Actual source code: da3.c
petsc-3.6.1 2015-08-06
2: /*
3: Code for manipulating distributed regular 3d arrays in parallel.
4: File created by Peter Mell 7/14/95
5: */
7: #include <petsc/private/dmdaimpl.h> /*I "petscdmda.h" I*/
9: #include <petscdraw.h>
12: PetscErrorCode DMView_DA_3d(DM da,PetscViewer viewer)
13: {
15: PetscMPIInt rank;
16: PetscBool iascii,isdraw,isbinary;
17: DM_DA *dd = (DM_DA*)da->data;
18: #if defined(PETSC_HAVE_MATLAB_ENGINE)
19: PetscBool ismatlab;
20: #endif
23: MPI_Comm_rank(PetscObjectComm((PetscObject)da),&rank);
25: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
26: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
27: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
28: #if defined(PETSC_HAVE_MATLAB_ENGINE)
29: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERMATLAB,&ismatlab);
30: #endif
31: if (iascii) {
32: PetscViewerFormat format;
34: PetscViewerASCIISynchronizedAllow(viewer,PETSC_TRUE);
35: PetscViewerGetFormat(viewer, &format);
36: if (format != PETSC_VIEWER_ASCII_VTK && format != PETSC_VIEWER_ASCII_VTK_CELL) {
37: DMDALocalInfo info;
38: DMDAGetLocalInfo(da,&info);
39: PetscViewerASCIISynchronizedPrintf(viewer,"Processor [%d] M %D N %D P %D m %D n %D p %D w %D s %D\n",rank,dd->M,dd->N,dd->P,dd->m,dd->n,dd->p,dd->w,dd->s);
40: PetscViewerASCIISynchronizedPrintf(viewer,"X range of indices: %D %D, Y range of indices: %D %D, Z range of indices: %D %D\n",
41: info.xs,info.xs+info.xm,info.ys,info.ys+info.ym,info.zs,info.zs+info.zm);
42: #if !defined(PETSC_USE_COMPLEX)
43: if (da->coordinates) {
44: PetscInt last;
45: const PetscReal *coors;
46: VecGetArrayRead(da->coordinates,&coors);
47: VecGetLocalSize(da->coordinates,&last);
48: last = last - 3;
49: PetscViewerASCIISynchronizedPrintf(viewer,"Lower left corner %g %g %g : Upper right %g %g %g\n",(double)coors[0],(double)coors[1],(double)coors[2],(double)coors[last],(double)coors[last+1],(double)coors[last+2]);
50: VecRestoreArrayRead(da->coordinates,&coors);
51: }
52: #endif
53: PetscViewerFlush(viewer);
54: PetscViewerASCIISynchronizedAllow(viewer,PETSC_FALSE);
55: } else {
56: DMView_DA_VTK(da,viewer);
57: }
58: } else if (isdraw) {
59: PetscDraw draw;
60: PetscReal ymin = -1.0,ymax = (PetscReal)dd->N;
61: PetscReal xmin = -1.0,xmax = (PetscReal)((dd->M+2)*dd->P),x,y,ycoord,xcoord;
62: PetscInt k,plane,base;
63: const PetscInt *idx;
64: char node[10];
65: PetscBool isnull;
67: PetscViewerDrawGetDraw(viewer,0,&draw);
68: PetscDrawIsNull(draw,&isnull); if (isnull) return(0);
69: PetscDrawSetCoordinates(draw,xmin,ymin,xmax,ymax);
70: PetscDrawSynchronizedClear(draw);
72: /* first processor draw all node lines */
73: if (!rank) {
74: for (k=0; k<dd->P; k++) {
75: ymin = 0.0; ymax = (PetscReal)(dd->N - 1);
76: for (xmin=(PetscReal)(k*(dd->M+1)); xmin<(PetscReal)(dd->M+(k*(dd->M+1))); xmin++) {
77: PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_BLACK);
78: }
80: xmin = (PetscReal)(k*(dd->M+1)); xmax = xmin + (PetscReal)(dd->M - 1);
81: for (ymin=0; ymin<(PetscReal)dd->N; ymin++) {
82: PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_BLACK);
83: }
84: }
85: }
86: PetscDrawSynchronizedFlush(draw);
87: PetscDrawPause(draw);
89: for (k=0; k<dd->P; k++) { /*Go through and draw for each plane*/
90: if ((k >= dd->zs) && (k < dd->ze)) {
91: /* draw my box */
92: ymin = dd->ys;
93: ymax = dd->ye - 1;
94: xmin = dd->xs/dd->w + (dd->M+1)*k;
95: xmax =(dd->xe-1)/dd->w + (dd->M+1)*k;
97: PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_RED);
98: PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_RED);
99: PetscDrawLine(draw,xmin,ymax,xmax,ymax,PETSC_DRAW_RED);
100: PetscDrawLine(draw,xmax,ymin,xmax,ymax,PETSC_DRAW_RED);
102: xmin = dd->xs/dd->w;
103: xmax =(dd->xe-1)/dd->w;
105: /* put in numbers*/
106: base = (dd->base+(dd->xe-dd->xs)*(dd->ye-dd->ys)*(k-dd->zs))/dd->w;
108: /* Identify which processor owns the box */
109: sprintf(node,"%d",rank);
110: PetscDrawString(draw,xmin+(dd->M+1)*k+.2,ymin+.3,PETSC_DRAW_RED,node);
112: for (y=ymin; y<=ymax; y++) {
113: for (x=xmin+(dd->M+1)*k; x<=xmax+(dd->M+1)*k; x++) {
114: sprintf(node,"%d",(int)base++);
115: PetscDrawString(draw,x,y,PETSC_DRAW_BLACK,node);
116: }
117: }
119: }
120: }
121: PetscDrawSynchronizedFlush(draw);
122: PetscDrawPause(draw);
124: for (k=0-dd->s; k<dd->P+dd->s; k++) {
125: /* Go through and draw for each plane */
126: if ((k >= dd->Zs) && (k < dd->Ze)) {
128: /* overlay ghost numbers, useful for error checking */
129: base = (dd->Xe-dd->Xs)*(dd->Ye-dd->Ys)*(k-dd->Zs)/dd->w;
130: ISLocalToGlobalMappingGetBlockIndices(da->ltogmap,&idx);
131: plane=k;
132: /* Keep z wrap around points on the drawing */
133: if (k<0) plane=dd->P+k;
134: if (k>=dd->P) plane=k-dd->P;
135: ymin = dd->Ys; ymax = dd->Ye;
136: xmin = (dd->M+1)*plane*dd->w;
137: xmax = (dd->M+1)*plane*dd->w+dd->M*dd->w;
138: for (y=ymin; y<ymax; y++) {
139: for (x=xmin+dd->Xs; x<xmin+dd->Xe; x+=dd->w) {
140: sprintf(node,"%d",(int)(idx[base]));
141: ycoord = y;
142: /*Keep y wrap around points on drawing */
143: if (y<0) ycoord = dd->N+y;
145: if (y>=dd->N) ycoord = y-dd->N;
146: xcoord = x; /* Keep x wrap points on drawing */
148: if (x<xmin) xcoord = xmax - (xmin-x);
149: if (x>=xmax) xcoord = xmin + (x-xmax);
150: PetscDrawString(draw,xcoord/dd->w,ycoord,PETSC_DRAW_BLUE,node);
151: base++;
152: }
153: }
154: ISLocalToGlobalMappingRestoreBlockIndices(da->ltogmap,&idx);
155: }
156: }
157: PetscDrawSynchronizedFlush(draw);
158: PetscDrawPause(draw);
159: } else if (isbinary) {
160: DMView_DA_Binary(da,viewer);
161: #if defined(PETSC_HAVE_MATLAB_ENGINE)
162: } else if (ismatlab) {
163: DMView_DA_Matlab(da,viewer);
164: #endif
165: }
166: return(0);
167: }
171: PetscErrorCode DMSetUp_DA_3D(DM da)
172: {
173: DM_DA *dd = (DM_DA*)da->data;
174: const PetscInt M = dd->M;
175: const PetscInt N = dd->N;
176: const PetscInt P = dd->P;
177: PetscInt m = dd->m;
178: PetscInt n = dd->n;
179: PetscInt p = dd->p;
180: const PetscInt dof = dd->w;
181: const PetscInt s = dd->s;
182: DMBoundaryType bx = dd->bx;
183: DMBoundaryType by = dd->by;
184: DMBoundaryType bz = dd->bz;
185: DMDAStencilType stencil_type = dd->stencil_type;
186: PetscInt *lx = dd->lx;
187: PetscInt *ly = dd->ly;
188: PetscInt *lz = dd->lz;
189: MPI_Comm comm;
190: PetscMPIInt rank,size;
191: PetscInt xs = 0,xe,ys = 0,ye,zs = 0,ze,x = 0,y = 0,z = 0;
192: PetscInt Xs,Xe,Ys,Ye,Zs,Ze,IXs,IXe,IYs,IYe,IZs,IZe,pm;
