Actual source code: plexorient.c

petsc-3.6.1 2015-08-06
Report Typos and Errors
  1: #include <petsc/private/dmpleximpl.h>   /*I      "petscdmplex.h"   I*/
  2: #include <petscsf.h>

  6: /*@
  7:   DMPlexReverseCell - Give a mesh cell the opposite orientation

  9:   Input Parameters:
 10: + dm   - The DM
 11: - cell - The cell number

 13:   Note: The modification of the DM is done in-place.

 15:   Level: advanced

 17: .seealso: DMPlexOrient(), DMCreate(), DMPLEX
 18: @*/
 19: PetscErrorCode DMPlexReverseCell(DM dm, PetscInt cell)
 20: {
 21:   /* Note that the reverse orientation ro of a face with orientation o is:

 23:        ro = o >= 0 ? -(faceSize - o) : faceSize + o

 25:      where faceSize is the size of the cone for the face.
 26:   */
 27:   const PetscInt *cone,    *coneO, *support;
 28:   PetscInt       *revcone, *revconeO;
 29:   PetscInt        maxConeSize, coneSize, supportSize, faceSize, cp, sp;
 30:   PetscErrorCode  ierr;

 33:   DMPlexGetMaxSizes(dm, &maxConeSize, NULL);
 34:   DMGetWorkArray(dm, maxConeSize, PETSC_INT, &revcone);
 35:   DMGetWorkArray(dm, maxConeSize, PETSC_INT, &revconeO);
 36:   /* Reverse cone, and reverse orientations of faces */
 37:   DMPlexGetConeSize(dm, cell, &coneSize);
 38:   DMPlexGetCone(dm, cell, &cone);
 39:   DMPlexGetConeOrientation(dm, cell, &coneO);
 40:   for (cp = 0; cp < coneSize; ++cp) {
 41:     const PetscInt rcp = coneSize-cp-1;

 43:     DMPlexGetConeSize(dm, cone[rcp], &faceSize);
 44:     revcone[cp]  = cone[rcp];
 45:     revconeO[cp] = coneO[rcp] >= 0 ? -(faceSize-coneO[rcp]) : faceSize+coneO[rcp];
 46:   }
 47:   DMPlexSetCone(dm, cell, revcone);
 48:   DMPlexSetConeOrientation(dm, cell, revconeO);
 49:   /* Reverse orientation of this cell in the support hypercells */
 50:   faceSize = coneSize;
 51:   DMPlexGetSupportSize(dm, cell, &supportSize);
 52:   DMPlexGetSupport(dm, cell, &support);
 53:   for (sp = 0; sp < supportSize; ++sp) {
 54:     DMPlexGetConeSize(dm, support[sp], &coneSize);
 55:     DMPlexGetCone(dm, support[sp], &cone);
 56:     DMPlexGetConeOrientation(dm, support[sp], &coneO);
 57:     for (cp = 0; cp < coneSize; ++cp) {
 58:       if (cone[cp] != cell) continue;
 59:       DMPlexInsertConeOrientation(dm, support[sp], cp, coneO[cp] >= 0 ? -(faceSize-coneO[cp]) : faceSize+coneO[cp]);
 60:     }
 61:   }
 62:   DMRestoreWorkArray(dm, maxConeSize, PETSC_INT, &revcone);
 63:   DMRestoreWorkArray(dm, maxConeSize, PETSC_INT, &revconeO);
 64:   return(0);
 65: }

 69: /*
 70:   - Checks face match
 71:     - Flips non-matching
 72:   - Inserts faces of support cells in FIFO
 73: */
 74: static PetscErrorCode DMPlexCheckFace_Internal(DM dm, PetscInt *faceFIFO, PetscInt *fTop, PetscInt *fBottom, PetscInt cStart, PetscInt fStart, PetscInt fEnd, PetscBT seenCells, PetscBT flippedCells, PetscBT seenFaces)
 75: {
 76:   const PetscInt *support, *coneA, *coneB, *coneOA, *coneOB;
 77:   PetscInt        supportSize, coneSizeA, coneSizeB, posA = -1, posB = -1;
 78:   PetscInt        face, dim, seenA, flippedA, seenB, flippedB, mismatch, c;
 79:   PetscErrorCode  ierr;

