Actual source code: ts.c

petsc-3.4.5 2014-06-29
  2: #include <petsc-private/tsimpl.h>        /*I "petscts.h"  I*/
  3: #include <petscdmshell.h>
  4: #include <petscdmda.h>
  5: #include <petscviewer.h>
  6: #include <petscdraw.h>

  8: /* Logging support */
  9: PetscClassId  TS_CLASSID, DMTS_CLASSID;
 10: PetscLogEvent TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;

 12: const char *const TSExactFinalTimeOptions[] = {"STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",0};

 16: /*
 17:   TSSetTypeFromOptions - Sets the type of ts from user options.

 19:   Collective on TS

 21:   Input Parameter:
 22: . ts - The ts

 24:   Level: intermediate

 26: .keywords: TS, set, options, database, type
 27: .seealso: TSSetFromOptions(), TSSetType()
 28: */
 29: static PetscErrorCode TSSetTypeFromOptions(TS ts)
 30: {
 31:   PetscBool      opt;
 32:   const char     *defaultType;
 33:   char           typeName[256];

 37:   if (((PetscObject)ts)->type_name) defaultType = ((PetscObject)ts)->type_name;
 38:   else defaultType = TSEULER;

 40:   if (!TSRegisterAllCalled) {TSRegisterAll();}
 41:   PetscOptionsList("-ts_type", "TS method"," TSSetType", TSList, defaultType, typeName, 256, &opt);
 42:   if (opt) {
 43:     TSSetType(ts, typeName);
 44:   } else {
 45:     TSSetType(ts, defaultType);
 46:   }
 47:   return(0);
 48: }

 50: struct _n_TSMonitorDrawCtx {
 51:   PetscViewer   viewer;
 52:   PetscDrawAxis axis;
 53:   Vec           initialsolution;
 54:   PetscBool     showinitial;
 55:   PetscInt      howoften;  /* when > 0 uses step % howoften, when negative only final solution plotted */
 56:   PetscBool     showtimestepandtime;
 57:   int           color;
 58: };

 62: /*@
 63:    TSSetFromOptions - Sets various TS parameters from user options.

 65:    Collective on TS

 67:    Input Parameter:
 68: .  ts - the TS context obtained from TSCreate()

 70:    Options Database Keys:
 71: +  -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSGL, TSSSP
 72: .  -ts_max_steps maxsteps - maximum number of time-steps to take
 73: .  -ts_final_time time - maximum time to compute to
 74: .  -ts_dt dt - initial time step
 75: .  -ts_monitor - print information at each timestep
 76: .  -ts_monitor_lg_timestep - Monitor timestep size graphically
 77: .  -ts_monitor_lg_solution - Monitor solution graphically
 78: .  -ts_monitor_lg_error - Monitor error graphically
 79: .  -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
 80: .  -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
 81: .  -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
 82: .  -ts_monitor_draw_solution - Monitor solution graphically
 83: .  -ts_monitor_draw_solution_phase - Monitor solution graphically with phase diagram
 84: .  -ts_monitor_draw_error - Monitor error graphically
 85: .  -ts_monitor_solution_binary <filename> - Save each solution to a binary file
 86: -  -ts_monitor_solution_vtk <filename.vts> - Save each time step to a binary file, use filename-%%03D.vts

 88:    Developer Note: We should unify all the -ts_monitor options in the way that -xxx_view has been unified

 90:    Level: beginner

 92: .keywords: TS, timestep, set, options, database

 94: .seealso: TSGetType()
 95: @*/
 96: PetscErrorCode  TSSetFromOptions(TS ts)
 97: {
 98:   PetscBool              opt,flg;
 99:   PetscErrorCode         ierr;
100:   PetscViewer            monviewer;
101:   char                   monfilename[PETSC_MAX_PATH_LEN];
102:   SNES                   snes;
103:   TSAdapt                adapt;
104:   PetscReal              time_step;
105:   TSExactFinalTimeOption eftopt;
106:   char                   dir[16];

110:   PetscObjectOptionsBegin((PetscObject)ts);
111:   /* Handle TS type options */
112:   TSSetTypeFromOptions(ts);

114:   /* Handle generic TS options */
115:   PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetDuration",ts->max_steps,&ts->max_steps,NULL);
116:   PetscOptionsReal("-ts_final_time","Time to run to","TSSetDuration",ts->max_time,&ts->max_time,NULL);
117:   PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
118:   PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
119:   if (flg) {
120:     TSSetTimeStep(ts,time_step);
121:   }
122:   PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
123:   if (flg) {TSSetExactFinalTime(ts,eftopt);}
124:   PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
125:   PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
126:   PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
127:   PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
128:   PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);

130:   /* Monitor options */
131:   PetscOptionsString("-ts_monitor","Monitor timestep size","TSMonitorDefault","stdout",monfilename,PETSC_MAX_PATH_LEN,&flg);
132:   if (flg) {
133:     PetscViewerASCIIOpen(PetscObjectComm((PetscObject)ts),monfilename,&monviewer);
134:     TSMonitorSet(ts,TSMonitorDefault,monviewer,(PetscErrorCode (*)(void**))PetscViewerDestroy);
135:   }
136:   PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
137:   if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}

139:   PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
140:   if (opt) {
141:     TSMonitorLGCtx ctx;
142:     PetscInt       howoften = 1;

144:     PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
145:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
146:     TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
147:   }
148:   PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
149:   if (opt) {
150:     TSMonitorLGCtx ctx;
151:     PetscInt       howoften = 1;

153:     PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
154:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
155:     TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
156:   }
157:   PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
158:   if (opt) {
159:     TSMonitorLGCtx ctx;
160:     PetscInt       howoften = 1;

162:     PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
163:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
164:     TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
165:   }
166:   PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
167:   if (opt) {
168:     TSMonitorLGCtx ctx;
169:     PetscInt       howoften = 1;

171:     PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
172:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
173:     TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
174:   }
175:   PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
176:   if (opt) {
177:     TSMonitorLGCtx ctx;
178:     PetscInt       howoften = 1;

180:     PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
181:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
182:     TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
183:   }
184:   PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
185:   if (opt) {
186:     TSMonitorSPEigCtx ctx;
187:     PetscInt          howoften = 1;

189:     PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
190:     TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
191:     TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
192:   }
193:   opt  = PETSC_FALSE;
194:   PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
195:   if (opt) {
196:     TSMonitorDrawCtx ctx;
197:     PetscInt         howoften = 1;

199:     PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
200:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
201:     TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
202:   }
203:   opt  = PETSC_FALSE;
204:   PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
205:   if (opt) {
206:     TSMonitorDrawCtx ctx;
207:     PetscReal        bounds[4];
208:     PetscInt         n = 4;
209:     PetscDraw        draw;

211:     PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
212:     if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
213:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,1,&ctx);
214:     PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
215:     PetscDrawClear(draw);
216:     PetscDrawAxisCreate(draw,&ctx->axis);
217:     PetscDrawAxisSetLimits(ctx->axis,bounds[0],bounds[2],bounds[1],bounds[3]);
218:     PetscDrawAxisSetLabels(ctx->axis,"Phase Diagram","Variable 1","Variable 2");
219:     PetscDrawAxisDraw(ctx->axis);
220:     /* PetscDrawSetCoordinates(draw,bounds[0],bounds[1],bounds[2],bounds[3]); */
221:     TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
222:   }
223:   opt  = PETSC_FALSE;
224:   PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
225:   if (opt) {
226:     TSMonitorDrawCtx ctx;
227:     PetscInt         howoften = 1;

229:     PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
230:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
231:     TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
232:   }
233:   opt  = PETSC_FALSE;
234:   PetscOptionsString("-ts_monitor_solution_binary","Save each solution to a binary file","TSMonitorSolutionBinary",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
235:   if (flg) {
236:     PetscViewer ctx;
237:     if (monfilename[0]) {
238:       PetscViewerBinaryOpen(PetscObjectComm((PetscObject)ts),monfilename,FILE_MODE_WRITE,&ctx);
239:       TSMonitorSet(ts,TSMonitorSolutionBinary,ctx,(PetscErrorCode (*)(void**))PetscViewerDestroy);
240:     } else {
241:       ctx = PETSC_VIEWER_BINARY_(PetscObjectComm((PetscObject)ts));
242:       TSMonitorSet(ts,TSMonitorSolutionBinary,ctx,(PetscErrorCode (*)(void**))NULL);
243:     }
244:   }
245:   opt  = PETSC_FALSE;
246:   PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
247:   if (flg) {
248:     const char *ptr,*ptr2;
249:     char       *filetemplate;
250:     if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
251:     /* Do some cursory validation of the input. */
252:     PetscStrstr(monfilename,"%",(char**)&ptr);
253:     if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
254:     for (ptr++; ptr && *ptr; ptr++) {
255:       PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
256:       if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
257:       if (ptr2) break;
258:     }
259:     PetscStrallocpy(monfilename,&filetemplate);
260:     TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
261:   }

263:   PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,16,&flg);
264:   if (flg) {
265:     TSMonitorDMDARayCtx *rayctx;
266:     int                 ray = 0;
267:     DMDADirection       ddir;
268:     DM                  da;
269:     PetscMPIInt         rank;

271:     if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
272:     if (dir[0] == 'x') ddir = DMDA_X;
273:     else if (dir[0] == 'y') ddir = DMDA_Y;
274:     else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
275:     sscanf(dir+2,"%d",&ray);

277:     PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %D\n",dir[0],ray);
278:     PetscNew(TSMonitorDMDARayCtx,&rayctx);
279:     TSGetDM(ts,&da);
280:     DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
281:     MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
282:     if (!rank) {
283:       PetscViewerDrawOpen(PETSC_COMM_SELF,0,0,0,0,600,300,&rayctx->viewer);
284:     }
285:     TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
286:   }

288:   TSGetAdapt(ts,&adapt);
289:   TSAdaptSetFromOptions(adapt);

291:   TSGetSNES(ts,&snes);
292:   if (ts->problem_type == TS_LINEAR) {SNESSetType(snes,SNESKSPONLY);}

294:   /* Handle specific TS options */
295:   if (ts->ops->setfromoptions) {
296:     (*ts->ops->setfromoptions)(ts);
297:   }

299:   /* process any options handlers added with PetscObjectAddOptionsHandler() */
300:   PetscObjectProcessOptionsHandlers((PetscObject)ts);
301:   PetscOptionsEnd();
302:   return(0);
303: }

308: /*@
309:    TSComputeRHSJacobian - Computes the Jacobian matrix that has been
310:       set with TSSetRHSJacobian().

312:    Collective on TS and Vec

314:    Input Parameters:
315: +  ts - the TS context
316: .  t - current timestep
317: -  U - input vector

319:    Output Parameters:
320: +  A - Jacobian matrix
321: .  B - optional preconditioning matrix
322: -  flag - flag indicating matrix structure

324:    Notes:
325:    Most users should not need to explicitly call this routine, as it
326:    is used internally within the nonlinear solvers.

328:    See KSPSetOperators() for important information about setting the
329:    flag parameter.