193: PetscInt left,right,up,down,bottom,top,i,j,k,*idx,nn;
194: PetscInt n0,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n14;
195: PetscInt n15,n16,n17,n18,n19,n20,n21,n22,n23,n24,n25,n26;
196: PetscInt *bases,*ldims,base,x_t,y_t,z_t,s_t,count,s_x,s_y,s_z;
197: PetscInt sn0 = 0,sn1 = 0,sn2 = 0,sn3 = 0,sn5 = 0,sn6 = 0,sn7 = 0;
198: PetscInt sn8 = 0,sn9 = 0,sn11 = 0,sn15 = 0,sn24 = 0,sn25 = 0,sn26 = 0;
199: PetscInt sn17 = 0,sn18 = 0,sn19 = 0,sn20 = 0,sn21 = 0,sn23 = 0;
200: Vec local,global;
201: VecScatter gtol;
202: IS to,from;
203: PetscBool twod;
204: PetscErrorCode ierr;
208: if (stencil_type == DMDA_STENCIL_BOX && (bx == DM_BOUNDARY_MIRROR || by == DM_BOUNDARY_MIRROR || bz == DM_BOUNDARY_MIRROR)) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_SUP,"Mirror boundary and box stencil");
209: PetscObjectGetComm((PetscObject) da, &comm);
210: #if !defined(PETSC_USE_64BIT_INDICES)
211: if (((Petsc64bitInt) M)*((Petsc64bitInt) N)*((Petsc64bitInt) P)*((Petsc64bitInt) dof) > (Petsc64bitInt) PETSC_MPI_INT_MAX) SETERRQ3(comm,PETSC_ERR_INT_OVERFLOW,"Mesh of %D by %D by %D (dof) is too large for 32 bit indices",M,N,dof);
212: #endif
214: MPI_Comm_size(comm,&size);
215: MPI_Comm_rank(comm,&rank);
217: if (m != PETSC_DECIDE) {
218: if (m < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in X direction: %D",m);
219: else if (m > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in X direction: %D %d",m,size);
220: }
221: if (n != PETSC_DECIDE) {
222: if (n < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Y direction: %D",n);
223: else if (n > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Y direction: %D %d",n,size);
224: }
225: if (p != PETSC_DECIDE) {
226: if (p < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Z direction: %D",p);
227: else if (p > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Z direction: %D %d",p,size);
228: }
229: if ((m > 0) && (n > 0) && (p > 0) && (m*n*p != size)) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"m %D * n %D * p %D != size %d",m,n,p,size);
231: /* Partition the array among the processors */
232: if (m == PETSC_DECIDE && n != PETSC_DECIDE && p != PETSC_DECIDE) {
233: m = size/(n*p);
234: } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
235: n = size/(m*p);
236: } else if (m != PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
237: p = size/(m*n);
238: } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
239: /* try for squarish distribution */
240: m = (int)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)N*p)));
241: if (!m) m = 1;
242: while (m > 0) {
243: n = size/(m*p);
244: if (m*n*p == size) break;
245: m--;
246: }
247: if (!m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad p value: p = %D",p);
248: if (M > N && m < n) {PetscInt _m = m; m = n; n = _m;}
249: } else if (m == PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
250: /* try for squarish distribution */
251: m = (int)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
252: if (!m) m = 1;
253: while (m > 0) {
254: p = size/(m*n);
255: if (m*n*p == size) break;
256: m--;
257: }
258: if (!m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad n value: n = %D",n);
259: if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
260: } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
261: /* try for squarish distribution */
262: n = (int)(0.5 + PetscSqrtReal(((PetscReal)N)*((PetscReal)size)/((PetscReal)P*m)));
263: if (!n) n = 1;
264: while (n > 0) {
265: p = size/(m*n);
266: if (m*n*p == size) break;
267: n--;
268: }
269: if (!n) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad m value: m = %D",n);
270: if (N > P && n < p) {PetscInt _n = n; n = p; p = _n;}
271: } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
272: /* try for squarish distribution */
273: n = (PetscInt)(0.5 + PetscPowReal(((PetscReal)N*N)*((PetscReal)size)/((PetscReal)P*M),(PetscReal)(1./3.)));
274: if (!n) n = 1;
275: while (n > 0) {
276: pm = size/n;
277: if (n*pm == size) break;
278: n--;
279: }
280: if (!n) n = 1;
281: m = (PetscInt)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
282: if (!m) m = 1;
283: while (m > 0) {
284: p = size/(m*n);
285: if (m*n*p == size) break;
286: m--;
287: }
288: if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
289: } else if (m*n*p != size) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Given Bad partition");
291: if (m*n*p != size) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_PLIB,"Could not find good partition");
292: if (M < m) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in x direction is too fine! %D %D",M,m);
293: if (N < n) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in y direction is too fine! %D %D",N,n);
294: if (P < p) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in z direction is too fine! %D %D",P,p);
296: /*
297: Determine locally owned region
298: [x, y, or z]s is the first local node number, [x, y, z] is the number of local nodes
299: */
301: if (!lx) {
302: PetscMalloc1(m, &dd->lx);
303: lx = dd->lx;
304: for (i=0; i<m; i++) lx[i] = M/m + ((M % m) > (i % m));
305: }
306: x = lx[rank % m];
307: xs = 0;
308: for (i=0; i<(rank%m); i++) xs += lx[i];
309: if ((x < s) && ((m > 1) || (bx == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local x-width of domain x %D is smaller than stencil width s %D",x,s);
311: if (!ly) {
312: PetscMalloc1(n, &dd->ly);
313: ly = dd->ly;
314: for (i=0; i<n; i++) ly[i] = N/n + ((N % n) > (i % n));
315: }
316: y = ly[(rank % (m*n))/m];
317: if ((y < s) && ((n > 1) || (by == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local y-width of domain y %D is smaller than stencil width s %D",y,s);
319: ys = 0;
320: for (i=0; i<(rank % (m*n))/m; i++) ys += ly[i];
322: if (!lz) {
323: PetscMalloc1(p, &dd->lz);
324: lz = dd->lz;
325: for (i=0; i<p; i++) lz[i] = P/p + ((P % p) > (i % p));
326: }
327: z = lz[rank/(m*n)];
329: /* note this is different than x- and y-, as we will handle as an important special
330: case when p=P=1 and DM_BOUNDARY_PERIODIC and s > z. This is to deal with 2D problems
331: in a 3D code. Additional code for this case is noted with "2d case" comments */
332: twod = PETSC_FALSE;
333: if (P == 1) twod = PETSC_TRUE;
334: else if ((z < s) && ((p > 1) || (bz == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local z-width of domain z %D is smaller than stencil width s %D",z,s);
