Actual source code: ex25.c

petsc-3.5.4 2015-05-23
Report Typos and Errors
  1: static const char help[] = "Call PetscInitialize multiple times.\n";
  2: /*
  3:    This example is based on the Brusselator tutorial of the same name, but tests multiple calls to PetscInitialize().
  4:    This is a bad "convergence study" because it only compares min and max values of the solution rather than comparing
  5:    norms of the errors.  For convergence studies, we recommend invoking PetscInitialize() only once and comparing norms
  6:    of errors (perhaps estimated using an accurate reference solution).

  8:    Time-dependent Brusselator reaction-diffusion PDE in 1d. Demonstrates IMEX methods and multiple solves.

 10:    u_t - alpha u_xx = A + u^2 v - (B+1) u
 11:    v_t - alpha v_xx = B u - u^2 v
 12:    0 < x < 1;
 13:    A = 1, B = 3, alpha = 1/10

 15:    Initial conditions:
 16:    u(x,0) = 1 + sin(2 pi x)
 17:    v(x,0) = 3

 19:    Boundary conditions:
 20:    u(0,t) = u(1,t) = 1
 21:    v(0,t) = v(1,t) = 3
 22: */

 24: #include <petscdm.h>
 25: #include <petscdmda.h>
 26: #include <petscts.h>

 28: typedef struct {
 29:   PetscScalar u,v;
 30: } Field;

 32: typedef struct _User *User;
 33: struct _User {
 34:   PetscReal A,B;                /* Reaction coefficients */
 35:   PetscReal alpha;              /* Diffusion coefficient */
 36:   PetscReal uleft,uright;       /* Dirichlet boundary conditions */
 37:   PetscReal vleft,vright;       /* Dirichlet boundary conditions */
 38: };

 40: static PetscErrorCode FormRHSFunction(TS,PetscReal,Vec,Vec,void*);
 41: static PetscErrorCode FormIFunction(TS,PetscReal,Vec,Vec,Vec,void*);
 42: static PetscErrorCode FormIJacobian(TS,PetscReal,Vec,Vec,PetscReal,Mat,Mat,void*);
 43: static PetscErrorCode FormInitialSolution(TS,Vec,void*);
 44: static int Brusselator(int,char**,PetscInt);

 48: int main(int argc,char **argv)
 49: {
 50:   PetscInt cycle;
 51:   MPI_Init(&argc,&argv);
 52:   for (cycle=0; cycle<4; cycle++) {
 53:     Brusselator(argc,argv,cycle);
 54:   }
 55:   MPI_Finalize();
 56:   return 0;
 57: }

 61: int Brusselator(int argc,char **argv,PetscInt cycle)
 62: {
 63:   TS                ts;         /* nonlinear solver */
 64:   Vec               X;          /* solution, residual vectors */
 65:   Mat               J;          /* Jacobian matrix */
 66:   PetscInt          steps,maxsteps,mx;
 67:   PetscErrorCode    ierr;
 68:   DM                da;
 69:   PetscReal         ftime,hx,dt,xmax,xmin;
 70:   struct _User      user;       /* user-defined work context */
 71:   TSConvergedReason reason;

 73:   PetscInitialize(&argc,&argv,(char*)0,help);

 75:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 76:      Create distributed array (DMDA) to manage parallel grid and vectors
 77:   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 78:   DMDACreate1d(PETSC_COMM_WORLD,DM_BOUNDARY_NONE,-11,2,2,NULL,&da);

 80:   /*  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 81:      Extract global vectors from DMDA;
 82:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 83:   DMCreateGlobalVector(da,&X);

 85:   /* Initialize user application context */
 86:   PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"Advection-reaction options","");
 87:   {
 88:     user.A      = 1;
 89:     user.B      = 3;
 90:     user.alpha  = 0.1;
 91:     user.uleft  = 1;
 92:     user.uright = 1;
 93:     user.vleft  = 3;
 94:     user.vright = 3;
 95:     PetscOptionsReal("-A","Reaction rate","",user.A,&user.A,NULL);
 96:     PetscOptionsReal("-B","Reaction rate","",user.B,&user.B,NULL);
 97:     PetscOptionsReal("-alpha","Diffusion coefficient","",user.alpha,&user.alpha,NULL);
 98:     PetscOptionsReal("-uleft","Dirichlet boundary condition","",user.uleft,&user.uleft,NULL);
 99:     PetscOptionsReal("-uright","Dirichlet boundary condition","",user.uright,&user.uright,NULL);
100:     PetscOptionsReal("-vleft","Dirichlet boundary condition","",user.vleft,&user.vleft,NULL);
101:     PetscOptionsReal("-vright","Dirichlet boundary condition","",user.vright,&user.vright,NULL);
102:   }
103:   PetscOptionsEnd();

105:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
106:      Create timestepping solver context
107:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
108:   TSCreate(PETSC_COMM_WORLD,&ts);
109:   TSSetDM(ts,da);
110:   TSSetType(ts,TSARKIMEX);
111:   TSSetRHSFunction(ts,NULL,FormRHSFunction,&user);
112:   TSSetIFunction(ts,NULL,FormIFunction,&user);
113:   DMSetMatType(da,MATAIJ);
114:   DMCreateMatrix(da,&J);
115:   TSSetIJacobian(ts,J,J,FormIJacobian,&user);

117:   ftime    = 1.0;
118:   maxsteps = 10000;
119:   TSSetDuration(ts,maxsteps,ftime);

121:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
122:      Set initial conditions
123:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
124:   FormInitialSolution(ts,X,&user);
125:   TSSetSolution(ts,X);
126:   VecGetSize(X,&mx);
127:   hx = 1.0/(PetscReal)(mx/2-1);
128:   dt = 0.4 * PetscSqr(hx) / user.alpha; /* Diffusive stability limit */
129:   dt *= PetscPowRealInt(0.2,cycle);     /* Shrink the time step in convergence study. */
130:   TSSetInitialTimeStep(ts,0.0,dt);
131:   TSSetTolerances(ts,1e-3*PetscPowRealInt(0.5,cycle),NULL,1e-3*PetscPowRealInt(0.5,cycle),NULL);

133:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
134:      Set runtime options
135:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
136:   TSSetFromOptions(ts);

138:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
139:      Solve nonlinear system
140:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
141:   TSSolve(ts,X);
142:   TSGetSolveTime(ts,&ftime);
143:   TSGetTimeStepNumber(ts,&steps);
144:   TSGetConvergedReason(ts,&reason);
145:   VecMin(X,NULL,&xmin);
146:   VecMax(X,NULL,&xmax);
147:   PetscPrintf(PETSC_COMM_WORLD,"%s at time %g after % 3D steps. Range [%6.4f,%6.4f]\n",TSConvergedReasons[reason],(double)ftime,steps,(double)xmin,(double)xmax);

149:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
150:      Free work space.
151:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
152:   MatDestroy(&J);
153:   VecDestroy(&X);
154:   TSDestroy(&ts);
155:   DMDestroy(&da);
156:   PetscFinalize();
157:   return 0;
158: }

162: static PetscErrorCode FormIFunction(TS ts,PetscReal t,Vec X,Vec Xdot,Vec F,void *ptr)
163: {
164:   User           user = (User)ptr;
165:   DM             da;
166:   DMDALocalInfo  info;
167:   PetscInt       i;
168:   Field          *x,*xdot,*f;
169:   PetscReal      hx;
170:   Vec            Xloc;

174:   TSGetDM(ts,&da);
175:   DMDAGetLocalInfo(da,&info);
176:   hx   = 1.0/(PetscReal)(info.mx-1);

178:   /*
179:      Scatter ghost points to local vector,using the 2-step process
180:         DMGlobalToLocalBegin(),DMGlobalToLocalEnd().
181:      By placing code between these two statements, computations can be
182:      done while messages are in transition.
183:   */
184:   DMGetLocalVector(da,&Xloc);
185:   DMGlobalToLocalBegin(da,X,INSERT_VALUES,Xloc);
186:   DMGlobalToLocalEnd(da,X,INSERT_VALUES,Xloc);

188:   /* Get pointers to vector data */
189:   DMDAVecGetArray(da,Xloc,&x);
190:   DMDAVecGetArray(da,Xdot,&xdot);
191:   DMDAVecGetArray(da,F,&f);

193:   /* Compute function over the locally owned part of the grid */
194:   for (i=info.xs; i<info.xs+info.xm; i++) {
195:     if (i == 0) {
196:       f[i].u = hx * (x[i].u - user->uleft);
197:       f[i].v = hx * (x[i].v - user->vleft);
198:     } else if (i == info.mx-1) {
199:       f[i].u = hx * (x[i].u - user->uright);
200:       f[i].v = hx * (x[i].v - user->vright);
201:     } else {
202:       f[i].u = hx * xdot[i].u - user->alpha * (x[i-1].u - 2.*x[i].u + x[i+1].u) / hx;
203:       f[i].v = hx * xdot[i].v - user->alpha * (x[i-1].v - 2.*x[i].v + x[i+1].v) / hx;
204:     }
205:   }

207:   /* Restore vectors */
208:   DMDAVecRestoreArray(da,Xloc,&x);
209:   DMDAVecRestoreArray(da,Xdot,&xdot);
210:   DMDAVecRestoreArray(da,F,&f);
211:   DMRestoreLocalVector(da,&Xloc);
212:   return(0);
213: }

