Actual source code: aij.h

petsc-3.5.4 2015-05-23
Report Typos and Errors

  5: #include <petsc-private/matimpl.h>

  7: /*
  8:     Struct header shared by SeqAIJ, SeqBAIJ and SeqSBAIJ matrix formats
  9: */
 10: #define SEQAIJHEADER(datatype)        \
 11:   PetscBool roworiented;              /* if true, row-oriented input, default */ \
 12:   PetscInt  nonew;                    /* 1 don't add new nonzeros, -1 generate error on new */ \
 13:   PetscInt  nounused;                 /* -1 generate error on unused space */ \
 14:   PetscBool singlemalloc;             /* if true a, i, and j have been obtained with one big malloc */ \
 15:   PetscInt  maxnz;                    /* allocated nonzeros */ \
 16:   PetscInt  *imax;                    /* maximum space allocated for each row */ \
 17:   PetscInt  *ilen;                    /* actual length of each row */ \
 18:   PetscBool free_imax_ilen;  \
 19:   PetscInt  reallocs;                 /* number of mallocs done during MatSetValues() \
 20:                                         as more values are set than were prealloced */\
 21:   PetscInt          rmax;             /* max nonzeros in any row */ \
 22:   PetscBool         keepnonzeropattern;   /* keeps matrix structure same in calls to MatZeroRows()*/ \
 23:   PetscBool         ignorezeroentries; \
 24:   PetscInt          *xtoy,*xtoyB;     /* map nonzero pattern of X into Y's, used by MatAXPY() */ \
 25:   Mat               XtoY;             /* used by MatAXPY() */ \
 26:   PetscBool         free_ij;          /* free the column indices j and row offsets i when the matrix is destroyed */ \
 27:   PetscBool         free_a;           /* free the numerical values when matrix is destroy */ \
 28:   Mat_CompressedRow compressedrow;    /* use compressed row format */                      \
 29:   PetscInt          nz;               /* nonzeros */                                       \
 30:   PetscInt          *i;               /* pointer to beginning of each row */               \
 31:   PetscInt          *j;               /* column values: j + i[k] - 1 is start of row k */  \
 32:   PetscInt          *diag;            /* pointers to diagonal elements */                  \
 33:   PetscInt          nonzerorowcnt;    /* how many rows have nonzero entries */             \
 34:   PetscBool         free_diag;         \
 35:   datatype          *a;               /* nonzero elements */                               \
 36:   PetscScalar       *solve_work;      /* work space used in MatSolve */                    \
 37:   IS                row, col, icol;   /* index sets, used for reorderings */ \
 38:   PetscBool         pivotinblocks;    /* pivot inside factorization of each diagonal block */ \
 39:   Mat               parent             /* set if this matrix was formed with MatDuplicate(...,MAT_SHARE_NONZERO_PATTERN,....);
 40:                                          means that this shares some data structures with the parent including diag, ilen, imax, i, j */

 42: typedef struct {
 43:   MatTransposeColoring matcoloring;
 44:   Mat                  Bt_den;       /* dense matrix of B^T */
 45:   Mat                  ABt_den;      /* dense matrix of A*B^T */
 46:   PetscBool            usecoloring;
 47:   PetscErrorCode (*destroy)(Mat);
 48: } Mat_MatMatTransMult;

 50: typedef struct { /* for MatTransposeMatMult_SeqAIJ_SeqDense() */
 51:   Mat          mA;           /* maij matrix of A */
 52:   Vec          bt,ct;        /* vectors to hold locally transposed arrays of B and C */
 53:   PetscErrorCode (*destroy)(Mat);
 54: } Mat_MatTransMatMult;

 56: typedef struct {
 57:   PetscInt    *api,*apj;       /* symbolic structure of A*P */
 58:   PetscScalar *apa;            /* temporary array for storing one row of A*P */
 59:   PetscErrorCode (*destroy)(Mat);
 60: } Mat_PtAP;

 62: typedef struct {
 63:   MatTransposeColoring matcoloring;
 64:   Mat                  Rt;    /* sparse or dense matrix of R^T */
 65:   Mat                  RARt;  /* dense matrix of R*A*R^T */
 66:   Mat                  ARt;   /* A*R^T used for the case -matrart_color_art */
 67:   MatScalar            *work; /* work array to store columns of A*R^T used in MatMatMatMultNumeric_SeqAIJ_SeqAIJ_SeqDense() */
 68:   PetscErrorCode (*destroy)(Mat);
 69: } Mat_RARt;

 71: typedef struct {
 72:   Mat BC;               /* temp matrix for storing B*C */
 73:   PetscErrorCode (*destroy)(Mat);
 74: } Mat_MatMatMatMult;