 82:   face = faceFIFO[(*fTop)++];
 83:   DMGetDimension(dm, &dim);
 84:   DMPlexGetSupportSize(dm, face, &supportSize);
 85:   DMPlexGetSupport(dm, face, &support);
 86:   if (supportSize < 2) return(0);
 87:   if (supportSize != 2) SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Faces should separate only two cells, not %d", supportSize);
 88:   seenA    = PetscBTLookup(seenCells,    support[0]-cStart);
 89:   flippedA = PetscBTLookup(flippedCells, support[0]-cStart) ? 1 : 0;
 90:   seenB    = PetscBTLookup(seenCells,    support[1]-cStart);
 91:   flippedB = PetscBTLookup(flippedCells, support[1]-cStart) ? 1 : 0;

 93:   DMPlexGetConeSize(dm, support[0], &coneSizeA);
 94:   DMPlexGetConeSize(dm, support[1], &coneSizeB);
 95:   DMPlexGetCone(dm, support[0], &coneA);
 96:   DMPlexGetCone(dm, support[1], &coneB);
 97:   DMPlexGetConeOrientation(dm, support[0], &coneOA);
 98:   DMPlexGetConeOrientation(dm, support[1], &coneOB);
 99:   for (c = 0; c < coneSizeA; ++c) {
100:     if (!PetscBTLookup(seenFaces, coneA[c]-fStart)) {
101:       faceFIFO[(*fBottom)++] = coneA[c];
102:       PetscBTSet(seenFaces, coneA[c]-fStart);
103:     }
104:     if (coneA[c] == face) posA = c;
105:     if (*fBottom > fEnd-fStart) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Face %d was pushed exceeding capacity %d > %d", coneA[c], *fBottom, fEnd-fStart);
106:   }
107:   if (posA < 0) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %d could not be located in cell %d", face, support[0]);
108:   for (c = 0; c < coneSizeB; ++c) {
109:     if (!PetscBTLookup(seenFaces, coneB[c]-fStart)) {
110:       faceFIFO[(*fBottom)++] = coneB[c];
111:       PetscBTSet(seenFaces, coneB[c]-fStart);
112:     }
113:     if (coneB[c] == face) posB = c;
114:     if (*fBottom > fEnd-fStart) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Face %d was pushed exceeding capacity %d > %d", coneA[c], *fBottom, fEnd-fStart);
115:   }
116:   if (posB < 0) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %d could not be located in cell %d", face, support[1]);

118:   if (dim == 1) {
119:     mismatch = posA == posB;
120:   } else {
121:     mismatch = coneOA[posA] == coneOB[posB];
122:   }

124:   if (mismatch ^ (flippedA ^ flippedB)) {
125:     if (seenA && seenB) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Previously seen cells %d and %d do not match: Fault mesh is non-orientable", support[0], support[1]);
126:     if (!seenA && !flippedA) {
127:       PetscBTSet(flippedCells, support[0]-cStart);
128:     } else if (!seenB && !flippedB) {
129:       PetscBTSet(flippedCells, support[1]-cStart);
130:     } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Inconsistent mesh orientation: Fault mesh is non-orientable");
131:   } else if (mismatch && flippedA && flippedB) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Attempt to flip already flipped cell: Fault mesh is non-orientable");
132:   PetscBTSet(seenCells, support[0]-cStart);
133:   PetscBTSet(seenCells, support[1]-cStart);
134:   return(0);
135: }

139: /*@
140:   DMPlexOrient - Give a consistent orientation to the input mesh

142:   Input Parameters:
143: . dm - The DM

145:   Note: The orientation data for the DM are change in-place.
146: $ This routine will fail for non-orientable surfaces, such as the Moebius strip.

148:   Level: advanced

150: .seealso: DMCreate(), DMPLEX
151: @*/
152: PetscErrorCode DMPlexOrient(DM dm)
153: {
154:   MPI_Comm           comm;
155:   PetscSF            sf;
156:   const PetscInt    *lpoints;
157:   const PetscSFNode *rpoints;
158:   PetscSFNode       *rorntComp = NULL, *lorntComp = NULL;
159:   PetscInt          *numNeighbors, **neighbors;
160:   PetscSFNode       *nrankComp;
161:   PetscBool         *match, *flipped;
162:   PetscBT            seenCells, flippedCells, seenFaces;
163:   PetscInt          *faceFIFO, fTop, fBottom, *cellComp, *faceComp;
164:   PetscInt           numLeaves, numRoots, dim, h, cStart, cEnd, c, cell, fStart, fEnd, face, off, totNeighbors = 0;
165:   PetscMPIInt        rank, numComponents, comp = 0;
166:   PetscBool          flg;
167:   PetscErrorCode     ierr;