335: zs = 0;
336: for (i=0; i<(rank/(m*n)); i++) zs += lz[i];
337: ye = ys + y;
338: xe = xs + x;
339: ze = zs + z;
341: /* determine ghost region (Xs) and region scattered into (IXs) */
342: if (xs-s > 0) {
343: Xs = xs - s; IXs = xs - s;
344: } else {
345: if (bx) Xs = xs - s;
346: else Xs = 0;
347: IXs = 0;
348: }
349: if (xe+s <= M) {
350: Xe = xe + s; IXe = xe + s;
351: } else {
352: if (bx) {
353: Xs = xs - s; Xe = xe + s;
354: } else Xe = M;
355: IXe = M;
356: }
358: if (bx == DM_BOUNDARY_PERIODIC || bx == DM_BOUNDARY_MIRROR) {
359: IXs = xs - s;
360: IXe = xe + s;
361: Xs = xs - s;
362: Xe = xe + s;
363: }
365: if (ys-s > 0) {
366: Ys = ys - s; IYs = ys - s;
367: } else {
368: if (by) Ys = ys - s;
369: else Ys = 0;
370: IYs = 0;
371: }
372: if (ye+s <= N) {
373: Ye = ye + s; IYe = ye + s;
374: } else {
375: if (by) Ye = ye + s;
376: else Ye = N;
377: IYe = N;
378: }
380: if (by == DM_BOUNDARY_PERIODIC || by == DM_BOUNDARY_MIRROR) {
381: IYs = ys - s;
382: IYe = ye + s;
383: Ys = ys - s;
384: Ye = ye + s;
385: }
387: if (zs-s > 0) {
388: Zs = zs - s; IZs = zs - s;
389: } else {
390: if (bz) Zs = zs - s;
391: else Zs = 0;
392: IZs = 0;
393: }
394: if (ze+s <= P) {
395: Ze = ze + s; IZe = ze + s;
396: } else {
397: if (bz) Ze = ze + s;
398: else Ze = P;
399: IZe = P;
400: }
402: if (bz == DM_BOUNDARY_PERIODIC || bz == DM_BOUNDARY_MIRROR) {
403: IZs = zs - s;
404: IZe = ze + s;
405: Zs = zs - s;
406: Ze = ze + s;
407: }
409: /* Resize all X parameters to reflect w */
410: s_x = s;
411: s_y = s;
412: s_z = s;
414: /* determine starting point of each processor */
415: nn = x*y*z;
416: PetscMalloc2(size+1,&bases,size,&ldims);
417: MPI_Allgather(&nn,1,MPIU_INT,ldims,1,MPIU_INT,comm);
418: bases[0] = 0;
419: for (i=1; i<=size; i++) bases[i] = ldims[i-1];
420: for (i=1; i<=size; i++) bases[i] += bases[i-1];
421: base = bases[rank]*dof;
423: /* allocate the base parallel and sequential vectors */
424: dd->Nlocal = x*y*z*dof;
425: VecCreateMPIWithArray(comm,dof,dd->Nlocal,PETSC_DECIDE,NULL,&global);
426: dd->nlocal = (Xe-Xs)*(Ye-Ys)*(Ze-Zs)*dof;
427: VecCreateSeqWithArray(PETSC_COMM_SELF,dof,dd->nlocal,NULL,&local);
429: /* generate appropriate vector scatters */
430: /* local to global inserts non-ghost point region into global */
431: PetscMalloc1((IXe-IXs)*(IYe-IYs)*(IZe-IZs),&idx);
432: left = xs - Xs; right = left + x;
433: bottom = ys - Ys; top = bottom + y;
434: down = zs - Zs; up = down + z;
435: count = 0;
436: for (i=down; i<up; i++) {
437: for (j=bottom; j<top; j++) {
438: for (k=left; k<right; k++) {
439: idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
440: }
441: }
442: }
444: /* global to local must include ghost points within the domain,
445: but not ghost points outside the domain that aren't periodic */
446: if (stencil_type == DMDA_STENCIL_BOX) {
447: left = IXs - Xs; right = left + (IXe-IXs);
448: bottom = IYs - Ys; top = bottom + (IYe-IYs);
449: down = IZs - Zs; up = down + (IZe-IZs);
450: count = 0;
451: for (i=down; i<up; i++) {
452: for (j=bottom; j<top; j++) {
453: for (k=left; k<right; k++) {
454: idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
455: }
456: }
457: }
458: ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&to);
459: } else {
460: /* This is way ugly! We need to list the funny cross type region */
461: left = xs - Xs; right = left + x;
462: bottom = ys - Ys; top = bottom + y;
463: down = zs - Zs; up = down + z;
464: count = 0;
465: /* the bottom chunck */
466: for (i=(IZs-Zs); i<down; i++) {
467: for (j=bottom; j<top; j++) {
468: for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
469: }
470: }
471: /* the middle piece */
472: for (i=down; i<up; i++) {
473: /* front */
474: for (j=(IYs-Ys); j<bottom; j++) {
475: for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
476: }
477: /* middle */
478: for (j=bottom; j<top; j++) {
479: for (k=IXs-Xs; k<IXe-Xs; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
480: }
481: /* back */
482: for (j=top; j<top+IYe-ye; j++) {
483: for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
484: }
485: }
486: /* the top piece */
487: for (i=up; i<up+IZe-ze; i++) {
488: for (j=bottom; j<top; j++) {
489: for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
490: }
491: }
492: ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&to);
493: }
495: /* determine who lies on each side of use stored in n24 n25 n26
496: n21 n22 n23
497: n18 n19 n20
499: n15 n16 n17
500: n12 n14
501: n9 n10 n11
503: n6 n7 n8
504: n3 n4 n5
505: n0 n1 n2
506: */
508: /* Solve for X,Y, and Z Periodic Case First, Then Modify Solution */
509: /* Assume Nodes are Internal to the Cube */
510: n0 = rank - m*n - m - 1;
511: n1 = rank - m*n - m;
512: n2 = rank - m*n - m + 1;
513: n3 = rank - m*n -1;
514: n4 = rank - m*n;
515: n5 = rank - m*n + 1;
516: n6 = rank - m*n + m - 1;
517: n7 = rank - m*n + m;
518: n8 = rank - m*n + m + 1;
520: n9 = rank - m - 1;
521: n10 = rank - m;
522: n11 = rank - m + 1;
523: n12 = rank - 1;
524: n14 = rank + 1;
525: n15 = rank + m - 1;
526: n16 = rank + m;
527: n17 = rank + m + 1;
529: n18 = rank + m*n - m - 1;
530: n19 = rank + m*n - m;
531: n20 = rank + m*n - m + 1;
532: n21 = rank + m*n - 1;
533: n22 = rank + m*n;
534: n23 = rank + m*n + 1;
535: n24 = rank + m*n + m - 1;
536: n25 = rank + m*n + m;
537: n26 = rank + m*n + m + 1;
539: /* Assume Pieces are on Faces of Cube */
541: if (xs == 0) { /* First assume not corner or edge */
542: n0 = rank -1 - (m*n);
543: n3 = rank + m -1 - (m*n);
544: n6 = rank + 2*m -1 - (m*n);
545: n9 = rank -1;
546: n12 = rank + m -1;
547: n15 = rank + 2*m -1;
548: n18 = rank -1 + (m*n);
549: n21 = rank + m -1 + (m*n);
550: n24 = rank + 2*m -1 + (m*n);
551: }
553: if (xe == M) { /* First assume not corner or edge */
554: n2 = rank -2*m +1 - (m*n);
555: n5 = rank - m +1 - (m*n);
556: n8 = rank +1 - (m*n);
557: n11 = rank -2*m +1;
558: n14 = rank - m +1;
559: n17 = rank +1;
560: n20 = rank -2*m +1 + (m*n);
561: n23 = rank - m +1 + (m*n);
562: n26 = rank +1 + (m*n);
563: }
565: if (ys==0) { /* First assume not corner or edge */
566: n0 = rank + m * (n-1) -1 - (m*n);
567: n1 = rank + m * (n-1) - (m*n);
568: n2 = rank + m * (n-1) +1 - (m*n);
569: n9 = rank + m * (n-1) -1;
570: n10 = rank + m * (n-1);
571: n11 = rank + m * (n-1) +1;
572: n18 = rank + m * (n-1) -1 + (m*n);
573: n19 = rank + m * (n-1) + (m*n);
574: n20 = rank + m * (n-1) +1 + (m*n);
575: }