 76: typedef struct { /* used by MatGetRedundantMatrix() for reusing matredundant */
 77:   PetscInt     nzlocal,nsends,nrecvs;
 78:   PetscMPIInt  *send_rank,*recv_rank;
 79:   PetscInt     *sbuf_nz,*rbuf_nz,*sbuf_j,**rbuf_j;
 80:   PetscScalar  *sbuf_a,**rbuf_a;
 81:   PetscSubcomm psubcomm;
 82:   IS           isrow,iscol;
 83:   Mat          *matseq;
 84: } Mat_Redundant;

 86: /*
 87:   MATSEQAIJ format - Compressed row storage (also called Yale sparse matrix
 88:   format) or compressed sparse row (CSR).  The i[] and j[] arrays start at 0. For example,
 89:   j[i[k]+p] is the pth column in row k.  Note that the diagonal
 90:   matrix elements are stored with the rest of the nonzeros (not separately).
 91: */

 93: /* Info about i-nodes (identical nodes) helper class for SeqAIJ */
 94: typedef struct {
 95:   MatScalar *bdiag,*ibdiag,*ssor_work;        /* diagonal blocks of matrix used for MatSOR_SeqAIJ_Inode() */
 96:   PetscInt  bdiagsize;                         /* length of bdiag and ibdiag */
 97:   PetscBool ibdiagvalid;                       /* do ibdiag[] and bdiag[] contain the most recent values */

 99:   PetscBool use;
100:   PetscInt  node_count;                     /* number of inodes */
101:   PetscInt  *size;                          /* size of each inode */
102:   PetscInt  limit;                          /* inode limit */
103:   PetscInt  max_limit;                      /* maximum supported inode limit */
104:   PetscBool checked;                        /* if inodes have been checked for */
105: } Mat_SeqAIJ_Inode;

107: PETSC_INTERN PetscErrorCode MatView_SeqAIJ_Inode(Mat,PetscViewer);
108: PETSC_INTERN PetscErrorCode MatAssemblyEnd_SeqAIJ_Inode(Mat,MatAssemblyType);
109: PETSC_INTERN PetscErrorCode MatDestroy_SeqAIJ_Inode(Mat);
110: PETSC_INTERN PetscErrorCode MatCreate_SeqAIJ_Inode(Mat);
111: PETSC_INTERN PetscErrorCode MatSetOption_SeqAIJ_Inode(Mat,MatOption,PetscBool);
112: PETSC_INTERN PetscErrorCode MatDuplicate_SeqAIJ_Inode(Mat,MatDuplicateOption,Mat*);
113: PETSC_INTERN PetscErrorCode MatDuplicateNoCreate_SeqAIJ(Mat,Mat,MatDuplicateOption,PetscBool);
114: PETSC_INTERN PetscErrorCode MatLUFactorNumeric_SeqAIJ_Inode_inplace(Mat,Mat,const MatFactorInfo*);
115: PETSC_INTERN PetscErrorCode MatLUFactorNumeric_SeqAIJ_Inode(Mat,Mat,const MatFactorInfo*);

117: typedef struct {
118:   SEQAIJHEADER(MatScalar);
119:   Mat_SeqAIJ_Inode inode;
120:   MatScalar        *saved_values;             /* location for stashing nonzero values of matrix */

122:   PetscScalar *idiag,*mdiag,*ssor_work;       /* inverse of diagonal entries, diagonal values and workspace for Eisenstat trick */
123:   PetscBool   idiagvalid;                     /* current idiag[] and mdiag[] are valid */
124:   PetscScalar *ibdiag;                        /* inverses of block diagonals */
125:   PetscBool   ibdiagvalid;                    /* inverses of block diagonals are valid. */
126:   PetscScalar fshift,omega;                   /* last used omega and fshift */

128:   ISColoring coloring;                        /* set with MatADSetColoring() used by MatADSetValues() */

130:   PetscScalar       *matmult_abdense;    /* used by MatMatMult() */
131:   Mat_PtAP          *ptap;               /* used by MatPtAP() */
132:   Mat_MatMatMatMult *matmatmatmult;      /* used by MatMatMatMult() */
133:   Mat_RARt          *rart;               /* used by MatRARt() */
134:   Mat_MatMatTransMult *abt;              /* used by MatMatTransposeMult() */
135:   Mat_Redundant       *redundant;        /* used by MatGetRedundantMatrix() */
136: } Mat_SeqAIJ;