331:    Level: developer

333: .keywords: SNES, compute, Jacobian, matrix

335: .seealso:  TSSetRHSJacobian(), KSPSetOperators()
336: @*/
337: PetscErrorCode  TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat *A,Mat *B,MatStructure *flg)
338: {
340:   PetscInt       Ustate;
341:   DM             dm;
342:   DMTS           tsdm;
343:   TSRHSJacobian  rhsjacobianfunc;
344:   void           *ctx;
345:   TSIJacobian    ijacobianfunc;

351:   TSGetDM(ts,&dm);
352:   DMGetDMTS(dm,&tsdm);
353:   DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
354:   DMTSGetIJacobian(dm,&ijacobianfunc,NULL);
355:   PetscObjectStateQuery((PetscObject)U,&Ustate);
356:   if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.X == U && ts->rhsjacobian.Xstate == Ustate))) {
357:     *flg = ts->rhsjacobian.mstructure;
358:     return(0);
359:   }

361:   if (!rhsjacobianfunc && !ijacobianfunc) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");

363:   if (ts->rhsjacobian.reuse) {
364:     MatShift(*A,-ts->rhsjacobian.shift);
365:     MatScale(*A,1./ts->rhsjacobian.scale);
366:     if (*A != *B) {
367:       MatShift(*B,-ts->rhsjacobian.shift);
368:       MatScale(*B,1./ts->rhsjacobian.scale);
369:     }
370:     ts->rhsjacobian.shift = 0;
371:     ts->rhsjacobian.scale = 1.;
372:   }

374:   if (rhsjacobianfunc) {
375:     PetscLogEventBegin(TS_JacobianEval,ts,U,*A,*B);
376:     *flg = DIFFERENT_NONZERO_PATTERN;
377:     PetscStackPush("TS user Jacobian function");
378:     (*rhsjacobianfunc)(ts,t,U,A,B,flg,ctx);
379:     PetscStackPop;
380:     PetscLogEventEnd(TS_JacobianEval,ts,U,*A,*B);
381:     /* make sure user returned a correct Jacobian and preconditioner */
384:   } else {
385:     MatZeroEntries(*A);
386:     if (*A != *B) {MatZeroEntries(*B);}
387:     *flg = SAME_NONZERO_PATTERN;
388:   }
389:   ts->rhsjacobian.time       = t;
390:   ts->rhsjacobian.X          = U;
391:   PetscObjectStateQuery((PetscObject)U,&ts->rhsjacobian.Xstate);
392:   ts->rhsjacobian.mstructure = *flg;
393:   return(0);
394: }

398: /*@
399:    TSComputeRHSFunction - Evaluates the right-hand-side function.

401:    Collective on TS and Vec

403:    Input Parameters:
404: +  ts - the TS context
405: .  t - current time
406: -  U - state vector

408:    Output Parameter:
409: .  y - right hand side

411:    Note:
412:    Most users should not need to explicitly call this routine, as it
413:    is used internally within the nonlinear solvers.

415:    Level: developer

417: .keywords: TS, compute

419: .seealso: TSSetRHSFunction(), TSComputeIFunction()
420: @*/
421: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
422: {
424:   TSRHSFunction  rhsfunction;
425:   TSIFunction    ifunction;
426:   void           *ctx;
427:   DM             dm;

433:   TSGetDM(ts,&dm);
434:   DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
435:   DMTSGetIFunction(dm,&ifunction,NULL);

437:   if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");

439:   PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
440:   if (rhsfunction) {
441:     PetscStackPush("TS user right-hand-side function");
442:     (*rhsfunction)(ts,t,U,y,ctx);
443:     PetscStackPop;
444:   } else {
445:     VecZeroEntries(y);
446:   }

448:   PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
449:   return(0);
450: }

454: /*@
455:    TSComputeSolutionFunction - Evaluates the solution function.

457:    Collective on TS and Vec

459:    Input Parameters:
460: +  ts - the TS context
461: -  t - current time

463:    Output Parameter:
464: .  U - the solution

466:    Note:
467:    Most users should not need to explicitly call this routine, as it
468:    is used internally within the nonlinear solvers.

470:    Level: developer

472: .keywords: TS, compute

474: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
475: @*/
476: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
477: {
478:   PetscErrorCode     ierr;
479:   TSSolutionFunction solutionfunction;
480:   void               *ctx;
481:   DM                 dm;

486:   TSGetDM(ts,&dm);
487:   DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);

489:   if (solutionfunction) {
490:     PetscStackPush("TS user solution function");
491:     (*solutionfunction)(ts,t,U,ctx);
492:     PetscStackPop;
493:   }
494:   return(0);
495: }
498: /*@
499:    TSComputeForcingFunction - Evaluates the forcing function.

501:    Collective on TS and Vec

503:    Input Parameters:
504: +  ts - the TS context
505: -  t - current time

507:    Output Parameter:
508: .  U - the function value

510:    Note:
511:    Most users should not need to explicitly call this routine, as it
512:    is used internally within the nonlinear solvers.

514:    Level: developer

516: .keywords: TS, compute

518: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
519: @*/
520: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
521: {
522:   PetscErrorCode     ierr, (*forcing)(TS,PetscReal,Vec,void*);
523:   void               *ctx;
524:   DM                 dm;

529:   TSGetDM(ts,&dm);
530:   DMTSGetForcingFunction(dm,&forcing,&ctx);

532:   if (forcing) {
533:     PetscStackPush("TS user forcing function");
534:     (*forcing)(ts,t,U,ctx);
535:     PetscStackPop;
536:   }
537:   return(0);
538: }

542: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
543: {
544:   Vec            F;

548:   *Frhs = NULL;
549:   TSGetIFunction(ts,&F,NULL,NULL);
550:   if (!ts->Frhs) {
551:     VecDuplicate(F,&ts->Frhs);
552:   }
553:   *Frhs = ts->Frhs;
554:   return(0);
555: }

559: static PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
560: {
561:   Mat            A,B;

565:   TSGetIJacobian(ts,&A,&B,NULL,NULL);
566:   if (Arhs) {
567:     if (!ts->Arhs) {
568:       MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
569:     }
570:     *Arhs = ts->Arhs;
571:   }
572:   if (Brhs) {
573:     if (!ts->Brhs) {
574:       MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
575:     }
576:     *Brhs = ts->Brhs;
577:   }
578:   return(0);
579: }

583: /*@
584:    TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0

586:    Collective on TS and Vec

588:    Input Parameters:
589: +  ts - the TS context
590: .  t - current time
591: .  U - state vector
592: .  Udot - time derivative of state vector
593: -  imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate

595:    Output Parameter:
596: .  Y - right hand side

598:    Note:
599:    Most users should not need to explicitly call this routine, as it
600:    is used internally within the nonlinear solvers.

602:    If the user did did not write their equations in implicit form, this
603:    function recasts them in implicit form.

605:    Level: developer

607: .keywords: TS, compute

609: .seealso: TSSetIFunction(), TSComputeRHSFunction()
610: @*/
611: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
612: {
614:   TSIFunction    ifunction;
615:   TSRHSFunction  rhsfunction;
616:   void           *ctx;
617:   DM             dm;


625:   TSGetDM(ts,&dm);
626:   DMTSGetIFunction(dm,&ifunction,&ctx);
627:   DMTSGetRHSFunction(dm,&rhsfunction,NULL);

629:   if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");

631:   PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
632:   if (ifunction) {
633:     PetscStackPush("TS user implicit function");
634:     (*ifunction)(ts,t,U,Udot,Y,ctx);
635:     PetscStackPop;
636:   }
637:   if (imex) {
638:     if (!ifunction) {
639:       VecCopy(Udot,Y);
640:     }
641:   } else if (rhsfunction) {
642:     if (ifunction) {
643:       Vec Frhs;
644:       TSGetRHSVec_Private(ts,&Frhs);
645:       TSComputeRHSFunction(ts,t,U,Frhs);
646:       VecAXPY(Y,-1,Frhs);
647:     } else {
648:       TSComputeRHSFunction(ts,t,U,Y);
649:       VecAYPX(Y,-1,Udot);
650:     }
651:   }
652:   PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
653:   return(0);
654: }

658: /*@
659:    TSComputeIJacobian - Evaluates the Jacobian of the DAE

661:    Collective on TS and Vec

663:    Input
664:       Input Parameters:
665: +  ts - the TS context
666: .  t - current timestep
667: .  U - state vector
668: .  Udot - time derivative of state vector
669: .  shift - shift to apply, see note below
670: -  imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate

672:    Output Parameters:
673: +  A - Jacobian matrix
674: .  B - optional preconditioning matrix
675: -  flag - flag indicating matrix structure

677:    Notes:
678:    If F(t,U,Udot)=0 is the DAE, the required Jacobian is

680:    dF/dU + shift*dF/dUdot

682:    Most users should not need to explicitly call this routine, as it
683:    is used internally within the nonlinear solvers.

685:    Level: developer

687: .keywords: TS, compute, Jacobian, matrix

689: .seealso:  TSSetIJacobian()
690: @*/
691: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat *A,Mat *B,MatStructure *flg,PetscBool imex)
692: {
694:   TSIJacobian    ijacobian;
695:   TSRHSJacobian  rhsjacobian;
696:   DM             dm;
697:   void           *ctx;


709:   TSGetDM(ts,&dm);
710:   DMTSGetIJacobian(dm,&ijacobian,&ctx);
711:   DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);

713:   if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");

715:   *flg = SAME_NONZERO_PATTERN;  /* In case we're solving a linear problem in which case it wouldn't get initialized below. */
716:   PetscLogEventBegin(TS_JacobianEval,ts,U,*A,*B);
717:   if (ijacobian) {
718:     *flg = DIFFERENT_NONZERO_PATTERN;
719:     PetscStackPush("TS user implicit Jacobian");
720:     (*ijacobian)(ts,t,U,Udot,shift,A,B,flg,ctx);
721:     PetscStackPop;
722:     /* make sure user returned a correct Jacobian and preconditioner */
725:   }
726:   if (imex) {
727:     if (!ijacobian) {  /* system was written as Udot = G(t,U) */
728:       MatZeroEntries(*A);
729:       MatShift(*A,shift);
730:       if (*A != *B) {
731:         MatZeroEntries(*B);
732:         MatShift(*B,shift);
733:       }
734:       *flg = SAME_PRECONDITIONER;
735:     }
736:   } else {
737:     Mat Arhs = NULL,Brhs = NULL;
738:     MatStructure flg2;
739:     if (rhsjacobian) {
740:       TSGetRHSMats_Private(ts,&Arhs,&Brhs);
741:       TSComputeRHSJacobian(ts,t,U,&Arhs,&Brhs,&flg2);
742:     }
743:     if (Arhs == *A) {           /* No IJacobian, so we only have the RHS matrix */
744:       ts->rhsjacobian.scale = -1;
745:       ts->rhsjacobian.shift = shift;
746:       MatScale(*A,-1);
747:       MatShift(*A,shift);
748:       if (*A != *B) {
749:         MatScale(*B,-1);
750:         MatShift(*B,shift);
751:       }
752:     } else if (Arhs) {          /* Both IJacobian and RHSJacobian */
753:       MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
754:       if (!ijacobian) {         /* No IJacobian provided, but we have a separate RHS matrix */
755:         MatZeroEntries(*A);
756:         MatShift(*A,shift);
757:         if (*A != *B) {
758:           MatZeroEntries(*B);
759:           MatShift(*B,shift);
760:         }
761:       }
762:       MatAXPY(*A,-1,Arhs,axpy);
763:       if (*A != *B) {
764:         MatAXPY(*B,-1,Brhs,axpy);
765:       }
766:       *flg = PetscMin(*flg,flg2);
767:     }
768:   }

770:   PetscLogEventEnd(TS_JacobianEval,ts,U,*A,*B);
771:   return(0);
772: }

776: /*@C
777:     TSSetRHSFunction - Sets the routine for evaluating the function,
778:     where U_t = G(t,u).

