML_Repartition_Set_Partitioner",ML_Repartition_Set_Partitioner(ml_object,ML_USEPARMETIS));
871:     }
872:   }

874:   if (pc_ml->OldHierarchy) {
875:     PetscStackCall("ML_Gen_MGHierarchy_UsingAggregation",Nlevels = ML_Gen_MGHierarchy_UsingAggregation(ml_object,0,ML_INCREASING,agg_object));
876:   } else {
877:     PetscStackCall("ML_Gen_MultiLevelHierarchy_UsingAggregation",Nlevels = ML_Gen_MultiLevelHierarchy_UsingAggregation(ml_object,0,ML_INCREASING,agg_object));
878:   }
879:   if (Nlevels<=0) SETERRQ1(PetscObjectComm((PetscObject)pc),PETSC_ERR_ARG_OUTOFRANGE,"Nlevels %d must > 0",Nlevels);
880:   pc_ml->Nlevels = Nlevels;
881:   fine_level     = Nlevels - 1;

883:   PCMGSetLevels(pc,Nlevels,NULL);
884:   /* set default smoothers */
885:   for (level=1; level<=fine_level; level++) {
886:     PCMGGetSmoother(pc,level,&smoother);
887:     KSPSetType(smoother,KSPRICHARDSON);
888:     KSPGetPC(smoother,&subpc);
889:     PCSetType(subpc,PCSOR);
890:   }
891:   PetscObjectOptionsBegin((PetscObject)pc);
892:   PCSetFromOptions_MG(PetscOptionsObject,pc); /* should be called in PCSetFromOptions_ML(), but cannot be called prior to PCMGSetLevels() */
893:   PetscOptionsEnd();

895:   PetscMalloc1(Nlevels,&gridctx);

897:   pc_ml->gridctx = gridctx;

899:   /* wrap ML matrices by PETSc shell matrices at coarsened grids.
900:      Level 0 is the finest grid for ML, but coarsest for PETSc! */
901:   gridctx[fine_level].A = A;

903:   level = fine_level - 1;
904:   if (size == 1) { /* convert ML P, R and A into seqaij format */
905:     for (mllevel=1; mllevel<Nlevels; mllevel++) {
906:       mlmat = &(ml_object->Pmat[mllevel]);
907:       MatWrapML_SeqAIJ(mlmat,MAT_INITIAL_MATRIX,&gridctx[level].P);
908:       mlmat = &(ml_object->Rmat[mllevel-1]);
909:       MatWrapML_SeqAIJ(mlmat,MAT_INITIAL_MATRIX,&gridctx[level].R);

911:       mlmat = &(ml_object->Amat[mllevel]);
912:       MatWrapML_SeqAIJ(mlmat,MAT_INITIAL_MATRIX,&gridctx[level].A);
913:       level--;
914:     }
915:   } else { /* convert ML P and R into shell format, ML A into mpiaij format */
916:     for (mllevel=1; mllevel<Nlevels; mllevel++) {
917:       mlmat  = &(ml_object->Pmat[mllevel]);
918:       MatWrapML_SHELL(mlmat,MAT_INITIAL_MATRIX,&gridctx[level].P);
919:       mlmat  = &(ml_object->Rmat[mllevel-1]);
920:       MatWrapML_SHELL(mlmat,MAT_INITIAL_MATRIX,&gridctx[level].R);

922:       mlmat  = &(ml_object->Amat[mllevel]);
923:       MatWrapML_MPIAIJ(mlmat,MAT_INITIAL_MATRIX,&gridctx[level].A);
924:       level--;
925:     }
926:   }

928:   /* create vectors and ksp at all levels */
929:   for (level=0; level<fine_level; level++) {
930:     level1 = level + 1;
931:     VecCreate(((PetscObject)gridctx[level].A)->comm,&gridctx[level].x);
932:     VecSetSizes(gridctx[level].x,gridctx[level].A->cmap->n,PETSC_DECIDE);
933:     VecSetType(gridctx[level].x,VECMPI);
934:     PCMGSetX(pc,level,gridctx[level].x);

936:     VecCreate(((PetscObject)gridctx[level].A)->comm,&gridctx[level].b);
937:     VecSetSizes(gridctx[level].b,gridctx[level].A->rmap->n,PETSC_DECIDE);
938:     VecSetType(gridctx[level].b,VECMPI);
939:     PCMGSetRhs(pc,level,gridctx[level].b);

