Actual source code: ex19.c
petsc-3.5.4 2015-05-23
2: static char help[] = "Nonlinear driven cavity with multigrid in 2d.\n\
3: \n\
4: The 2D driven cavity problem is solved in a velocity-vorticity formulation.\n\
5: The flow can be driven with the lid or with bouyancy or both:\n\
6: -lidvelocity <lid>, where <lid> = dimensionless velocity of lid\n\
7: -grashof <gr>, where <gr> = dimensionless temperature gradent\n\
8: -prandtl <pr>, where <pr> = dimensionless thermal/momentum diffusity ratio\n\
9: -contours : draw contour plots of solution\n\n" ;
10: /*
11: See src/ksp/ksp/examples/tutorials/ex45.c
12: */
14: /*T
15: Concepts: SNES ^solving a system of nonlinear equations (parallel multicomponent example);
16: Concepts: DMDA ^using distributed arrays;
17: Concepts: multicomponent
18: Processors: n
19: T*/
We thank David E. Keyes for contributing the driven cavity discretization within this example code.
This problem is modeled by the partial differential equation system
\begin{eqnarray}
- \triangle U - \nabla_y \Omega & = & 0 \\
- \triangle V + \nabla_x\Omega & = & 0 \\
- \triangle \Omega + \nabla \cdot ([U*\Omega,V*\Omega]) - GR* \nabla_x T & = & 0 \\
- \triangle T + PR* \nabla \cdot ([U*T,V*T]) & = & 0
\end{eqnarray}
in the unit square, which is uniformly discretized in each of x and y in this simple encoding.
No-slip, rigid-wall Dirichlet conditions are used for $ [U,V]$.
Dirichlet conditions are used for Omega, based on the definition of
vorticity: $ \Omega = - \nabla_y U + \nabla_x V$, where along each
constant coordinate boundary, the tangential derivative is zero.
Dirichlet conditions are used for T on the left and right walls,
and insulation homogeneous Neumann conditions are used for T on
the top and bottom walls.
A finite difference approximation with the usual 5-point stencil
is used to discretize the boundary value problem to obtain a
nonlinear system of equations. Upwinding is used for the divergence
(convective) terms and central for the gradient (source) terms.
The Jacobian can be either
* formed via finite differencing using coloring (the default), or
* applied matrix-free via the option -snes_mf
(for larger grid problems this variant may not converge
without a preconditioner due to ill-conditioning).
56: /*
57: Include "petscdmda.h" so that we can use distributed arrays (DMDAs).
58: Include "petscsnes.h" so that we can use SNES solvers. Note that this
59: file automatically includes:
60: petscsys.h - base PETSc routines petscvec.h - vectors
61: petscmat.h - matrices
62: petscis.h - index sets petscksp.h - Krylov subspace methods
63: petscviewer.h - viewers petscpc.h - preconditioners
64: petscksp.h - linear solvers
65: */
66: #if defined(PETSC_APPLE_FRAMEWORK)
67: #import <PETSc/petscsnes.h>
68: #import <PETSc/petscdmda.h>
69: #else
70: #include <petscsnes.h>
71: #include <petscdm.h>
72: #include <petscdmda.h>
73: #endif
75: /*
76: User-defined routines and data structures
77: */
78: typedef struct {
79: PetscScalar u,v,omega,temp;
80: } Field;
82: PetscErrorCode FormFunctionLocal(DMDALocalInfo *,Field**,Field**,void*) ;
84: typedef struct {
85: PassiveReal lidvelocity,prandtl,grashof; /* physical parameters */
86: PetscBool draw_contours; /* flag - 1 indicates drawing contours */
87: } AppCtx;
89: extern PetscErrorCode FormInitialGuess(AppCtx*,DM,Vec ) ;
90: extern PetscErrorCode NonlinearGS(SNES ,Vec ,Vec ,void*) ;
94: int main(int argc,char **argv)
95: {
96: AppCtx user; /* user-defined work context */
97: PetscInt mx,my,its;
99: MPI_Comm comm;
100: SNES snes;
101: DM da;
102: Vec x;
