Actual source code: ipm.c

petsc-3.5.4 2015-05-23
Report Typos and Errors
  1: #include <petsctaolinesearch.h>
  2: #include <../src/tao/constrained/impls/ipm/ipm.h> /*I "ipm.h" I*/

  4: /*
  5:    x,d in R^n
  6:    f in R
  7:    nb = mi + nlb+nub
  8:    s in R^nb is slack vector CI(x) / x-XL / -x+XU
  9:    bin in R^mi (tao->constraints_inequality)
 10:    beq in R^me (tao->constraints_equality)
 11:    lamdai in R^nb (ipmP->lamdai)
 12:    lamdae in R^me (ipmP->lamdae)
 13:    Jeq in R^(me x n) (tao->jacobian_equality)
 14:    Jin in R^(mi x n) (tao->jacobian_inequality)
 15:    Ai in  R^(nb x n) (ipmP->Ai)
 16:    H in R^(n x n) (tao->hessian)
 17:    min f=(1/2)*x'*H*x + d'*x
 18:    s.t.  CE(x) == 0
 19:          CI(x) >= 0
 20:          x >= tao->XL
 21:          -x >= -tao->XU
 22: */

 24: static PetscErrorCode IPMComputeKKT(Tao tao);
 25: static PetscErrorCode IPMPushInitialPoint(Tao tao);
 26: static PetscErrorCode IPMEvaluate(Tao tao);
 27: static PetscErrorCode IPMUpdateK(Tao tao);
 28: static PetscErrorCode IPMUpdateAi(Tao tao);
 29: static PetscErrorCode IPMGatherRHS(Tao tao,Vec,Vec,Vec,Vec,Vec);
 30: static PetscErrorCode IPMScatterStep(Tao tao,Vec,Vec,Vec,Vec,Vec);
 31: static PetscErrorCode IPMInitializeBounds(Tao tao);

 35: static PetscErrorCode TaoSolve_IPM(Tao tao)
 36: {
 37:   PetscErrorCode     ierr;
 38:   TAO_IPM            *ipmP = (TAO_IPM*)tao->data;
 39:   TaoConvergedReason reason = TAO_CONTINUE_ITERATING;
 40:   PetscInt           iter = 0,its,i;
 41:   PetscScalar        stepsize=1.0;
 42:   PetscScalar        step_s,step_l,alpha,tau,sigma,phi_target;

 45:   /* Push initial point away from bounds */
 46:   IPMInitializeBounds(tao);
 47:   IPMPushInitialPoint(tao);
 48:   VecCopy(tao->solution,ipmP->rhs_x);
 49:   IPMEvaluate(tao);
 50:   IPMComputeKKT(tao);
 51:   TaoMonitor(tao,iter++,ipmP->kkt_f,ipmP->phi,0.0,1.0,&reason);

 53:   while (reason == TAO_CONTINUE_ITERATING) {
 54:     IPMUpdateK(tao);
 55:     /*
 56:        rhs.x    = -rd
 57:        rhs.lame = -rpe
 58:        rhs.lami = -rpi
 59:        rhs.com  = -com
 60:     */

 62:     VecCopy(ipmP->rd,ipmP->rhs_x);
 63:     if (ipmP->me > 0) {
 64:       VecCopy(ipmP->rpe,ipmP->rhs_lamdae);
 65:     }
 66:     if (ipmP->nb > 0) {
 67:       VecCopy(ipmP->rpi,ipmP->rhs_lamdai);
 68:       VecCopy(ipmP->complementarity,ipmP->rhs_s);
 69:     }
 70:     IPMGatherRHS(tao,ipmP->bigrhs,ipmP->rhs_x,ipmP->rhs_lamdae,ipmP->rhs_lamdai,ipmP->rhs_s);
 71:     VecScale(ipmP->bigrhs,-1.0);

 73:     /* solve K * step = rhs */
 74:     KSPSetOperators(tao->ksp,ipmP->K,ipmP->K);
 75:     KSPSolve(tao->ksp,ipmP->bigrhs,ipmP->bigstep);

 77:     IPMScatterStep(tao,ipmP->bigstep,tao->stepdirection,ipmP->ds,ipmP->dlamdae,ipmP->dlamdai);
 78:     KSPGetIterationNumber(tao->ksp,&its);
 79:     tao->ksp_its += its;
 80:      /* Find distance along step direction to closest bound */
 81:     if (ipmP->nb > 0) {
 82:       VecStepBoundInfo(ipmP->s,ipmP->ds,ipmP->Zero_nb,ipmP->Inf_nb,&step_s,NULL,NULL);
 83:       VecStepBoundInfo(ipmP->lamdai,ipmP->dlamdai,ipmP->Zero_nb,ipmP->Inf_nb,&step_l,NULL,NULL);
 84:       alpha = PetscMin(step_s,step_l);
 85:       alpha = PetscMin(alpha,1.0);
 86:       ipmP->alpha1 = alpha;
 87:     } else {
 88:       ipmP->alpha1 = alpha = 1.0;
 89:     }

 91:     /* x_aff = x + alpha*d */
 92:     VecCopy(tao->solution,ipmP->save_x);
 93:     if (ipmP->me > 0) {
 94:       VecCopy(ipmP->lamdae,ipmP->save_lamdae);
 95:     }
 96:     if (ipmP->nb > 0) {
 97:       VecCopy(ipmP->lamdai,ipmP->save_lamdai);
 98:       VecCopy(ipmP->s,ipmP->save_s);
 99:     }

101:     VecAXPY(tao->solution,alpha,tao->stepdirection);
102:     if (ipmP->me > 0) {
103:       VecAXPY(ipmP->lamdae,alpha,ipmP->dlamdae);
104:     }
105:     if (ipmP->nb > 0) {
106:       VecAXPY(ipmP->lamdai,alpha,ipmP->dlamdai);
107:       VecAXPY(ipmP->s,alpha,ipmP->ds);
108:     }

110:     /* Recompute kkt to find centering parameter sigma = (new_mu/old_mu)^3 */
111:     if (ipmP->mu == 0.0) {
112:       sigma = 0.0;
113:     } else {
114:       sigma = 1.0/ipmP->mu;
115:     }
116:     IPMComputeKKT(tao);
117:     sigma *= ipmP->mu;
118:     sigma*=sigma*sigma;

120:     /* revert kkt info */
121:     VecCopy(ipmP->save_x,tao->solution);
122:     if (ipmP->me > 0) {
123:       VecCopy(ipmP->save_lamdae,ipmP->lamdae);
124:     }
125:     if (ipmP->nb > 0) {
126:       VecCopy(ipmP->save_lamdai,ipmP->lamdai);
127:       VecCopy(ipmP->save_s,ipmP->s);
128:     }
129:     IPMComputeKKT(tao);

