Actual source code: ex147.c
petsc-3.5.4 2015-05-23
1: /* This program illustrates use of parallel real FFT */
2: static char help[]="This program illustrates the use of parallel real multi-dimensional fftw (without PETSc interface)";
3: #include <petscmat.h>
4: #include <fftw3.h>
5: #include <fftw3-mpi.h>
9: PetscInt main(PetscInt argc,char **args)
10: {
11: ptrdiff_t N0=2,N1=2,N2=2,N3=2,dim[4],N,D;
12: fftw_plan bplan,fplan;
13: fftw_complex *out;
14: double *in1,*in2;
15: ptrdiff_t alloc_local,local_n0,local_0_start;
16: ptrdiff_t local_n1,local_1_start;
17: PetscInt i,j,indx[100],n1;
18: PetscInt size,rank,n,*in,N_factor;
19: PetscScalar *data_fin,value1,one=1.0,zero=0.0;
20: PetscScalar a,*x_arr,*y_arr,*z_arr,enorm;
21: Vec fin,fout,fout1,x,y;
22: PetscRandom rnd;
25: PetscInitialize(&argc,&args,(char*)0,help);
26: #if defined(PETSC_USE_COMPLEX)
27: SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP, "This example requires real numbers. Your current scalar type is complex");
28: #endif
29: MPI_Comm_size(PETSC_COMM_WORLD, &size);
30: MPI_Comm_rank(PETSC_COMM_WORLD, &rank);
32: PetscRandomCreate(PETSC_COMM_WORLD,&rnd);
33: D =4;
34: dim[0]=N0;dim[1]=N1;dim[2]=N2;dim[3]=N3/2+1;
37: alloc_local = fftw_mpi_local_size_transposed(D,dim,PETSC_COMM_WORLD,&local_n0,&local_0_start,&local_n1,&local_1_start);
39: printf("The value alloc_local is %ld from process %d\n",alloc_local,rank);
40: printf("The value local_n0 is %ld from process %d\n",local_n0,rank);
41: printf("The value local_0_start is %ld from process %d\n",local_0_start,rank);
42: printf("The value local_n1 is %ld from process %d\n",local_n1,rank);
43: printf("The value local_1_start is %ld from process %d\n",local_1_start,rank);
45: /* Allocate space for input and output arrays */
47: in1=(double*)fftw_malloc(sizeof(double)*alloc_local*2);
48: in2=(double*)fftw_malloc(sizeof(double)*alloc_local*2);
49: out=(fftw_complex*)fftw_malloc(sizeof(fftw_complex)*alloc_local);
52: N=2*N0*N1*N2*(N3/2+1);N_factor=N0*N1*N2*N3;
53: n=2*local_n0*N1*N2*(N3/2+1);n1=local_n1*N0*2*N1*N2;
55: /* printf("The value N is %d from process %d\n",N,rank); */
56: /* printf("The value n is %d from process %d\n",n,rank); */
57: /* printf("The value n1 is %d from process %d\n",n1,rank); */
58: /* Creating data vector and accompanying array with VeccreateMPIWithArray */
59: VecCreateMPIWithArray(PETSC_COMM_WORLD,1,n,N,(PetscScalar*)in1,&fin);
60: VecCreateMPIWithArray(PETSC_COMM_WORLD,1,n,N,(PetscScalar*)out,&fout);
61: VecCreateMPIWithArray(PETSC_COMM_WORLD,1,n,N,(PetscScalar*)in2,&fout1);
63: /* VecGetSize(fin,&size); */
64: /* printf("The size is %d\n",size); */
66: VecSet(fin,one);
67: /* VecAssemblyBegin(fin); */
68: /* VecAssemblyEnd(fin); */
69: /* VecView(fin,PETSC_VIEWER_STDOUT_WORLD); */
72: VecGetArray(fin,&x_arr);
73: VecGetArray(fout1,&z_arr);
74: VecGetArray(fout,&y_arr);
76: dim[3]=N3;
78: fplan=fftw_mpi_plan_dft_r2c(D,dim,(double*)x_arr,(fftw_complex*)y_arr,PETSC_COMM_WORLD,FFTW_ESTIMATE);
79: bplan=fftw_mpi_plan_dft_c2r(D,dim,(fftw_complex*)y_arr,(double*)z_arr,PETSC_COMM_WORLD,FFTW_ESTIMATE);
81: fftw_execute(fplan);
82: fftw_execute(bplan);
84: VecRestoreArray(fin,&x_arr);
85: VecRestoreArray(fout1,&z_arr);
86: VecRestoreArray(fout,&y_arr);
88: /* a = 1.0/(PetscReal)N_factor; */
89: /* VecScale(fout1,a); */
91: VecAssemblyBegin(fout1);
92: VecAssemblyEnd(fout1);
94: VecView(fout1,PETSC_VIEWER_STDOUT_WORLD);
96: fftw_destroy_plan(fplan);
97: fftw_destroy_plan(bplan);
98: fftw_free(in1); VecDestroy(&fin);
99: fftw_free(out); VecDestroy(&fout);
100: fftw_free(in2); VecDestroy(&fout1);
102: PetscFinalize();
103: return 0;
104: }