104: PetscInitialize (&argc,&argv,(char*)0,help);if (ierr) return (1);
107: comm = PETSC_COMM_WORLD ;
108: SNESCreate (comm,&snes);
110: /*
111: Create distributed array object to manage parallel grid and vectors
112: for principal unknowns (x) and governing residuals (f)
113: */
114: DMDACreate2d (PETSC_COMM_WORLD ,DM_BOUNDARY_NONE,DM_BOUNDARY_NONE,DMDA_STENCIL_STAR ,-4,-4,PETSC_DECIDE ,PETSC_DECIDE ,4,1,0,0,&da);
115: SNESSetDM (snes,(DM)da);
116: SNESSetNGS (snes, NonlinearGS, (void*)&user);
118: DMDAGetInfo (da,0,&mx,&my,PETSC_IGNORE ,PETSC_IGNORE ,PETSC_IGNORE ,PETSC_IGNORE ,PETSC_IGNORE ,PETSC_IGNORE ,
119: PETSC_IGNORE ,PETSC_IGNORE ,PETSC_IGNORE ,PETSC_IGNORE );
120: /*
121: Problem parameters (velocity of lid, prandtl, and grashof numbers)
122: */
123: user.lidvelocity = 1.0/(mx*my);
124: user.prandtl = 1.0;
125: user.grashof = 1.0;
127: PetscOptionsGetReal (NULL,"-lidvelocity" ,&user.lidvelocity,NULL);
128: PetscOptionsGetReal (NULL,"-prandtl" ,&user.prandtl,NULL);
129: PetscOptionsGetReal (NULL,"-grashof" ,&user.grashof,NULL);
130: PetscOptionsHasName (NULL,"-contours" ,&user.draw_contours);
132: DMDASetFieldName (da,0,"x_velocity" );
133: DMDASetFieldName (da,1,"y_velocity" );
134: DMDASetFieldName (da,2,"Omega" );
135: DMDASetFieldName (da,3,"temperature" );
137: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
138: Create user context, set problem data, create vector data structures.
139: Also, compute the initial guess.
140: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
142: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
143: Create nonlinear solver context
145: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
146: DMSetApplicationContext (da,&user);
147: DMDASNESSetFunctionLocal (da,INSERT_VALUES ,(PetscErrorCode (*)(DMDALocalInfo *,void*,void*,void*))FormFunctionLocal,&user);
148: SNESSetFromOptions (snes);
149: PetscPrintf (comm,"lid velocity = %g, prandtl # = %g, grashof # = %g\n" ,(double)user.lidvelocity,(double)user.prandtl,(double)user.grashof);
152: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
153: Solve the nonlinear system
154: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
155: DMCreateGlobalVector (da,&x);
156: FormInitialGuess(&user,da,x);
158: SNESSolve (snes,NULL,x);
160: SNESGetIterationNumber (snes,&its);
161: PetscPrintf (comm,"Number of SNES iterations = %D\n" , its);
163: /*
164: Visualize solution
165: */
166: if (user.draw_contours) {
167: VecView (x,PETSC_VIEWER_DRAW_WORLD );
168: }
170: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
171: Free work space. All PETSc objects should be destroyed when they
172: are no longer needed.
173: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
174: VecDestroy (&x);
175: DMDestroy (&da);
176: SNESDestroy (&snes);
177: PetscFinalize ();
178: return 0;
179: }
181: /* ------------------------------------------------------------------- */
186: /*
187: FormInitialGuess - Forms initial approximation.
189: Input Parameters:
190: user - user-defined application context
191: X - vector
193: Output Parameter:
194: X - vector
195: */
196: PetscErrorCode FormInitialGuess(AppCtx *user,DM da,Vec X)
197: {
198: PetscInt i,j,mx,xs,ys,xm,ym;
200: PetscReal grashof,dx;
201: Field **x;
203: grashof = user->grashof;
205: DMDAGetInfo (da,0,&mx,0,0,0,0,0,0,0,0,0,0,0);
206: dx = 1.0/(mx-1);
208: /*
209: Get local grid boundaries (for 2-dimensional DMDA ):
210: xs, ys - starting grid indices (no ghost points)
211: xm, ym - widths of local grid (no ghost points)
212: */
213: DMDAGetCorners (da,&xs,&ys,NULL,&xm,&ym,NULL);
215: /*
216: Get a pointer to vector data.