131:     /* update rhs with new complementarity vector */
132:     if (ipmP->nb > 0) {
133:       VecCopy(ipmP->complementarity,ipmP->rhs_s);
134:       VecScale(ipmP->rhs_s,-1.0);
135:       VecShift(ipmP->rhs_s,sigma*ipmP->mu);
136:     }
137:     IPMGatherRHS(tao,ipmP->bigrhs,NULL,NULL,NULL,ipmP->rhs_s);

139:     /* solve K * step = rhs */
140:     KSPSetOperators(tao->ksp,ipmP->K,ipmP->K);
141:     KSPSolve(tao->ksp,ipmP->bigrhs,ipmP->bigstep);

143:     IPMScatterStep(tao,ipmP->bigstep,tao->stepdirection,ipmP->ds,ipmP->dlamdae,ipmP->dlamdai);
144:     KSPGetIterationNumber(tao->ksp,&its);
145:     tao->ksp_its += its;

147:     if (ipmP->nb > 0) {
148:       /* Get max step size and apply frac-to-boundary */
149:       tau = PetscMax(ipmP->taumin,1.0-ipmP->mu);
150:       tau = PetscMin(tau,1.0);
151:       if (tau != 1.0) {
152:         VecScale(ipmP->s,tau);
153:         VecScale(ipmP->lamdai,tau);
154:       }
155:       VecStepBoundInfo(ipmP->s,ipmP->ds,ipmP->Zero_nb,ipmP->Inf_nb,&step_s,NULL,NULL);
156:       VecStepBoundInfo(ipmP->lamdai,ipmP->dlamdai,ipmP->Zero_nb,ipmP->Inf_nb,&step_l,NULL,NULL);
157:       if (tau != 1.0) {
158:         VecCopy(ipmP->save_s,ipmP->s);
159:         VecCopy(ipmP->save_lamdai,ipmP->lamdai);
160:       }
161:       alpha = PetscMin(step_s,step_l);
162:       alpha = PetscMin(alpha,1.0);
163:     } else {
164:       alpha = 1.0;
165:     }
166:     ipmP->alpha2 = alpha;
167:     /* TODO make phi_target meaningful */
168:     phi_target = ipmP->dec * ipmP->phi;
169:     for (i=0; i<11;i++) {
170:       VecAXPY(tao->solution,alpha,tao->stepdirection);
171:       if (ipmP->nb > 0) {
172:         VecAXPY(ipmP->s,alpha,ipmP->ds);
173:         VecAXPY(ipmP->lamdai,alpha,ipmP->dlamdai);
174:       }
175:       if (ipmP->me > 0) {
176:         VecAXPY(ipmP->lamdae,alpha,ipmP->dlamdae);
177:       }

179:       /* update dual variables */
180:       if (ipmP->me > 0) {
181:         VecCopy(ipmP->lamdae,tao->DE);
182:       }

184:       IPMEvaluate(tao);
185:       IPMComputeKKT(tao);
186:       if (ipmP->phi <= phi_target) break;
187:       alpha /= 2.0;
188:     }

190:     TaoMonitor(tao,iter,ipmP->kkt_f,ipmP->phi,0.0,stepsize,&reason);
191:     iter++;
192:   }
193:   return(0);
194: }

198: static PetscErrorCode TaoSetup_IPM(Tao tao)
199: {
200:   TAO_IPM        *ipmP = (TAO_IPM*)tao->data;

204:   ipmP->nb = ipmP->mi = ipmP->me = 0;
205:   ipmP->K=0;
206:   VecGetSize(tao->solution,&ipmP->n);
207:   if (!tao->gradient) {
208:     VecDuplicate(tao->solution, &tao->gradient);
209:     VecDuplicate(tao->solution, &tao->stepdirection);
210:     VecDuplicate(tao->solution, &ipmP->rd);
211:     VecDuplicate(tao->solution, &ipmP->rhs_x);
212:     VecDuplicate(tao->solution, &ipmP->work);
213:     VecDuplicate(tao->solution, &ipmP->save_x);
214:   }
215:   if (tao->constraints_equality) {
216:     VecGetSize(tao->constraints_equality,&ipmP->me);
217:     VecDuplicate(tao->constraints_equality,&ipmP->lamdae);
218:     VecDuplicate(tao->constraints_equality,&ipmP->dlamdae);
219:     VecDuplicate(tao->constraints_equality,&ipmP->rhs_lamdae);
220:     VecDuplicate(tao->constraints_equality,&ipmP->save_lamdae);
221:     VecDuplicate(tao->constraints_equality,&ipmP->rpe);
222:     VecDuplicate(tao->constraints_equality,&tao->DE);
223:   }
224:   if (tao->constraints_inequality) {
225:     VecDuplicate(tao->constraints_inequality,&tao->DI);
226:   }
227:   return(0);
228: }

232: static PetscErrorCode IPMInitializeBounds(Tao tao)
233: {
234:   TAO_IPM        *ipmP = (TAO_IPM*)tao->data;
235:   Vec            xtmp;
236:   PetscInt       xstart,xend;
237:   PetscInt       ucstart,ucend; /* user ci */
238:   PetscInt       ucestart,uceend; /* user ce */
239:   PetscInt       sstart,send;
240:   PetscInt       bigsize;
241:   PetscInt       i,counter,nloc;
242:   PetscInt       *cind,*xind,*ucind,*uceind,*stepind;
243:   VecType        vtype;
244:   const PetscInt *xli,*xui;
245:   PetscInt       xl_offset,xu_offset;
246:   IS             bigxl,bigxu,isuc,isc,isx,sis,is1;
248:   MPI_Comm       comm;

251:   cind=xind=ucind=uceind=stepind=0;
252:   ipmP->mi=0;
253:   ipmP->nxlb=0;
254:   ipmP->nxub=0;
255:   ipmP->nb=0;
256:   ipmP->nslack=0;

258:   VecDuplicate(tao->solution,&xtmp);
259:   if (!tao->XL && !tao->XU && tao->ops->computebounds) {
260:     TaoComputeVariableBounds(tao);
261:   }
262:   if (tao->XL) {
263:     VecSet(xtmp,PETSC_NINFINITY);
264:     VecWhichGreaterThan(tao->XL,xtmp,&ipmP->isxl);
265:     ISGetSize(ipmP->isxl,&ipmP->nxlb);
266:   } else {
267:     ipmP->nxlb=0;
268:   }
269:   if (tao->XU) {
270:     VecSet(xtmp,PETSC_INFINITY);
271:     VecWhichLessThan(tao->XU,xtmp,&ipmP->isxu);
272:     ISGetSize(ipmP->isxu,&ipmP->nxub);
273:   } else {
274:     ipmP->nxub=0;
275:   }
276:   VecDestroy(&xtmp);
277:   if (tao->constraints_inequality) {
278:     VecGetSize(tao->constraints_inequality,&ipmP->mi);
279:   } else {
280:     ipmP->mi = 0;
281:   }
282:   ipmP->nb = ipmP->nxlb + ipmP->nxub + ipmP->mi;