780:     Logically Collective on TS

782:     Input Parameters:
783: +   ts - the TS context obtained from TSCreate()
784: .   r - vector to put the computed right hand side (or NULL to have it created)
785: .   f - routine for evaluating the right-hand-side function
786: -   ctx - [optional] user-defined context for private data for the
787:           function evaluation routine (may be NULL)

789:     Calling sequence of func:
790: $     func (TS ts,PetscReal t,Vec u,Vec F,void *ctx);

792: +   t - current timestep
793: .   u - input vector
794: .   F - function vector
795: -   ctx - [optional] user-defined function context

797:     Level: beginner

799: .keywords: TS, timestep, set, right-hand-side, function

801: .seealso: TSSetRHSJacobian(), TSSetIJacobian()
802: @*/
803: PetscErrorCode  TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
804: {
806:   SNES           snes;
807:   Vec            ralloc = NULL;
808:   DM             dm;


814:   TSGetDM(ts,&dm);
815:   DMTSSetRHSFunction(dm,f,ctx);
816:   TSGetSNES(ts,&snes);
817:   if (!r && !ts->dm && ts->vec_sol) {
818:     VecDuplicate(ts->vec_sol,&ralloc);
819:     r    = ralloc;
820:   }
821:   SNESSetFunction(snes,r,SNESTSFormFunction,ts);
822:   VecDestroy(&ralloc);
823:   return(0);
824: }

828: /*@C
829:     TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE

831:     Logically Collective on TS

833:     Input Parameters:
834: +   ts - the TS context obtained from TSCreate()
835: .   f - routine for evaluating the solution
836: -   ctx - [optional] user-defined context for private data for the
837:           function evaluation routine (may be NULL)

839:     Calling sequence of func:
840: $     func (TS ts,PetscReal t,Vec u,void *ctx);

842: +   t - current timestep
843: .   u - output vector
844: -   ctx - [optional] user-defined function context

846:     Notes:
847:     This routine is used for testing accuracy of time integration schemes when you already know the solution.
848:     If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
849:     create closed-form solutions with non-physical forcing terms.

851:     For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.

853:     Level: beginner

855: .keywords: TS, timestep, set, right-hand-side, function

857: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction()
858: @*/
859: PetscErrorCode  TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
860: {
862:   DM             dm;

866:   TSGetDM(ts,&dm);
867:   DMTSSetSolutionFunction(dm,f,ctx);
868:   return(0);
869: }

873: /*@C
874:     TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE

876:     Logically Collective on TS

878:     Input Parameters:
879: +   ts - the TS context obtained from TSCreate()
880: .   f - routine for evaluating the forcing function
881: -   ctx - [optional] user-defined context for private data for the
882:           function evaluation routine (may be NULL)

884:     Calling sequence of func:
885: $     func (TS ts,PetscReal t,Vec u,void *ctx);

887: +   t - current timestep
888: .   u - output vector
889: -   ctx - [optional] user-defined function context

891:     Notes:
892:     This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
893:     create closed-form solutions with a non-physical forcing term.

895:     For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.

897:     Level: beginner

899: .keywords: TS, timestep, set, right-hand-side, function

901: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
902: @*/
903: PetscErrorCode  TSSetForcingFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
904: {
906:   DM             dm;

910:   TSGetDM(ts,&dm);
911:   DMTSSetForcingFunction(dm,f,ctx);
912:   return(0);
913: }

917: /*@C
918:    TSSetRHSJacobian - Sets the function to compute the Jacobian of F,
919:    where U_t = G(U,t), as well as the location to store the matrix.

921:    Logically Collective on TS

923:    Input Parameters:
924: +  ts  - the TS context obtained from TSCreate()
925: .  Amat - (approximate) Jacobian matrix
926: .  Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
927: .  f   - the Jacobian evaluation routine
928: -  ctx - [optional] user-defined context for private data for the
929:          Jacobian evaluation routine (may be NULL)

931:    Calling sequence of func:
932: $     func (TS ts,PetscReal t,Vec u,Mat *A,Mat *B,MatStructure *flag,void *ctx);

934: +  t - current timestep
935: .  u - input vector
936: .  Amat - (approximate) Jacobian matrix
937: .  Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
938: .  flag - flag indicating information about the preconditioner matrix
939:           structure (same as flag in KSPSetOperators())
940: -  ctx - [optional] user-defined context for matrix evaluation routine

942:    Notes:
943:    See KSPSetOperators() for important information about setting the flag
944:    output parameter in the routine func().  Be sure to read this information!

946:    The routine func() takes Mat * as the matrix arguments rather than Mat.
947:    This allows the matrix evaluation routine to replace A and/or B with a
948:    completely new matrix structure (not just different matrix elements)
949:    when appropriate, for instance, if the nonzero structure is changing
950:    throughout the global iterations.

952:    Level: beginner

954: .keywords: TS, timestep, set, right-hand-side, Jacobian

956: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction(), TSRHSJacobianSetReuse()

958: @*/
959: PetscErrorCode  TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
960: {
962:   SNES           snes;
963:   DM             dm;
964:   TSIJacobian    ijacobian;


973:   TSGetDM(ts,&dm);
974:   DMTSSetRHSJacobian(dm,f,ctx);
975:   if (f == TSComputeRHSJacobianConstant) {
976:     /* Handle this case automatically for the user; otherwise user should call themselves. */
977:     TSRHSJacobianSetReuse(ts,PETSC_TRUE);
978:   }
979:   DMTSGetIJacobian(dm,&ijacobian,NULL);
980:   TSGetSNES(ts,&snes);
981:   if (!ijacobian) {
982:     SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
983:   }
984:   if (Amat) {
985:     PetscObjectReference((PetscObject)Amat);
986:     MatDestroy(&ts->Arhs);

988:     ts->Arhs = Amat;
989:   }
990:   if (Pmat) {
991:     PetscObjectReference((PetscObject)Pmat);
992:     MatDestroy(&ts->Brhs);

994:     ts->Brhs = Pmat;
995:   }
996:   return(0);
997: }


1002: /*@C
1003:    TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.

1005:    Logically Collective on TS

1007:    Input Parameters:
1008: +  ts  - the TS context obtained from TSCreate()
1009: .  r   - vector to hold the residual (or NULL to have it created internally)
1010: .  f   - the function evaluation routine
1011: -  ctx - user-defined context for private data for the function evaluation routine (may be NULL)

1013:    Calling sequence of f:
1014: $  f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);

1016: +  t   - time at step/stage being solved
1017: .  u   - state vector
1018: .  u_t - time derivative of state vector
1019: .  F   - function vector
1020: -  ctx - [optional] user-defined context for matrix evaluation routine

1022:    Important:
1023:    The user MUST call either this routine, TSSetRHSFunction().  This routine must be used when not solving an ODE, for example a DAE.

1025:    Level: beginner

1027: .keywords: TS, timestep, set, DAE, Jacobian

1029: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1030: @*/
1031: PetscErrorCode  TSSetIFunction(TS ts,Vec res,TSIFunction f,void *ctx)
1032: {
1034:   SNES           snes;
1035:   Vec            resalloc = NULL;
1036:   DM             dm;


1042:   TSGetDM(ts,&dm);
1043:   DMTSSetIFunction(dm,f,ctx);

1045:   TSGetSNES(ts,&snes);
1046:   if (!res && !ts->dm && ts->vec_sol) {
1047:     VecDuplicate(ts->vec_sol,&resalloc);
1048:     res  = resalloc;
1049:   }
1050:   SNESSetFunction(snes,res,SNESTSFormFunction,ts);
1051:   VecDestroy(&resalloc);
1052:   return(0);
1053: }

1057: /*@C
1058:    TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.

1060:    Not Collective

1062:    Input Parameter:
1063: .  ts - the TS context

1065:    Output Parameter:
1066: +  r - vector to hold residual (or NULL)
1067: .  func - the function to compute residual (or NULL)
1068: -  ctx - the function context (or NULL)

1070:    Level: advanced

1072: .keywords: TS, nonlinear, get, function

1074: .seealso: TSSetIFunction(), SNESGetFunction()
1075: @*/
1076: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1077: {
1079:   SNES           snes;
1080:   DM             dm;

1084:   TSGetSNES(ts,&snes);
1085:   SNESGetFunction(snes,r,NULL,NULL);
1086:   TSGetDM(ts,&dm);
1087:   DMTSGetIFunction(dm,func,ctx);
1088:   return(0);
1089: }

1093: /*@C
1094:    TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.

1096:    Not Collective

1098:    Input Parameter:
1099: .  ts - the TS context

1101:    Output Parameter:
1102: +  r - vector to hold computed right hand side (or NULL)
1103: .  func - the function to compute right hand side (or NULL)
1104: -  ctx - the function context (or NULL)

1106:    Level: advanced

1108: .keywords: TS, nonlinear, get, function

1110: .seealso: TSSetRhsfunction(), SNESGetFunction()
1111: @*/
1112: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1113: {
1115:   SNES           snes;
1116:   DM             dm;

1120:   TSGetSNES(ts,&snes);
1121:   SNESGetFunction(snes,r,NULL,NULL);
1122:   TSGetDM(ts,&dm);
1123:   DMTSGetRHSFunction(dm,func,ctx);
1124:   return(0);
1125: }

1129: /*@C
1130:    TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1131:         you provided with TSSetIFunction().

1133:    Logically Collective on TS

1135:    Input Parameters:
1136: +  ts  - the TS context obtained from TSCreate()
1137: .  Amat - (approximate) Jacobian matrix
1138: .  Pmat - matrix used to compute preconditioner (usually the same as Amat)
1139: .  f   - the Jacobian evaluation routine
1140: -  ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)

1142:    Calling sequence of f:
1143: $  f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat *Amat,Mat *Pmat,MatStructure *flag,void *ctx);

1145: +  t    - time at step/stage being solved
1146: .  U    - state vector
1147: .  U_t  - time derivative of state vector
1148: .  a    - shift
1149: .  Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1150: .  Pmat - matrix used for constructing preconditioner, usually the same as Amat
1151: .  flag - flag indicating information about the preconditioner matrix
1152:           structure (same as flag in KSPSetOperators())
1153: -  ctx  - [optional] user-defined context for matrix evaluation routine

1155:    Notes:
1156:    The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.

1158:    The matrix dF/dU + a*dF/dU_t you provide turns out to be
1159:    the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1160:    The time integrator internally approximates U_t by W+a*U where the positive "shift"
1161:    a and vector W depend on the integration method, step size, and past states. For example with
1162:    the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1163:    W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt

1165:    Level: beginner

1167: .keywords: TS, timestep, DAE, Jacobian

1169: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault()

1171: @*/
1172: PetscErrorCode  TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1173: {
1175:   SNES           snes;
1176:   DM             dm;


1185:   TSGetDM(ts,&dm);
1186:   DMTSSetIJacobian(dm,f,ctx);

1188:   TSGetSNES(ts,&snes);
1189:   SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1190:   return(0);
1191: }

1195: /*@
1196:    TSRHSJacobianSetReuse - restore RHS Jacobian before re-evaluating.  Without this flag, TS will change the sign and
1197:    shift the RHS Jacobian for a finite-time-step implicit solve, in which case the user function will need to recompute
1198:    the entire Jacobian.  The reuse flag must be set if the evaluation function will assume that the matrix entries have
1199:    not been changed by the TS.

1201:    Logically Collective

1203:    Input Arguments:
1204: +  ts - TS context obtained from TSCreate()
1205: -  reuse - PETSC_TRUE if the RHS Jacobian

1207:    Level: intermediate

1209: .seealso: TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
1210: @*/
1211: PetscErrorCode TSRHSJacobianSetReuse(TS ts,PetscBool reuse)
1212: {
1214:   ts->rhsjacobian.reuse = reuse;
1215:   return(0);
1216: }

1220: /*@C
1221:   TSLoad - Loads a KSP that has been stored in binary  with KSPView().

1223:   Collective on PetscViewer

1225:   Input Parameters:
1226: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1227:            some related function before a call to TSLoad().
1228: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()

1230:    Level: intermediate

1232:   Notes:
1233:    The type is determined by the data in the file, any type set into the TS before this call is ignored.