138: /*
139:   Frees the a, i, and j arrays from the XAIJ (AIJ, BAIJ, and SBAIJ) matrix types
140: */
143: PETSC_STATIC_INLINE PetscErrorCode MatSeqXAIJFreeAIJ(Mat AA,MatScalar **a,PetscInt **j,PetscInt **i)
144: {
146:   Mat_SeqAIJ     *A = (Mat_SeqAIJ*) AA->data;
147:   if (A->singlemalloc) {
148:     PetscFree3(*a,*j,*i);
149:   } else {
150:     if (A->free_a)  {PetscFree(*a);}
151:     if (A->free_ij) {PetscFree(*j);}
152:     if (A->free_ij) {PetscFree(*i);}
153:   }
154:   return 0;
155: }
156: /*
157:     Allocates larger a, i, and j arrays for the XAIJ (AIJ, BAIJ, and SBAIJ) matrix types
158:     This is a macro because it takes the datatype as an argument which can be either a Mat or a MatScalar
159: */
160: #define MatSeqXAIJReallocateAIJ(Amat,AM,BS2,NROW,ROW,COL,RMAX,AA,AI,AJ,RP,AP,AIMAX,NONEW,datatype) \
161:   if (NROW >= RMAX) { \
162:     Mat_SeqAIJ *Ain = (Mat_SeqAIJ*)Amat->data; \
163:     /* there is no extra room in row, therefore enlarge */ \
164:     PetscInt CHUNKSIZE = 15,new_nz = AI[AM] + CHUNKSIZE,len,*new_i=0,*new_j=0; \
165:     datatype *new_a; \
166:  \
167:     if (NONEW == -2) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"New nonzero at (%D,%D) caused a malloc\nUse MatSetOption(A, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_FALSE) to turn off this check",ROW,COL); \
168:     /* malloc new storage space */ \
169:     PetscMalloc3(BS2*new_nz,&new_a,new_nz,&new_j,AM+1,&new_i); \
170:  \
171:     /* copy over old data into new slots */ \
172:     for (ii=0; ii<ROW+1; ii++) {new_i[ii] = AI[ii];} \
173:     for (ii=ROW+1; ii<AM+1; ii++) {new_i[ii] = AI[ii]+CHUNKSIZE;} \
174:     PetscMemcpy(new_j,AJ,(AI[ROW]+NROW)*sizeof(PetscInt)); \
175:     len  = (new_nz - CHUNKSIZE - AI[ROW] - NROW); \
176:     PetscMemcpy(new_j+AI[ROW]+NROW+CHUNKSIZE,AJ+AI[ROW]+NROW,len*sizeof(PetscInt)); \
177:     PetscMemcpy(new_a,AA,BS2*(AI[ROW]+NROW)*sizeof(datatype)); \
178:     PetscMemzero(new_a+BS2*(AI[ROW]+NROW),BS2*CHUNKSIZE*sizeof(datatype)); \
179:     PetscMemcpy(new_a+BS2*(AI[ROW]+NROW+CHUNKSIZE),AA+BS2*(AI[ROW]+NROW),BS2*len*sizeof(datatype));  \
180:     /* free up old matrix storage */ \
181:     MatSeqXAIJFreeAIJ(A,&Ain->a,&Ain->j,&Ain->i); \
182:     AA                = new_a; \
183:     Ain->a            = (MatScalar*) new_a;                   \
184:     AI                = Ain->i = new_i; AJ = Ain->j = new_j;  \
185:     Ain->singlemalloc = PETSC_TRUE; \
186:  \
187:     RP          = AJ + AI[ROW]; AP = AA + BS2*AI[ROW]; \
188:     RMAX        = AIMAX[ROW] = AIMAX[ROW] + CHUNKSIZE; \
189:     Ain->maxnz += BS2*CHUNKSIZE; \
190:     Ain->reallocs++; \
191:   } \


194: PETSC_EXTERN PetscErrorCode MatSeqAIJSetPreallocation_SeqAIJ(Mat,PetscInt,const PetscInt*);
195: PETSC_INTERN PetscErrorCode MatILUFactorSymbolic_SeqAIJ_inplace(Mat,Mat,IS,IS,const MatFactorInfo*);
196: PETSC_INTERN PetscErrorCode MatILUFactorSymbolic_SeqAIJ(Mat,Mat,IS,IS,const MatFactorInfo*);
197: PETSC_INTERN PetscErrorCode MatILUFactorSymbolic_SeqAIJ_ilu0(Mat,Mat,IS,IS,const MatFactorInfo*);