577: if (ye == N) { /* First assume not corner or edge */
578: n6 = rank - m * (n-1) -1 - (m*n);
579: n7 = rank - m * (n-1) - (m*n);
580: n8 = rank - m * (n-1) +1 - (m*n);
581: n15 = rank - m * (n-1) -1;
582: n16 = rank - m * (n-1);
583: n17 = rank - m * (n-1) +1;
584: n24 = rank - m * (n-1) -1 + (m*n);
585: n25 = rank - m * (n-1) + (m*n);
586: n26 = rank - m * (n-1) +1 + (m*n);
587: }
589: if (zs == 0) { /* First assume not corner or edge */
590: n0 = size - (m*n) + rank - m - 1;
591: n1 = size - (m*n) + rank - m;
592: n2 = size - (m*n) + rank - m + 1;
593: n3 = size - (m*n) + rank - 1;
594: n4 = size - (m*n) + rank;
595: n5 = size - (m*n) + rank + 1;
596: n6 = size - (m*n) + rank + m - 1;
597: n7 = size - (m*n) + rank + m;
598: n8 = size - (m*n) + rank + m + 1;
599: }
601: if (ze == P) { /* First assume not corner or edge */
602: n18 = (m*n) - (size-rank) - m - 1;
603: n19 = (m*n) - (size-rank) - m;
604: n20 = (m*n) - (size-rank) - m + 1;
605: n21 = (m*n) - (size-rank) - 1;
606: n22 = (m*n) - (size-rank);
607: n23 = (m*n) - (size-rank) + 1;
608: n24 = (m*n) - (size-rank) + m - 1;
609: n25 = (m*n) - (size-rank) + m;
610: n26 = (m*n) - (size-rank) + m + 1;
611: }
613: if ((xs==0) && (zs==0)) { /* Assume an edge, not corner */
614: n0 = size - m*n + rank + m-1 - m;
615: n3 = size - m*n + rank + m-1;
616: n6 = size - m*n + rank + m-1 + m;
617: }
619: if ((xs==0) && (ze==P)) { /* Assume an edge, not corner */
620: n18 = m*n - (size - rank) + m-1 - m;
621: n21 = m*n - (size - rank) + m-1;
622: n24 = m*n - (size - rank) + m-1 + m;
623: }
625: if ((xs==0) && (ys==0)) { /* Assume an edge, not corner */
626: n0 = rank + m*n -1 - m*n;
627: n9 = rank + m*n -1;
628: n18 = rank + m*n -1 + m*n;
629: }
631: if ((xs==0) && (ye==N)) { /* Assume an edge, not corner */
632: n6 = rank - m*(n-1) + m-1 - m*n;
633: n15 = rank - m*(n-1) + m-1;
634: n24 = rank - m*(n-1) + m-1 + m*n;
635: }
637: if ((xe==M) && (zs==0)) { /* Assume an edge, not corner */
638: n2 = size - (m*n-rank) - (m-1) - m;
639: n5 = size - (m*n-rank) - (m-1);
640: n8 = size - (m*n-rank) - (m-1) + m;
641: }
643: if ((xe==M) && (ze==P)) { /* Assume an edge, not corner */
644: n20 = m*n - (size - rank) - (m-1) - m;
645: n23 = m*n - (size - rank) - (m-1);
646: n26 = m*n - (size - rank) - (m-1) + m;
647: }
649: if ((xe==M) && (ys==0)) { /* Assume an edge, not corner */
650: n2 = rank + m*(n-1) - (m-1) - m*n;
651: n11 = rank + m*(n-1) - (m-1);
652: n20 = rank + m*(n-1) - (m-1) + m*n;
653: }
655: if ((xe==M) && (ye==N)) { /* Assume an edge, not corner */
656: n8 = rank - m*n +1 - m*n;
657: n17 = rank - m*n +1;
658: n26 = rank - m*n +1 + m*n;
659: }
661: if ((ys==0) && (zs==0)) { /* Assume an edge, not corner */
662: n0 = size - m + rank -1;
663: n1 = size - m + rank;
664: n2 = size - m + rank +1;
665: }
667: if ((ys==0) && (ze==P)) { /* Assume an edge, not corner */
668: n18 = m*n - (size - rank) + m*(n-1) -1;
669: n19 = m*n - (size - rank) + m*(n-1);
670: n20 = m*n - (size - rank) + m*(n-1) +1;
671: }
673: if ((ye==N) && (zs==0)) { /* Assume an edge, not corner */
674: n6 = size - (m*n-rank) - m * (n-1) -1;
675: n7 = size - (m*n-rank) - m * (n-1);
676: n8 = size - (m*n-rank) - m * (n-1) +1;
677: }
679: if ((ye==N) && (ze==P)) { /* Assume an edge, not corner */
680: n24 = rank - (size-m) -1;
681: n25 = rank - (size-m);
682: n26 = rank - (size-m) +1;
683: }
685: /* Check for Corners */
686: if ((xs==0) && (ys==0) && (zs==0)) n0 = size -1;
687: if ((xs==0) && (ys==0) && (ze==P)) n18 = m*n-1;
688: if ((xs==0) && (ye==N) && (zs==0)) n6 = (size-1)-m*(n-1);
689: if ((xs==0) && (ye==N) && (ze==P)) n24 = m-1;
690: if ((xe==M) && (ys==0) && (zs==0)) n2 = size-m;
691: if ((xe==M) && (ys==0) && (ze==P)) n20 = m*n-m;
692: if ((xe==M) && (ye==N) && (zs==0)) n8 = size-m*n;
693: if ((xe==M) && (ye==N) && (ze==P)) n26 = 0;
695: /* Check for when not X,Y, and Z Periodic */
697: /* If not X periodic */
698: if (bx != DM_BOUNDARY_PERIODIC) {
699: if (xs==0) n0 = n3 = n6 = n9 = n12 = n15 = n18 = n21 = n24 = -2;
700: if (xe==M) n2 = n5 = n8 = n11 = n14 = n17 = n20 = n23 = n26 = -2;
701: }
703: /* If not Y periodic */
704: if (by != DM_BOUNDARY_PERIODIC) {
705: if (ys==0) n0 = n1 = n2 = n9 = n10 = n11 = n18 = n19 = n20 = -2;
706: if (ye==N) n6 = n7 = n8 = n15 = n16 = n17 = n24 = n25 = n26 = -2;
707: }
709: /* If not Z periodic */
710: if (bz != DM_BOUNDARY_PERIODIC) {
711: if (zs==0) n0 = n1 = n2 = n3 = n4 = n5 = n6 = n7 = n8 = -2;
712: if (ze==P) n18 = n19 = n20 = n21 = n22 = n23 = n24 = n25 = n26 = -2;
713: }
715: PetscMalloc1(27,&dd->neighbors);
717: dd->neighbors[0] = n0;
718: dd->neighbors[1] = n1;
719: dd->neighbors[2] = n2;
720: dd->neighbors[3] = n3;
721: dd->neighbors[4] = n4;
722: dd->neighbors[5] = n5;
723: dd->neighbors[6] = n6;
724: dd->neighbors[7] = n7;
725: dd->neighbors[8] = n8;
726: dd->neighbors[9] = n9;
727: dd->neighbors[10] = n10;
728: dd->neighbors[11] = n11;
729: dd->neighbors[12] = n12;
730: dd->neighbors[13] = rank;
731: dd->neighbors[14] = n14;
732: dd->neighbors[15] = n15;
733: dd->neighbors[16] = n16;
734: dd->neighbors[17] = n17;
735: dd->neighbors[18] = n18;
736: dd->neighbors[19] = n19;
737: dd->neighbors[20] = n20;
738: dd->neighbors[21] = n21;
739: dd->neighbors[22] = n22;
740: dd->neighbors[23] = n23;
741: dd->neighbors[24] = n24;
742: dd->neighbors[25] = n25;
743: dd->neighbors[26] = n26;
745: /* If star stencil then delete the corner neighbors */
746: if (stencil_type == DMDA_STENCIL_STAR) {
747: /* save information about corner neighbors */
748: sn0 = n0; sn1 = n1; sn2 = n2; sn3 = n3; sn5 = n5; sn6 = n6; sn7 = n7;
749: sn8 = n8; sn9 = n9; sn11 = n11; sn15 = n15; sn17 = n17; sn18 = n18;
750: sn19 = n19; sn20 = n20; sn21 = n21; sn23 = n23; sn24 = n24; sn25 = n25;
751: sn26 = n26;
752: n0 = n1 = n2 = n3 = n5 = n6 = n7 = n8 = n9 = n11 = n15 = n17 = n18 = n19 = n20 = n21 = n23 = n24 = n25 = n26 = -1;
753: }
755: PetscMalloc1((Xe-Xs)*(Ye-Ys)*(Ze-Zs),&idx);
757: nn = 0;
758: /* Bottom Level */
759: for (k=0; k<s_z; k++) {
760: for (i=1; i<=s_y; i++) {
761: if (n0 >= 0) { /* left below */
762: x_t = lx[n0 % m];
763: y_t = ly[(n0 % (m*n))/m];
764: z_t = lz[n0 / (m*n)];
765: s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
766: if (twod && (s_t < 0)) s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x; /* 2D case */
767: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
768: }
769: if (n1 >= 0) { /* directly below */
770: x_t = x;