1235:   Notes for advanced users:
1236:   Most users should not need to know the details of the binary storage
1237:   format, since TSLoad() and TSView() completely hide these details.
1238:   But for anyone who's interested, the standard binary matrix storage
1239:   format is
1240: .vb
1241:      has not yet been determined
1242: .ve

1244: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1245: @*/
1246: PetscErrorCode  TSLoad(TS ts, PetscViewer viewer)
1247: {
1249:   PetscBool      isbinary;
1250:   PetscInt       classid;
1251:   char           type[256];
1252:   DMTS           sdm;
1253:   DM             dm;

1258:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1259:   if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");

1261:   PetscViewerBinaryRead(viewer,&classid,1,PETSC_INT);
1262:   if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1263:   PetscViewerBinaryRead(viewer,type,256,PETSC_CHAR);
1264:   TSSetType(ts, type);
1265:   if (ts->ops->load) {
1266:     (*ts->ops->load)(ts,viewer);
1267:   }
1268:   DMCreate(PetscObjectComm((PetscObject)ts),&dm);
1269:   DMLoad(dm,viewer);
1270:   TSSetDM(ts,dm);
1271:   DMCreateGlobalVector(ts->dm,&ts->vec_sol);
1272:   VecLoad(ts->vec_sol,viewer);
1273:   DMGetDMTS(ts->dm,&sdm);
1274:   DMTSLoad(sdm,viewer);
1275:   return(0);
1276: }

1278: #include <petscdraw.h>
1279: #if defined(PETSC_HAVE_AMS)
1280: #include <petscviewerams.h>
1281: #endif
1284: /*@C
1285:     TSView - Prints the TS data structure.

1287:     Collective on TS

1289:     Input Parameters:
1290: +   ts - the TS context obtained from TSCreate()
1291: -   viewer - visualization context

1293:     Options Database Key:
1294: .   -ts_view - calls TSView() at end of TSStep()

1296:     Notes:
1297:     The available visualization contexts include
1298: +     PETSC_VIEWER_STDOUT_SELF - standard output (default)
1299: -     PETSC_VIEWER_STDOUT_WORLD - synchronized standard
1300:          output where only the first processor opens
1301:          the file.  All other processors send their
1302:          data to the first processor to print.

1304:     The user can open an alternative visualization context with
1305:     PetscViewerASCIIOpen() - output to a specified file.

1307:     Level: beginner

1309: .keywords: TS, timestep, view

1311: .seealso: PetscViewerASCIIOpen()
1312: @*/
1313: PetscErrorCode  TSView(TS ts,PetscViewer viewer)
1314: {
1316:   TSType         type;
1317:   PetscBool      iascii,isstring,isundials,isbinary,isdraw;
1318:   DMTS           sdm;
1319: #if defined(PETSC_HAVE_AMS)
1320:   PetscBool      isams;
1321: #endif

1325:   if (!viewer) {
1326:     PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
1327:   }

1331:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1332:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
1333:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1334:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
1335: #if defined(PETSC_HAVE_AMS)
1336:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERAMS,&isams);
1337: #endif
1338:   if (iascii) {
1339:     PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer,"TS Object");
1340:     PetscViewerASCIIPrintf(viewer,"  maximum steps=%D\n",ts->max_steps);
1341:     PetscViewerASCIIPrintf(viewer,"  maximum time=%G\n",ts->max_time);
1342:     if (ts->problem_type == TS_NONLINEAR) {
1343:       PetscViewerASCIIPrintf(viewer,"  total number of nonlinear solver iterations=%D\n",ts->snes_its);
1344:       PetscViewerASCIIPrintf(viewer,"  total number of nonlinear solve failures=%D\n",ts->num_snes_failures);
1345:     }
1346:     PetscViewerASCIIPrintf(viewer,"  total number of linear solver iterations=%D\n",ts->ksp_its);
1347:     PetscViewerASCIIPrintf(viewer,"  total number of rejected steps=%D\n",ts->reject);
1348:     DMGetDMTS(ts->dm,&sdm);
1349:     DMTSView(sdm,viewer);
1350:     if (ts->ops->view) {
1351:       PetscViewerASCIIPushTab(viewer);
1352:       (*ts->ops->view)(ts,viewer);
1353:       PetscViewerASCIIPopTab(viewer);
1354:     }
1355:   } else if (isstring) {
1356:     TSGetType(ts,&type);
1357:     PetscViewerStringSPrintf(viewer," %-7.7s",type);
1358:   } else if (isbinary) {
1359:     PetscInt    classid = TS_FILE_CLASSID;
1360:     MPI_Comm    comm;
1361:     PetscMPIInt rank;
1362:     char        type[256];

1364:     PetscObjectGetComm((PetscObject)ts,&comm);
1365:     MPI_Comm_rank(comm,&rank);
1366:     if (!rank) {
1367:       PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
1368:       PetscStrncpy(type,((PetscObject)ts)->type_name,256);
1369:       PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR,PETSC_FALSE);
1370:     }
1371:     if (ts->ops->view) {
1372:       (*ts->ops->view)(ts,viewer);
1373:     }
1374:     DMView(ts->dm,viewer);
1375:     VecView(ts->vec_sol,viewer);
1376:     DMGetDMTS(ts->dm,&sdm);
1377:     DMTSView(sdm,viewer);
1378:   } else if (isdraw) {
1379:     PetscDraw draw;
1380:     char      str[36];
1381:     PetscReal x,y,bottom,h;

1383:     PetscViewerDrawGetDraw(viewer,0,&draw);
1384:     PetscDrawGetCurrentPoint(draw,&x,&y);
1385:     PetscStrcpy(str,"TS: ");
1386:     PetscStrcat(str,((PetscObject)ts)->type_name);
1387:     PetscDrawBoxedString(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
1388:     bottom = y - h;
1389:     PetscDrawPushCurrentPoint(draw,x,bottom);
1390:     if (ts->ops->view) {
1391:       (*ts->ops->view)(ts,viewer);
1392:     }
1393:     PetscDrawPopCurrentPoint(draw);
1394: #if defined(PETSC_HAVE_AMS)
1395:   } else if (isams) {
1396:     if (((PetscObject)ts)->amsmem == -1) {
1397:       PetscObjectViewAMS((PetscObject)ts,viewer);
1398:       PetscStackCallAMS(AMS_Memory_take_access,(((PetscObject)ts)->amsmem));
1399:       PetscStackCallAMS(AMS_Memory_add_field,(((PetscObject)ts)->amsmem,"time step",&ts->steps,1,AMS_INT,AMS_READ,AMS_COMMON,AMS_REDUCT_UNDEF));
1400:       PetscStackCallAMS(AMS_Memory_add_field,(((PetscObject)ts)->amsmem,"time",&ts->ptime,1,AMS_DOUBLE,AMS_READ,AMS_COMMON,AMS_REDUCT_UNDEF));
1401:       PetscStackCallAMS(AMS_Memory_grant_access,(((PetscObject)ts)->amsmem));
1402:     }
1403:     if (ts->ops->view) {
1404:       (*ts->ops->view)(ts,viewer);
1405:     }
1406: #endif
1407:   }

1409:   PetscViewerASCIIPushTab(viewer);
1410:   PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
1411:   PetscViewerASCIIPopTab(viewer);
1412:   return(0);
1413: }


1418: /*@
1419:    TSSetApplicationContext - Sets an optional user-defined context for
1420:    the timesteppers.

1422:    Logically Collective on TS

1424:    Input Parameters:
1425: +  ts - the TS context obtained from TSCreate()
1426: -  usrP - optional user context

1428:    Level: intermediate

1430: .keywords: TS, timestep, set, application, context

1432: .seealso: TSGetApplicationContext()
1433: @*/
1434: PetscErrorCode  TSSetApplicationContext(TS ts,void *usrP)
1435: {
1438:   ts->user = usrP;
1439:   return(0);
1440: }

1444: /*@
1445:     TSGetApplicationContext - Gets the user-defined context for the
1446:     timestepper.

1448:     Not Collective

1450:     Input Parameter:
1451: .   ts - the TS context obtained from TSCreate()

1453:     Output Parameter:
1454: .   usrP - user context

1456:     Level: intermediate

1458: .keywords: TS, timestep, get, application, context

1460: .seealso: TSSetApplicationContext()
1461: @*/
1462: PetscErrorCode  TSGetApplicationContext(TS ts,void *usrP)
1463: {
1466:   *(void**)usrP = ts->user;
1467:   return(0);
1468: }

1472: /*@
1473:    TSGetTimeStepNumber - Gets the number of time steps completed.

1475:    Not Collective

1477:    Input Parameter:
1478: .  ts - the TS context obtained from TSCreate()

1480:    Output Parameter:
1481: .  iter - number of steps completed so far

1483:    Level: intermediate

1485: .keywords: TS, timestep, get, iteration, number
1486: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStep()
1487: @*/
1488: PetscErrorCode  TSGetTimeStepNumber(TS ts,PetscInt *iter)
1489: {
1493:   *iter = ts->steps;
1494:   return(0);
1495: }

1499: /*@
1500:    TSSetInitialTimeStep - Sets the initial timestep to be used,
1501:    as well as the initial time.

1503:    Logically Collective on TS

1505:    Input Parameters:
1506: +  ts - the TS context obtained from TSCreate()
1507: .  initial_time - the initial time
1508: -  time_step - the size of the timestep

1510:    Level: intermediate

1512: .seealso: TSSetTimeStep(), TSGetTimeStep()

1514: .keywords: TS, set, initial, timestep
1515: @*/
1516: PetscErrorCode  TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
1517: {

1522:   TSSetTimeStep(ts,time_step);
1523:   TSSetTime(ts,initial_time);
1524:   return(0);
1525: }

1529: /*@
1530:    TSSetTimeStep - Allows one to reset the timestep at any time,
1531:    useful for simple pseudo-timestepping codes.

1533:    Logically Collective on TS

1535:    Input Parameters:
1536: +  ts - the TS context obtained from TSCreate()
1537: -  time_step - the size of the timestep

1539:    Level: intermediate

1541: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()

1543: .keywords: TS, set, timestep
1544: @*/
1545: PetscErrorCode  TSSetTimeStep(TS ts,PetscReal time_step)
1546: {
1550:   ts->time_step      = time_step;
1551:   ts->time_step_orig = time_step;
1552:   return(0);
1553: }

1557: /*@
1558:    TSSetExactFinalTime - Determines whether to adapt the final time step to
1559:      match the exact final time, interpolate solution to the exact final time,
1560:      or just return at the final time TS computed.

1562:   Logically Collective on TS

1564:    Input Parameter:
1565: +   ts - the time-step context
1566: -   eftopt - exact final time option

1568:    Level: beginner

1570: .seealso: TSExactFinalTimeOption
1571: @*/
1572: PetscErrorCode  TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
1573: {
1577:   ts->exact_final_time = eftopt;
1578:   return(0);
1579: }

1583: /*@
1584:    TSGetTimeStep - Gets the current timestep size.

1586:    Not Collective

1588:    Input Parameter:
1589: .  ts - the TS context obtained from TSCreate()

1591:    Output Parameter:
1592: .  dt - the current timestep size

1594:    Level: intermediate

1596: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()

1598: .keywords: TS, get, timestep
1599: @*/
1600: PetscErrorCode  TSGetTimeStep(TS ts,PetscReal *dt)
1601: {
1605:   *dt = ts->time_step;
1606:   return(0);
1607: }

1611: /*@
1612:    TSGetSolution - Returns the solution at the present timestep. It
1613:    is valid to call this routine inside the function that you are evaluating
1614:    in order to move to the new timestep. This vector not changed until
1615:    the solution at the next timestep has been calculated.