217: - For default PETSc vectors, VecGetArray () returns a pointer to
218: the data array. Otherwise, the routine is implementation dependent.
219: - You MUST call VecRestoreArray () when you no longer need access to
220: the array.
221: */
222: DMDAVecGetArray (da,X,&x);
224: /*
225: Compute initial guess over the locally owned part of the grid
226: Initial condition is motionless fluid and equilibrium temperature
227: */
228: for (j=ys; j<ys+ym; j++) {
229: for (i=xs; i<xs+xm; i++) {
230: x[j][i].u = 0.0;
231: x[j][i].v = 0.0;
232: x[j][i].omega = 0.0;
233: x[j][i].temp = (grashof>0)*i*dx;
234: }
235: }
237: /*
238: Restore vector
239: */
240: DMDAVecRestoreArray (da,X,&x);
241: return 0;
242: }
246: PetscErrorCode FormFunctionLocal(DMDALocalInfo *info,Field **x,Field **f,void *ptr)
247: {
248: AppCtx *user = (AppCtx*)ptr;
250: PetscInt xints,xinte,yints,yinte,i,j;
251: PetscReal hx,hy,dhx,dhy,hxdhy,hydhx;
252: PetscReal grashof,prandtl,lid;
253: PetscScalar u,uxx,uyy,vx,vy,avx,avy,vxp,vxm,vyp,vym;
256: grashof = user->grashof;
257: prandtl = user->prandtl;
258: lid = user->lidvelocity;
260: /*
261: Define mesh intervals ratios for uniform grid.
263: Note: FD formulae below are normalized by multiplying through by
264: local volume element (i.e. hx*hy) to obtain coefficients O(1) in two dimensions.
267: */
268: dhx = (PetscReal )(info->mx-1); dhy = (PetscReal )(info->my-1);
269: hx = 1.0/dhx; hy = 1.0/dhy;
270: hxdhy = hx*dhy; hydhx = hy*dhx;
272: xints = info->xs; xinte = info->xs+info->xm; yints = info->ys; yinte = info->ys+info->ym;
274: /* Test whether we are on the bottom edge of the global array */
275: if (yints == 0) {
276: j = 0;
277: yints = yints + 1;
278: /* bottom edge */
279: for (i=info->xs; i<info->xs+info->xm; i++) {
280: f[j][i].u = x[j][i].u;
281: f[j][i].v = x[j][i].v;
282: f[j][i].omega = x[j][i].omega + (x[j+1][i].u - x[j][i].u)*dhy;
283: f[j][i].temp = x[j][i].temp-x[j+1][i].temp;
284: }
285: }
287: /* Test whether we are on the top edge of the global array */
288: if (yinte == info->my) {
289: j = info->my - 1;
290: yinte = yinte - 1;
291: /* top edge */
292: for (i=info->xs; i<info->xs+info->xm; i++) {
293: f[j][i].u = x[j][i].u - lid;
294: f[j][i].v = x[j][i].v;
295: f[j][i].omega = x[j][i].omega + (x[j][i].u - x[j-1][i].u)*dhy;
296: f[j][i].temp = x[j][i].temp-x[j-1][i].temp;
297: }
298: }
300: /* Test whether we are on the left edge of the global array */
301: if (xints == 0) {
302: i = 0;
303: xints = xints + 1;
304: /* left edge */
305: for (j=info->ys; j<info->ys+info->ym; j++) {
306: f[j][i].u = x[j][i].u;
307: f[j][i].v = x[j][i].v;
308: f[j][i].omega = x[j][i].omega - (x[j][i+1].v - x[j][i].v)*dhx;
309: f[j][i].temp = x[j][i].temp;
310: }
311: }
313: /* Test whether we are on the right edge of the global array */
314: if (xinte == info->mx) {
315: i = info->mx - 1;
316: xinte = xinte - 1;
317: /* right edge */
318: for (j=info->ys; j<info->ys+info->ym; j++) {
319: f[j][i].u = x[j][i].u;
320: f[j][i].v = x[j][i].v;