941:     VecCreate(((PetscObject)gridctx[level1].A)->comm,&gridctx[level1].r);
942:     VecSetSizes(gridctx[level1].r,gridctx[level1].A->rmap->n,PETSC_DECIDE);
943:     VecSetType(gridctx[level1].r,VECMPI);
944:     PCMGSetR(pc,level1,gridctx[level1].r);

946:     if (level == 0) {
947:       PCMGGetCoarseSolve(pc,&gridctx[level].ksp);
948:     } else {
949:       PCMGGetSmoother(pc,level,&gridctx[level].ksp);
950:     }
951:   }
952:   PCMGGetSmoother(pc,fine_level,&gridctx[fine_level].ksp);

954:   /* create coarse level and the interpolation between the levels */
955:   for (level=0; level<fine_level; level++) {
956:     level1 = level + 1;
957:     PCMGSetInterpolation(pc,level1,gridctx[level].P);
958:     PCMGSetRestriction(pc,level1,gridctx[level].R);
959:     if (level > 0) {
960:       PCMGSetResidual(pc,level,PCMGResidualDefault,gridctx[level].A);
961:     }
962:     KSPSetOperators(gridctx[level].ksp,gridctx[level].A,gridctx[level].A);
963:   }
964:   PCMGSetResidual(pc,fine_level,PCMGResidualDefault,gridctx[fine_level].A);
965:   KSPSetOperators(gridctx[fine_level].ksp,gridctx[level].A,gridctx[fine_level].A);

967:   /* put coordinate info in levels */
968:   if (pc_ml->dim) {
969:     PetscInt  i,j,dim = pc_ml->dim;
970:     PetscInt  bs, nloc;
971:     PC        subpc;
972:     PetscReal *array;

974:     level = fine_level;
975:     for (mllevel = 0; mllevel < Nlevels; mllevel++) {
976:       ML_Aggregate_Viz_Stats *grid_info = (ML_Aggregate_Viz_Stats*)ml_object->Amat[mllevel].to->Grid->Grid;
977:       MPI_Comm               comm       = ((PetscObject)gridctx[level].A)->comm;

979:       MatGetBlockSize (gridctx[level].A, &bs);
980:       MatGetLocalSize (gridctx[level].A, NULL, &nloc);
981:       nloc /= bs; /* number of local nodes */

983:       VecCreate(comm,&gridctx[level].coords);
984:       VecSetSizes(gridctx[level].coords,dim * nloc,PETSC_DECIDE);
985:       VecSetType(gridctx[level].coords,VECMPI);
986:       VecGetArray(gridctx[level].coords,&array);
987:       for (j = 0; j < nloc; j++) {
988:         for (i = 0; i < dim; i++) {
989:           switch (i) {
990:           case 0: array[dim * j + i] = grid_info->x[j]; break;
991:           case 1: array[dim * j + i] = grid_info->y[j]; break;
992:           case 2: array[dim * j + i] = grid_info->z[j]; break;
993:           default: SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_ARG_SIZ,"PCML coordinate dimension must be <= 3");
994:           }
995:         }
996:       }

998:       /* passing coordinates to smoothers/coarse solver, should they need them */
999:       KSPGetPC(gridctx[level].ksp,&subpc);
1000:       PCSetCoordinates(subpc,dim,nloc,array);
1001:       VecRestoreArray(gridctx[level].coords,&array);
1002:       level--;
1003:     }
1004:   }

1006:   /* setupcalled is set to 0 so that MG is setup from scratch */
1007:   pc->setupcalled = 0;
1008:   PCSetUp_MG(pc);
1009:   return(0);
1010: }

1012: /* -------------------------------------------------------------------------- */
1013: /*
1014:    PCDestroy_ML - Destroys the private context for the ML preconditioner
1015:    that was created with PCCreate_ML().