284:   comm = ((PetscObject)(tao->solution))->comm;

286:   bigsize = ipmP->n+2*ipmP->nb+ipmP->me;
287:   PetscMalloc1(bigsize,&stepind);
288:   PetscMalloc1(ipmP->n,&xind);
289:   PetscMalloc1(ipmP->me,&uceind);
290:   VecGetOwnershipRange(tao->solution,&xstart,&xend);

292:   if (ipmP->nb > 0) {
293:     VecCreate(comm,&ipmP->s);
294:     VecSetSizes(ipmP->s,PETSC_DECIDE,ipmP->nb);
295:     VecSetFromOptions(ipmP->s);
296:     VecDuplicate(ipmP->s,&ipmP->ds);
297:     VecDuplicate(ipmP->s,&ipmP->rhs_s);
298:     VecDuplicate(ipmP->s,&ipmP->complementarity);
299:     VecDuplicate(ipmP->s,&ipmP->ci);

301:     VecDuplicate(ipmP->s,&ipmP->lamdai);
302:     VecDuplicate(ipmP->s,&ipmP->dlamdai);
303:     VecDuplicate(ipmP->s,&ipmP->rhs_lamdai);
304:     VecDuplicate(ipmP->s,&ipmP->save_lamdai);

306:     VecDuplicate(ipmP->s,&ipmP->save_s);
307:     VecDuplicate(ipmP->s,&ipmP->rpi);
308:     VecDuplicate(ipmP->s,&ipmP->Zero_nb);
309:     VecSet(ipmP->Zero_nb,0.0);
310:     VecDuplicate(ipmP->s,&ipmP->One_nb);
311:     VecSet(ipmP->One_nb,1.0);
312:     VecDuplicate(ipmP->s,&ipmP->Inf_nb);
313:     VecSet(ipmP->Inf_nb,PETSC_INFINITY);

315:     PetscMalloc1(ipmP->nb,&cind);
316:     PetscMalloc1(ipmP->mi,&ucind);
317:     VecGetOwnershipRange(ipmP->s,&sstart,&send);

319:     if (ipmP->mi > 0) {
320:       VecGetOwnershipRange(tao->constraints_inequality,&ucstart,&ucend);
321:       counter=0;
322:       for (i=ucstart;i<ucend;i++) {
323:         cind[counter++] = i;
324:       }
325:       ISCreateGeneral(comm,counter,cind,PETSC_COPY_VALUES,&isuc);
326:       ISCreateGeneral(comm,counter,cind,PETSC_COPY_VALUES,&isc);
327:       VecScatterCreate(tao->constraints_inequality,isuc,ipmP->ci,isc,&ipmP->ci_scat);

329:       ISDestroy(&isuc);
330:       ISDestroy(&isc);
331:     }
332:     /* need to know how may xbound indices are on each process */
333:     /* TODO better way */
334:     if (ipmP->nxlb) {
335:       ISAllGather(ipmP->isxl,&bigxl);
336:       ISGetIndices(bigxl,&xli);
337:       /* find offsets for this processor */
338:       xl_offset = ipmP->mi;
339:       for (i=0;i<ipmP->nxlb;i++) {
340:         if (xli[i] < xstart) {
341:           xl_offset++;
342:         } else break;
343:       }
344:       ISRestoreIndices(bigxl,&xli);

346:       ISGetIndices(ipmP->isxl,&xli);
347:       ISGetLocalSize(ipmP->isxl,&nloc);
348:       for (i=0;i<nloc;i++) {
349:         xind[i] = xli[i];
350:         cind[i] = xl_offset+i;
351:       }

353:       ISCreateGeneral(comm,nloc,xind,PETSC_COPY_VALUES,&isx);
354:       ISCreateGeneral(comm,nloc,cind,PETSC_COPY_VALUES,&isc);
355:       VecScatterCreate(tao->XL,isx,ipmP->ci,isc,&ipmP->xl_scat);
356:       ISDestroy(&isx);
357:       ISDestroy(&isc);
358:       ISDestroy(&bigxl);
359:     }

361:     if (ipmP->nxub) {
362:       ISAllGather(ipmP->isxu,&bigxu);
363:       ISGetIndices(bigxu,&xui);
364:       /* find offsets for this processor */
365:       xu_offset = ipmP->mi + ipmP->nxlb;
366:       for (i=0;i<ipmP->nxub;i++) {
367:         if (xui[i] < xstart) {
368:           xu_offset++;
369:         } else break;
370:       }
371:       ISRestoreIndices(bigxu,&xui);

373:       ISGetIndices(ipmP->isxu,&xui);
374:       ISGetLocalSize(ipmP->isxu,&nloc);
375:       for (i=0;i<nloc;i++) {
376:         xind[i] = xui[i];
377:         cind[i] = xu_offset+i;
378:       }

380:       ISCreateGeneral(comm,nloc,xind,PETSC_COPY_VALUES,&isx);
381:       ISCreateGeneral(comm,nloc,cind,PETSC_COPY_VALUES,&isc);
382:       VecScatterCreate(tao->XU,isx,ipmP->ci,isc,&ipmP->xu_scat);
383:       ISDestroy(&isx);
384:       ISDestroy(&isc);
385:       ISDestroy(&bigxu);
386:     }
387:   }
388:   VecCreate(comm,&ipmP->bigrhs);
389:   VecGetType(tao->solution,&vtype);
390:   VecSetType(ipmP->bigrhs,vtype);
391:   VecSetSizes(ipmP->bigrhs,PETSC_DECIDE,bigsize);
392:   VecSetFromOptions(ipmP->bigrhs);
393:   VecDuplicate(ipmP->bigrhs,&ipmP->bigstep);

395:   /* create scatters for step->x and x->rhs */
396:   for (i=xstart;i<xend;i++) {
397:     stepind[i-xstart] = i;
398:     xind[i-xstart] = i;
399:   }
400:   ISCreateGeneral(comm,xend-xstart,stepind,PETSC_COPY_VALUES,&sis);
401:   ISCreateGeneral(comm,xend-xstart,xind,PETSC_COPY_VALUES,&is1);
402:   VecScatterCreate(ipmP->bigstep,sis,tao->solution,is1,&ipmP->step1);
403:   VecScatterCreate(tao->solution,is1,ipmP->bigrhs,sis,&ipmP->rhs1);
404:   ISDestroy(&sis);
405:   ISDestroy(&is1);