321: f[j][i].omega = x[j][i].omega - (x[j][i].v - x[j][i-1].v)*dhx;
322: f[j][i].temp = x[j][i].temp - (PetscReal )(grashof>0);
323: }
324: }
326: /* Compute over the interior points */
327: for (j=yints; j<yinte; j++) {
328: for (i=xints; i<xinte; i++) {
330: /*
331: convective coefficients for upwinding
332: */
333: vx = x[j][i].u; avx = PetscAbsScalar(vx);
334: vxp = .5*(vx+avx); vxm = .5*(vx-avx);
335: vy = x[j][i].v; avy = PetscAbsScalar(vy);
336: vyp = .5*(vy+avy); vym = .5*(vy-avy);
338: /* U velocity */
339: u = x[j][i].u;
340: uxx = (2.0*u - x[j][i-1].u - x[j][i+1].u)*hydhx;
341: uyy = (2.0*u - x[j-1][i].u - x[j+1][i].u)*hxdhy;
342: f[j][i].u = uxx + uyy - .5*(x[j+1][i].omega-x[j-1][i].omega)*hx;
344: /* V velocity */
345: u = x[j][i].v;
346: uxx = (2.0*u - x[j][i-1].v - x[j][i+1].v)*hydhx;
347: uyy = (2.0*u - x[j-1][i].v - x[j+1][i].v)*hxdhy;
348: f[j][i].v = uxx + uyy + .5*(x[j][i+1].omega-x[j][i-1].omega)*hy;
350: /* Omega */
351: u = x[j][i].omega;
352: uxx = (2.0*u - x[j][i-1].omega - x[j][i+1].omega)*hydhx;
353: uyy = (2.0*u - x[j-1][i].omega - x[j+1][i].omega)*hxdhy;
354: f[j][i].omega = uxx + uyy + (vxp*(u - x[j][i-1].omega) + vxm*(x[j][i+1].omega - u))*hy +
355: (vyp*(u - x[j-1][i].omega) + vym*(x[j+1][i].omega - u))*hx -
356: .5*grashof*(x[j][i+1].temp - x[j][i-1].temp)*hy;
358: /* Temperature */
359: u = x[j][i].temp;
360: uxx = (2.0*u - x[j][i-1].temp - x[j][i+1].temp)*hydhx;
361: uyy = (2.0*u - x[j-1][i].temp - x[j+1][i].temp)*hxdhy;
362: f[j][i].temp = uxx + uyy + prandtl*((vxp*(u - x[j][i-1].temp) + vxm*(x[j][i+1].temp - u))*hy +
363: (vyp*(u - x[j-1][i].temp) + vym*(x[j+1][i].temp - u))*hx);
364: }
365: }
367: /*
368: Flop count (multiply-adds are counted as 2 operations)
369: */
370: PetscLogFlops (84.0*info->ym*info->xm);
371: return (0);
372: }
377: PetscErrorCode NonlinearGS(SNES snes, Vec X, Vec B, void *ctx)
378: {
379: DMDALocalInfo info;
380: Field **x,**b;
382: Vec localX, localB;
383: DM da;
384: PetscInt xints,xinte,yints,yinte,i,j,k,l;
385: PetscInt max_its,tot_its;
386: PetscInt sweeps;
387: PetscReal rtol,atol,stol;
388: PetscReal hx,hy,dhx,dhy,hxdhy,hydhx;
389: PetscReal grashof,prandtl,lid;
390: PetscScalar u,uxx,uyy,vx,vy,avx,avy,vxp,vxm,vyp,vym;
391: PetscScalar fu, fv, fomega, ftemp;
392: PetscScalar dfudu;
393: PetscScalar dfvdv;
394: PetscScalar dfodu, dfodv, dfodo;
395: PetscScalar dftdu, dftdv, dftdt;
396: PetscScalar yu=0, yv=0, yo=0, yt=0;
397: PetscScalar bjiu, bjiv, bjiomega, bjitemp;
398: PetscBool ptconverged;
399: PetscReal pfnorm,pfnorm0,pynorm,pxnorm;
400: AppCtx *user = (AppCtx*)ctx;
403: grashof = user->grashof;
404: prandtl = user->prandtl;
405: lid = user->lidvelocity;
406: tot_its = 0;
407: SNESNGSGetTolerances (snes,&rtol,&atol,&stol,&max_its);
408: SNESNGSGetSweeps (snes,&sweeps);
409: SNESGetDM (snes,(DM*)&da);
410: DMGetLocalVector (da,&localX);
411: if (B) {
412: DMGetLocalVector (da,&localB);
413: }
414: /*
415: Scatter ghost points to local vector, using the 2-step process
416: DMGlobalToLocalBegin (), DMGlobalToLocalEnd ().