1617:    Not Collective, but Vec returned is parallel if TS is parallel

1619:    Input Parameter:
1620: .  ts - the TS context obtained from TSCreate()

1622:    Output Parameter:
1623: .  v - the vector containing the solution

1625:    Level: intermediate

1627: .seealso: TSGetTimeStep()

1629: .keywords: TS, timestep, get, solution
1630: @*/
1631: PetscErrorCode  TSGetSolution(TS ts,Vec *v)
1632: {
1636:   *v = ts->vec_sol;
1637:   return(0);
1638: }

1640: /* ----- Routines to initialize and destroy a timestepper ---- */
1643: /*@
1644:   TSSetProblemType - Sets the type of problem to be solved.

1646:   Not collective

1648:   Input Parameters:
1649: + ts   - The TS
1650: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
1651: .vb
1652:          U_t - A U = 0      (linear)
1653:          U_t - A(t) U = 0   (linear)
1654:          F(t,U,U_t) = 0     (nonlinear)
1655: .ve

1657:    Level: beginner

1659: .keywords: TS, problem type
1660: .seealso: TSSetUp(), TSProblemType, TS
1661: @*/
1662: PetscErrorCode  TSSetProblemType(TS ts, TSProblemType type)
1663: {

1668:   ts->problem_type = type;
1669:   if (type == TS_LINEAR) {
1670:     SNES snes;
1671:     TSGetSNES(ts,&snes);
1672:     SNESSetType(snes,SNESKSPONLY);
1673:   }
1674:   return(0);
1675: }

1679: /*@C
1680:   TSGetProblemType - Gets the type of problem to be solved.

1682:   Not collective

1684:   Input Parameter:
1685: . ts   - The TS

1687:   Output Parameter:
1688: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
1689: .vb
1690:          M U_t = A U
1691:          M(t) U_t = A(t) U
1692:          F(t,U,U_t)
1693: .ve

1695:    Level: beginner

1697: .keywords: TS, problem type
1698: .seealso: TSSetUp(), TSProblemType, TS
1699: @*/
1700: PetscErrorCode  TSGetProblemType(TS ts, TSProblemType *type)
1701: {
1705:   *type = ts->problem_type;
1706:   return(0);
1707: }

1711: /*@
1712:    TSSetUp - Sets up the internal data structures for the later use
1713:    of a timestepper.

1715:    Collective on TS

1717:    Input Parameter:
1718: .  ts - the TS context obtained from TSCreate()

1720:    Notes:
1721:    For basic use of the TS solvers the user need not explicitly call
1722:    TSSetUp(), since these actions will automatically occur during
1723:    the call to TSStep().  However, if one wishes to control this
1724:    phase separately, TSSetUp() should be called after TSCreate()
1725:    and optional routines of the form TSSetXXX(), but before TSStep().

1727:    Level: advanced

1729: .keywords: TS, timestep, setup

1731: .seealso: TSCreate(), TSStep(), TSDestroy()
1732: @*/
1733: PetscErrorCode  TSSetUp(TS ts)
1734: {
1736:   DM             dm;
1737:   PetscErrorCode (*func)(SNES,Vec,Vec,void*);
1738:   PetscErrorCode (*jac)(SNES,Vec,Mat*,Mat*,MatStructure*,void*);
1739:   TSIJacobian    ijac;
1740:   TSRHSJacobian  rhsjac;

1744:   if (ts->setupcalled) return(0);

1746:   if (!((PetscObject)ts)->type_name) {
1747:     TSSetType(ts,TSEULER);
1748:   }

1750:   if (!ts->vec_sol) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");

1752:   TSGetAdapt(ts,&ts->adapt);

1754:   if (ts->rhsjacobian.reuse) {
1755:     Mat Amat,Pmat;
1756:     SNES snes;
1757:     TSGetSNES(ts,&snes);
1758:     SNESGetJacobian(snes,&Amat,&Pmat,NULL,NULL);
1759:     /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
1760:      * have displaced the RHS matrix */
1761:     if (Amat == ts->Arhs) {
1762:       MatDuplicate(ts->Arhs,MAT_DO_NOT_COPY_VALUES,&Amat);
1763:       SNESSetJacobian(snes,Amat,NULL,NULL,NULL);
1764:       MatDestroy(&Amat);
1765:     }
1766:     if (Pmat == ts->Brhs) {
1767:       MatDuplicate(ts->Brhs,MAT_DO_NOT_COPY_VALUES,&Pmat);
1768:       SNESSetJacobian(snes,NULL,Pmat,NULL,NULL);
1769:       MatDestroy(&Pmat);
1770:     }
1771:   }

1773:   if (ts->ops->setup) {
1774:     (*ts->ops->setup)(ts);
1775:   }

1777:   /* in the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
1778:    to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
1779:    */
1780:   TSGetDM(ts,&dm);
1781:   DMSNESGetFunction(dm,&func,NULL);
1782:   if (!func) {
1783:     ierr =DMSNESSetFunction(dm,SNESTSFormFunction,ts);
1784:   }
1785:   /* if the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
1786:      Otherwise, the SNES will use coloring internally to form the Jacobian.
1787:    */
1788:   DMSNESGetJacobian(dm,&jac,NULL);
1789:   DMTSGetIJacobian(dm,&ijac,NULL);
1790:   DMTSGetRHSJacobian(dm,&rhsjac,NULL);
1791:   if (!jac && (ijac || rhsjac)) {
1792:     DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
1793:   }
1794:   ts->setupcalled = PETSC_TRUE;
1795:   return(0);
1796: }

1800: /*@
1801:    TSReset - Resets a TS context and removes any allocated Vecs and Mats.

1803:    Collective on TS

1805:    Input Parameter:
1806: .  ts - the TS context obtained from TSCreate()

1808:    Level: beginner

1810: .keywords: TS, timestep, reset

1812: .seealso: TSCreate(), TSSetup(), TSDestroy()
1813: @*/
1814: PetscErrorCode  TSReset(TS ts)
1815: {

1820:   if (ts->ops->reset) {
1821:     (*ts->ops->reset)(ts);
1822:   }
1823:   if (ts->snes) {SNESReset(ts->snes);}

1825:   MatDestroy(&ts->Arhs);
1826:   MatDestroy(&ts->Brhs);
1827:   VecDestroy(&ts->Frhs);
1828:   VecDestroy(&ts->vec_sol);
1829:   VecDestroy(&ts->vatol);
1830:   VecDestroy(&ts->vrtol);
1831:   VecDestroyVecs(ts->nwork,&ts->work);

1833:   ts->setupcalled = PETSC_FALSE;
1834:   return(0);
1835: }

1839: /*@
1840:    TSDestroy - Destroys the timestepper context that was created
1841:    with TSCreate().

1843:    Collective on TS

1845:    Input Parameter:
1846: .  ts - the TS context obtained from TSCreate()

1848:    Level: beginner

1850: .keywords: TS, timestepper, destroy

1852: .seealso: TSCreate(), TSSetUp(), TSSolve()
1853: @*/
1854: PetscErrorCode  TSDestroy(TS *ts)
1855: {

1859:   if (!*ts) return(0);
1861:   if (--((PetscObject)(*ts))->refct > 0) {*ts = 0; return(0);}

1863:   TSReset((*ts));

1865:   /* if memory was published with AMS then destroy it */
1866:   PetscObjectAMSViewOff((PetscObject)*ts);
1867:   if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}

1869:   TSAdaptDestroy(&(*ts)->adapt);
1870:   SNESDestroy(&(*ts)->snes);
1871:   DMDestroy(&(*ts)->dm);
1872:   TSMonitorCancel((*ts));

1874:   PetscHeaderDestroy(ts);
1875:   return(0);
1876: }

1880: /*@
1881:    TSGetSNES - Returns the SNES (nonlinear solver) associated with
1882:    a TS (timestepper) context. Valid only for nonlinear problems.

1884:    Not Collective, but SNES is parallel if TS is parallel

1886:    Input Parameter:
1887: .  ts - the TS context obtained from TSCreate()

1889:    Output Parameter:
1890: .  snes - the nonlinear solver context

1892:    Notes:
1893:    The user can then directly manipulate the SNES context to set various
1894:    options, etc.  Likewise, the user can then extract and manipulate the
1895:    KSP, KSP, and PC contexts as well.

1897:    TSGetSNES() does not work for integrators that do not use SNES; in
1898:    this case TSGetSNES() returns NULL in snes.

1900:    Level: beginner

1902: .keywords: timestep, get, SNES
1903: @*/
1904: PetscErrorCode  TSGetSNES(TS ts,SNES *snes)
1905: {

1911:   if (!ts->snes) {
1912:     SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
1913:     SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
1914:     PetscLogObjectParent(ts,ts->snes);
1915:     PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
1916:     if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
1917:     if (ts->problem_type == TS_LINEAR) {
1918:       SNESSetType(ts->snes,SNESKSPONLY);
1919:     }
1920:   }
1921:   *snes = ts->snes;
1922:   return(0);
1923: }

1927: /*@
1928:    TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context

1930:    Collective

1932:    Input Parameter:
1933: +  ts - the TS context obtained from TSCreate()
1934: -  snes - the nonlinear solver context

1936:    Notes:
1937:    Most users should have the TS created by calling TSGetSNES()

1939:    Level: developer

1941: .keywords: timestep, set, SNES
1942: @*/
1943: PetscErrorCode TSSetSNES(TS ts,SNES snes)
1944: {
1946:   PetscErrorCode (*func)(SNES,Vec,Mat*,Mat*,MatStructure*,void*);

1951:   PetscObjectReference((PetscObject)snes);
1952:   SNESDestroy(&ts->snes);

1954:   ts->snes = snes;

1956:   SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
1957:   SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
1958:   if (func == SNESTSFormJacobian) {
1959:     SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
1960:   }
1961:   return(0);
1962: }

1966: /*@
1967:    TSGetKSP - Returns the KSP (linear solver) associated with
1968:    a TS (timestepper) context.

1970:    Not Collective, but KSP is parallel if TS is parallel

1972:    Input Parameter:
1973: .  ts - the TS context obtained from TSCreate()

1975:    Output Parameter:
1976: .  ksp - the nonlinear solver context

1978:    Notes:
1979:    The user can then directly manipulate the KSP context to set various
1980:    options, etc.  Likewise, the user can then extract and manipulate the
1981:    KSP and PC contexts as well.

1983:    TSGetKSP() does not work for integrators that do not use KSP;
1984:    in this case TSGetKSP() returns NULL in ksp.

1986:    Level: beginner

1988: .keywords: timestep, get, KSP
1989: @*/
1990: PetscErrorCode  TSGetKSP(TS ts,KSP *ksp)
1991: {
1993:   SNES           snes;

1998:   if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
1999:   if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
2000:   TSGetSNES(ts,&snes);
2001:   SNESGetKSP(snes,ksp);
2002:   return(0);
2003: }

2005: /* ----------- Routines to set solver parameters ---------- */

2009: /*@
2010:    TSGetDuration - Gets the maximum number of timesteps to use and
2011:    maximum time for iteration.

2013:    Not Collective

2015:    Input Parameters:
2016: +  ts       - the TS context obtained from TSCreate()
2017: .  maxsteps - maximum number of iterations to use, or NULL
2018: -  maxtime  - final time to iterate to, or NULL

2020:    Level: intermediate

2022: .keywords: TS, timestep, get, maximum, iterations, time
2023: @*/
2024: PetscErrorCode  TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
2025: {
2028:   if (maxsteps) {
2030:     *maxsteps = ts->max_steps;
2031:   }
2032:   if (maxtime) {
2034:     *maxtime = ts->max_time;
2035:   }
2036:   return(0);
2037: }

2041: /*@
2042:    TSSetDuration - Sets the maximum number of timesteps to use and
2043:    maximum time for iteration.