407:   if (ipmP->nb > 0) {
408:     for (i=sstart;i<send;i++) {
409:       stepind[i-sstart] = i+ipmP->n;
410:       cind[i-sstart] = i;
411:     }
412:     ISCreateGeneral(comm,send-sstart,stepind,PETSC_COPY_VALUES,&sis);
413:     ISCreateGeneral(comm,send-sstart,cind,PETSC_COPY_VALUES,&is1);
414:     VecScatterCreate(ipmP->bigstep,sis,ipmP->s,is1,&ipmP->step2);
415:     ISDestroy(&sis);

417:     for (i=sstart;i<send;i++) {
418:       stepind[i-sstart] = i+ipmP->n+ipmP->me;
419:       cind[i-sstart] = i;
420:     }
421:     ISCreateGeneral(comm,send-sstart,stepind,PETSC_COPY_VALUES,&sis);
422:     VecScatterCreate(ipmP->s,is1,ipmP->bigrhs,sis,&ipmP->rhs3);
423:     ISDestroy(&sis);
424:     ISDestroy(&is1);
425:   }

427:   if (ipmP->me > 0) {
428:     VecGetOwnershipRange(tao->constraints_equality,&ucestart,&uceend);
429:     for (i=ucestart;i<uceend;i++) {
430:       stepind[i-ucestart] = i + ipmP->n+ipmP->nb;
431:       uceind[i-ucestart] = i;
432:     }

434:     ISCreateGeneral(comm,uceend-ucestart,stepind,PETSC_COPY_VALUES,&sis);
435:     ISCreateGeneral(comm,uceend-ucestart,uceind,PETSC_COPY_VALUES,&is1);
436:     VecScatterCreate(ipmP->bigstep,sis,tao->constraints_equality,is1,&ipmP->step3);
437:     ISDestroy(&sis);

439:     for (i=ucestart;i<uceend;i++) {
440:       stepind[i-ucestart] = i + ipmP->n;
441:     }

443:     ISCreateGeneral(comm,uceend-ucestart,stepind,PETSC_COPY_VALUES,&sis);
444:     VecScatterCreate(tao->constraints_equality,is1,ipmP->bigrhs,sis,&ipmP->rhs2);
445:     ISDestroy(&sis);
446:     ISDestroy(&is1);
447:   }

449:   if (ipmP->nb > 0) {
450:     for (i=sstart;i<send;i++) {
451:       stepind[i-sstart] = i + ipmP->n + ipmP->nb + ipmP->me;
452:       cind[i-sstart] = i;
453:     }
454:     ISCreateGeneral(comm,send-sstart,cind,PETSC_COPY_VALUES,&is1);
455:     ISCreateGeneral(comm,send-sstart,stepind,PETSC_COPY_VALUES,&sis);
456:     VecScatterCreate(ipmP->bigstep,sis,ipmP->s,is1,&ipmP->step4);
457:     VecScatterCreate(ipmP->s,is1,ipmP->bigrhs,sis,&ipmP->rhs4);
458:     ISDestroy(&sis);
459:     ISDestroy(&is1);
460:   }

462:   PetscFree(stepind);
463:   PetscFree(cind);
464:   PetscFree(ucind);
465:   PetscFree(uceind);
466:   PetscFree(xind);
467:   return(0);
468: }

472: static PetscErrorCode TaoDestroy_IPM(Tao tao)
473: {
474:   TAO_IPM        *ipmP = (TAO_IPM*)tao->data;

478:   VecDestroy(&ipmP->rd);
479:   VecDestroy(&ipmP->rpe);
480:   VecDestroy(&ipmP->rpi);
481:   VecDestroy(&ipmP->work);
482:   VecDestroy(&ipmP->lamdae);
483:   VecDestroy(&ipmP->lamdai);
484:   VecDestroy(&ipmP->s);
485:   VecDestroy(&ipmP->ds);
486:   VecDestroy(&ipmP->ci);

488:   VecDestroy(&ipmP->rhs_x);
489:   VecDestroy(&ipmP->rhs_lamdae);
490:   VecDestroy(&ipmP->rhs_lamdai);
491:   VecDestroy(&ipmP->rhs_s);

493:   VecDestroy(&ipmP->save_x);
494:   VecDestroy(&ipmP->save_lamdae);
495:   VecDestroy(&ipmP->save_lamdai);
496:   VecDestroy(&ipmP->save_s);

498:   VecScatterDestroy(&ipmP->step1);
499:   VecScatterDestroy(&ipmP->step2);
500:   VecScatterDestroy(&ipmP->step3);
501:   VecScatterDestroy(&ipmP->step4);

503:   VecScatterDestroy(&ipmP->rhs1);
504:   VecScatterDestroy(&ipmP->rhs2);
505:   VecScatterDestroy(&ipmP->rhs3);
506:   VecScatterDestroy(&ipmP->rhs4);

508:   VecScatterDestroy(&ipmP->ci_scat);
509:   VecScatterDestroy(&ipmP->xl_scat);
510:   VecScatterDestroy(&ipmP->xu_scat);

512:   VecDestroy(&ipmP->dlamdai);
513:   VecDestroy(&ipmP->dlamdae);
514:   VecDestroy(&ipmP->Zero_nb);
515:   VecDestroy(&ipmP->One_nb);
516:   VecDestroy(&ipmP->Inf_nb);
517:   VecDestroy(&ipmP->complementarity);

519:   VecDestroy(&ipmP->bigrhs);
520:   VecDestroy(&ipmP->bigstep);
521:   MatDestroy(&ipmP->Ai);
522:   MatDestroy(&ipmP->K);
523:   ISDestroy(&ipmP->isxu);
524:   ISDestroy(&ipmP->isxl);
525:   PetscFree(tao->data);
526:   return(0);
527: }

531: static PetscErrorCode TaoSetFromOptions_IPM(Tao tao)
532: {
533:   TAO_IPM        *ipmP = (TAO_IPM*)tao->data;
535:   PetscBool      flg;

538:   PetscOptionsHead("IPM method for constrained optimization");
539:   PetscOptionsBool("-tao_ipm_monitorkkt","monitor kkt status",NULL,ipmP->monitorkkt,&ipmP->monitorkkt,&flg);
540:   PetscOptionsReal("-tao_ipm_pushs","parameter to push initial slack variables away from bounds",NULL,ipmP->pushs,&ipmP->pushs,&flg);
541:   PetscOptionsReal("-tao_ipm_pushnu","parameter to push initial (inequality) dual variables away from bounds",NULL,ipmP->pushnu,&ipmP->pushnu,&flg);
542:   PetscOptionsTail();
543:   ierr =KSPSetFromOptions(tao->ksp);
544:   return(0);
545: }