771: y_t = ly[(n1 % (m*n))/m];
772: z_t = lz[n1 / (m*n)];
773: s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
774: if (twod && (s_t < 0)) s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t; /* 2D case */
775: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
776: }
777: if (n2 >= 0) { /* right below */
778: x_t = lx[n2 % m];
779: y_t = ly[(n2 % (m*n))/m];
780: z_t = lz[n2 / (m*n)];
781: s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
782: if (twod && (s_t < 0)) s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t; /* 2D case */
783: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
784: }
785: }
787: for (i=0; i<y; i++) {
788: if (n3 >= 0) { /* directly left */
789: x_t = lx[n3 % m];
790: y_t = y;
791: z_t = lz[n3 / (m*n)];
792: s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
793: if (twod && (s_t < 0)) s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - x_t*y_t; /* 2D case */
794: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
795: }
797: if (n4 >= 0) { /* middle */
798: x_t = x;
799: y_t = y;
800: z_t = lz[n4 / (m*n)];
801: s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
802: if (twod && (s_t < 0)) s_t = bases[n4] + i*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
803: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
804: } else if (bz == DM_BOUNDARY_MIRROR) {
805: for (j=0; j<x; j++) idx[nn++] = 0;
806: }
808: if (n5 >= 0) { /* directly right */
809: x_t = lx[n5 % m];
810: y_t = y;
811: z_t = lz[n5 / (m*n)];
812: s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
813: if (twod && (s_t < 0)) s_t = bases[n5] + i*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
814: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
815: }
816: }
818: for (i=1; i<=s_y; i++) {
819: if (n6 >= 0) { /* left above */
820: x_t = lx[n6 % m];
821: y_t = ly[(n6 % (m*n))/m];
822: z_t = lz[n6 / (m*n)];
823: s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
824: if (twod && (s_t < 0)) s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - x_t*y_t; /* 2D case */
825: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
826: }
827: if (n7 >= 0) { /* directly above */
828: x_t = x;
829: y_t = ly[(n7 % (m*n))/m];
830: z_t = lz[n7 / (m*n)];
831: s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
832: if (twod && (s_t < 0)) s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
833: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
834: }
835: if (n8 >= 0) { /* right above */
836: x_t = lx[n8 % m];
837: y_t = ly[(n8 % (m*n))/m];
838: z_t = lz[n8 / (m*n)];
839: s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
840: if (twod && (s_t < 0)) s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
841: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
842: }
843: }
844: }
846: /* Middle Level */
847: for (k=0; k<z; k++) {
848: for (i=1; i<=s_y; i++) {
849: if (n9 >= 0) { /* left below */
850: x_t = lx[n9 % m];
851: y_t = ly[(n9 % (m*n))/m];
852: /* z_t = z; */
853: s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
854: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
855: }
856: if (n10 >= 0) { /* directly below */
857: x_t = x;
858: y_t = ly[(n10 % (m*n))/m];
859: /* z_t = z; */
860: s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
861: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
862: } else if (by == DM_BOUNDARY_MIRROR) {
863: for (j=0; j<x; j++) idx[nn++] = 0;
864: }
865: if (n11 >= 0) { /* right below */
866: x_t = lx[n11 % m];
867: y_t = ly[(n11 % (m*n))/m];
868: /* z_t = z; */
869: s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
870: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
871: }
872: }
874: for (i=0; i<y; i++) {
875: if (n12 >= 0) { /* directly left */
876: x_t = lx[n12 % m];
877: y_t = y;
878: /* z_t = z; */
879: s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
880: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
881: } else if (bx == DM_BOUNDARY_MIRROR) {
882: for (j=0; j<s_x; j++) idx[nn++] = 0;
883: }
885: /* Interior */
886: s_t = bases[rank] + i*x + k*x*y;
887: for (j=0; j<x; j++) idx[nn++] = s_t++;
889: if (n14 >= 0) { /* directly right */
890: x_t = lx[n14 % m];
891: y_t = y;
892: /* z_t = z; */
893: s_t = bases[n14] + i*x_t + k*x_t*y_t;
894: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
895: } else if (bx == DM_BOUNDARY_MIRROR) {
896: for (j=0; j<s_x; j++) idx[nn++] = 0;
897: }
898: }
900: for (i=1; i<=s_y; i++) {
901: if (n15 >= 0) { /* left above */
902: x_t = lx[n15 % m];
903: y_t = ly[(n15 % (m*n))/m];
904: /* z_t = z; */
905: s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
906: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
907: }
908: if (n16 >= 0) { /* directly above */
909: x_t = x;
910: y_t = ly[(n16 % (m*n))/m];
911: /* z_t = z; */
912: s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
913: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
914: } else if (by == DM_BOUNDARY_MIRROR) {
915: for (j=0; j<x; j++) idx[nn++] = 0;
916: }
917: if (n17 >= 0) { /* right above */
918: x_t = lx[n17 % m];
919: y_t = ly[(n17 % (m*n))/m];
920: /* z_t = z; */
921: s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
922: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
923: }
924: }
925: }
927: /* Upper Level */
928: for (k=0; k<s_z; k++) {
929: for (i=1; i<=s_y; i++) {
930: if (n18 >= 0) { /* left below */
931: x_t = lx[n18 % m];
932: y_t = ly[(n18 % (m*n))/m];
933: /* z_t = lz[n18 / (m*n)]; */
934: s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
935: if (twod && (s_t >= M*N*P)) s_t = bases[n18] - (s_y-i)*x_t -s_x + x_t*y_t; /* 2d case */
936: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
937: }
938: if (n19 >= 0) { /* directly below */
939: x_t = x;
940: y_t = ly[(n19 % (m*n))/m];
941: /* z_t = lz[n19 / (m*n)]; */
942: s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
943: if (twod && (s_t >= M*N*P)) s_t = bases[n19] - (s_y+1-i)*x_t + x_t*y_t; /* 2d case */
944: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
945: }
946: if (n20 >= 0) { /* right below */
947: x_t = lx[n20 % m];
948: y_t = ly[(n20 % (m*n))/m];
949: /* z_t = lz[n20 / (m*n)]; */
950: s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
951: if (twod && (s_t >= M*N*P)) s_t = bases[n20] - (s_y+1-i)*x_t + x_t*y_t; /* 2d case */
952: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
953: }
954: }
956: for (i=0; i<y; i++) {
957: if (n21 >= 0) { /* directly left */