170:   PetscObjectGetComm((PetscObject) dm, &comm);
171:   MPI_Comm_rank(comm, &rank);
172:   PetscOptionsHasName(((PetscObject) dm)->prefix, "-orientation_view", &flg);
173:   DMGetPointSF(dm, &sf);
174:   PetscSFGetGraph(sf, &numRoots, &numLeaves, &lpoints, &rpoints);
175:   /* Truth Table
176:      mismatch    flips   do action   mismatch   flipA ^ flipB   action
177:          F       0 flips     no         F             F           F
178:          F       1 flip      yes        F             T           T
179:          F       2 flips     no         T             F           T
180:          T       0 flips     yes        T             T           F
181:          T       1 flip      no
182:          T       2 flips     yes
183:   */
184:   DMGetDimension(dm, &dim);
185:   DMPlexGetVTKCellHeight(dm, &h);
186:   DMPlexGetHeightStratum(dm, h,   &cStart, &cEnd);
187:   DMPlexGetHeightStratum(dm, h+1, &fStart, &fEnd);
188:   PetscBTCreate(cEnd - cStart, &seenCells);
189:   PetscBTMemzero(cEnd - cStart, seenCells);
190:   PetscBTCreate(cEnd - cStart, &flippedCells);
191:   PetscBTMemzero(cEnd - cStart, flippedCells);
192:   PetscBTCreate(fEnd - fStart, &seenFaces);
193:   PetscBTMemzero(fEnd - fStart, seenFaces);
194:   PetscCalloc3(fEnd - fStart, &faceFIFO, cEnd-cStart, &cellComp, fEnd-fStart, &faceComp);
195:   /*
196:    OLD STYLE
197:    - Add an integer array over cells and faces (component) for connected component number
198:    Foreach component
199:      - Mark the initial cell as seen
200:      - Process component as usual
201:      - Set component for all seenCells
202:      - Wipe seenCells and seenFaces (flippedCells can stay)
203:    - Generate parallel adjacency for component using SF and seenFaces
204:    - Collect numComponents adj data from each proc to 0
205:    - Build same serial graph
206:    - Use same solver
207:    - Use Scatterv to to send back flipped flags for each component
208:    - Negate flippedCells by component

210:    NEW STYLE
211:    - Create the adj on each process
212:    - Bootstrap to complete graph on proc 0
213:   */
214:   /* Loop over components */
215:   for (cell = cStart; cell < cEnd; ++cell) cellComp[cell-cStart] = -1;
216:   do {
217:     /* Look for first unmarked cell */
218:     for (cell = cStart; cell < cEnd; ++cell) if (cellComp[cell-cStart] < 0) break;
219:     if (cell >= cEnd) break;
220:     /* Initialize FIFO with first cell in component */
221:     {
222:       const PetscInt *cone;
223:       PetscInt        coneSize;

225:       fTop = fBottom = 0;
226:       DMPlexGetConeSize(dm, cell, &coneSize);
227:       DMPlexGetCone(dm, cell, &cone);
228:       for (c = 0; c < coneSize; ++c) {
229:         faceFIFO[fBottom++] = cone[c];
230:         PetscBTSet(seenFaces, cone[c]-fStart);
231:       }
232:       PetscBTSet(seenCells, cell-cStart);
233:     }
234:     /* Consider each face in FIFO */
235:     while (fTop < fBottom) {
236:       DMPlexCheckFace_Internal(dm, faceFIFO, &fTop, &fBottom, cStart, fStart, fEnd, seenCells, flippedCells, seenFaces);
237:     }
238:     /* Set component for cells and faces */
239:     for (cell = 0; cell < cEnd-cStart; ++cell) {
240:       if (PetscBTLookup(seenCells, cell)) cellComp[cell] = comp;
241:     }
242:     for (face = 0; face < fEnd-fStart; ++face) {
243:       if (PetscBTLookup(seenFaces, face)) faceComp[face] = comp;
244:     }
245:     /* Wipe seenCells and seenFaces for next component */
246:     PetscBTMemzero(fEnd - fStart, seenFaces);
247:     PetscBTMemzero(cEnd - cStart, seenCells);
248:     ++comp;
249:   } while (1);
250:   numComponents = comp;
251:   if (flg) {
252:     PetscViewer v;