417: */
418: DMGlobalToLocalBegin (da,X,INSERT_VALUES ,localX);
419: DMGlobalToLocalEnd (da,X,INSERT_VALUES ,localX);
420: if (B) {
421: DMGlobalToLocalBegin (da,B,INSERT_VALUES ,localB);
422: DMGlobalToLocalEnd (da,B,INSERT_VALUES ,localB);
423: }
424: DMDAGetLocalInfo (da,&info);
425: DMDAVecGetArray (da,localX,&x);
426: if (B) {
427: DMDAVecGetArray (da,localB,&b);
428: }
429: /* looks like a combination of the formfunction / formjacobian routines */
430: dhx = (PetscReal )(info.mx-1);dhy = (PetscReal )(info.my-1);
431: hx = 1.0/dhx; hy = 1.0/dhy;
432: hxdhy = hx*dhy; hydhx = hy*dhx;
434: xints = info.xs; xinte = info.xs+info.xm; yints = info.ys; yinte = info.ys+info.ym;
436: /* Set the boundary conditions on the momentum equations */
437: /* Test whether we are on the bottom edge of the global array */
438: if (yints == 0) {
439: j = 0;
440: yints = yints + 1;
441: /* bottom edge */
442: for (i=info.xs; i<info.xs+info.xm; i++) {
444: if (B) {
445: bjiu = b[j][i].u;
446: bjiv = b[j][i].v;
447: } else {
448: bjiu = 0.0;
449: bjiv = 0.0;
450: }
451: x[j][i].u = 0.0 + bjiu;
452: x[j][i].v = 0.0 + bjiv;
453: }
454: }
456: /* Test whether we are on the top edge of the global array */
457: if (yinte == info.my) {
458: j = info.my - 1;
459: yinte = yinte - 1;
460: /* top edge */
461: for (i=info.xs; i<info.xs+info.xm; i++) {
462: if (B) {
463: bjiu = b[j][i].u;
464: bjiv = b[j][i].v;
465: } else {
466: bjiu = 0.0;
467: bjiv = 0.0;
468: }
469: x[j][i].u = lid + bjiu;
470: x[j][i].v = bjiv;
471: }
472: }
474: /* Test whether we are on the left edge of the global array */
475: if (xints == 0) {
476: i = 0;
477: xints = xints + 1;
478: /* left edge */
479: for (j=info.ys; j<info.ys+info.ym; j++) {
480: if (B) {
481: bjiu = b[j][i].u;
482: bjiv = b[j][i].v;
483: } else {
484: bjiu = 0.0;
485: bjiv = 0.0;
486: }
487: x[j][i].u = 0.0 + bjiu;
488: x[j][i].v = 0.0 + bjiv;
489: }
490: }
492: /* Test whether we are on the right edge of the global array */
493: if (xinte == info.mx) {
494: i = info.mx - 1;
495: xinte = xinte - 1;
496: /* right edge */
497: for (j=info.ys; j<info.ys+info.ym; j++) {
498: if (B) {
499: bjiu = b[j][i].u;
500: bjiv = b[j][i].v;
501: } else {
502: bjiu = 0.0;
503: bjiv = 0.0;
504: }
505: x[j][i].u = 0.0 + bjiu;
506: x[j][i].v = 0.0 + bjiv;
507: }
508: }
510: for (k=0; k < sweeps; k++) {
511: for (j=info.ys; j<info.ys + info.ym; j++) {
512: for (i=info.xs; i<info.xs + info.xm; i++) {
513: ptconverged = PETSC_FALSE ;
514: pfnorm0 = 0.0;
515: pfnorm = 0.0;
516: fu = 0.0;
517: fv = 0.0;
518: fomega = 0.0;
519: ftemp = 0.0;
520: for (l = 0; l < max_its && !ptconverged; l++) {