958: x_t = lx[n21 % m];
959: y_t = y;
960: /* z_t = lz[n21 / (m*n)]; */
961: s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
962: if (twod && (s_t >= M*N*P)) s_t = bases[n21] + (i+1)*x_t - s_x; /* 2d case */
963: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
964: }
966: if (n22 >= 0) { /* middle */
967: x_t = x;
968: y_t = y;
969: /* z_t = lz[n22 / (m*n)]; */
970: s_t = bases[n22] + i*x_t + k*x_t*y_t;
971: if (twod && (s_t >= M*N*P)) s_t = bases[n22] + i*x_t; /* 2d case */
972: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
973: } else if (bz == DM_BOUNDARY_MIRROR) {
974: for (j=0; j<x; j++) idx[nn++] = 0;
975: }
977: if (n23 >= 0) { /* directly right */
978: x_t = lx[n23 % m];
979: y_t = y;
980: /* z_t = lz[n23 / (m*n)]; */
981: s_t = bases[n23] + i*x_t + k*x_t*y_t;
982: if (twod && (s_t >= M*N*P)) s_t = bases[n23] + i*x_t; /* 2d case */
983: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
984: }
985: }
987: for (i=1; i<=s_y; i++) {
988: if (n24 >= 0) { /* left above */
989: x_t = lx[n24 % m];
990: y_t = ly[(n24 % (m*n))/m];
991: /* z_t = lz[n24 / (m*n)]; */
992: s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
993: if (twod && (s_t >= M*N*P)) s_t = bases[n24] + i*x_t - s_x; /* 2d case */
994: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
995: }
996: if (n25 >= 0) { /* directly above */
997: x_t = x;
998: y_t = ly[(n25 % (m*n))/m];
999: /* z_t = lz[n25 / (m*n)]; */
1000: s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1001: if (twod && (s_t >= M*N*P)) s_t = bases[n25] + (i-1)*x_t; /* 2d case */
1002: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1003: }
1004: if (n26 >= 0) { /* right above */
1005: x_t = lx[n26 % m];
1006: y_t = ly[(n26 % (m*n))/m];
1007: /* z_t = lz[n26 / (m*n)]; */
1008: s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1009: if (twod && (s_t >= M*N*P)) s_t = bases[n26] + (i-1)*x_t; /* 2d case */
1010: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1011: }
1012: }
1013: }
1015: ISCreateBlock(comm,dof,nn,idx,PETSC_USE_POINTER,&from);
1016: VecScatterCreate(global,from,local,to,>ol);
1017: PetscLogObjectParent((PetscObject)da,(PetscObject)gtol);
1018: ISDestroy(&to);
1019: ISDestroy(&from);
1021: if (stencil_type == DMDA_STENCIL_STAR) {
1022: n0 = sn0; n1 = sn1; n2 = sn2; n3 = sn3; n5 = sn5; n6 = sn6; n7 = sn7;
1023: n8 = sn8; n9 = sn9; n11 = sn11; n15 = sn15; n17 = sn17; n18 = sn18;
1024: n19 = sn19; n20 = sn20; n21 = sn21; n23 = sn23; n24 = sn24; n25 = sn25;
1025: n26 = sn26;
1026: }
1028: if (((stencil_type == DMDA_STENCIL_STAR) ||
1029: (bx != DM_BOUNDARY_PERIODIC && bx) ||
1030: (by != DM_BOUNDARY_PERIODIC && by) ||
1031: (bz != DM_BOUNDARY_PERIODIC && bz))) {
1032: /*
1033: Recompute the local to global mappings, this time keeping the
1034: information about the cross corner processor numbers.
1035: */
1036: nn = 0;
1037: /* Bottom Level */
1038: for (k=0; k<s_z; k++) {
1039: for (i=1; i<=s_y; i++) {
1040: if (n0 >= 0) { /* left below */
1041: x_t = lx[n0 % m];
1042: y_t = ly[(n0 % (m*n))/m];
1043: z_t = lz[n0 / (m*n)];
1044: s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
1045: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1046: } else if (Xs-xs < 0 && Ys-ys < 0 && Zs-zs < 0) {
1047: for (j=0; j<s_x; j++) idx[nn++] = -1;
1048: }
1049: if (n1 >= 0) { /* directly below */
1050: x_t = x;
1051: y_t = ly[(n1 % (m*n))/m];
1052: z_t = lz[n1 / (m*n)];
1053: s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1054: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1055: } else if (Ys-ys < 0 && Zs-zs < 0) {
1056: for (j=0; j<x; j++) idx[nn++] = -1;
1057: }
1058: if (n2 >= 0) { /* right below */
1059: x_t = lx[n2 % m];
1060: y_t = ly[(n2 % (m*n))/m];
1061: z_t = lz[n2 / (m*n)];
1062: s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1063: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1064: } else if (xe-Xe < 0 && Ys-ys < 0 && Zs-zs < 0) {
1065: for (j=0; j<s_x; j++) idx[nn++] = -1;
1066: }
1067: }
1069: for (i=0; i<y; i++) {
1070: if (n3 >= 0) { /* directly left */
1071: x_t = lx[n3 % m];
1072: y_t = y;
1073: z_t = lz[n3 / (m*n)];
1074: s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1075: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1076: } else if (Xs-xs < 0 && Zs-zs < 0) {
1077: for (j=0; j<s_x; j++) idx[nn++] = -1;
1078: }
1080: if (n4 >= 0) { /* middle */
1081: x_t = x;
1082: y_t = y;
1083: z_t = lz[n4 / (m*n)];
1084: s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1085: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1086: } else if (Zs-zs < 0) {
1087: if (bz == DM_BOUNDARY_MIRROR) {
1088: for (j=0; j<x; j++) idx[nn++] = 0;
1089: } else {
1090: for (j=0; j<x; j++) idx[nn++] = -1;
1091: }
1092: }
1094: if (n5 >= 0) { /* directly right */
1095: x_t = lx[n5 % m];
1096: y_t = y;
1097: z_t = lz[n5 / (m*n)];
1098: s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1099: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1100: } else if (xe-Xe < 0 && Zs-zs < 0) {
1101: for (j=0; j<s_x; j++) idx[nn++] = -1;
1102: }
1103: }
1105: for (i=1; i<=s_y; i++) {
1106: if (n6 >= 0) { /* left above */
1107: x_t = lx[n6 % m];
1108: y_t = ly[(n6 % (m*n))/m];
1109: z_t = lz[n6 / (m*n)];
1110: s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1111: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1112: } else if (Xs-xs < 0 && ye-Ye < 0 && Zs-zs < 0) {
1113: for (j=0; j<s_x; j++) idx[nn++] = -1;
1114: }
1115: if (n7 >= 0) { /* directly above */
1116: x_t = x;
1117: y_t = ly[(n7 % (m*n))/m];
1118: z_t = lz[n7 / (m*n)];
1119: s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1120: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1121: } else if (ye-Ye < 0 && Zs-zs < 0) {
1122: for (j=0; j<x; j++) idx[nn++] = -1;
1123: }
1124: if (n8 >= 0) { /* right above */
1125: x_t = lx[n8 % m];
1126: y_t = ly[(n8 % (m*n))/m];
1127: z_t = lz[n8 / (m*n)];
1128: s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1129: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1130: } else if (xe-Xe < 0 && ye-Ye < 0 && Zs-zs < 0) {
1131: for (j=0; j<s_x; j++) idx[nn++] = -1;
1132: }
1133: }
1134: }
1136: /* Middle Level */
1137: for (k=0; k<z; k++) {
1138: for (i=1; i<=s_y; i++) {
1139: if (n9 >= 0) { /* left below */
1140: x_t = lx[n9 % m];
1141: y_t = ly[(n9 % (m*n))/m];
1142: /* z_t = z; */