549: static PetscErrorCode TaoView_IPM(Tao tao, PetscViewer viewer)
550: {
551:   return 0;
552: }

554: /* IPMObjectiveAndGradient()
555:    f = d'x + 0.5 * x' * H * x
556:    rd = H*x + d + Ae'*lame - Ai'*lami
557:    rpe = Ae*x - be
558:    rpi = Ai*x - yi - bi
559:    mu = yi' * lami/mi;
560:    com = yi.*lami

562:    phi = ||rd|| + ||rpe|| + ||rpi|| + ||com||
563: */
564: /*
567: static PetscErrorCode IPMObjective(TaoLineSearch ls, Vec X, PetscReal *f, void *tptr)
568: {
569:   Tao tao = (Tao)tptr;
570:   TAO_IPM *ipmP = (TAO_IPM*)tao->data;
573:   IPMComputeKKT(tao);
574:   *f = ipmP->phi;
575:   return(0);
576: }
577: */

579: /*
580:    f = d'x + 0.5 * x' * H * x
581:    rd = H*x + d + Ae'*lame - Ai'*lami
582:        Ai =   jac_ineq
583:                I (w/lb)
584:               -I (w/ub)

586:    rpe = ce
587:    rpi = ci - s;
588:    com = s.*lami
589:    mu = yi' * lami/mi;

591:    phi = ||rd|| + ||rpe|| + ||rpi|| + ||com||
592: */
595: static PetscErrorCode IPMComputeKKT(Tao tao)
596: {
597:   TAO_IPM        *ipmP = (TAO_IPM *)tao->data;
598:   PetscScalar    norm;

602:   VecCopy(tao->gradient,ipmP->rd);

604:   if (ipmP->me > 0) {
605:     /* rd = gradient + Ae'*lamdae */
606:     MatMultTranspose(tao->jacobian_equality,ipmP->lamdae,ipmP->work);
607:     VecAXPY(ipmP->rd, 1.0, ipmP->work);

609:     /* rpe = ce(x) */
610:     VecCopy(tao->constraints_equality,ipmP->rpe);
611:   }
612:   if (ipmP->nb > 0) {
613:     /* rd = rd - Ai'*lamdai */
614:     MatMultTranspose(ipmP->Ai,ipmP->lamdai,ipmP->work);
615:     VecAXPY(ipmP->rd, -1.0, ipmP->work);

617:     /* rpi = cin - s */
618:     VecCopy(ipmP->ci,ipmP->rpi);
619:     VecAXPY(ipmP->rpi, -1.0, ipmP->s);

621:     /* com = s .* lami */
622:     VecPointwiseMult(ipmP->complementarity, ipmP->s,ipmP->lamdai);
623:   }
624:   /* phi = ||rd; rpe; rpi; com|| */
625:   VecDot(ipmP->rd,ipmP->rd,&norm);
626:   ipmP->phi = norm;
627:   if (ipmP->me > 0 ) {
628:     VecDot(ipmP->rpe,ipmP->rpe,&norm);
629:     ipmP->phi += norm;
630:   }
631:   if (ipmP->nb > 0) {
632:     VecDot(ipmP->rpi,ipmP->rpi,&norm);
633:     ipmP->phi += norm;
634:     VecDot(ipmP->complementarity,ipmP->complementarity,&norm);
635:     ipmP->phi += norm;
636:     /* mu = s'*lami/nb */
637:     VecDot(ipmP->s,ipmP->lamdai,&ipmP->mu);
638:     ipmP->mu /= ipmP->nb;
639:   } else {
640:     ipmP->mu = 1.0;
641:   }

643:   ipmP->phi = PetscSqrtScalar(ipmP->phi);
644:   return(0);
645: }

649: /* evaluate user info at current point */
650: PetscErrorCode IPMEvaluate(Tao tao)
651: {
652:   TAO_IPM        *ipmP = (TAO_IPM *)tao->data;

656:   TaoComputeObjectiveAndGradient(tao,tao->solution,&ipmP->kkt_f,tao->gradient);
657:   TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);
658:   if (ipmP->me > 0) {
659:     TaoComputeEqualityConstraints(tao,tao->solution,tao->constraints_equality);
660:     TaoComputeJacobianEquality(tao,tao->solution,tao->jacobian_equality,tao->jacobian_equality_pre);
661:   }
662:   if (ipmP->mi > 0) {
663:     TaoComputeInequalityConstraints(tao,tao->solution,tao->constraints_inequality);
664:     TaoComputeJacobianInequality(tao,tao->solution,tao->jacobian_inequality,tao->jacobian_inequality_pre);
665:   }
666:   if (ipmP->nb > 0) {
667:     /* Ai' =   jac_ineq | I (w/lb) | -I (w/ub)  */
668:     IPMUpdateAi(tao);
669:   }
670:   return(0);
671: }

675: /* Push initial point away from bounds */
676: PetscErrorCode IPMPushInitialPoint(Tao tao)
677: {
678:   TAO_IPM        *ipmP = (TAO_IPM *)tao->data;

682:   TaoComputeVariableBounds(tao);
683:   if (tao->XL && tao->XU) {
684:     VecMedian(tao->XL, tao->solution, tao->XU, tao->solution);
685:   }
686:   if (ipmP->nb > 0) {
687:     VecSet(ipmP->s,ipmP->pushs);
688:     VecSet(ipmP->lamdai,ipmP->pushnu);
689:     if (ipmP->mi > 0) {
690:       VecSet(tao->DI,ipmP->pushnu);
691:     }
692:   }
693:   if (ipmP->me > 0) {
694:     VecSet(tao->DE,1.0);
695:     VecSet(ipmP->lamdae,1.0);
696:   }
697:   return(0);
698: }

702: PetscErrorCode IPMUpdateAi(Tao tao)
703: {
704:   /* Ai =     Ji
705:               I (w/lb)
706:              -I (w/ub) */

708:   /* Ci =    user->ci
709:              Xi - lb (w/lb)
710:              -Xi + ub (w/ub)  */

712:   TAO_IPM           *ipmP = (TAO_IPM *)tao->data;
713:   MPI_Comm          comm;
714:   PetscInt          i;
715:   PetscScalar       newval;
716:   PetscInt          newrow,newcol,ncols;
717:   const PetscScalar *vals;
718:   const PetscInt    *cols;
719:   PetscInt          astart,aend,jstart,jend;
720:   PetscInt          *nonzeros;
721:   PetscInt          r2,r3,r4;
722:   PetscMPIInt       size;
723:   PetscErrorCode    ierr;