521: if (B) {
522: bjiu = b[j][i].u;
523: bjiv = b[j][i].v;
524: bjiomega = b[j][i].omega;
525: bjitemp = b[j][i].temp;
526: } else {
527: bjiu = 0.0;
528: bjiv = 0.0;
529: bjiomega = 0.0;
530: bjitemp = 0.0;
531: }
533: if (i != 0 && i != info.mx - 1 && j != 0 && j != info.my-1) {
534: /* U velocity */
535: u = x[j][i].u;
536: uxx = (2.0*u - x[j][i-1].u - x[j][i+1].u)*hydhx;
537: uyy = (2.0*u - x[j-1][i].u - x[j+1][i].u)*hxdhy;
538: fu = uxx + uyy - .5*(x[j+1][i].omega-x[j-1][i].omega)*hx - bjiu;
539: dfudu = 2.0*(hydhx + hxdhy);
540: /* V velocity */
541: u = x[j][i].v;
542: uxx = (2.0*u - x[j][i-1].v - x[j][i+1].v)*hydhx;
543: uyy = (2.0*u - x[j-1][i].v - x[j+1][i].v)*hxdhy;
544: fv = uxx + uyy + .5*(x[j][i+1].omega-x[j][i-1].omega)*hy - bjiv;
545: dfvdv = 2.0*(hydhx + hxdhy);
546: /*
547: convective coefficients for upwinding
548: */
549: vx = x[j][i].u; avx = PetscAbsScalar(vx);
550: vxp = .5*(vx+avx); vxm = .5*(vx-avx);
551: vy = x[j][i].v; avy = PetscAbsScalar(vy);
552: vyp = .5*(vy+avy); vym = .5*(vy-avy);
553: /* Omega */
554: u = x[j][i].omega;
555: uxx = (2.0*u - x[j][i-1].omega - x[j][i+1].omega)*hydhx;
556: uyy = (2.0*u - x[j-1][i].omega - x[j+1][i].omega)*hxdhy;
557: fomega = uxx + uyy + (vxp*(u - x[j][i-1].omega) + vxm*(x[j][i+1].omega - u))*hy +
558: (vyp*(u - x[j-1][i].omega) + vym*(x[j+1][i].omega - u))*hx -
559: .5*grashof*(x[j][i+1].temp - x[j][i-1].temp)*hy - bjiomega;
560: /* convective coefficient derivatives */
561: dfodo = 2.0*(hydhx + hxdhy) + ((vxp - vxm)*hy + (vyp - vym)*hx);
562: if (PetscRealPart(vx) > 0.0) dfodu = (u - x[j][i-1].omega)*hy;
563: else dfodu = (x[j][i+1].omega - u)*hy;
565: if (PetscRealPart(vy) > 0.0) dfodv = (u - x[j-1][i].omega)*hx;
566: else dfodv = (x[j+1][i].omega - u)*hx;
568: /* Temperature */
569: u = x[j][i].temp;
570: uxx = (2.0*u - x[j][i-1].temp - x[j][i+1].temp)*hydhx;
571: uyy = (2.0*u - x[j-1][i].temp - x[j+1][i].temp)*hxdhy;
572: ftemp = uxx + uyy + prandtl*((vxp*(u - x[j][i-1].temp) + vxm*(x[j][i+1].temp - u))*hy +
573: (vyp*(u - x[j-1][i].temp) + vym*(x[j+1][i].temp - u))*hx) - bjitemp;
574: dftdt = 2.0*(hydhx + hxdhy) + prandtl*((vxp - vxm)*hy + (vyp - vym)*hx);
575: if (PetscRealPart(vx) > 0.0) dftdu = prandtl*(u - x[j][i-1].temp)*hy;
576: else dftdu = prandtl*(x[j][i+1].temp - u)*hy;
578: if (PetscRealPart(vy) > 0.0) dftdv = prandtl*(u - x[j-1][i].temp)*hx;
579: else dftdv = prandtl*(x[j+1][i].temp - u)*hx;
581: /* invert the system:
582: [ dfu / du 0 0 0 ][yu] = [fu]
583: [ 0 dfv / dv 0 0 ][yv] [fv]
584: [ dfo / du dfo / dv dfo / do 0 ][yo] [fo]