217: static PetscErrorCode FormRHSFunction(TS ts,PetscReal t,Vec X,Vec F,void *ptr)
218: {
219:   User           user = (User)ptr;
220:   DM             da;
221:   DMDALocalInfo  info;
222:   PetscInt       i;
223:   PetscReal      hx;
224:   Field          *x,*f;

228:   TSGetDM(ts,&da);
229:   DMDAGetLocalInfo(da,&info);
230:   hx   = 1.0/(PetscReal)(info.mx-1);

232:   /* Get pointers to vector data */
233:   DMDAVecGetArray(da,X,&x);
234:   DMDAVecGetArray(da,F,&f);

236:   /* Compute function over the locally owned part of the grid */
237:   for (i=info.xs; i<info.xs+info.xm; i++) {
238:     PetscScalar u = x[i].u,v = x[i].v;
239:     f[i].u = hx*(user->A + u*u*v - (user->B+1)*u);
240:     f[i].v = hx*(user->B*u - u*u*v);
241:   }

243:   /* Restore vectors */
244:   DMDAVecRestoreArray(da,X,&x);
245:   DMDAVecRestoreArray(da,F,&f);
246:   return(0);
247: }

249: /* --------------------------------------------------------------------- */
250: /*
251:   IJacobian - Compute IJacobian = dF/dU + a dF/dUdot
252: */
255: PetscErrorCode FormIJacobian(TS ts,PetscReal t,Vec X,Vec Xdot,PetscReal a,Mat J,Mat Jpre,void *ptr)
256: {
257:   User           user = (User)ptr;
259:   DMDALocalInfo  info;
260:   PetscInt       i;
261:   PetscReal      hx;
262:   DM             da;
263:   Field          *x,*xdot;

266:   TSGetDM(ts,&da);
267:   DMDAGetLocalInfo(da,&info);
268:   hx   = 1.0/(PetscReal)(info.mx-1);

270:   /* Get pointers to vector data */
271:   DMDAVecGetArray(da,X,&x);
272:   DMDAVecGetArray(da,Xdot,&xdot);

274:   /* Compute function over the locally owned part of the grid */
275:   for (i=info.xs; i<info.xs+info.xm; i++) {
276:     if (i == 0 || i == info.mx-1) {
277:       const PetscInt    row        = i,col = i;
278:       const PetscScalar vals[2][2] = {{hx,0},{0,hx}};
279:       MatSetValuesBlocked(Jpre,1,&row,1,&col,&vals[0][0],INSERT_VALUES);
280:     } else {
281:       const PetscInt    row           = i,col[] = {i-1,i,i+1};
282:       const PetscScalar dxxL          = -user->alpha/hx,dxx0 = 2.*user->alpha/hx,dxxR = -user->alpha/hx;
283:       const PetscScalar vals[2][3][2] = {{{dxxL,0},{a *hx+dxx0,0},{dxxR,0}},
284:                                          {{0,dxxL},{0,a*hx+dxx0},{0,dxxR}}};
285:       MatSetValuesBlocked(Jpre,1,&row,3,col,&vals[0][0][0],INSERT_VALUES);
286:     }
287:   }

289:   /* Restore vectors */
290:   DMDAVecRestoreArray(da,X,&x);
291:   DMDAVecRestoreArray(da,Xdot,&xdot);

293:   MatAssemblyBegin(Jpre,MAT_FINAL_ASSEMBLY);
294:   MatAssemblyEnd(Jpre,MAT_FINAL_ASSEMBLY);
295:   if (J != Jpre) {
296:     MatAssemblyBegin(J,MAT_FINAL_ASSEMBLY);
297:     MatAssemblyEnd(J,MAT_FINAL_ASSEMBLY);
298:   }
299:   return(0);
300: }

304: PetscErrorCode FormInitialSolution(TS ts,Vec X,void *ctx)
305: {
306:   User           user = (User)ctx;
307:   DM             da;
308:   PetscInt       i;
309:   DMDALocalInfo  info;
310:   Field          *x;
311:   PetscReal      hx;

315:   TSGetDM(ts,&da);
316:   DMDAGetLocalInfo(da,&info);
317:   hx   = 1.0/(PetscReal)(info.mx-1);

319:   /* Get pointers to vector data */
320:   DMDAVecGetArray(da,X,&x);

322:   /* Compute function over the locally owned part of the grid */
323:   for (i=info.xs; i<info.xs+info.xm; i++) {
324:     PetscReal xi = i*hx;
325:     x[i].u = user->uleft*(1.-xi) + user->uright*xi + PetscSinReal(2.*PETSC_PI*xi);
326:     x[i].v = user->vleft*(1.-xi) + user->vright*xi;
327:   }
328:   DMDAVecRestoreArray(da,X,&x);
329:   return(0);
330: }