1017:    Input Parameter:
1018: .  pc - the preconditioner context

1020:    Application Interface Routine: PCDestroy()
1021: */
1024: PetscErrorCode PCDestroy_ML(PC pc)
1025: {
1027:   PC_MG          *mg   = (PC_MG*)pc->data;
1028:   PC_ML          *pc_ml= (PC_ML*)mg->innerctx;

1031:   PCReset_ML(pc);
1032:   PetscFree(pc_ml);
1033:   PCDestroy_MG(pc);
1034:   PetscObjectComposeFunction((PetscObject)pc,"PCSetCoordinates_C",NULL);
1035:   return(0);
1036: }

1040: PetscErrorCode PCSetFromOptions_ML(PetscOptions *PetscOptionsObject,PC pc)
1041: {
1043:   PetscInt       indx,PrintLevel,partindx;
1044:   const char     *scheme[] = {"Uncoupled","Coupled","MIS","METIS"};
1045:   const char     *part[]   = {"Zoltan","ParMETIS"};
1046: #if defined(HAVE_ML_ZOLTAN)
1047:   PetscInt   zidx;
1048:   const char *zscheme[] = {"RCB","hypergraph","fast_hypergraph"};
1049: #endif
1050:   PC_MG       *mg    = (PC_MG*)pc->data;
1051:   PC_ML       *pc_ml = (PC_ML*)mg->innerctx;
1052:   PetscMPIInt size;
1053:   MPI_Comm    comm;

1056:   PetscObjectGetComm((PetscObject)pc,&comm);
1057:   MPI_Comm_size(comm,&size);
1058:   PetscOptionsHead(PetscOptionsObject,"ML options");

1060:   PrintLevel = 0;
1061:   indx       = 0;
1062:   partindx   = 0;

1064:   PetscOptionsInt("-pc_ml_PrintLevel","Print level","ML_Set_PrintLevel",PrintLevel,&PrintLevel,NULL);
1065:   PetscStackCall("ML_Set_PrintLeve",ML_Set_PrintLevel(PrintLevel));
1066:   PetscOptionsInt("-pc_ml_maxNlevels","Maximum number of levels","None",pc_ml->MaxNlevels,&pc_ml->MaxNlevels,NULL);
1067:   PetscOptionsInt("-pc_ml_maxCoarseSize","Maximum coarsest mesh size","ML_Aggregate_Set_MaxCoarseSize",pc_ml->MaxCoarseSize,&pc_ml->MaxCoarseSize,NULL);
1068:   PetscOptionsEList("-pc_ml_CoarsenScheme","Aggregate Coarsen Scheme","ML_Aggregate_Set_CoarsenScheme_*",scheme,4,scheme[0],&indx,NULL);

1070:   pc_ml->CoarsenScheme = indx;

1072:   PetscOptionsReal("-pc_ml_DampingFactor","P damping factor","ML_Aggregate_Set_DampingFactor",pc_ml->DampingFactor,&pc_ml->DampingFactor,NULL);
1073:   PetscOptionsReal("-pc_ml_Threshold","Smoother drop tol","ML_Aggregate_Set_Threshold",pc_ml->Threshold,&pc_ml->Threshold,NULL);
1074:   PetscOptionsBool("-pc_ml_SpectralNormScheme_Anorm","Method used for estimating spectral radius","ML_Set_SpectralNormScheme_Anorm",pc_ml->SpectralNormScheme_Anorm,&pc_ml->SpectralNormScheme_Anorm,NULL);
1075:   PetscOptionsBool("-pc_ml_Symmetrize","Symmetrize aggregation","ML_Set_Symmetrize",pc_ml->Symmetrize,&pc_ml->Symmetrize,NULL);
1076:   PetscOptionsBool("-pc_ml_BlockScaling","Scale all dofs at each node together","None",pc_ml->BlockScaling,&pc_ml->BlockScaling,NULL);
1077:   PetscOptionsEnum("-pc_ml_nullspace","Which type of null space information to use","None",PCMLNullSpaceTypes,(PetscEnum)pc_ml->nulltype,(PetscEnum*)&pc_ml->nulltype,NULL);
1078:   PetscOptionsInt("-pc_ml_EnergyMinimization","Energy minimization norm type (0=no minimization; see ML manual for 1,2,3; -1 and 4 undocumented)","None",pc_ml->EnergyMinimization,&pc_ml->EnergyMinimization,NULL);
1079:   PetscOptionsBool("-pc_ml_reuse_interpolation","Reuse the interpolation operators when possible (cheaper, weaker when matrix entries change a lot)","None",pc_ml->reuse_interpolation,&pc_ml->reuse_interpolation,NULL);
1080:   /*
1081:     The following checks a number of conditions.  If we let this stuff slip by, then ML's error handling will take over.
1082:     This is suboptimal because it amounts to calling exit(1) so we check for the most common conditions.

