Actual source code: ex41.c
petsc-3.5.4 2015-05-23
2: static char help[] = "Parallel bouncing ball example to test TS event feature.\n";
4: /*
5: The dynamics of the bouncing ball is described by the ODE
6: u1_t = u2
7: u2_t = -9.8
8:
9: Each processor is assigned one ball.
10:
11: The event function routine checks for the ball hitting the
12: ground (u1 = 0). Every time the ball hits the ground, its velocity u2 is attenuated by
13: a factor of 0.9 and its height set to 1.0*rank.
14: */
16: #include <petscts.h>
20: PetscErrorCode EventFunction(TS ts,PetscReal t,Vec U,PetscScalar *fvalue,void *ctx)
21: {
23: PetscScalar *u;
26: /* Event for ball height */
27: VecGetArray(U,&u);
28: fvalue[0] = u[0];
29: VecRestoreArray(U,&u);
30: return(0);
31: }
35: PetscErrorCode PostEventFunction(TS ts,PetscInt nevents,PetscInt event_list[],PetscReal t,Vec U,void* ctx)
36: {
38: PetscScalar *u;
39: PetscMPIInt rank;
42: MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
43: if (nevents) {
44: VecGetArray(U,&u);
45: PetscPrintf(PETSC_COMM_SELF,"Processor [%d]: Ball hit the ground at t = %f seconds\n",rank,t);
46: /* Set new initial conditions with .9 attenuation */
47: u[0] = 1.0*rank;
48: u[1] = -0.9*u[1];
49: VecRestoreArray(U,&u);
50: }
51: TSSetSolution(ts,U);
52: return(0);
53: }
57: /*
58: Defines the ODE passed to the ODE solver
59: */
60: static PetscErrorCode IFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
61: {
63: PetscScalar *u,*udot,*f;
66: /* The next three lines allow us to access the entries of the vectors directly */
67: VecGetArray(U,&u);
68: VecGetArray(Udot,&udot);
69: VecGetArray(F,&f);
71: f[0] = udot[0] - u[1];
72: f[1] = udot[1] + 9.8;
74: VecRestoreArray(U,&u);
75: VecRestoreArray(Udot,&udot);
76: VecRestoreArray(F,&f);
77: return(0);
78: }
82: /*
83: Defines the Jacobian of the ODE passed to the ODE solver. See TSSetIJacobian() for the meaning of a and the Jacobian.
84: */
85: static PetscErrorCode IJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal a,Mat A,Mat B,void *ctx)
86: {
88: PetscInt rowcol[2];
89: PetscScalar *u,*udot,J[2][2];
90: PetscInt rstart;
93: VecGetArray(U,&u);
94: VecGetArray(Udot,&udot);
96: MatGetOwnershipRange(A,&rstart,NULL);
97: rowcol[0] = rstart; rowcol[1] = rstart+1;
99: J[0][0] = a; J[0][1] = -1;
100: J[1][0] = 0.0; J[1][1] = a;
101: MatSetValues(B,2,rowcol,2,rowcol,&J[0][0],INSERT_VALUES);
103: VecRestoreArray(U,&u);
104: VecRestoreArray(Udot,&udot);
106: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
107: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
108: if (A != B) {
109: MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
110: MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
111: }
112: return(0);
113: }
114:
117: int main(int argc,char **argv)
118: {
119: TS ts; /* ODE integrator */
120: Vec U; /* solution will be stored here */
121: Mat A; /* Jacobian matrix */
123: PetscMPIInt rank;
124: PetscInt n = 2,direction=-1;
125: PetscScalar *u;
126: PetscBool terminate=PETSC_FALSE;
128: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
129: Initialize program
130: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
131: PetscInitialize(&argc,&argv,(char*)0,help);
132: MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
134: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
135: Create necessary matrix and vectors
136: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
137: MatCreate(PETSC_COMM_WORLD,&A);
138: MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);
139: MatSetType(A,MATDENSE);
140: MatSetFromOptions(A);
141: MatSetUp(A);
143: MatGetVecs(A,&U,NULL);
145: VecGetArray(U,&u);
146: u[0] = 1.0*rank;
147: u[1] = 20.0;
148: VecRestoreArray(U,&u);
150: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
151: Create timestepping solver context
152: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
153: TSCreate(PETSC_COMM_WORLD,&ts);
154: TSSetProblemType(ts,TS_NONLINEAR);
155: TSSetType(ts,TSROSW);
156: TSSetIFunction(ts,NULL,(TSIFunction) IFunction,NULL);
157: TSSetIJacobian(ts,A,A,(TSIJacobian)IJacobian,NULL);
159: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
160: Set initial conditions
161: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
162: TSSetSolution(ts,U);
164: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
165: Set solver options
166: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
167: TSSetDuration(ts,1000,30.0);
168: TSSetInitialTimeStep(ts,0.0,0.1);
169: TSSetFromOptions(ts);
170:
171: TSSetEventMonitor(ts,1,&direction,&terminate,EventFunction,PostEventFunction,NULL);
173: TSAdapt adapt;
174: TSGetAdapt(ts,&adapt);
175: /* The adapative time step controller could take very large timesteps resulting in
176: the same event occuring multiple times in the same interval. A max. step
177: limit is enforced here to avoid this issue.
178: */
179: TSAdaptSetStepLimits(adapt,0.0,0.5);
180: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
181: Run timestepping solver
182: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
183: TSSolve(ts,U);
185: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
186: Free work space. All PETSc objects should be destroyed when they are no longer needed.
187: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
188:
189: MatDestroy(&A);
190: VecDestroy(&U);
191: TSDestroy(&ts);
192:
193: PetscFinalize();
194: return(0);
195: }