1143: s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1144: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1145: } else if (Xs-xs < 0 && Ys-ys < 0) {
1146: for (j=0; j<s_x; j++) idx[nn++] = -1;
1147: }
1148: if (n10 >= 0) { /* directly below */
1149: x_t = x;
1150: y_t = ly[(n10 % (m*n))/m];
1151: /* z_t = z; */
1152: s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1153: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1154: } else if (Ys-ys < 0) {
1155: if (by == DM_BOUNDARY_MIRROR) {
1156: for (j=0; j<x; j++) idx[nn++] = -1;
1157: } else {
1158: for (j=0; j<x; j++) idx[nn++] = -1;
1159: }
1160: }
1161: if (n11 >= 0) { /* right below */
1162: x_t = lx[n11 % m];
1163: y_t = ly[(n11 % (m*n))/m];
1164: /* z_t = z; */
1165: s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1166: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1167: } else if (xe-Xe < 0 && Ys-ys < 0) {
1168: for (j=0; j<s_x; j++) idx[nn++] = -1;
1169: }
1170: }
1172: for (i=0; i<y; i++) {
1173: if (n12 >= 0) { /* directly left */
1174: x_t = lx[n12 % m];
1175: y_t = y;
1176: /* z_t = z; */
1177: s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
1178: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1179: } else if (Xs-xs < 0) {
1180: if (bx == DM_BOUNDARY_MIRROR) {
1181: for (j=0; j<s_x; j++) idx[nn++] = 0;
1182: } else {
1183: for (j=0; j<s_x; j++) idx[nn++] = -1;
1184: }
1185: }
1187: /* Interior */
1188: s_t = bases[rank] + i*x + k*x*y;
1189: for (j=0; j<x; j++) idx[nn++] = s_t++;
1191: if (n14 >= 0) { /* directly right */
1192: x_t = lx[n14 % m];
1193: y_t = y;
1194: /* z_t = z; */
1195: s_t = bases[n14] + i*x_t + k*x_t*y_t;
1196: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1197: } else if (xe-Xe < 0) {
1198: if (bx == DM_BOUNDARY_MIRROR) {
1199: for (j=0; j<s_x; j++) idx[nn++] = 0;
1200: } else {
1201: for (j=0; j<s_x; j++) idx[nn++] = -1;
1202: }
1203: }
1204: }
1206: for (i=1; i<=s_y; i++) {
1207: if (n15 >= 0) { /* left above */
1208: x_t = lx[n15 % m];
1209: y_t = ly[(n15 % (m*n))/m];
1210: /* z_t = z; */
1211: s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
1212: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1213: } else if (Xs-xs < 0 && ye-Ye < 0) {
1214: for (j=0; j<s_x; j++) idx[nn++] = -1;
1215: }
1216: if (n16 >= 0) { /* directly above */
1217: x_t = x;
1218: y_t = ly[(n16 % (m*n))/m];
1219: /* z_t = z; */
1220: s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
1221: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1222: } else if (ye-Ye < 0) {
1223: if (by == DM_BOUNDARY_MIRROR) {
1224: for (j=0; j<x; j++) idx[nn++] = 0;
1225: } else {
1226: for (j=0; j<x; j++) idx[nn++] = -1;
1227: }
1228: }
1229: if (n17 >= 0) { /* right above */
1230: x_t = lx[n17 % m];
1231: y_t = ly[(n17 % (m*n))/m];
1232: /* z_t = z; */
1233: s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
1234: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1235: } else if (xe-Xe < 0 && ye-Ye < 0) {
1236: for (j=0; j<s_x; j++) idx[nn++] = -1;
1237: }
1238: }
1239: }
1241: /* Upper Level */
1242: for (k=0; k<s_z; k++) {
1243: for (i=1; i<=s_y; i++) {
1244: if (n18 >= 0) { /* left below */
1245: x_t = lx[n18 % m];
1246: y_t = ly[(n18 % (m*n))/m];
1247: /* z_t = lz[n18 / (m*n)]; */
1248: s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1249: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1250: } else if (Xs-xs < 0 && Ys-ys < 0 && ze-Ze < 0) {
1251: for (j=0; j<s_x; j++) idx[nn++] = -1;
1252: }
1253: if (n19 >= 0) { /* directly below */
1254: x_t = x;
1255: y_t = ly[(n19 % (m*n))/m];
1256: /* z_t = lz[n19 / (m*n)]; */
1257: s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1258: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1259: } else if (Ys-ys < 0 && ze-Ze < 0) {
1260: for (j=0; j<x; j++) idx[nn++] = -1;
1261: }
1262: if (n20 >= 0) { /* right below */
1263: x_t = lx[n20 % m];
1264: y_t = ly[(n20 % (m*n))/m];
1265: /* z_t = lz[n20 / (m*n)]; */
1266: s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1267: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1268: } else if (xe-Xe < 0 && Ys-ys < 0 && ze-Ze < 0) {
1269: for (j=0; j<s_x; j++) idx[nn++] = -1;
1270: }
1271: }
1273: for (i=0; i<y; i++) {
1274: if (n21 >= 0) { /* directly left */
1275: x_t = lx[n21 % m];
1276: y_t = y;
1277: /* z_t = lz[n21 / (m*n)]; */
1278: s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
1279: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1280: } else if (Xs-xs < 0 && ze-Ze < 0) {
1281: for (j=0; j<s_x; j++) idx[nn++] = -1;
1282: }
1284: if (n22 >= 0) { /* middle */
1285: x_t = x;
1286: y_t = y;
1287: /* z_t = lz[n22 / (m*n)]; */
1288: s_t = bases[n22] + i*x_t + k*x_t*y_t;
1289: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1290: } else if (ze-Ze < 0) {
1291: if (bz == DM_BOUNDARY_MIRROR) {
1292: for (j=0; j<x; j++) idx[nn++] = 0;
1293: } else {
1294: for (j=0; j<x; j++) idx[nn++] = -1;
1295: }
1296: }
1298: if (n23 >= 0) { /* directly right */
1299: x_t = lx[n23 % m];
1300: y_t = y;
1301: /* z_t = lz[n23 / (m*n)]; */
1302: s_t = bases[n23] + i*x_t + k*x_t*y_t;
1303: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1304: } else if (xe-Xe < 0 && ze-Ze < 0) {
1305: for (j=0; j<s_x; j++) idx[nn++] = -1;
1306: }
1307: }
1309: for (i=1; i<=s_y; i++) {
1310: if (n24 >= 0) { /* left above */
1311: x_t = lx[n24 % m];
1312: y_t = ly[(n24 % (m*n))/m];
1313: /* z_t = lz[n24 / (m*n)]; */
1314: s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1315: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1316: } else if (Xs-xs < 0 && ye-Ye < 0 && ze-Ze < 0) {
1317: for (j=0; j<s_x; j++) idx[nn++] = -1;
1318: }
1319: if (n25 >= 0) { /* directly above */
1320: x_t = x;
1321: y_t = ly[(n25 % (m*n))/m];
1322: /* z_t = lz[n25 / (m*n)]; */
1323: s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1324: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1325: } else if (ye-Ye < 0 && ze-Ze < 0) {
1326: for (j=0; j<x; j++) idx[nn++] = -1;
1327: }
1328: if (n26 >= 0) { /* right above */
1329: x_t = lx[n26 % m];
1330: y_t = ly[(n26 % (m*n))/m];
1331: /* z_t = lz[n26 / (m*n)]; */
1332: s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1333: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1334: } else if (xe-Xe < 0 && ye-Ye < 0 && ze-Ze < 0) {
1335: for (j=0; j<s_x; j++) idx[nn++] = -1;
1336: }
1337: }
1338: }
1339: }
1340: /*
1341: Set the local to global ordering in the global vector, this allows use
1342: of VecSetValuesLocal().