199: PETSC_INTERN PetscErrorCode MatICCFactorSymbolic_SeqAIJ_inplace(Mat,Mat,IS,const MatFactorInfo*);
200: PETSC_INTERN PetscErrorCode MatICCFactorSymbolic_SeqAIJ(Mat,Mat,IS,const MatFactorInfo*);
201: PETSC_INTERN PetscErrorCode MatCholeskyFactorSymbolic_SeqAIJ_inplace(Mat,Mat,IS,const MatFactorInfo*);
202: PETSC_INTERN PetscErrorCode MatCholeskyFactorSymbolic_SeqAIJ(Mat,Mat,IS,const MatFactorInfo*);
203: PETSC_INTERN PetscErrorCode MatCholeskyFactorNumeric_SeqAIJ_inplace(Mat,Mat,const MatFactorInfo*);
204: PETSC_INTERN PetscErrorCode MatCholeskyFactorNumeric_SeqAIJ(Mat,Mat,const MatFactorInfo*);
205: PETSC_INTERN PetscErrorCode MatDuplicate_SeqAIJ(Mat,MatDuplicateOption,Mat*);
206: PETSC_INTERN PetscErrorCode MatCopy_SeqAIJ(Mat,Mat,MatStructure);
207: PETSC_INTERN PetscErrorCode MatMissingDiagonal_SeqAIJ(Mat,PetscBool*,PetscInt*);
208: PETSC_INTERN PetscErrorCode MatMarkDiagonal_SeqAIJ(Mat);
209: PETSC_INTERN PetscErrorCode MatFindZeroDiagonals_SeqAIJ_Private(Mat,PetscInt*,PetscInt**);

211: PETSC_INTERN PetscErrorCode MatMult_SeqAIJ(Mat A,Vec,Vec);
212: PETSC_INTERN PetscErrorCode MatMultAdd_SeqAIJ(Mat A,Vec,Vec,Vec);
213: PETSC_INTERN PetscErrorCode MatMultTranspose_SeqAIJ(Mat A,Vec,Vec);
214: PETSC_INTERN PetscErrorCode MatMultTransposeAdd_SeqAIJ(Mat A,Vec,Vec,Vec);
215: PETSC_INTERN PetscErrorCode MatSOR_SeqAIJ(Mat,Vec,PetscReal,MatSORType,PetscReal,PetscInt,PetscInt,Vec);

217: PETSC_INTERN PetscErrorCode MatSetOption_SeqAIJ(Mat,MatOption,PetscBool);
218: PETSC_INTERN PetscErrorCode MatSetColoring_SeqAIJ(Mat,ISColoring);
219: PETSC_INTERN PetscErrorCode MatSetValuesAdifor_SeqAIJ(Mat,PetscInt,void*);

