Actual source code: fdaij.c

petsc-3.5.4 2015-05-23
Report Typos and Errors
  2: #include <../src/mat/impls/aij/seq/aij.h>
  3: #include <../src/mat/impls/baij/seq/baij.h>

  5: /*
  6:     This routine is shared by SeqAIJ and SeqBAIJ matrices,
  7:     since it operators only on the nonzero structure of the elements or blocks.
  8: */
 11: PetscErrorCode MatFDColoringCreate_SeqXAIJ(Mat mat,ISColoring iscoloring,MatFDColoring c)
 12: {
 14:   PetscInt       bs,nis=iscoloring->n,m=mat->rmap->n;
 15:   PetscBool      isBAIJ;

 18:   /* set default brows and bcols for speedup inserting the dense matrix into sparse Jacobian */
 19:   MatGetBlockSize(mat,&bs);
 20:   PetscObjectTypeCompare((PetscObject)mat,MATSEQBAIJ,&isBAIJ);
 21:   if (isBAIJ) {
 22:     c->brows = m;
 23:     c->bcols = 1;
 24:   } else { /* seqaij matrix */
 25:     /* bcols is chosen s.t. dy-array takes 50% of memory space as mat */
 26:     Mat_SeqAIJ *spA = (Mat_SeqAIJ*)mat->data;
 27:     PetscReal  mem;
 28:     PetscInt   nz,brows,bcols;

 30:     bs    = 1; /* only bs=1 is supported for SeqAIJ matrix */

 32:     nz    = spA->nz;
 33:     mem   = nz*(sizeof(PetscScalar) + sizeof(PetscInt)) + 3*m*sizeof(PetscInt);
 34:     bcols = (PetscInt)(0.5*mem /(m*sizeof(PetscScalar)));
 35:     brows = 1000/bcols;
 36:     if (bcols > nis) bcols = nis;
 37:     if (brows == 0 || brows > m) brows = m;
 38:     c->brows = brows;
 39:     c->bcols = bcols;
 40:   }

 42:   c->M       = mat->rmap->N/bs;   /* set total rows, columns and local rows */
 43:   c->N       = mat->cmap->N/bs;
 44:   c->m       = mat->rmap->N/bs;
 45:   c->rstart  = 0;
 46:   c->ncolors = nis;
 47:   c->ctype   = IS_COLORING_GHOSTED;
 48:   return(0);
 49: }

 51: /*
 52:  Reorder Jentry such that blocked brows*bols of entries from dense matrix are inserted into Jacobian for improved cache performance
 53:    Input Parameters:
 54: +  mat - the matrix containing the nonzero structure of the Jacobian
 55: .  color - the coloring context
 56: -  nz - number of local non-zeros in mat
 57: */
 60: PetscErrorCode MatFDColoringSetUpBlocked_AIJ_Private(Mat mat,MatFDColoring c,PetscInt nz)
 61: {
 63:   PetscInt       i,j,nrows,nbcols,brows=c->brows,bcols=c->bcols,mbs=c->m,nis=c->ncolors;
 64:   PetscInt       *color_start,*row_start,*nrows_new,nz_new,row_end;

 67:   if (brows < 1 || brows > mbs) brows = mbs;
 68:   PetscMalloc2(bcols+1,&color_start,bcols,&row_start);
 69:   PetscMalloc1(nis,&nrows_new);
 70:   PetscMalloc1(bcols*mat->rmap->n,&c->dy);
 71:   PetscLogObjectMemory((PetscObject)c,bcols*mat->rmap->n*sizeof(PetscScalar));

 73:   nz_new = 0;
 74:   nbcols = 0;
 75:   color_start[bcols] = 0;

 77:   if (c->htype[0] == 'd') { /* ----  c->htype == 'ds', use MatEntry --------*/
 78:     MatEntry       *Jentry_new,*Jentry=c->matentry;
 79:     PetscMalloc1(nz,&Jentry_new);
 80:     for (i=0; i<nis; i+=bcols) { /* loop over colors */
 81:       if (i + bcols > nis) {
 82:         color_start[nis - i] = color_start[bcols];
 83:         bcols                = nis - i;
 84:       }

 86:       color_start[0] = color_start[bcols];
 87:       for (j=0; j<bcols; j++) {
 88:         color_start[j+1] = c->nrows[i+j] + color_start[j];
 89:         row_start[j]     = 0;
 90:       }

 92:       row_end = brows;
 93:       if (row_end > mbs) row_end = mbs;