585: [ dft / du dft / dv 0 dft / dt ][yt] [ft]
586: by simple back-substitution
587: */
588: yu = fu / dfudu;
589: yv = fv / dfvdv;
590: yo = fomega / dfodo;
591: yt = ftemp / dftdt;
592: yo = (fomega - (dfodu*yu + dfodv*yv)) / dfodo;
593: yt = (ftemp - (dftdu*yu + dftdv*yv)) / dftdt;
595: x[j][i].u = x[j][i].u - yu;
596: x[j][i].v = x[j][i].v - yv;
597: x[j][i].temp = x[j][i].temp - yt;
598: x[j][i].omega = x[j][i].omega - yo;
599: }
600: if (i == 0) {
601: fomega = x[j][i].omega - (x[j][i+1].v - x[j][i].v)*dhx - bjiomega;
602: ftemp = x[j][i].temp - bjitemp;
603: yo = fomega;
604: yt = ftemp;
605: x[j][i].omega = x[j][i].omega - fomega;
606: x[j][i].temp = x[j][i].temp - ftemp;
607: }
608: if (i == info.mx - 1) {
609: fomega = x[j][i].omega - (x[j][i].v - x[j][i-1].v)*dhx - bjiomega;
610: ftemp = x[j][i].temp - (PetscReal )(grashof>0) - bjitemp;
611: yo = fomega;
612: yt = ftemp;
613: x[j][i].omega = x[j][i].omega - fomega;
614: x[j][i].temp = x[j][i].temp - ftemp;
615: }
616: if (j == 0) {
617: fomega = x[j][i].omega + (x[j+1][i].u - x[j][i].u)*dhy - bjiomega;
618: ftemp = x[j][i].temp-x[j+1][i].temp - bjitemp;
619: yo = fomega;
620: yt = ftemp;
621: x[j][i].omega = x[j][i].omega - fomega;
622: x[j][i].temp = x[j][i].temp - ftemp;
623: }
624: if (j == info.my - 1) {
625: fomega = x[j][i].omega + (x[j][i].u - x[j-1][i].u)*dhy - bjiomega;
626: ftemp = x[j][i].temp-x[j-1][i].temp - bjitemp;
627: yo = fomega;
628: yt = ftemp;
629: x[j][i].omega = x[j][i].omega - fomega;
630: x[j][i].temp = x[j][i].temp - ftemp;
631: }
632: tot_its++;
633: pfnorm = PetscRealPart(fu*fu + fv*fv + fomega*fomega + ftemp*ftemp);
634: pfnorm = PetscSqrtReal(pfnorm);
635: pynorm = PetscRealPart(yu*yu + yv*yv + yo*yo + yt*yt);
636: pfnorm = PetscSqrtReal(pynorm);
637: pxnorm = PetscRealPart(x[j][i].u*x[j][i].u + x[j][i].v*x[j][i].v + x[j][i].omega*x[j][i].omega + x[j][i].temp*x[j][i].temp);
638: pxnorm = PetscSqrtReal(pxnorm);
639: if (l == 0) pfnorm0 = pfnorm;
640: if (rtol*pfnorm0 > pfnorm ||
641: atol > pfnorm ||
642: pxnorm*stol > pynorm) ptconverged = PETSC_TRUE ;
643: }
644: }
645: }
646: }
647: DMDAVecRestoreArray (da,localX,&x);
648: if (B) {
649: DMDAVecRestoreArray (da,localB,&b);
650: }
651: DMLocalToGlobalBegin (da,localX,INSERT_VALUES ,X);
652: DMLocalToGlobalEnd (da,localX,INSERT_VALUES ,X);
653: PetscLogFlops (tot_its*(84.0 + 41.0 + 26.0));
654: if (B) {
655: DMLocalToGlobalBegin (da,localB,INSERT_VALUES ,B);
656: DMLocalToGlobalEnd (da,localB,INSERT_VALUES ,B);
657: }
658: DMRestoreLocalVector (da,&localX);
659: if (B) {
660: DMRestoreLocalVector (da,&localB);
661: }
662: return (0);
663: }