1084:     We also try to set some sane defaults when energy minimization is activated, otherwise it's hard to find a working
1085:     combination of options and ML's exit(1) explanations don't help matters.
1086:   */
1087:   if (pc_ml->EnergyMinimization < -1 || pc_ml->EnergyMinimization > 4) SETERRQ(comm,PETSC_ERR_ARG_OUTOFRANGE,"EnergyMinimization must be in range -1..4");
1088:   if (pc_ml->EnergyMinimization == 4 && size > 1) SETERRQ(comm,PETSC_ERR_SUP,"Energy minimization type 4 does not work in parallel");
1089:   if (pc_ml->EnergyMinimization == 4) {PetscInfo(pc,"Mandel's energy minimization scheme is experimental and broken in ML-6.2\n");}
1090:   if (pc_ml->EnergyMinimization) {
1091:     PetscOptionsReal("-pc_ml_EnergyMinimizationDropTol","Energy minimization drop tolerance","None",pc_ml->EnergyMinimizationDropTol,&pc_ml->EnergyMinimizationDropTol,NULL);
1092:   }
1093:   if (pc_ml->EnergyMinimization == 2) {
1094:     /* According to ml_MultiLevelPreconditioner.cpp, this option is only meaningful for norm type (2) */
1095:     PetscOptionsBool("-pc_ml_EnergyMinimizationCheap","Use cheaper variant of norm type 2","None",pc_ml->EnergyMinimizationCheap,&pc_ml->EnergyMinimizationCheap,NULL);
1096:   }
1097:   /* energy minimization sometimes breaks if this is turned off, the more classical stuff should be okay without it */
1098:   if (pc_ml->EnergyMinimization) pc_ml->KeepAggInfo = PETSC_TRUE;
1099:   PetscOptionsBool("-pc_ml_KeepAggInfo","Allows the preconditioner to be reused, or auxilliary matrices to be generated","None",pc_ml->KeepAggInfo,&pc_ml->KeepAggInfo,NULL);
1100:   /* Option (-1) doesn't work at all (calls exit(1)) if the tentative restriction operator isn't stored. */
1101:   if (pc_ml->EnergyMinimization == -1) pc_ml->Reusable = PETSC_TRUE;
1102:   PetscOptionsBool("-pc_ml_Reusable","Store intermedaiate data structures so that the multilevel hierarchy is reusable","None",pc_ml->Reusable,&pc_ml->Reusable,NULL);
1103:   /*
1104:     ML's C API is severely underdocumented and lacks significant functionality.  The C++ API calls
1105:     ML_Gen_MultiLevelHierarchy_UsingAggregation() which is a modified copy (!?) of the documented function
1106:     ML_Gen_MGHierarchy_UsingAggregation().  This modification, however, does not provide a strict superset of the
1107:     functionality in the old function, so some users may still want to use it.  Note that many options are ignored in
1108:     this context, but ML doesn't provide a way to find out which ones.
1109:    */
1110:   PetscOptionsBool("-pc_ml_OldHierarchy","Use old routine to generate hierarchy","None",pc_ml->OldHierarchy,&pc_ml->OldHierarchy,NULL);
1111:   PetscOptionsBool("-pc_ml_repartition", "Allow ML to repartition levels of the heirarchy","ML_Repartition_Activate",pc_ml->Repartition,&pc_ml->Repartition,NULL);
1112:   if (pc_ml->Repartition) {
1113:     PetscOptionsReal("-pc_ml_repartitionMaxMinRatio", "Acceptable ratio of repartitioned sizes","ML_Repartition_Set_LargestMinMaxRatio",pc_ml->MaxMinRatio,&pc_ml->MaxMinRatio,NULL);
1114:     PetscOptionsInt("-pc_ml_repartitionMinPerProc", "Smallest repartitioned size","ML_Repartition_Set_MinPerProc",pc_ml->MinPerProc,&pc_ml->MinPerProc,NULL);
1115:     PetscOptionsInt("-pc_ml_repartitionPutOnSingleProc", "Problem size automatically repartitioned to one processor","ML_Repartition_Set_PutOnSingleProc",pc_ml->PutOnSingleProc,&pc_ml->PutOnSingleProc,NULL);
1116: #if defined(HAVE_ML_ZOLTAN)
1117:     partindx = 0;
1118:     PetscOptionsEList("-pc_ml_repartitionType", "Repartitioning library to use","ML_Repartition_Set_Partitioner",part,2,part[0],&partindx,NULL);