2045:    Logically Collective on TS

2047:    Input Parameters:
2048: +  ts - the TS context obtained from TSCreate()
2049: .  maxsteps - maximum number of iterations to use
2050: -  maxtime - final time to iterate to

2052:    Options Database Keys:
2053: .  -ts_max_steps <maxsteps> - Sets maxsteps
2054: .  -ts_final_time <maxtime> - Sets maxtime

2056:    Notes:
2057:    The default maximum number of iterations is 5000. Default time is 5.0

2059:    Level: intermediate

2061: .keywords: TS, timestep, set, maximum, iterations

2063: .seealso: TSSetExactFinalTime()
2064: @*/
2065: PetscErrorCode  TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
2066: {
2071:   if (maxsteps >= 0) ts->max_steps = maxsteps;
2072:   if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
2073:   return(0);
2074: }

2078: /*@
2079:    TSSetSolution - Sets the initial solution vector
2080:    for use by the TS routines.

2082:    Logically Collective on TS and Vec

2084:    Input Parameters:
2085: +  ts - the TS context obtained from TSCreate()
2086: -  u - the solution vector

2088:    Level: beginner

2090: .keywords: TS, timestep, set, solution, initial conditions
2091: @*/
2092: PetscErrorCode  TSSetSolution(TS ts,Vec u)
2093: {
2095:   DM             dm;

2100:   PetscObjectReference((PetscObject)u);
2101:   VecDestroy(&ts->vec_sol);

2103:   ts->vec_sol = u;

2105:   TSGetDM(ts,&dm);
2106:   DMShellSetGlobalVector(dm,u);
2107:   return(0);
2108: }

2112: /*@C
2113:   TSSetPreStep - Sets the general-purpose function
2114:   called once at the beginning of each time step.

2116:   Logically Collective on TS

2118:   Input Parameters:
2119: + ts   - The TS context obtained from TSCreate()
2120: - func - The function

2122:   Calling sequence of func:
2123: . func (TS ts);

2125:   Level: intermediate

2127:   Note:
2128:   If a step is rejected, TSStep() will call this routine again before each attempt.
2129:   The last completed time step number can be queried using TSGetTimeStepNumber(), the
2130:   size of the step being attempted can be obtained using TSGetTimeStep().

2132: .keywords: TS, timestep
2133: .seealso: TSSetPreStage(), TSSetPostStep(), TSStep()
2134: @*/
2135: PetscErrorCode  TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
2136: {
2139:   ts->prestep = func;
2140:   return(0);
2141: }

2145: /*@
2146:   TSPreStep - Runs the user-defined pre-step function.

2148:   Collective on TS

2150:   Input Parameters:
2151: . ts   - The TS context obtained from TSCreate()

2153:   Notes:
2154:   TSPreStep() is typically used within time stepping implementations,
2155:   so most users would not generally call this routine themselves.

2157:   Level: developer

2159: .keywords: TS, timestep
2160: .seealso: TSSetPreStep(), TSPreStage(), TSPostStep()
2161: @*/
2162: PetscErrorCode  TSPreStep(TS ts)
2163: {

2168:   if (ts->prestep) {
2169:     PetscStackCallStandard((*ts->prestep),(ts));
2170:   }
2171:   return(0);
2172: }

2176: /*@C
2177:   TSSetPreStage - Sets the general-purpose function
2178:   called once at the beginning of each stage.

2180:   Logically Collective on TS

2182:   Input Parameters:
2183: + ts   - The TS context obtained from TSCreate()
2184: - func - The function

2186:   Calling sequence of func:
2187: . PetscErrorCode func(TS ts, PetscReal stagetime);

2189:   Level: intermediate

2191:   Note:
2192:   There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
2193:   The time step number being computed can be queried using TSGetTimeStepNumber() and the total size of the step being
2194:   attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().

2196: .keywords: TS, timestep
2197: .seealso: TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
2198: @*/
2199: PetscErrorCode  TSSetPreStage(TS ts, PetscErrorCode (*func)(TS,PetscReal))
2200: {
2203:   ts->prestage = func;
2204:   return(0);
2205: }

2209: /*@
2210:   TSPreStage - Runs the user-defined pre-stage function set using TSSetPreStage()

2212:   Collective on TS

2214:   Input Parameters:
2215: . ts   - The TS context obtained from TSCreate()

2217:   Notes:
2218:   TSPreStage() is typically used within time stepping implementations,
2219:   most users would not generally call this routine themselves.

2221:   Level: developer

2223: .keywords: TS, timestep
2224: .seealso: TSSetPreStep(), TSPreStep(), TSPostStep()
2225: @*/
2226: PetscErrorCode  TSPreStage(TS ts, PetscReal stagetime)
2227: {

2232:   if (ts->prestage) {
2233:     PetscStackCallStandard((*ts->prestage),(ts,stagetime));
2234:   }
2235:   return(0);
2236: }

2240: /*@C
2241:   TSSetPostStep - Sets the general-purpose function
2242:   called once at the end of each time step.

2244:   Logically Collective on TS

2246:   Input Parameters:
2247: + ts   - The TS context obtained from TSCreate()
2248: - func - The function

2250:   Calling sequence of func:
2251: $ func (TS ts);

2253:   Level: intermediate

2255: .keywords: TS, timestep
2256: .seealso: TSSetPreStep(), TSSetPreStage(), TSGetTimeStep(), TSGetTimeStepNumber(), TSGetTime()
2257: @*/
2258: PetscErrorCode  TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
2259: {
2262:   ts->poststep = func;
2263:   return(0);
2264: }

2268: /*@
2269:   TSPostStep - Runs the user-defined post-step function.

2271:   Collective on TS

2273:   Input Parameters:
2274: . ts   - The TS context obtained from TSCreate()

2276:   Notes:
2277:   TSPostStep() is typically used within time stepping implementations,
2278:   so most users would not generally call this routine themselves.

2280:   Level: developer

2282: .keywords: TS, timestep
2283: @*/
2284: PetscErrorCode  TSPostStep(TS ts)
2285: {

2290:   if (ts->poststep) {
2291:     PetscStackCallStandard((*ts->poststep),(ts));
2292:   }
2293:   return(0);
2294: }

2296: /* ------------ Routines to set performance monitoring options ----------- */

2300: /*@C
2301:    TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
2302:    timestep to display the iteration's  progress.

2304:    Logically Collective on TS

2306:    Input Parameters:
2307: +  ts - the TS context obtained from TSCreate()
2308: .  monitor - monitoring routine
2309: .  mctx - [optional] user-defined context for private data for the
2310:              monitor routine (use NULL if no context is desired)
2311: -  monitordestroy - [optional] routine that frees monitor context
2312:           (may be NULL)

2314:    Calling sequence of monitor:
2315: $    int monitor(TS ts,PetscInt steps,PetscReal time,Vec u,void *mctx)

2317: +    ts - the TS context
2318: .    steps - iteration number (after the final time step the monitor routine is called with a step of -1, this is at the final time which may have
2319:                                been interpolated to)
2320: .    time - current time
2321: .    u - current iterate
2322: -    mctx - [optional] monitoring context

2324:    Notes:
2325:    This routine adds an additional monitor to the list of monitors that
2326:    already has been loaded.

2328:    Fortran notes: Only a single monitor function can be set for each TS object

2330:    Level: intermediate

2332: .keywords: TS, timestep, set, monitor

2334: .seealso: TSMonitorDefault(), TSMonitorCancel()
2335: @*/
2336: PetscErrorCode  TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
2337: {
2340:   if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
2341:   ts->monitor[ts->numbermonitors]          = monitor;
2342:   ts->monitordestroy[ts->numbermonitors]   = mdestroy;
2343:   ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
2344:   return(0);
2345: }

2349: /*@C
2350:    TSMonitorCancel - Clears all the monitors that have been set on a time-step object.

2352:    Logically Collective on TS

2354:    Input Parameters:
2355: .  ts - the TS context obtained from TSCreate()

2357:    Notes:
2358:    There is no way to remove a single, specific monitor.

2360:    Level: intermediate

2362: .keywords: TS, timestep, set, monitor

2364: .seealso: TSMonitorDefault(), TSMonitorSet()
2365: @*/
2366: PetscErrorCode  TSMonitorCancel(TS ts)
2367: {
2369:   PetscInt       i;

2373:   for (i=0; i<ts->numbermonitors; i++) {
2374:     if (ts->monitordestroy[i]) {
2375:       (*ts->monitordestroy[i])(&ts->monitorcontext[i]);
2376:     }
2377:   }
2378:   ts->numbermonitors = 0;
2379:   return(0);
2380: }

2384: /*@
2385:    TSMonitorDefault - Sets the Default monitor

2387:    Level: intermediate

2389: .keywords: TS, set, monitor

2391: .seealso: TSMonitorDefault(), TSMonitorSet()
2392: @*/
2393: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,void *dummy)
2394: {
2396:   PetscViewer    viewer = dummy ? (PetscViewer) dummy : PETSC_VIEWER_STDOUT_(PetscObjectComm((PetscObject)ts));

2399:   PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
2400:   PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g\n",step,(double)ts->time_step,(double)ptime);
2401:   PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
2402:   return(0);
2403: }

2407: /*@
2408:    TSSetRetainStages - Request that all stages in the upcoming step be stored so that interpolation will be available.

2410:    Logically Collective on TS

2412:    Input Argument:
2413: .  ts - time stepping context

2415:    Output Argument:
2416: .  flg - PETSC_TRUE or PETSC_FALSE

2418:    Level: intermediate

2420: .keywords: TS, set

2422: .seealso: TSInterpolate(), TSSetPostStep()
2423: @*/
2424: PetscErrorCode TSSetRetainStages(TS ts,PetscBool flg)
2425: {
2428:   ts->retain_stages = flg;
2429:   return(0);
2430: }

2434: /*@
2435:    TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval

2437:    Collective on TS

2439:    Input Argument:
2440: +  ts - time stepping context
2441: -  t - time to interpolate to

2443:    Output Argument:
2444: .  U - state at given time

2446:    Notes:
2447:    The user should call TSSetRetainStages() before taking a step in which interpolation will be requested.

2449:    Level: intermediate

2451:    Developer Notes:
2452:    TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.

2454: .keywords: TS, set

2456: .seealso: TSSetRetainStages(), TSSetPostStep()
2457: @*/
2458: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec U)
2459: {

2465:   if (t < ts->ptime - ts->time_step_prev || t > ts->ptime) SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Requested time %G not in last time steps [%G,%G]",t,ts->ptime-ts->time_step_prev,ts->ptime);
2466:   if (!ts->ops->interpolate) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
2467:   (*ts->ops->interpolate)(ts,t,U);
2468:   return(0);
2469: }

2473: /*@
2474:    TSStep - Steps one time step

2476:    Collective on TS

2478:    Input Parameter:
2479: .  ts - the TS context obtained from TSCreate()

2481:    Level: intermediate

2483:    Notes:
2484:    The hook set using TSSetPreStep() is called before each attempt to take the step. In general, the time step size may
2485:    be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.

2487:    This may over-step the final time provided in TSSetDuration() depending on the time-step used. TSSolve() interpolates to exactly the
2488:    time provided in TSSetDuration(). One can use TSInterpolate() to determine an interpolated solution within the final timestep.

2490: .keywords: TS, timestep, solve

2492: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSInterpolate()
2493: @*/
2494: PetscErrorCode  TSStep(TS ts)
2495: {
2496:   PetscReal      ptime_prev;

2501:   TSSetUp(ts);

2503:   ts->reason = TS_CONVERGED_ITERATING;
2504:   ptime_prev = ts->ptime;

2506:   PetscLogEventBegin(TS_Step,ts,0,0,0);
2507:   (*ts->ops->step)(ts);
2508:   PetscLogEventEnd(TS_Step,ts,0,0,0);

2510:   ts->time_step_prev = ts->ptime - ptime_prev;

2512:   if (ts->reason < 0) {
2513:     if (ts->errorifstepfailed) {
2514:       if (ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) {
2515:         SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
2516:       } else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
2517:     }
2518:   } else if (!ts->reason) {
2519:     if (ts->steps >= ts->max_steps)     ts->reason = TS_CONVERGED_ITS;
2520:     else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
2521:   }
2522:   return(0);
2523: }

2527: /*@
2528:    TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.