221: PETSC_INTERN PetscErrorCode MatGetSymbolicTranspose_SeqAIJ(Mat,PetscInt *[],PetscInt *[]);
222: PETSC_INTERN PetscErrorCode MatGetSymbolicTransposeReduced_SeqAIJ(Mat,PetscInt,PetscInt,PetscInt *[],PetscInt *[]);
223: PETSC_INTERN PetscErrorCode MatRestoreSymbolicTranspose_SeqAIJ(Mat,PetscInt *[],PetscInt *[]);
224: PETSC_INTERN PetscErrorCode MatTransposeSymbolic_SeqAIJ(Mat,Mat*);
225: PETSC_INTERN PetscErrorCode MatTranspose_SeqAIJ(Mat,MatReuse,Mat*);
226: PETSC_INTERN PetscErrorCode MatToSymmetricIJ_SeqAIJ(PetscInt,PetscInt*,PetscInt*,PetscInt,PetscInt,PetscInt**,PetscInt**);
227: PETSC_INTERN PetscErrorCode MatLUFactorSymbolic_SeqAIJ_inplace(Mat,Mat,IS,IS,const MatFactorInfo*);
228: PETSC_INTERN PetscErrorCode MatLUFactorSymbolic_SeqAIJ(Mat,Mat,IS,IS,const MatFactorInfo*);
229: PETSC_INTERN PetscErrorCode MatLUFactorNumeric_SeqAIJ_inplace(Mat,Mat,const MatFactorInfo*);
230: PETSC_INTERN PetscErrorCode MatLUFactorNumeric_SeqAIJ(Mat,Mat,const MatFactorInfo*);
231: PETSC_INTERN PetscErrorCode MatLUFactorNumeric_SeqAIJ_InplaceWithPerm(Mat,Mat,const MatFactorInfo*);
232: PETSC_INTERN PetscErrorCode MatLUFactor_SeqAIJ(Mat,IS,IS,const MatFactorInfo*);
233: PETSC_INTERN PetscErrorCode MatSolve_SeqAIJ_inplace(Mat,Vec,Vec);
234: PETSC_INTERN PetscErrorCode MatSolve_SeqAIJ(Mat,Vec,Vec);
235: PETSC_INTERN PetscErrorCode MatSolve_SeqAIJ_Inode_inplace(Mat,Vec,Vec);
236: PETSC_INTERN PetscErrorCode MatSolve_SeqAIJ_Inode(Mat,Vec,Vec);
237: PETSC_INTERN PetscErrorCode MatSolve_SeqAIJ_NaturalOrdering_inplace(Mat,Vec,Vec);
238: PETSC_INTERN PetscErrorCode MatSolve_SeqAIJ_NaturalOrdering(Mat,Vec,Vec);
239: PETSC_INTERN PetscErrorCode MatSolve_SeqAIJ_InplaceWithPerm(Mat,Vec,Vec);
240: PETSC_INTERN PetscErrorCode MatSolveAdd_SeqAIJ_inplace(Mat,Vec,Vec,Vec);
241: PETSC_INTERN PetscErrorCode MatSolveAdd_SeqAIJ(Mat,Vec,Vec,Vec);
242: PETSC_INTERN PetscErrorCode MatSolveTranspose_SeqAIJ_inplace(Mat,Vec,Vec);
243: PETSC_INTERN PetscErrorCode MatSolveTranspose_SeqAIJ(Mat,Vec,Vec);
244: PETSC_INTERN PetscErrorCode MatSolveTransposeAdd_SeqAIJ_inplace(Mat,Vec,Vec,Vec);
245: PETSC_INTERN PetscErrorCode MatSolveTransposeAdd_SeqAIJ(Mat,Vec,Vec,Vec);
246: PETSC_INTERN PetscErrorCode MatMatSolve_SeqAIJ_inplace(Mat,Mat,Mat);
247: PETSC_INTERN PetscErrorCode MatMatSolve_SeqAIJ(Mat,Mat,Mat);
248: PETSC_INTERN PetscErrorCode MatEqual_SeqAIJ(Mat,Mat,PetscBool*);
249: PETSC_INTERN PetscErrorCode MatFDColoringCreate_SeqXAIJ(Mat,ISColoring,MatFDColoring);
250: PETSC_INTERN PetscErrorCode MatFDColoringSetUp_SeqXAIJ(Mat,ISColoring,MatFDColoring);
251: PETSC_INTERN PetscErrorCode MatFDColoringSetUpBlocked_AIJ_Private(Mat,MatFDColoring,PetscInt);
252: PETSC_INTERN PetscErrorCode MatFDColoringApply_AIJ(Mat,MatFDColoring,Vec,void*);
253: PETSC_INTERN PetscErrorCode MatLoad_SeqAIJ(Mat,PetscViewer);
254: PETSC_INTERN PetscErrorCode RegisterApplyPtAPRoutines_Private(Mat);

256: PETSC_INTERN PetscErrorCode MatMatMult_SeqAIJ_SeqAIJ(Mat,Mat,MatReuse,PetscReal,Mat*);
257: PETSC_INTERN PetscErrorCode MatMatMultSymbolic_SeqAIJ_SeqAIJ(Mat,Mat,PetscReal,Mat*);
258: PETSC_INTERN PetscErrorCode MatMatMultSymbolic_SeqAIJ_SeqAIJ_Scalable(Mat,Mat,PetscReal,Mat*);
259: PETSC_INTERN PetscErrorCode MatMatMultSymbolic_SeqAIJ_SeqAIJ_Scalable_fast(Mat,Mat,PetscReal,Mat*);
260: PETSC_INTERN PetscErrorCode MatMatMultSymbolic_SeqAIJ_SeqAIJ_Heap(Mat,Mat,PetscReal,Mat*);
261: PETSC_INTERN PetscErrorCode MatMatMultSymbolic_SeqAIJ_SeqAIJ_BTHeap(Mat,Mat,PetscReal,Mat*);
262: PETSC_INTERN PetscErrorCode MatMatMultNumeric_SeqAIJ_SeqAIJ(Mat,Mat,Mat);
263: PETSC_INTERN PetscErrorCode MatMatMultNumeric_SeqAIJ_SeqAIJ_Scalable(Mat,Mat,Mat);

265: PETSC_INTERN PetscErrorCode MatPtAP_SeqAIJ_SeqAIJ(Mat,Mat,MatReuse,PetscReal,Mat*);
266: PETSC_INTERN PetscErrorCode MatPtAPSymbolic_SeqAIJ_SeqAIJ_DenseAxpy(Mat,Mat,PetscReal,Mat*);
267: PETSC_INTERN PetscErrorCode MatPtAPSymbolic_SeqAIJ_SeqAIJ_SparseAxpy(Mat,Mat,PetscReal,Mat*);
268: PETSC_INTERN PetscErrorCode MatPtAPNumeric_SeqAIJ_SeqAIJ(Mat,Mat,Mat);
269: PETSC_INTERN PetscErrorCode MatPtAPNumeric_SeqAIJ_SeqAIJ_SparseAxpy(Mat,Mat,Mat);