1120:     pc_ml->RepartitionType = partindx;
1121:     if (!partindx) {
1122:       PetscInt zindx = 0;

1124:       PetscOptionsEList("-pc_ml_repartitionZoltanScheme", "Repartitioning scheme to use","None",zscheme,3,zscheme[0],&zindx,NULL);

1126:       pc_ml->ZoltanScheme = zindx;
1127:     }
1128: #else
1129:     partindx = 1;
1130:     PetscOptionsEList("-pc_ml_repartitionType", "Repartitioning library to use","ML_Repartition_Set_Partitioner",part,2,part[1],&partindx,NULL);
1131:     pc_ml->RepartitionType = partindx;
1132:     if (!partindx) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_SUP_SYS,"ML not compiled with Zoltan");
1133: #endif
1134:     PetscOptionsBool("-pc_ml_Aux","Aggregate using auxiliary coordinate-based laplacian","None",pc_ml->Aux,&pc_ml->Aux,NULL);
1135:     PetscOptionsReal("-pc_ml_AuxThreshold","Auxiliary smoother drop tol","None",pc_ml->AuxThreshold,&pc_ml->AuxThreshold,NULL);
1136:   }
1137:   PetscOptionsTail();
1138:   return(0);
1139: }

1141: /* -------------------------------------------------------------------------- */
1142: /*
1143:    PCCreate_ML - Creates a ML preconditioner context, PC_ML,
1144:    and sets this as the private data within the generic preconditioning
1145:    context, PC, that was created within PCCreate().

1147:    Input Parameter:
1148: .  pc - the preconditioner context

1150:    Application Interface Routine: PCCreate()
1151: */

1153: /*MC
1154:      PCML - Use algebraic multigrid preconditioning. This preconditioner requires you provide
1155:        fine grid discretization matrix. The coarser grid matrices and restriction/interpolation
1156:        operators are computed by ML, with the matrices coverted to PETSc matrices in aij format
1157:        and the restriction/interpolation operators wrapped as PETSc shell matrices.

1159:    Options Database Key:
1160:    Multigrid options(inherited):
1161: +  -pc_mg_cycles <1>: 1 for V cycle, 2 for W-cycle (MGSetCycles)
1162: .  -pc_mg_smoothup <1>: Number of post-smoothing steps (MGSetNumberSmoothUp)
1163: .  -pc_mg_smoothdown <1>: Number of pre-smoothing steps (MGSetNumberSmoothDown)
1164: -  -pc_mg_type <multiplicative>: (one of) additive multiplicative full kascade
1165:    ML options:
1166: +  -pc_ml_PrintLevel <0>: Print level (ML_Set_PrintLevel)
1167: .  -pc_ml_maxNlevels <10>: Maximum number of levels (None)
1168: .  -pc_ml_maxCoarseSize <1>: Maximum coarsest mesh size (ML_Aggregate_Set_MaxCoarseSize)
1169: .  -pc_ml_CoarsenScheme <Uncoupled>: (one of) Uncoupled Coupled MIS METIS
1170: .  -pc_ml_DampingFactor <1.33333>: P damping factor (ML_Aggregate_Set_DampingFactor)
1171: .  -pc_ml_Threshold <0>: Smoother drop tol (ML_Aggregate_Set_Threshold)
1172: .  -pc_ml_SpectralNormScheme_Anorm <false>: Method used for estimating spectral radius (ML_Set_SpectralNormScheme_Anorm)
1173: .  -pc_ml_repartition <false>: Allow ML to repartition levels of the heirarchy (ML_Repartition_Activate)
1174: .  -pc_ml_repartitionMaxMinRatio <1.3>: Acceptable ratio of repartitioned sizes (ML_Repartition_Set_LargestMinMaxRatio)
1175: .  -pc_ml_repartitionMinPerProc <512>: Smallest repartitioned size (ML_Repartition_Set_MinPerProc)
1176: .  -pc_ml_repartitionPutOnSingleProc <5000>: Problem size automatically repartitioned to one processor (ML_Repartition_Set_PutOnSingleProc)
1177: .  -pc_ml_repartitionType <Zoltan>: Repartitioning library to use (ML_Repartition_Set_Partitioner)
1178: .  -pc_ml_repartitionZoltanScheme <RCB>: Repartitioning scheme to use (None)
1179: .  -pc_ml_Aux <false>: Aggregate using auxiliary coordinate-based laplacian (None)
1180: -  -pc_ml_AuxThreshold <0.0>: Auxiliary smoother drop tol (None)