 95:       while (row_end <= mbs) {   /* loop over block rows */
 96:         for (j=0; j<bcols; j++) {       /* loop over block columns */
 97:           nrows = c->nrows[i+j];
 98:           nz    = color_start[j];
 99:           while (row_start[j] < nrows) {
100:             if (Jentry[nz].row >= row_end) {
101:               color_start[j] = nz;
102:               break;
103:             } else { /* copy Jentry[nz] to Jentry_new[nz_new] */
104:               Jentry_new[nz_new].row     = Jentry[nz].row + j*mbs; /* index in dy-array */
105:               Jentry_new[nz_new].col     = Jentry[nz].col;
106:               Jentry_new[nz_new].valaddr = Jentry[nz].valaddr;
107:               nz_new++; nz++; row_start[j]++;
108:             }
109:           }
110:         }
111:         if (row_end == mbs) break;
112:         row_end += brows;
113:         if (row_end > mbs) row_end = mbs;
114:       }
115:       nrows_new[nbcols++] = nz_new;
116:     }
117:     PetscFree(Jentry);
118:     c->matentry = Jentry_new;
119:   } else { /* ---------  c->htype == 'wp', use MatEntry2 ------------------*/
120:     MatEntry2      *Jentry2_new,*Jentry2=c->matentry2;
121:     PetscMalloc1(nz,&Jentry2_new);
122:     for (i=0; i<nis; i+=bcols) { /* loop over colors */
123:       if (i + bcols > nis) {
124:         color_start[nis - i] = color_start[bcols];
125:         bcols                = nis - i;
126:       }

128:       color_start[0] = color_start[bcols];
129:       for (j=0; j<bcols; j++) {
130:         color_start[j+1] = c->nrows[i+j] + color_start[j];
131:         row_start[j]     = 0;
132:       }

134:       row_end = brows;
135:       if (row_end > mbs) row_end = mbs;

137:       while (row_end <= mbs) {   /* loop over block rows */
138:         for (j=0; j<bcols; j++) {       /* loop over block columns */
139:           nrows = c->nrows[i+j];
140:           nz    = color_start[j];
141:           while (row_start[j] < nrows) {
142:             if (Jentry2[nz].row >= row_end) {
143:               color_start[j] = nz;
144:               break;
145:             } else { /* copy Jentry2[nz] to Jentry2_new[nz_new] */
146:               Jentry2_new[nz_new].row     = Jentry2[nz].row + j*mbs; /* index in dy-array */
147:               Jentry2_new[nz_new].valaddr = Jentry2[nz].valaddr;
148:               nz_new++; nz++; row_start[j]++;
149:             }
150:           }
151:         }
152:         if (row_end == mbs) break;
153:         row_end += brows;
154:         if (row_end > mbs) row_end = mbs;
155:       }
156:       nrows_new[nbcols++] = nz_new;
157:     }
158:     PetscFree(Jentry2);
159:     c->matentry2 = Jentry2_new;
160:   } /* ---------------------------------------------*/

162:   PetscFree2(color_start,row_start);

164:   for (i=nbcols-1; i>0; i--) nrows_new[i] -= nrows_new[i-1];
165:   PetscFree(c->nrows);
166:   c->nrows = nrows_new;
167:   return(0);
168: }

172: PetscErrorCode MatFDColoringSetUp_SeqXAIJ(Mat mat,ISColoring iscoloring,MatFDColoring c)
173: {
175:   PetscInt       i,n,nrows,mbs=c->m,j,k,m,ncols,col,nis=iscoloring->n,*rowhit,bs,bs2,*spidx,nz;
176:   const PetscInt *is,*row,*ci,*cj;
177:   IS             *isa;
178:   PetscBool      isBAIJ;
179:   PetscScalar    *A_val,**valaddrhit;
180:   MatEntry       *Jentry;
181:   MatEntry2      *Jentry2;

184:   ISColoringGetIS(iscoloring,PETSC_IGNORE,&isa);

186:   MatGetBlockSize(mat,&bs);
187:   PetscObjectTypeCompare((PetscObject)mat,MATSEQBAIJ,&isBAIJ);
188:   if (isBAIJ) {
189:     Mat_SeqBAIJ *spA = (Mat_SeqBAIJ*)mat->data;
190:     A_val = spA->a;
191:     nz    = spA->nz;
192:   } else {
193:     Mat_SeqAIJ  *spA = (Mat_SeqAIJ*)mat->data;
194:     A_val = spA->a;
195:     nz    = spA->nz;
196:     bs    = 1; /* only bs=1 is supported for SeqAIJ matrix */
197:   }

199:   PetscMalloc1(nis,&c->ncolumns);
200:   PetscMalloc1(nis,&c->columns);
201:   PetscMalloc1(nis,&c->nrows);
202:   PetscLogObjectMemory((PetscObject)c,3*nis*sizeof(PetscInt));