2530:    Collective on TS

2532:    Input Arguments:
2533: +  ts - time stepping context
2534: .  order - desired order of accuracy
2535: -  done - whether the step was evaluated at this order (pass NULL to generate an error if not available)

2537:    Output Arguments:
2538: .  U - state at the end of the current step

2540:    Level: advanced

2542:    Notes:
2543:    This function cannot be called until all stages have been evaluated.
2544:    It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.

2546: .seealso: TSStep(), TSAdapt
2547: @*/
2548: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec U,PetscBool *done)
2549: {

2556:   if (!ts->ops->evaluatestep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
2557:   (*ts->ops->evaluatestep)(ts,order,U,done);
2558:   return(0);
2559: }

2563: /*@
2564:    TSSolve - Steps the requested number of timesteps.

2566:    Collective on TS

2568:    Input Parameter:
2569: +  ts - the TS context obtained from TSCreate()
2570: -  u - the solution vector  (can be null if TSSetSolution() was used, otherwise must contain the initial conditions)

2572:    Level: beginner

2574:    Notes:
2575:    The final time returned by this function may be different from the time of the internally
2576:    held state accessible by TSGetSolution() and TSGetTime() because the method may have
2577:    stepped over the final time.

2579: .keywords: TS, timestep, solve

2581: .seealso: TSCreate(), TSSetSolution(), TSStep()
2582: @*/
2583: PetscErrorCode TSSolve(TS ts,Vec u)
2584: {
2585:   PetscBool         flg;
2586:   PetscViewer       viewer;
2587:   Vec               solution;
2588:   PetscErrorCode    ierr;
2589:   PetscViewerFormat format;

2594:   if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE) {   /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
2596:     if (!ts->vec_sol || u == ts->vec_sol) {
2597:       VecDuplicate(u,&solution);
2598:       TSSetSolution(ts,solution);
2599:       VecDestroy(&solution); /* grant ownership */
2600:     }
2601:     VecCopy(u,ts->vec_sol);
2602:   } else if (u) {
2603:     TSSetSolution(ts,u);
2604:   }
2605:   TSSetUp(ts);
2606:   /* reset time step and iteration counters */
2607:   ts->steps             = 0;
2608:   ts->ksp_its           = 0;
2609:   ts->snes_its          = 0;
2610:   ts->num_snes_failures = 0;
2611:   ts->reject            = 0;
2612:   ts->reason            = TS_CONVERGED_ITERATING;

2614:   PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,"-ts_view_pre",&viewer,&format,&flg);
2615:   if (flg && !PetscPreLoadingOn) {
2616:     PetscViewerPushFormat(viewer,format);
2617:     TSView(ts,viewer);
2618:     PetscViewerPopFormat(viewer);
2619:     PetscViewerDestroy(&viewer);
2620:   }

2622:   if (ts->ops->solve) {         /* This private interface is transitional and should be removed when all implementations are updated. */
2623:     (*ts->ops->solve)(ts);
2624:     VecCopy(ts->vec_sol,u);
2625:     ts->solvetime = ts->ptime;
2626:   } else {
2627:     /* steps the requested number of timesteps. */
2628:     if (ts->steps >= ts->max_steps)     ts->reason = TS_CONVERGED_ITS;
2629:     else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
2630:     while (!ts->reason) {
2631:       TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
2632:       TSStep(ts);
2633:       TSPostStep(ts);
2634:     }
2635:     if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
2636:       TSInterpolate(ts,ts->max_time,u);
2637:       ts->solvetime = ts->max_time;
2638:       solution = u;
2639:     } else {
2640:       if (u) {VecCopy(ts->vec_sol,u);}
2641:       ts->solvetime = ts->ptime;
2642:       solution = ts->vec_sol;
2643:     }
2644:     TSMonitor(ts,ts->steps,ts->solvetime,solution);
2645:   }
2646:   PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,"-ts_view",&viewer,&format,&flg);
2647:   if (flg && !PetscPreLoadingOn) {
2648:     PetscViewerPushFormat(viewer,format);
2649:     TSView(ts,viewer);
2650:     PetscViewerPopFormat(viewer);
2651:     PetscViewerDestroy(&viewer);
2652:   }
2653:   return(0);
2654: }

2658: /*@
2659:    TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()

2661:    Collective on TS

2663:    Input Parameters:
2664: +  ts - time stepping context obtained from TSCreate()
2665: .  step - step number that has just completed
2666: .  ptime - model time of the state
2667: -  u - state at the current model time

2669:    Notes:
2670:    TSMonitor() is typically used within the time stepping implementations.
2671:    Users might call this function when using the TSStep() interface instead of TSSolve().

2673:    Level: advanced

2675: .keywords: TS, timestep
2676: @*/
2677: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u)
2678: {
2680:   PetscInt       i,n = ts->numbermonitors;

2685:   for (i=0; i<n; i++) {
2686:     (*ts->monitor[i])(ts,step,ptime,u,ts->monitorcontext[i]);
2687:   }
2688:   return(0);
2689: }

2691: /* ------------------------------------------------------------------------*/
2692: struct _n_TSMonitorLGCtx {
2693:   PetscDrawLG lg;
2694:   PetscInt    howoften;  /* when > 0 uses step % howoften, when negative only final solution plotted */
2695:   PetscInt    ksp_its,snes_its;
2696: };


2701: /*@C
2702:    TSMonitorLGCtxCreate - Creates a line graph context for use with
2703:    TS to monitor the solution process graphically in various ways

2705:    Collective on TS

2707:    Input Parameters:
2708: +  host - the X display to open, or null for the local machine
2709: .  label - the title to put in the title bar
2710: .  x, y - the screen coordinates of the upper left coordinate of the window
2711: .  m, n - the screen width and height in pixels
2712: -  howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time

2714:    Output Parameter:
2715: .  ctx - the context

2717:    Options Database Key:
2718: +  -ts_monitor_lg_timestep - automatically sets line graph monitor
2719: .  -ts_monitor_lg_solution -
2720: .  -ts_monitor_lg_error -
2721: .  -ts_monitor_lg_ksp_iterations -
2722: .  -ts_monitor_lg_snes_iterations -
2723: -  -lg_indicate_data_points <true,false> - indicate the data points (at each time step) on the plot; default is true

2725:    Notes:
2726:    Use TSMonitorLGCtxDestroy() to destroy.

2728:    Level: intermediate

2730: .keywords: TS, monitor, line graph, residual, seealso

2732: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()

2734: @*/
2735: PetscErrorCode  TSMonitorLGCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorLGCtx *ctx)
2736: {
2737:   PetscDraw      win;
2739:   PetscBool      flg = PETSC_TRUE;

2742:   PetscNew(struct _n_TSMonitorLGCtx,ctx);
2743:   PetscDrawCreate(comm,host,label,x,y,m,n,&win);
2744:   PetscDrawSetFromOptions(win);
2745:   PetscDrawLGCreate(win,1,&(*ctx)->lg);
2746:   PetscOptionsGetBool(NULL,"-lg_indicate_data_points",&flg,NULL);
2747:   if (flg) {
2748:     PetscDrawLGIndicateDataPoints((*ctx)->lg);
2749:   }
2750:   PetscLogObjectParent((*ctx)->lg,win);
2751:   (*ctx)->howoften = howoften;
2752:   return(0);
2753: }

2757: PetscErrorCode TSMonitorLGTimeStep(TS ts,PetscInt step,PetscReal ptime,Vec v,void *monctx)
2758: {
2759:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
2760:   PetscReal      x   = ptime,y;

2764:   if (!step) {
2765:     PetscDrawAxis axis;
2766:     PetscDrawLGGetAxis(ctx->lg,&axis);
2767:     PetscDrawAxisSetLabels(axis,"Timestep as function of time","Time","Time step");
2768:     PetscDrawLGReset(ctx->lg);
2769:   }
2770:   TSGetTimeStep(ts,&y);
2771:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
2772:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
2773:     PetscDrawLGDraw(ctx->lg);
2774:   }
2775:   return(0);
2776: }

2780: /*@C
2781:    TSMonitorLGCtxDestroy - Destroys a line graph context that was created
2782:    with TSMonitorLGCtxCreate().

2784:    Collective on TSMonitorLGCtx

2786:    Input Parameter:
2787: .  ctx - the monitor context

2789:    Level: intermediate

2791: .keywords: TS, monitor, line graph, destroy

2793: .seealso: TSMonitorLGCtxCreate(),  TSMonitorSet(), TSMonitorLGTimeStep();
2794: @*/
2795: PetscErrorCode  TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
2796: {
2797:   PetscDraw      draw;

2801:   PetscDrawLGGetDraw((*ctx)->lg,&draw);
2802:   PetscDrawDestroy(&draw);
2803:   PetscDrawLGDestroy(&(*ctx)->lg);
2804:   PetscFree(*ctx);
2805:   return(0);
2806: }

2810: /*@
2811:    TSGetTime - Gets the time of the most recently completed step.

2813:    Not Collective

2815:    Input Parameter:
2816: .  ts - the TS context obtained from TSCreate()

2818:    Output Parameter:
2819: .  t  - the current time

2821:    Level: beginner

2823:    Note:
2824:    When called during time step evaluation (e.g. during residual evaluation or via hooks set using TSSetPreStep(),
2825:    TSSetPreStage(), or TSSetPostStep()), the time is the time at the start of the step being evaluated.

2827: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()

2829: .keywords: TS, get, time
2830: @*/
2831: PetscErrorCode  TSGetTime(TS ts,PetscReal *t)
2832: {
2836:   *t = ts->ptime;
2837:   return(0);
2838: }

2842: /*@
2843:    TSSetTime - Allows one to reset the time.

2845:    Logically Collective on TS

2847:    Input Parameters:
2848: +  ts - the TS context obtained from TSCreate()
2849: -  time - the time

2851:    Level: intermediate

2853: .seealso: TSGetTime(), TSSetDuration()

2855: .keywords: TS, set, time
2856: @*/
2857: PetscErrorCode  TSSetTime(TS ts, PetscReal t)
2858: {
2862:   ts->ptime = t;
2863:   return(0);
2864: }

2868: /*@C
2869:    TSSetOptionsPrefix - Sets the prefix used for searching for all
2870:    TS options in the database.

2872:    Logically Collective on TS

2874:    Input Parameter:
2875: +  ts     - The TS context
2876: -  prefix - The prefix to prepend to all option names

2878:    Notes:
2879:    A hyphen (-) must NOT be given at the beginning of the prefix name.
2880:    The first character of all runtime options is AUTOMATICALLY the
2881:    hyphen.

2883:    Level: advanced

2885: .keywords: TS, set, options, prefix, database

2887: .seealso: TSSetFromOptions()

2889: @*/
2890: PetscErrorCode  TSSetOptionsPrefix(TS ts,const char prefix[])
2891: {
2893:   SNES           snes;

2897:   PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
2898:   TSGetSNES(ts,&snes);
2899:   SNESSetOptionsPrefix(snes,prefix);
2900:   return(0);
2901: }


2906: /*@C
2907:    TSAppendOptionsPrefix - Appends to the prefix used for searching for all
2908:    TS options in the database.

2910:    Logically Collective on TS

2912:    Input Parameter:
2913: +  ts     - The TS context
2914: -  prefix - The prefix to prepend to all option names

2916:    Notes:
2917:    A hyphen (-) must NOT be given at the beginning of the prefix name.
2918:    The first character of all runtime options is AUTOMATICALLY the
2919:    hyphen.