1182:    Level: intermediate

1184:   Concepts: multigrid

1186: .seealso:  PCCreate(), PCSetType(), PCType (for list of available types), PC, PCMGType,
1187:            PCMGSetLevels(), PCMGGetLevels(), PCMGSetType(), MPSetCycles(), PCMGSetNumberSmoothDown(),
1188:            PCMGSetNumberSmoothUp(), PCMGGetCoarseSolve(), PCMGSetResidual(), PCMGSetInterpolation(),
1189:            PCMGSetRestriction(), PCMGGetSmoother(), PCMGGetSmootherUp(), PCMGGetSmootherDown(),
1190:            PCMGSetCyclesOnLevel(), PCMGSetRhs(), PCMGSetX(), PCMGSetR()
1191: M*/

1195: PETSC_EXTERN PetscErrorCode PCCreate_ML(PC pc)
1196: {
1198:   PC_ML          *pc_ml;
1199:   PC_MG          *mg;

1202:   /* PCML is an inherited class of PCMG. Initialize pc as PCMG */
1203:   PCSetType(pc,PCMG); /* calls PCCreate_MG() and MGCreate_Private() */
1204:   PetscObjectChangeTypeName((PetscObject)pc,PCML);
1205:   /* Since PCMG tries to use DM assocated with PC must delete it */
1206:   DMDestroy(&pc->dm);
1207:   mg           = (PC_MG*)pc->data;
1208:   mg->galerkin = 2;             /* Use Galerkin, but it is computed externally */

1210:   /* create a supporting struct and attach it to pc */
1211:   PetscNewLog(pc,&pc_ml);
1212:   mg->innerctx = pc_ml;

1214:   pc_ml->ml_object                = 0;
1215:   pc_ml->agg_object               = 0;
1216:   pc_ml->gridctx                  = 0;
1217:   pc_ml->PetscMLdata              = 0;
1218:   pc_ml->Nlevels                  = -1;
1219:   pc_ml->MaxNlevels               = 10;
1220:   pc_ml->MaxCoarseSize            = 1;
1221:   pc_ml->CoarsenScheme            = 1;
1222:   pc_ml->Threshold                = 0.0;
1223:   pc_ml->DampingFactor            = 4.0/3.0;
1224:   pc_ml->SpectralNormScheme_Anorm = PETSC_FALSE;
1225:   pc_ml->size                     = 0;
1226:   pc_ml->dim                      = 0;
1227:   pc_ml->nloc                     = 0;
1228:   pc_ml->coords                   = 0;
1229:   pc_ml->Repartition              = PETSC_FALSE;
1230:   pc_ml->MaxMinRatio              = 1.3;
1231:   pc_ml->MinPerProc               = 512;
1232:   pc_ml->PutOnSingleProc          = 5000;
1233:   pc_ml->RepartitionType          = 0;
1234:   pc_ml->ZoltanScheme             = 0;
1235:   pc_ml->Aux                      = PETSC_FALSE;
1236:   pc_ml->AuxThreshold             = 0.0;

1238:   /* allow for coordinates to be passed */
1239:   PetscObjectComposeFunction((PetscObject)pc,"PCSetCoordinates_C",PCSetCoordinates_ML);

1241:   /* overwrite the pointers of PCMG by the functions of PCML */
1242:   pc->ops->setfromoptions = PCSetFromOptions_ML;
1243:   pc->ops->setup          = PCSetUp_ML;
1244:   pc->ops->reset          = PCReset_ML;
1245:   pc->ops->destroy        = PCDestroy_ML;
1246:   return(0);
1247: }