1343: */
1344: ISLocalToGlobalMappingCreate(comm,dof,nn,idx,PETSC_OWN_POINTER,&da->ltogmap);
1345: PetscLogObjectParent((PetscObject)da,(PetscObject)da->ltogmap);
1347: PetscFree2(bases,ldims);
1348: dd->m = m; dd->n = n; dd->p = p;
1349: /* note petsc expects xs/xe/Xs/Xe to be multiplied by #dofs in many places */
1350: dd->xs = xs*dof; dd->xe = xe*dof; dd->ys = ys; dd->ye = ye; dd->zs = zs; dd->ze = ze;
1351: dd->Xs = Xs*dof; dd->Xe = Xe*dof; dd->Ys = Ys; dd->Ye = Ye; dd->Zs = Zs; dd->Ze = Ze;
1353: VecDestroy(&local);
1354: VecDestroy(&global);
1356: dd->gtol = gtol;
1357: dd->base = base;
1358: da->ops->view = DMView_DA_3d;
1359: dd->ltol = NULL;
1360: dd->ao = NULL;
1361: return(0);
1362: }
1367: /*@C
1368: DMDACreate3d - Creates an object that will manage the communication of three-dimensional
1369: regular array data that is distributed across some processors.
1371: Collective on MPI_Comm
1373: Input Parameters:
1374: + comm - MPI communicator
1375: . bx,by,bz - type of ghost nodes the array have.
1376: Use one of DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, DM_BOUNDARY_PERIODIC.
1377: . stencil_type - Type of stencil (DMDA_STENCIL_STAR or DMDA_STENCIL_BOX)
1378: . M,N,P - global dimension in each direction of the array (use -M, -N, and or -P to indicate that it may be set to a different value
1379: from the command line with -da_grid_x <M> -da_grid_y <N> -da_grid_z <P>)
1380: . m,n,p - corresponding number of processors in each dimension
1381: (or PETSC_DECIDE to have calculated)
1382: . dof - number of degrees of freedom per node
1383: . s - stencil width
1384: - lx, ly, lz - arrays containing the number of nodes in each cell along
1385: the x, y, and z coordinates, or NULL. If non-null, these
1386: must be of length as m,n,p and the corresponding
1387: m,n, or p cannot be PETSC_DECIDE. Sum of the lx[] entries must be M, sum of
1388: the ly[] must N, sum of the lz[] must be P
1390: Output Parameter:
1391: . da - the resulting distributed array object
1393: Options Database Key:
1394: + -dm_view - Calls DMView() at the conclusion of DMDACreate3d()
1395: . -da_grid_x <nx> - number of grid points in x direction, if M < 0
1396: . -da_grid_y <ny> - number of grid points in y direction, if N < 0
1397: . -da_grid_z <nz> - number of grid points in z direction, if P < 0
1398: . -da_processors_x <MX> - number of processors in x direction
1399: . -da_processors_y <MY> - number of processors in y direction
1400: . -da_processors_z <MZ> - number of processors in z direction
1401: . -da_refine_x <rx> - refinement ratio in x direction
1402: . -da_refine_y <ry> - refinement ratio in y direction
1403: . -da_refine_z <rz>- refinement ratio in z directio
1404: - -da_refine <n> - refine the DMDA n times before creating it, , if M, N, or P < 0
1406: Level: beginner
1408: Notes:
1409: The stencil type DMDA_STENCIL_STAR with width 1 corresponds to the
1410: standard 7-pt stencil, while DMDA_STENCIL_BOX with width 1 denotes
1411: the standard 27-pt stencil.
1413: The array data itself is NOT stored in the DMDA, it is stored in Vec objects;
1414: The appropriate vector objects can be obtained with calls to DMCreateGlobalVector()
1415: and DMCreateLocalVector() and calls to VecDuplicate() if more are needed.
1417: .keywords: distributed array, create, three-dimensional
1419: .seealso: DMDestroy(), DMView(), DMDACreate1d(), DMDACreate2d(), DMGlobalToLocalBegin(), DMDAGetRefinementFactor(),
1420: DMGlobalToLocalEnd(), DMLocalToGlobalBegin(), DMLocalToLocalBegin(), DMLocalToLocalEnd(), DMDASetRefinementFactor(),
1421: DMDAGetInfo(), DMCreateGlobalVector(), DMCreateLocalVector(), DMDACreateNaturalVector(), DMLoad(), DMDAGetOwnershipRanges()
1423: @*/
1424: PetscErrorCode DMDACreate3d(MPI_Comm comm,DMBoundaryType bx,DMBoundaryType by,DMBoundaryType bz,DMDAStencilType stencil_type,PetscInt M,
1425: PetscInt N,PetscInt P,PetscInt m,PetscInt n,PetscInt p,PetscInt dof,PetscInt s,const PetscInt lx[],const PetscInt ly[],const PetscInt lz[],DM *da)
1426: {
1430: DMDACreate(comm, da);
1431: DMSetDimension(*da, 3);
1432: DMDASetSizes(*da, M, N, P);
1433: DMDASetNumProcs(*da, m, n, p);
1434: DMDASetBoundaryType(*da, bx, by, bz);
1435: DMDASetDof(*da, dof);
1436: DMDASetStencilType(*da, stencil_type);
1437: DMDASetStencilWidth(*da, s);
1438: DMDASetOwnershipRanges(*da, lx, ly, lz);
1439: /* This violates the behavior for other classes, but right now users expect negative dimensions to be handled this way */
1440: DMSetFromOptions(*da);
1441: DMSetUp(*da);
1442: return(0);
1443: }