726:   r2 = ipmP->mi;
727:   r3 = r2 + ipmP->nxlb;
728:   r4 = r3 + ipmP->nxub;

730:   if (!ipmP->nb) return(0);

732:   /* Create Ai matrix if it doesn't exist yet */
733:   if (!ipmP->Ai) {
734:     comm = ((PetscObject)(tao->solution))->comm;
735:     PetscMalloc1(ipmP->nb,&nonzeros);
736:     MPI_Comm_size(comm,&size);
737:     if (size == 1) {
738:       for (i=0;i<ipmP->mi;i++) {
739:         MatGetRow(tao->jacobian_inequality,i,&ncols,NULL,NULL);
740:         nonzeros[i] = ncols;
741:         MatRestoreRow(tao->jacobian_inequality,i,&ncols,NULL,NULL);
742:       }
743:       for (i=r2;i<r4;i++) {
744:         nonzeros[i] = 1;
745:       }
746:     }
747:     MatCreate(comm,&ipmP->Ai);
748:     MatSetType(ipmP->Ai,MATAIJ);
749:     MatSetSizes(ipmP->Ai,PETSC_DECIDE,PETSC_DECIDE,ipmP->nb,ipmP->n);
750:     MatSetFromOptions(ipmP->Ai);
751:     MatMPIAIJSetPreallocation(ipmP->Ai,ipmP->nb,NULL,ipmP->nb,NULL);
752:     MatSeqAIJSetPreallocation(ipmP->Ai,PETSC_DEFAULT,nonzeros);
753:     if (size ==1) {
754:       PetscFree(nonzeros);
755:     }
756:   }

758:   /* Copy values from user jacobian to Ai */
759:   MatGetOwnershipRange(ipmP->Ai,&astart,&aend);

761:   /* Ai w/lb */
762:   if (ipmP->mi) {
763:     MatZeroEntries(ipmP->Ai);
764:     MatGetOwnershipRange(tao->jacobian_inequality,&jstart,&jend);
765:     for (i=jstart;i<jend;i++) {
766:       MatGetRow(tao->jacobian_inequality,i,&ncols,&cols,&vals);
767:       newrow = i;
768:       MatSetValues(ipmP->Ai,1,&newrow,ncols,cols,vals,INSERT_VALUES);
769:       MatRestoreRow(tao->jacobian_inequality,i,&ncols,&cols,&vals);
770:     }
771:   }

773:   /* I w/ xlb */
774:   if (ipmP->nxlb) {
775:     for (i=0;i<ipmP->nxlb;i++) {
776:       if (i>=astart && i<aend) {
777:         newrow = i+r2;
778:         newcol = i;
779:         newval = 1.0;
780:         MatSetValues(ipmP->Ai,1,&newrow,1,&newcol,&newval,INSERT_VALUES);
781:       }
782:     }
783:   }
784:   if (ipmP->nxub) {
785:     /* I w/ xub */
786:     for (i=0;i<ipmP->nxub;i++) {
787:       if (i>=astart && i<aend) {
788:       newrow = i+r3;
789:       newcol = i;
790:       newval = -1.0;
791:       MatSetValues(ipmP->Ai,1,&newrow,1,&newcol,&newval,INSERT_VALUES);
792:       }
793:     }
794:   }

796:   MatAssemblyBegin(ipmP->Ai,MAT_FINAL_ASSEMBLY);
797:   MatAssemblyEnd(ipmP->Ai,MAT_FINAL_ASSEMBLY);
798:   CHKMEMQ;

800:   VecSet(ipmP->ci,0.0);

802:   /* user ci */
803:   if (ipmP->mi > 0) {
804:     VecScatterBegin(ipmP->ci_scat,tao->constraints_inequality,ipmP->ci,INSERT_VALUES,SCATTER_FORWARD);
805:     VecScatterEnd(ipmP->ci_scat,tao->constraints_inequality,ipmP->ci,INSERT_VALUES,SCATTER_FORWARD);
806:   }
807:   if (!ipmP->work){
808:     VecDuplicate(tao->solution,&ipmP->work);
809:   }
810:   VecCopy(tao->solution,ipmP->work);
811:   if (tao->XL) {
812:     VecAXPY(ipmP->work,-1.0,tao->XL);

814:     /* lower bounds on variables */
815:     if (ipmP->nxlb > 0) {
816:       VecScatterBegin(ipmP->xl_scat,ipmP->work,ipmP->ci,INSERT_VALUES,SCATTER_FORWARD);
817:       VecScatterEnd(ipmP->xl_scat,ipmP->work,ipmP->ci,INSERT_VALUES,SCATTER_FORWARD);
818:     }
819:   }
820:   if (tao->XU) {
821:     /* upper bounds on variables */
822:     VecCopy(tao->solution,ipmP->work);
823:     VecScale(ipmP->work,-1.0);
824:     VecAXPY(ipmP->work,1.0,tao->XU);
825:     if (ipmP->nxub > 0) {
826:       VecScatterBegin(ipmP->xu_scat,ipmP->work,ipmP->ci,INSERT_VALUES,SCATTER_FORWARD);
827:       VecScatterEnd(ipmP->xu_scat,ipmP->work,ipmP->ci,INSERT_VALUES,SCATTER_FORWARD);
828:     }
829:   }
830:   return(0);
831: }

835: /* create K = [ Hlag , 0 , Ae', -Ai'];
836:               [Ae , 0,   0  , 0];
837:               [Ai ,-I,   0 ,  0];
838:               [ 0 , S ,  0,   Y ];  */
839: PetscErrorCode IPMUpdateK(Tao tao)
840: {
841:   TAO_IPM         *ipmP = (TAO_IPM *)tao->data;
842:   MPI_Comm        comm;
843:   PetscMPIInt     size;
844:   PetscErrorCode  ierr;
845:   PetscInt        i,j,row;
846:   PetscInt        ncols,newcol,newcols[2],newrow;
847:   const PetscInt  *cols;
848:   const PetscReal *vals;
849:   const PetscReal *l,*y;
850:   PetscReal       *newvals;
851:   PetscReal       newval;
852:   PetscInt        subsize;
853:   const PetscInt  *indices;
854:   PetscInt        *nonzeros,*d_nonzeros,*o_nonzeros;
855:   PetscInt        bigsize;
856:   PetscInt        r1,r2,r3;
857:   PetscInt        c1,c2,c3;
858:   PetscInt        klocalsize;
859:   PetscInt        hstart,hend,kstart,kend;
860:   PetscInt        aistart,aiend,aestart,aeend;
861:   PetscInt        sstart,send;