271: PETSC_INTERN PetscErrorCode MatRARtSymbolic_SeqAIJ_SeqAIJ(Mat,Mat,PetscReal,Mat*);
272: PETSC_INTERN PetscErrorCode MatRARtSymbolic_SeqAIJ_SeqAIJ_matmattransposemult(Mat,Mat,PetscReal,Mat*);
273: PETSC_INTERN PetscErrorCode MatRARtSymbolic_SeqAIJ_SeqAIJ_colorrart(Mat,Mat,PetscReal,Mat*);
274: PETSC_INTERN PetscErrorCode MatRARtNumeric_SeqAIJ_SeqAIJ(Mat,Mat,Mat);
275: PETSC_INTERN PetscErrorCode MatRARtNumeric_SeqAIJ_SeqAIJ_matmattransposemult(Mat,Mat,Mat);
276: PETSC_INTERN PetscErrorCode MatRARtNumeric_SeqAIJ_SeqAIJ_colorrart(Mat,Mat,Mat);

278: PETSC_INTERN PetscErrorCode MatTransposeMatMult_SeqAIJ_SeqAIJ(Mat,Mat,MatReuse,PetscReal,Mat*);
279: PETSC_INTERN PetscErrorCode MatTransposeMatMultSymbolic_SeqAIJ_SeqAIJ(Mat,Mat,PetscReal,Mat*);
280: PETSC_INTERN PetscErrorCode MatTransposeMatMultNumeric_SeqAIJ_SeqAIJ(Mat,Mat,Mat);

282: PETSC_INTERN PetscErrorCode MatTransposeMatMult_SeqAIJ_SeqDense(Mat,Mat,MatReuse,PetscReal,Mat*);
283: PETSC_INTERN PetscErrorCode MatTransposeMatMultSymbolic_SeqAIJ_SeqDense(Mat,Mat,PetscReal,Mat*);
284: PETSC_INTERN PetscErrorCode MatTransposeMatMultNumeric_SeqAIJ_SeqDense(Mat,Mat,Mat);

286: PETSC_INTERN PetscErrorCode MatMatTransposeMult_SeqAIJ_SeqAIJ(Mat,Mat,MatReuse,PetscReal,Mat*);
287: PETSC_INTERN PetscErrorCode MatMatTransposeMultSymbolic_SeqAIJ_SeqAIJ(Mat,Mat,PetscReal,Mat*);
288: PETSC_INTERN PetscErrorCode MatMatTransposeMultNumeric_SeqAIJ_SeqAIJ(Mat,Mat,Mat);
289: PETSC_INTERN PetscErrorCode MatTransposeColoringCreate_SeqAIJ(Mat,ISColoring,MatTransposeColoring);
290: PETSC_INTERN PetscErrorCode MatTransColoringApplySpToDen_SeqAIJ(MatTransposeColoring,Mat,Mat);
291: PETSC_INTERN PetscErrorCode MatTransColoringApplyDenToSp_SeqAIJ(MatTransposeColoring,Mat,Mat);

293: PETSC_INTERN PetscErrorCode MatMatMatMult_SeqAIJ_SeqAIJ_SeqAIJ(Mat,Mat,Mat,MatReuse,PetscReal,Mat*);
294: PETSC_INTERN PetscErrorCode MatMatMatMultSymbolic_SeqAIJ_SeqAIJ_SeqAIJ(Mat,Mat,Mat,PetscReal,Mat*);
295: PETSC_INTERN PetscErrorCode MatMatMatMultNumeric_SeqAIJ_SeqAIJ_SeqAIJ(Mat,Mat,Mat,Mat);