204:   if (c->htype[0] == 'd') {
205:     PetscMalloc1(nz,&Jentry);
206:     PetscLogObjectMemory((PetscObject)c,nz*sizeof(MatEntry));
207:     c->matentry = Jentry;
208:   } else if (c->htype[0] == 'w') {
209:     PetscMalloc1(nz,&Jentry2);
210:     PetscLogObjectMemory((PetscObject)c,nz*sizeof(MatEntry2));
211:     c->matentry2 = Jentry2;
212:   } else SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"htype is not supported");

214:   if (isBAIJ) {
215:     MatGetColumnIJ_SeqBAIJ_Color(mat,0,PETSC_FALSE,PETSC_FALSE,&ncols,&ci,&cj,&spidx,NULL);
216:   } else {
217:     MatGetColumnIJ_SeqAIJ_Color(mat,0,PETSC_FALSE,PETSC_FALSE,&ncols,&ci,&cj,&spidx,NULL);
218:   }

220:   PetscMalloc2(c->m,&rowhit,c->m,&valaddrhit);
221:   PetscMemzero(rowhit,c->m*sizeof(PetscInt));

223:   nz = 0;
224:   for (i=0; i<nis; i++) { /* loop over colors */
225:     ISGetLocalSize(isa[i],&n);
226:     ISGetIndices(isa[i],&is);

228:     c->ncolumns[i] = n;
229:     if (n) {
230:       PetscMalloc1(n,&c->columns[i]);
231:       PetscLogObjectMemory((PetscObject)c,n*sizeof(PetscInt));
232:       PetscMemcpy(c->columns[i],is,n*sizeof(PetscInt));
233:     } else {
234:       c->columns[i] = 0;
235:     }

237:     /* fast, crude version requires O(N*N) work */
238:     bs2   = bs*bs;
239:     nrows = 0;
240:     for (j=0; j<n; j++) {  /* loop over columns */
241:       col    = is[j];
242:       row    = cj + ci[col];
243:       m      = ci[col+1] - ci[col];
244:       nrows += m;
245:       for (k=0; k<m; k++) {  /* loop over columns marking them in rowhit */
246:         rowhit[*row]       = col + 1;
247:         valaddrhit[*row++] = &A_val[bs2*spidx[ci[col] + k]];
248:       }
249:     }
250:     c->nrows[i] = nrows; /* total num of rows for this color */

252:     if (c->htype[0] == 'd') {
253:       for (j=0; j<mbs; j++) { /* loop over rows */
254:         if (rowhit[j]) {
255:           Jentry[nz].row     = j;              /* local row index */
256:           Jentry[nz].col     = rowhit[j] - 1;  /* local column index */
257:           Jentry[nz].valaddr = valaddrhit[j];  /* address of mat value for this entry */
258:           nz++;
259:           rowhit[j] = 0.0;                     /* zero rowhit for reuse */
260:         }
261:       }
262:     }  else { /* c->htype == 'wp' */
263:       for (j=0; j<mbs; j++) { /* loop over rows */
264:         if (rowhit[j]) {
265:           Jentry2[nz].row     = j;              /* local row index */
266:           Jentry2[nz].valaddr = valaddrhit[j];  /* address of mat value for this entry */
267:           nz++;
268:           rowhit[j] = 0.0;                     /* zero rowhit for reuse */
269:         }
270:       }
271:     }
272:     ISRestoreIndices(isa[i],&is);
273:   }

275:   if (c->bcols > 1) {  /* reorder Jentry for faster MatFDColoringApply() */
276:     MatFDColoringSetUpBlocked_AIJ_Private(mat,c,nz);
277:   }

279:   if (isBAIJ) {
280:     MatRestoreColumnIJ_SeqBAIJ_Color(mat,0,PETSC_FALSE,PETSC_FALSE,&ncols,&ci,&cj,&spidx,NULL);
281:     PetscMalloc1(bs*mat->rmap->n,&c->dy);
282:     PetscLogObjectMemory((PetscObject)c,bs*mat->rmap->n*sizeof(PetscScalar));
283:   } else {
284:     MatRestoreColumnIJ_SeqAIJ_Color(mat,0,PETSC_FALSE,PETSC_FALSE,&ncols,&ci,&cj,&spidx,NULL);
285:   }
286:   PetscFree2(rowhit,valaddrhit);
287:   ISColoringRestoreIS(iscoloring,&isa);

289:   VecCreateGhost(PetscObjectComm((PetscObject)mat),mat->rmap->n,PETSC_DETERMINE,0,NULL,&c->vscale);
290:   PetscInfo3(c,"ncolors %D, brows %D and bcols %D are used.\n",c->ncolors,c->brows,c->bcols);
291:   return(0);
292: }