864:   comm = ((PetscObject)(tao->solution))->comm;
865:   MPI_Comm_size(comm,&size);
866:   IPMUpdateAi(tao);

868:   /* allocate workspace */
869:   subsize = PetscMax(ipmP->n,ipmP->nb);
870:   subsize = PetscMax(ipmP->me,subsize);
871:   subsize = PetscMax(2,subsize);
872:   PetscMalloc1(subsize,&indices);
873:   PetscMalloc1(subsize,&newvals);

875:   r1 = c1 = ipmP->n;
876:   r2 = r1 + ipmP->me;  c2 = c1 + ipmP->nb;
877:   r3 = c3 = r2 + ipmP->nb;

879:   bigsize = ipmP->n+2*ipmP->nb+ipmP->me;
880:   VecGetOwnershipRange(ipmP->bigrhs,&kstart,&kend);
881:   MatGetOwnershipRange(tao->hessian,&hstart,&hend);
882:   klocalsize = kend-kstart;
883:   if (!ipmP->K) {
884:     if (size == 1) {
885:       PetscMalloc1((kend-kstart),&nonzeros);
886:       for (i=0;i<bigsize;i++) {
887:         if (i<r1) {
888:           MatGetRow(tao->hessian,i,&ncols,NULL,NULL);
889:           nonzeros[i] = ncols;
890:           MatRestoreRow(tao->hessian,i,&ncols,NULL,NULL);
891:           nonzeros[i] += ipmP->me+ipmP->nb;
892:         } else if (i<r2) {
893:           nonzeros[i-kstart] = ipmP->n;
894:         } else if (i<r3) {
895:           nonzeros[i-kstart] = ipmP->n+1;
896:         } else if (i<bigsize) {
897:           nonzeros[i-kstart] = 2;
898:         }
899:       }
900:       MatCreate(comm,&ipmP->K);
901:       MatSetType(ipmP->K,MATSEQAIJ);
902:       MatSetSizes(ipmP->K,klocalsize,klocalsize,PETSC_DETERMINE,PETSC_DETERMINE);
903:       MatSeqAIJSetPreallocation(ipmP->K,0,nonzeros);
904:       MatSetFromOptions(ipmP->K);
905:       PetscFree(nonzeros);
906:     } else {
907:       PetscMalloc1((kend-kstart),&d_nonzeros);
908:       PetscMalloc1((kend-kstart),&o_nonzeros);
909:       for (i=kstart;i<kend;i++) {
910:         if (i<r1) {
911:           /* TODO fix preallocation for mpi mats */
912:           d_nonzeros[i-kstart] = PetscMin(ipmP->n+ipmP->me+ipmP->nb,kend-kstart);
913:           o_nonzeros[i-kstart] = PetscMin(ipmP->n+ipmP->me+ipmP->nb,bigsize-(kend-kstart));
914:         } else if (i<r2) {
915:           d_nonzeros[i-kstart] = PetscMin(ipmP->n,kend-kstart);
916:           o_nonzeros[i-kstart] = PetscMin(ipmP->n,bigsize-(kend-kstart));
917:         } else if (i<r3) {
918:           d_nonzeros[i-kstart] = PetscMin(ipmP->n+2,kend-kstart);
919:           o_nonzeros[i-kstart] = PetscMin(ipmP->n+2,bigsize-(kend-kstart));
920:         } else {
921:           d_nonzeros[i-kstart] = PetscMin(2,kend-kstart);
922:           o_nonzeros[i-kstart] = PetscMin(2,bigsize-(kend-kstart));
923:         }
924:       }
925:       MatCreate(comm,&ipmP->K);
926:       MatSetType(ipmP->K,MATMPIAIJ);
927:       MatSetSizes(ipmP->K,klocalsize,klocalsize,PETSC_DETERMINE,PETSC_DETERMINE);
928:       MatMPIAIJSetPreallocation(ipmP->K,0,d_nonzeros,0,o_nonzeros);
929:       PetscFree(d_nonzeros);
930:       PetscFree(o_nonzeros);
931:       MatSetFromOptions(ipmP->K);
932:     }
933:   }

935:   MatZeroEntries(ipmP->K);
936:   /* Copy H */
937:   for (i=hstart;i<hend;i++) {
938:     MatGetRow(tao->hessian,i,&ncols,&cols,&vals);
939:     if (ncols > 0) {
940:       MatSetValues(ipmP->K,1,&i,ncols,cols,vals,INSERT_VALUES);
941:     }
942:     MatRestoreRow(tao->hessian,i,&ncols,&cols,&vals);
943:   }

945:   /* Copy Ae and Ae' */
946:   if (ipmP->me > 0) {
947:     MatGetOwnershipRange(tao->jacobian_equality,&aestart,&aeend);
948:     for (i=aestart;i<aeend;i++) {
949:       MatGetRow(tao->jacobian_equality,i,&ncols,&cols,&vals);
950:       if (ncols > 0) {
951:         /*Ae*/
952:         row = i+r1;
953:         MatSetValues(ipmP->K,1,&row,ncols,cols,vals,INSERT_VALUES);
954:         /*Ae'*/
955:         for (j=0;j<ncols;j++) {
956:           newcol = i + c2;
957:           newrow = cols[j];
958:           newval = vals[j];
959:           MatSetValues(ipmP->K,1,&newrow,1,&newcol,&newval,INSERT_VALUES);
960:         }
961:       }
962:       MatRestoreRow(tao->jacobian_equality,i,&ncols,&cols,&vals);
963:     }
964:   }

966:   if (ipmP->nb > 0) {
967:     MatGetOwnershipRange(ipmP->Ai,&aistart,&aiend);
968:     /* Copy Ai,and Ai' */
969:     for (i=aistart;i<aiend;i++) {
970:       row = i+r2;
971:       MatGetRow(ipmP->Ai,i,&ncols,&cols,&vals);
972:       if (ncols > 0) {
973:         /*Ai*/
974:         MatSetValues(ipmP->K,1,&row,ncols,cols,vals,INSERT_VALUES);
975:         /*-Ai'*/
976:         for (j=0;j<ncols;j++) {
977:           newcol = i + c3;
978:           newrow = cols[j];
979:           newval = -vals[j];
980:           MatSetValues(ipmP->K,1,&newrow,1,&newcol,&newval,INSERT_VALUES);
981:         }
982:       }
983:       MatRestoreRow(ipmP->Ai,i,&ncols,&cols,&vals);
984:     }