297: PETSC_INTERN PetscErrorCode MatSetValues_SeqAIJ(Mat,PetscInt,const PetscInt[],PetscInt,const PetscInt[],const PetscScalar[],InsertMode);
298: PETSC_INTERN PetscErrorCode MatGetRow_SeqAIJ(Mat,PetscInt,PetscInt*,PetscInt**,PetscScalar**);
299: PETSC_INTERN PetscErrorCode MatRestoreRow_SeqAIJ(Mat,PetscInt,PetscInt*,PetscInt**,PetscScalar**);
300: PETSC_INTERN PetscErrorCode MatAXPY_SeqAIJ(Mat,PetscScalar,Mat,MatStructure);
301: PETSC_INTERN PetscErrorCode MatGetRowIJ_SeqAIJ(Mat,PetscInt,PetscBool,PetscBool,PetscInt*,const PetscInt *[],const PetscInt *[],PetscBool*);
302: PETSC_INTERN PetscErrorCode MatRestoreRowIJ_SeqAIJ(Mat,PetscInt,PetscBool,PetscBool,PetscInt*,const PetscInt *[],const PetscInt *[],PetscBool*);
303: PETSC_INTERN PetscErrorCode MatGetColumnIJ_SeqAIJ(Mat,PetscInt,PetscBool,PetscBool,PetscInt*,const PetscInt *[],const PetscInt *[],PetscBool*);
304: PETSC_INTERN PetscErrorCode MatRestoreColumnIJ_SeqAIJ(Mat,PetscInt,PetscBool,PetscBool,PetscInt*,const PetscInt *[],const PetscInt *[],PetscBool*);
305: PETSC_INTERN PetscErrorCode MatGetColumnIJ_SeqAIJ_Color(Mat,PetscInt,PetscBool,PetscBool,PetscInt*,const PetscInt *[],const PetscInt *[],PetscInt *[],PetscBool*);
306: PETSC_INTERN PetscErrorCode MatRestoreColumnIJ_SeqAIJ_Color(Mat,PetscInt,PetscBool,PetscBool,PetscInt*,const PetscInt *[],const PetscInt *[],PetscInt *[],PetscBool*);
307: PETSC_INTERN PetscErrorCode MatDestroy_SeqAIJ(Mat);
308: PETSC_INTERN PetscErrorCode MatSetUp_SeqAIJ(Mat);
309: PETSC_INTERN PetscErrorCode MatView_SeqAIJ(Mat,PetscViewer);

311: PETSC_INTERN PetscErrorCode MatSeqAIJInvalidateDiagonal(Mat);
312: PETSC_INTERN PetscErrorCode MatSeqAIJInvalidateDiagonal_Inode(Mat);
313: PETSC_INTERN PetscErrorCode Mat_CheckInode(Mat,PetscBool);
314: PETSC_INTERN PetscErrorCode Mat_CheckInode_FactorLU(Mat);

316: PETSC_INTERN PetscErrorCode MatAXPYGetPreallocation_SeqAIJ(Mat,Mat,PetscInt*);

318: PETSC_EXTERN PetscErrorCode MatConvert_SeqAIJ_SeqSBAIJ(Mat,MatType,MatReuse,Mat*);
319: PETSC_EXTERN PetscErrorCode MatConvert_SeqAIJ_SeqBAIJ(Mat,MatType,MatReuse,Mat*);
320: PETSC_EXTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJPERM(Mat,MatType,MatReuse,Mat*);
321: PETSC_INTERN PetscErrorCode MatReorderForNonzeroDiagonal_SeqAIJ(Mat,PetscReal,IS,IS);
322: PETSC_INTERN PetscErrorCode MatMatMult_SeqDense_SeqAIJ(Mat,Mat,MatReuse,PetscReal,Mat*);
323: PETSC_INTERN PetscErrorCode MatRARt_SeqAIJ_SeqAIJ(Mat,Mat,MatReuse,PetscReal,Mat*);
324: PETSC_EXTERN PetscErrorCode MatCreate_SeqAIJ(Mat);
325: PETSC_INTERN PetscErrorCode MatAssemblyEnd_SeqAIJ(Mat,MatAssemblyType);
326: PETSC_INTERN PetscErrorCode MatDestroy_SeqAIJ(Mat);

328: PETSC_INTERN PetscErrorCode MatAXPYGetPreallocation_SeqX_private(PetscInt,const PetscInt*,const PetscInt*,const PetscInt*,const PetscInt*,PetscInt*);

330: /*
331:     PetscSparseDenseMinusDot - The inner kernel of triangular solves and Gauss-Siedel smoothing. \sum_i xv[i] * r[xi[i]] for CSR storage

333:   Input Parameters:
334: +  nnz - the number of entries
335: .  r - the array of vector values
336: .  xv - the matrix values for the row
337: -  xi - the column indices of the nonzeros in the row

339:   Output Parameter:
340: .  sum - negative the sum of results

342:   PETSc compile flags:
343: +   PETSC_KERNEL_USE_UNROLL_4 -   don't use this; it changes nnz and hence is WRONG
344: -   PETSC_KERNEL_USE_UNROLL_2 -

346: .seealso: PetscSparseDensePlusDot()