254:     PetscViewerASCIIGetStdout(comm, &v);
255:     PetscViewerASCIISynchronizedAllow(v, PETSC_TRUE);
256:     PetscViewerASCIISynchronizedPrintf(v, "[%d]BT for serial flipped cells:\n", rank);
257:     PetscBTView(cEnd-cStart, flippedCells, v);
258:   }
259:   /* Now all subdomains are oriented, but we need a consistent parallel orientation */
260:   if (numLeaves >= 0) {
261:     /* Store orientations of boundary faces*/
262:     PetscCalloc2(numRoots,&rorntComp,numRoots,&lorntComp);
263:     for (face = fStart; face < fEnd; ++face) {
264:       const PetscInt *cone, *support, *ornt;
265:       PetscInt        coneSize, supportSize;

267:       DMPlexGetSupportSize(dm, face, &supportSize);
268:       if (supportSize != 1) continue;
269:       DMPlexGetSupport(dm, face, &support);

271:       DMPlexGetCone(dm, support[0], &cone);
272:       DMPlexGetConeSize(dm, support[0], &coneSize);
273:       DMPlexGetConeOrientation(dm, support[0], &ornt);
274:       for (c = 0; c < coneSize; ++c) if (cone[c] == face) break;
275:       if (dim == 1) {
276:         /* Use cone position instead, shifted to -1 or 1 */
277:         if (PetscBTLookup(flippedCells, support[0]-cStart)) rorntComp[face].rank = 1-c*2;
278:         else                                                rorntComp[face].rank = c*2-1;
279:       } else {
280:         if (PetscBTLookup(flippedCells, support[0]-cStart)) rorntComp[face].rank = ornt[c] < 0 ? -1 :  1;
281:         else                                                rorntComp[face].rank = ornt[c] < 0 ?  1 : -1;
282:       }
283:       rorntComp[face].index = faceComp[face-fStart];
284:     }
285:     /* Communicate boundary edge orientations */
286:     PetscSFBcastBegin(sf, MPIU_2INT, rorntComp, lorntComp);
287:     PetscSFBcastEnd(sf, MPIU_2INT, rorntComp, lorntComp);
288:   }
289:   /* Get process adjacency */
290:   PetscMalloc2(numComponents, &numNeighbors, numComponents, &neighbors);
291:   for (comp = 0; comp < numComponents; ++comp) {
292:     PetscInt  l, n;

294:     numNeighbors[comp] = 0;
295:     PetscMalloc1(PetscMax(numLeaves, 0), &neighbors[comp]);
296:     /* I know this is p^2 time in general, but for bounded degree its alright */
297:     for (l = 0; l < numLeaves; ++l) {
298:       const PetscInt face = lpoints[l];

300:       /* Find a representative face (edge) separating pairs of procs */
301:       if ((face >= fStart) && (face < fEnd) && (faceComp[face-fStart] == comp)) {
302:         const PetscInt rrank = rpoints[l].rank;
303:         const PetscInt rcomp = lorntComp[face].index;

305:         for (n = 0; n < numNeighbors[comp]; ++n) if ((rrank == rpoints[neighbors[comp][n]].rank) && (rcomp == lorntComp[lpoints[neighbors[comp][n]]].index)) break;
306:         if (n >= numNeighbors[comp]) {
307:           PetscInt supportSize;

309:           DMPlexGetSupportSize(dm, face, &supportSize);
310:           if (supportSize != 1) SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Boundary faces should see one cell, not %d", supportSize);
311:           if (flg) {PetscPrintf(PETSC_COMM_SELF, "[%d]: component %d, Found representative leaf %d (face %d) connecting to face %d on (%d, %d) with orientation %d\n", rank, comp, l, face, rpoints[l].index, rrank, rcomp, lorntComp[face].rank);}
312:           neighbors[comp][numNeighbors[comp]++] = l;
313:         }
314:       }
315:     }
316:     totNeighbors += numNeighbors[comp];
317:   }
318:   PetscMalloc2(totNeighbors, &nrankComp, totNeighbors, &match);
319:   for (comp = 0, off = 0; comp < numComponents; ++comp) {
320:     PetscInt n;

322:     for (n = 0; n < numNeighbors[comp]; ++n, ++off) {
323:       const PetscInt face = lpoints[neighbors[comp][n]];
324:       const PetscInt o    = rorntComp[face].rank*lorntComp[face].rank;