986:     /* -I */
987:     for (i=kstart;i<kend;i++) {
988:       if (i>=r2 && i<r3) {
989:         newrow = i;
990:         newcol = i-r2+c1;
991:         newval = -1.0;
992:         MatSetValues(ipmP->K,1,&newrow,1,&newcol,&newval,INSERT_VALUES);
993:       }
994:     }

996:     /* Copy L,Y */
997:     VecGetOwnershipRange(ipmP->s,&sstart,&send);
998:     VecGetArrayRead(ipmP->lamdai,&l);
999:     VecGetArrayRead(ipmP->s,&y);

1001:     for (i=sstart;i<send;i++) {
1002:       newcols[0] = c1+i;
1003:       newcols[1] = c3+i;
1004:       newvals[0] = l[i-sstart];
1005:       newvals[1] = y[i-sstart];
1006:       newrow = r3+i;
1007:       MatSetValues(ipmP->K,1,&newrow,2,newcols,newvals,INSERT_VALUES);
1008:     }

1010:     VecRestoreArrayRead(ipmP->lamdai,&l);
1011:     VecRestoreArrayRead(ipmP->s,&y);
1012:   }

1014:   PetscFree(indices);
1015:   PetscFree(newvals);
1016:   MatAssemblyBegin(ipmP->K,MAT_FINAL_ASSEMBLY);
1017:   MatAssemblyEnd(ipmP->K,MAT_FINAL_ASSEMBLY);
1018:   return(0);
1019: }

1023: PetscErrorCode IPMGatherRHS(Tao tao,Vec RHS,Vec X1,Vec X2,Vec X3,Vec X4)
1024: {
1025:   TAO_IPM        *ipmP = (TAO_IPM *)tao->data;

1029:   /* rhs = [x1      (n)
1030:             x2     (me)
1031:             x3     (nb)
1032:             x4     (nb)] */
1033:   if (X1) {
1034:     VecScatterBegin(ipmP->rhs1,X1,RHS,INSERT_VALUES,SCATTER_FORWARD);
1035:     VecScatterEnd(ipmP->rhs1,X1,RHS,INSERT_VALUES,SCATTER_FORWARD);
1036:   }
1037:   if (ipmP->me > 0 && X2) {
1038:     VecScatterBegin(ipmP->rhs2,X2,RHS,INSERT_VALUES,SCATTER_FORWARD);
1039:     VecScatterEnd(ipmP->rhs2,X2,RHS,INSERT_VALUES,SCATTER_FORWARD);
1040:   }
1041:   if (ipmP->nb > 0) {
1042:     if (X3) {
1043:       VecScatterBegin(ipmP->rhs3,X3,RHS,INSERT_VALUES,SCATTER_FORWARD);
1044:       VecScatterEnd(ipmP->rhs3,X3,RHS,INSERT_VALUES,SCATTER_FORWARD);
1045:     }
1046:     if (X4) {
1047:       VecScatterBegin(ipmP->rhs4,X4,RHS,INSERT_VALUES,SCATTER_FORWARD);
1048:       VecScatterEnd(ipmP->rhs4,X4,RHS,INSERT_VALUES,SCATTER_FORWARD);
1049:     }
1050:   }
1051:   return(0);
1052: }

1056: PetscErrorCode IPMScatterStep(Tao tao, Vec STEP, Vec X1, Vec X2, Vec X3, Vec X4)
1057: {
1058:   TAO_IPM        *ipmP = (TAO_IPM *)tao->data;

1062:   CHKMEMQ;
1063:   /*        [x1    (n)
1064:              x2    (nb) may be 0
1065:              x3    (me) may be 0
1066:              x4    (nb) may be 0 */
1067:   if (X1) {
1068:     VecScatterBegin(ipmP->step1,STEP,X1,INSERT_VALUES,SCATTER_FORWARD);
1069:     VecScatterEnd(ipmP->step1,STEP,X1,INSERT_VALUES,SCATTER_FORWARD);
1070:   }
1071:   if (X2 && ipmP->nb > 0) {
1072:     VecScatterBegin(ipmP->step2,STEP,X2,INSERT_VALUES,SCATTER_FORWARD);
1073:     VecScatterEnd(ipmP->step2,STEP,X2,INSERT_VALUES,SCATTER_FORWARD);
1074:   }
1075:   if (X3 && ipmP->me > 0) {
1076:     VecScatterBegin(ipmP->step3,STEP,X3,INSERT_VALUES,SCATTER_FORWARD);
1077:     VecScatterEnd(ipmP->step3,STEP,X3,INSERT_VALUES,SCATTER_FORWARD);
1078:   }
1079:   if (X4 && ipmP->nb > 0) {
1080:     VecScatterBegin(ipmP->step4,STEP,X4,INSERT_VALUES,SCATTER_FORWARD);
1081:     VecScatterEnd(ipmP->step4,STEP,X4,INSERT_VALUES,SCATTER_FORWARD);
1082:   }
1083:   CHKMEMQ;
1084:   return(0);
1085: }

1087: /*MC
1088:   TAOIPM - Interior point algorithm for generally constrained optimization.

1090:   Option Database Keys:
1091: +   -tao_ipm_pushnu - parameter to push initial dual variables away from bounds
1092: .   -tao_ipm_pushs - parameter to push initial slack variables away from bounds

1094:   Notes: This algorithm is more of a place-holder for future constrained optimization algorithms and should not yet be used for large problems or production code.
1095:   Level: beginner

1097: M*/

1099: EXTERN_C_BEGIN
1102: PetscErrorCode TaoCreate_IPM(Tao tao)
1103: {
1104:   TAO_IPM        *ipmP;

1108:   tao->ops->setup = TaoSetup_IPM;
1109:   tao->ops->solve = TaoSolve_IPM;
1110:   tao->ops->view = TaoView_IPM;
1111:   tao->ops->setfromoptions = TaoSetFromOptions_IPM;
1112:   tao->ops->destroy = TaoDestroy_IPM;
1113:   /* tao->ops->computedual = TaoComputeDual_IPM; */

1115:   PetscNewLog(tao,&ipmP);
1116:   tao->data = (void*)ipmP;
1117:   tao->max_it = 200;
1118:   tao->max_funcs = 500;
1119:   tao->fatol = 1e-4;
1120:   tao->frtol = 1e-4;
1121:   ipmP->dec = 10000; /* line search critera */
1122:   ipmP->taumin = 0.995;
1123:   ipmP->monitorkkt = PETSC_FALSE;
1124:   ipmP->pushs = 100;
1125:   ipmP->pushnu = 100;
1126:   KSPCreate(((PetscObject)tao)->comm, &tao->ksp);
1127:   return(0);
1128: }
1129: EXTERN_C_END