348: */
349: #if defined(PETSC_KERNEL_USE_UNROLL_4)
350: #define PetscSparseDenseMinusDot(sum,r,xv,xi,nnz) { \
351:     if (nnz > 0) { \
352:       switch (nnz & 0x3) { \
353:       case 3: sum -= *xv++ *r[*xi++]; \
354:       case 2: sum -= *xv++ *r[*xi++]; \
355:       case 1: sum -= *xv++ *r[*xi++]; \
356:         nnz       -= 4;} \
357:       while (nnz > 0) { \
358:         sum -=  xv[0] * r[xi[0]] - xv[1] * r[xi[1]] - \
359:                xv[2] * r[xi[2]] - xv[3] * r[xi[3]]; \
360:         xv += 4; xi += 4; nnz -= 4; }}}

362: #elif defined(PETSC_KERNEL_USE_UNROLL_2)
363: #define PetscSparseDenseMinusDot(sum,r,xv,xi,nnz) { \
364:     PetscInt __i,__i1,__i2; \
365:     for (__i=0; __i<nnz-1; __i+=2) {__i1 = xi[__i]; __i2=xi[__i+1]; \
366:                                     sum -= (xv[__i]*r[__i1] + xv[__i+1]*r[__i2]);} \
367:     if (nnz & 0x1) sum -= xv[__i] * r[xi[__i]];}

369: #else
370: #define PetscSparseDenseMinusDot(sum,r,xv,xi,nnz) { \
371:     PetscInt __i; \
372:     for (__i=0; __i<nnz; __i++) sum -= xv[__i] * r[xi[__i]];}
373: #endif



377: /*
378:     PetscSparseDensePlusDot - The inner kernel of matrix-vector product \sum_i xv[i] * r[xi[i]] for CSR storage

380:   Input Parameters:
381: +  nnz - the number of entries
382: .  r - the array of vector values
383: .  xv - the matrix values for the row
384: -  xi - the column indices of the nonzeros in the row

386:   Output Parameter:
387: .  sum - the sum of results

389:   PETSc compile flags:
390: +   PETSC_KERNEL_USE_UNROLL_4 -  don't use this; it changes nnz and hence is WRONG
391: -   PETSC_KERNEL_USE_UNROLL_2 -

393: .seealso: PetscSparseDenseMinusDot()

395: */
396: #if defined(PETSC_KERNEL_USE_UNROLL_4)
397: #define PetscSparseDensePlusDot(sum,r,xv,xi,nnz) { \
398:     if (nnz > 0) { \
399:       switch (nnz & 0x3) { \
400:       case 3: sum += *xv++ *r[*xi++]; \
401:       case 2: sum += *xv++ *r[*xi++]; \
402:       case 1: sum += *xv++ *r[*xi++]; \
403:         nnz       -= 4;} \
404:       while (nnz > 0) { \
405:         sum +=  xv[0] * r[xi[0]] + xv[1] * r[xi[1]] + \
406:                xv[2] * r[xi[2]] + xv[3] * r[xi[3]]; \
407:         xv += 4; xi += 4; nnz -= 4; }}}

409: #elif defined(PETSC_KERNEL_USE_UNROLL_2)
410: #define PetscSparseDensePlusDot(sum,r,xv,xi,nnz) { \
411:     PetscInt __i,__i1,__i2; \
412:     for (__i=0; __i<nnz-1; __i+=2) {__i1 = xi[__i]; __i2=xi[__i+1]; \
413:                                     sum += (xv[__i]*r[__i1] + xv[__i+1]*r[__i2]);} \
414:     if (nnz & 0x1) sum += xv[__i] * r[xi[__i]];}

416: #else
417: #define PetscSparseDensePlusDot(sum,r,xv,xi,nnz) { \
418:     PetscInt __i; \
419:     for (__i=0; __i<nnz; __i++) sum += xv[__i] * r[xi[__i]];}
420: #endif


423: /*
424:     PetscSparseDenseMaxDot - The inner kernel of a modified matrix-vector product \max_i xv[i] * r[xi[i]] for CSR storage

426:   Input Parameters:
427: +  nnz - the number of entries
428: .  r - the array of vector values
429: .  xv - the matrix values for the row
430: -  xi - the column indices of the nonzeros in the row

432:   Output Parameter:
433: .  max - the max of results

435: .seealso: PetscSparseDensePlusDot(), PetscSparseDenseMinusDot()

437: */
438: #define PetscSparseDenseMaxDot(max,r,xv,xi,nnz) { \
439:     PetscInt __i; \
440:     for (__i=0; __i<nnz; __i++) max = PetscMax(PetscRealPart(max), PetscRealPart(xv[__i] * r[xi[__i]]));}

442: #endif