326:       if      (o < 0) match[off] = PETSC_TRUE;
327:       else if (o > 0) match[off] = PETSC_FALSE;
328:       else SETERRQ5(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid face %d (%d, %d) neighbor: %d comp: %d", face, rorntComp[face], lorntComp[face], neighbors[comp][n], comp);
329:       nrankComp[off].rank  = rpoints[neighbors[comp][n]].rank;
330:       nrankComp[off].index = lorntComp[lpoints[neighbors[comp][n]]].index;
331:     }
332:     PetscFree(neighbors[comp]);
333:   }
334:   /* Collect the graph on 0 */
335:   if (numLeaves >= 0) {
336:     Mat          G;
337:     PetscBT      seenProcs, flippedProcs;
338:     PetscInt    *procFIFO, pTop, pBottom;
339:     PetscInt    *N   = NULL, *Noff;
340:     PetscSFNode *adj = NULL;
341:     PetscBool   *val = NULL;
342:     PetscMPIInt *recvcounts = NULL, *displs = NULL, *Nc, p, o;
343:     PetscMPIInt  numProcs = 0;

345:     PetscCalloc1(numComponents, &flipped);
346:     if (!rank) {MPI_Comm_size(comm, &numProcs);}
347:     PetscCalloc4(numProcs, &recvcounts, numProcs+1, &displs, numProcs, &Nc, numProcs+1, &Noff);
348:     MPI_Gather(&numComponents, 1, MPI_INT, Nc, 1, MPI_INT, 0, comm);
349:     for (p = 0; p < numProcs; ++p) {
350:       displs[p+1] = displs[p] + Nc[p];
351:     }
352:     if (!rank) {PetscMalloc1(displs[numProcs],&N);}
353:     MPI_Gatherv(numNeighbors, numComponents, MPIU_INT, N, Nc, displs, MPIU_INT, 0, comm);
354:     for (p = 0, o = 0; p < numProcs; ++p) {
355:       recvcounts[p] = 0;
356:       for (c = 0; c < Nc[p]; ++c, ++o) recvcounts[p] += N[o];
357:       displs[p+1] = displs[p] + recvcounts[p];
358:     }
359:     if (!rank) {PetscMalloc2(displs[numProcs], &adj, displs[numProcs], &val);}
360:     MPI_Gatherv(nrankComp, totNeighbors, MPIU_2INT, adj, recvcounts, displs, MPIU_2INT, 0, comm);
361:     MPI_Gatherv(match, totNeighbors, MPIU_BOOL, val, recvcounts, displs, MPIU_BOOL, 0, comm);
362:     PetscFree2(numNeighbors, neighbors);
363:     if (!rank) {
364:       for (p = 1; p <= numProcs; ++p) {Noff[p] = Noff[p-1] + Nc[p-1];}
365:       if (flg) {
366:         PetscInt n;

368:         for (p = 0, off = 0; p < numProcs; ++p) {
369:           for (c = 0; c < Nc[p]; ++c) {
370:             PetscPrintf(PETSC_COMM_SELF, "Proc %d Comp %d:\n", p, c);
371:             for (n = 0; n < N[Noff[p]+c]; ++n, ++off) {
372:               PetscPrintf(PETSC_COMM_SELF, "  edge (%d, %d) (%d):\n", adj[off].rank, adj[off].index, val[off]);
373:             }
374:           }
375:         }
376:       }
377:       /* Symmetrize the graph */
378:       MatCreate(PETSC_COMM_SELF, &G);
379:       MatSetSizes(G, Noff[numProcs], Noff[numProcs], Noff[numProcs], Noff[numProcs]);
380:       MatSetUp(G);
381:       for (p = 0, off = 0; p < numProcs; ++p) {
382:         for (c = 0; c < Nc[p]; ++c) {
383:           const PetscInt r = Noff[p]+c;
384:           PetscInt       n;

386:           for (n = 0; n < N[r]; ++n, ++off) {
387:             const PetscInt    q = Noff[adj[off].rank] + adj[off].index;
388:             const PetscScalar o = val[off] ? 1.0 : 0.0;

390:             MatSetValues(G, 1, &r, 1, &q, &o, INSERT_VALUES);
391:             MatSetValues(G, 1, &q, 1, &r, &o, INSERT_VALUES);
392:           }
393:         }
394:       }
395:       MatAssemblyBegin(G, MAT_FINAL_ASSEMBLY);
396:       MatAssemblyEnd(G, MAT_FINAL_ASSEMBLY);

398:       PetscBTCreate(Noff[numProcs], &seenProcs);
399:       PetscBTMemzero(Noff[numProcs], seenProcs);
400:       PetscBTCreate(Noff[numProcs], &flippedProcs);
401:       PetscBTMemzero(Noff[numProcs], flippedProcs);
402:       PetscMalloc1(Noff[numProcs], &procFIFO);
403:       pTop = pBottom = 0;
404:       for (p = 0; p < Noff[numProcs]; ++p) {
405:         if (PetscBTLookup(seenProcs, p)) continue;
406:         /* Initialize FIFO with next proc */
407:         procFIFO[pBottom++] = p;
408:         PetscBTSet(seenProcs, p);
409:         /* Consider each proc in FIFO */
410:         while (pTop < pBottom) {
411:           const PetscScalar *ornt;
412:           const PetscInt    *neighbors;
413:           PetscInt           proc, nproc, seen, flippedA, flippedB, mismatch, numNeighbors, n;

415:           proc     = procFIFO[pTop++];
416:           flippedA = PetscBTLookup(flippedProcs, proc) ? 1 : 0;
417:           MatGetRow(G, proc, &numNeighbors, &neighbors, &ornt);
418:           /* Loop over neighboring procs */
419:           for (n = 0; n < numNeighbors; ++n) {
420:             nproc    = neighbors[n];
421:             mismatch = PetscRealPart(ornt[n]) > 0.5 ? 0 : 1;
422:             seen     = PetscBTLookup(seenProcs, nproc);
423:             flippedB = PetscBTLookup(flippedProcs, nproc) ? 1 : 0;

425:             if (mismatch ^ (flippedA ^ flippedB)) {
426:               if (seen) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Previously seen procs %d and %d do not match: Fault mesh is non-orientable", proc, nproc);
427:               if (!flippedB) {
428:                 PetscBTSet(flippedProcs, nproc);
429:               } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Inconsistent mesh orientation: Fault mesh is non-orientable");
430:             } else if (mismatch && flippedA && flippedB) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Attempt to flip already flipped cell: Fault mesh is non-orientable");
431:             if (!seen) {
432:               procFIFO[pBottom++] = nproc;
433:               PetscBTSet(seenProcs, nproc);
434:             }
435:           }
436:         }
437:       }
438:       PetscFree(procFIFO);
439:       MatDestroy(&G);
440:       PetscFree2(adj, val);
441:       PetscBTDestroy(&seenProcs);
442:     }
443:     /* Scatter flip flags */
444:     {
445:       PetscBool *flips = NULL;

447:       if (!rank) {
448:         PetscMalloc1(Noff[numProcs], &flips);
449:         for (p = 0; p < Noff[numProcs]; ++p) {
450:           flips[p] = PetscBTLookup(flippedProcs, p) ? PETSC_TRUE : PETSC_FALSE;
451:           if (flg && flips[p]) {PetscPrintf(comm, "Flipping Proc+Comp %d:\n", p);}
452:         }
453:         for (p = 0; p < numProcs; ++p) {
454:           displs[p+1] = displs[p] + Nc[p];
455:         }
456:       }
457:       MPI_Scatterv(flips, Nc, displs, MPIU_BOOL, flipped, numComponents, MPIU_BOOL, 0, comm);
458:       PetscFree(flips);
459:     }
460:     if (!rank) {PetscBTDestroy(&flippedProcs);}
461:     PetscFree(N);
462:     PetscFree4(recvcounts, displs, Nc, Noff);
463:     PetscFree2(nrankComp, match);

465:     /* Decide whether to flip cells in each component */
466:     for (c = 0; c < cEnd-cStart; ++c) {if (flipped[cellComp[c]]) {PetscBTNegate(flippedCells, c);}}
467:     PetscFree(flipped);
468:   }
469:   if (flg) {
470:     PetscViewer v;

472:     PetscViewerASCIIGetStdout(comm, &v);
473:     PetscViewerASCIISynchronizedAllow(v, PETSC_TRUE);
474:     PetscViewerASCIISynchronizedPrintf(v, "[%d]BT for parallel flipped cells:\n", rank);
475:     PetscBTView(cEnd-cStart, flippedCells, v);
476:   }
477:   /* Reverse flipped cells in the mesh */
478:   for (c = cStart; c < cEnd; ++c) {
479:     if (PetscBTLookup(flippedCells, c-cStart)) {DMPlexReverseCell(dm, c);}
480:   }
481:   PetscBTDestroy(&seenCells);
482:   PetscBTDestroy(&flippedCells);
483:   PetscBTDestroy(&seenFaces);
484:   PetscFree2(numNeighbors, neighbors);
485:   PetscFree2(rorntComp, lorntComp);
486:   PetscFree3(faceFIFO, cellComp, faceComp);
487:   return(0);
488: }