2921:    Level: advanced

2923: .keywords: TS, append, options, prefix, database

2925: .seealso: TSGetOptionsPrefix()

2927: @*/
2928: PetscErrorCode  TSAppendOptionsPrefix(TS ts,const char prefix[])
2929: {
2931:   SNES           snes;

2935:   PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
2936:   TSGetSNES(ts,&snes);
2937:   SNESAppendOptionsPrefix(snes,prefix);
2938:   return(0);
2939: }

2943: /*@C
2944:    TSGetOptionsPrefix - Sets the prefix used for searching for all
2945:    TS options in the database.

2947:    Not Collective

2949:    Input Parameter:
2950: .  ts - The TS context

2952:    Output Parameter:
2953: .  prefix - A pointer to the prefix string used

2955:    Notes: On the fortran side, the user should pass in a string 'prifix' of
2956:    sufficient length to hold the prefix.

2958:    Level: intermediate

2960: .keywords: TS, get, options, prefix, database

2962: .seealso: TSAppendOptionsPrefix()
2963: @*/
2964: PetscErrorCode  TSGetOptionsPrefix(TS ts,const char *prefix[])
2965: {

2971:   PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
2972:   return(0);
2973: }

2977: /*@C
2978:    TSGetRHSJacobian - Returns the Jacobian J at the present timestep.

2980:    Not Collective, but parallel objects are returned if TS is parallel

2982:    Input Parameter:
2983: .  ts  - The TS context obtained from TSCreate()

2985:    Output Parameters:
2986: +  Amat - The (approximate) Jacobian J of G, where U_t = G(U,t)  (or NULL)
2987: .  Pmat - The matrix from which the preconditioner is constructed, usually the same as Amat  (or NULL)
2988: .  func - Function to compute the Jacobian of the RHS  (or NULL)
2989: -  ctx - User-defined context for Jacobian evaluation routine  (or NULL)

2991:    Notes: You can pass in NULL for any return argument you do not need.

2993:    Level: intermediate

2995: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()

2997: .keywords: TS, timestep, get, matrix, Jacobian
2998: @*/
2999: PetscErrorCode  TSGetRHSJacobian(TS ts,Mat *Amat,Mat *Pmat,TSRHSJacobian *func,void **ctx)
3000: {
3002:   SNES           snes;
3003:   DM             dm;

3006:   TSGetSNES(ts,&snes);
3007:   SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
3008:   TSGetDM(ts,&dm);
3009:   DMTSGetRHSJacobian(dm,func,ctx);
3010:   return(0);
3011: }

3015: /*@C
3016:    TSGetIJacobian - Returns the implicit Jacobian at the present timestep.

3018:    Not Collective, but parallel objects are returned if TS is parallel

3020:    Input Parameter:
3021: .  ts  - The TS context obtained from TSCreate()

3023:    Output Parameters:
3024: +  Amat  - The (approximate) Jacobian of F(t,U,U_t)
3025: .  Pmat - The matrix from which the preconditioner is constructed, often the same as Amat
3026: .  f   - The function to compute the matrices
3027: - ctx - User-defined context for Jacobian evaluation routine

3029:    Notes: You can pass in NULL for any return argument you do not need.

3031:    Level: advanced

3033: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()

3035: .keywords: TS, timestep, get, matrix, Jacobian
3036: @*/
3037: PetscErrorCode  TSGetIJacobian(TS ts,Mat *Amat,Mat *Pmat,TSIJacobian *f,void **ctx)
3038: {
3040:   SNES           snes;
3041:   DM             dm;

3044:   TSGetSNES(ts,&snes);
3045:   SNESSetUpMatrices(snes);
3046:   SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
3047:   TSGetDM(ts,&dm);
3048:   DMTSGetIJacobian(dm,f,ctx);
3049:   return(0);
3050: }


3055: /*@C
3056:    TSMonitorDrawSolution - Monitors progress of the TS solvers by calling
3057:    VecView() for the solution at each timestep

3059:    Collective on TS

3061:    Input Parameters:
3062: +  ts - the TS context
3063: .  step - current time-step
3064: .  ptime - current time
3065: -  dummy - either a viewer or NULL

3067:    Options Database:
3068: .   -ts_monitor_draw_solution_initial - show initial solution as well as current solution

3070:    Notes: the initial solution and current solution are not displayed with a common axis scaling so generally the option -ts_monitor_draw_solution_initial
3071:        will look bad

3073:    Level: intermediate

3075: .keywords: TS,  vector, monitor, view

3077: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3078: @*/
3079: PetscErrorCode  TSMonitorDrawSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
3080: {
3081:   PetscErrorCode   ierr;
3082:   TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
3083:   PetscDraw        draw;

3086:   if (!step && ictx->showinitial) {
3087:     if (!ictx->initialsolution) {
3088:       VecDuplicate(u,&ictx->initialsolution);
3089:     }
3090:     VecCopy(u,ictx->initialsolution);
3091:   }
3092:   if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);

3094:   if (ictx->showinitial) {
3095:     PetscReal pause;
3096:     PetscViewerDrawGetPause(ictx->viewer,&pause);
3097:     PetscViewerDrawSetPause(ictx->viewer,0.0);
3098:     VecView(ictx->initialsolution,ictx->viewer);
3099:     PetscViewerDrawSetPause(ictx->viewer,pause);
3100:     PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
3101:   }
3102:   VecView(u,ictx->viewer);
3103:   if (ictx->showtimestepandtime) {
3104:     PetscReal xl,yl,xr,yr,tw,w,h;
3105:     char      time[32];
3106:     size_t    len;

3108:     PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
3109:     PetscSNPrintf(time,32,"Timestep %d Time %f",(int)step,(double)ptime);
3110:     PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
3111:      PetscStrlen(time,&len);
3112:     PetscDrawStringGetSize(draw,&tw,NULL);
3113:     w    = xl + .5*(xr - xl) - .5*len*tw;
3114:     h    = yl + .95*(yr - yl);
3115:     PetscDrawString(draw,w,h,PETSC_DRAW_BLACK,time);
3116:     PetscDrawFlush(draw);
3117:   }

3119:   if (ictx->showinitial) {
3120:     PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
3121:   }
3122:   return(0);
3123: }

3127: /*@C
3128:    TSMonitorDrawSolutionPhase - Monitors progress of the TS solvers by plotting the solution as a phase diagram

3130:    Collective on TS

3132:    Input Parameters:
3133: +  ts - the TS context
3134: .  step - current time-step
3135: .  ptime - current time
3136: -  dummy - either a viewer or NULL

3138:    Level: intermediate

3140: .keywords: TS,  vector, monitor, view

3142: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3143: @*/
3144: PetscErrorCode  TSMonitorDrawSolutionPhase(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
3145: {
3146:   PetscErrorCode    ierr;
3147:   TSMonitorDrawCtx  ictx = (TSMonitorDrawCtx)dummy;
3148:   PetscDraw         draw;
3149:   MPI_Comm          comm;
3150:   PetscInt          n;
3151:   PetscMPIInt       size;
3152:   PetscReal         xl,yl,xr,yr,tw,w,h;
3153:   char              time[32];
3154:   size_t            len;
3155:   const PetscScalar *U;

3158:   PetscObjectGetComm((PetscObject)ts,&comm);
3159:   MPI_Comm_size(comm,&size);
3160:   if (size != 1) SETERRQ(comm,PETSC_ERR_SUP,"Only allowed for sequential runs");
3161:   VecGetSize(u,&n);
3162:   if (n != 2) SETERRQ(comm,PETSC_ERR_SUP,"Only for ODEs with two unknowns");

3164:   PetscViewerDrawGetDraw(ictx->viewer,0,&draw);

3166:   VecGetArrayRead(u,&U);
3167:   PetscDrawAxisGetLimits(ictx->axis,&xl,&xr,&yl,&yr);
3168:   if ((PetscRealPart(U[0]) < xl) || (PetscRealPart(U[1]) < yl) || (PetscRealPart(U[0]) > xr) || (PetscRealPart(U[1]) > yr)) {
3169:       VecRestoreArrayRead(u,&U);
3170:       return(0);
3171:   }
3172:   if (!step) ictx->color++;
3173:   PetscDrawPoint(draw,PetscRealPart(U[0]),PetscRealPart(U[1]),ictx->color);
3174:   VecRestoreArrayRead(u,&U);

3176:   if (ictx->showtimestepandtime) {
3177:     PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
3178:     PetscSNPrintf(time,32,"Timestep %d Time %f",(int)step,(double)ptime);
3179:     PetscStrlen(time,&len);
3180:     PetscDrawStringGetSize(draw,&tw,NULL);
3181:     w    = xl + .5*(xr - xl) - .5*len*tw;
3182:     h    = yl + .95*(yr - yl);
3183:     PetscDrawString(draw,w,h,PETSC_DRAW_BLACK,time);
3184:   }
3185:   PetscDrawFlush(draw);
3186:   return(0);
3187: }


3192: /*@C
3193:    TSMonitorDrawCtxDestroy - Destroys the monitor context for TSMonitorDrawSolution()

3195:    Collective on TS

3197:    Input Parameters:
3198: .    ctx - the monitor context

3200:    Level: intermediate

3202: .keywords: TS,  vector, monitor, view

3204: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawSolution(), TSMonitorDrawError()
3205: @*/
3206: PetscErrorCode  TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
3207: {

3211:   PetscDrawAxisDestroy(&(*ictx)->axis);
3212:   PetscViewerDestroy(&(*ictx)->viewer);
3213:   VecDestroy(&(*ictx)->initialsolution);
3214:   PetscFree(*ictx);
3215:   return(0);
3216: }

3220: /*@C
3221:    TSMonitorDrawCtxCreate - Creates the monitor context for TSMonitorDrawCtx

3223:    Collective on TS

3225:    Input Parameter:
3226: .    ts - time-step context

3228:    Output Patameter:
3229: .    ctx - the monitor context

3231:    Options Database:
3232: .   -ts_monitor_draw_solution_initial - show initial solution as well as current solution

3234:    Level: intermediate

3236: .keywords: TS,  vector, monitor, view

3238: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawCtx()
3239: @*/
3240: PetscErrorCode  TSMonitorDrawCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorDrawCtx *ctx)
3241: {
3242:   PetscErrorCode   ierr;

3245:   PetscNew(struct _n_TSMonitorDrawCtx,ctx);
3246:   PetscViewerDrawOpen(comm,host,label,x,y,m,n,&(*ctx)->viewer);
3247:   PetscViewerSetFromOptions((*ctx)->viewer);

3249:   (*ctx)->howoften    = howoften;
3250:   (*ctx)->showinitial = PETSC_FALSE;
3251:   PetscOptionsGetBool(NULL,"-ts_monitor_draw_solution_initial",&(*ctx)->showinitial,NULL);

3253:   (*ctx)->showtimestepandtime = PETSC_FALSE;
3254:   PetscOptionsGetBool(NULL,"-ts_monitor_draw_solution_show_time",&(*ctx)->showtimestepandtime,NULL);
3255:   (*ctx)->color = PETSC_DRAW_WHITE;
3256:   return(0);
3257: }

3261: /*@C
3262:    TSMonitorDrawError - Monitors progress of the TS solvers by calling
3263:    VecView() for the error at each timestep

3265:    Collective on TS

3267:    Input Parameters:
3268: +  ts - the TS context
3269: .  step - current time-step
3270: .  ptime - current time
3271: -  dummy - either a viewer or NULL

3273:    Level: intermediate

3275: .keywords: TS,  vector, monitor, view

3277: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3278: @*/
3279: PetscErrorCode  TSMonitorDrawError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
3280: {
3281:   PetscErrorCode   ierr;
3282:   TSMonitorDrawCtx ctx    = (TSMonitorDrawCtx)dummy;
3283:   PetscViewer      viewer = ctx->viewer;
3284:   Vec              work;

3287:   if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
3288:   VecDuplicate(u,&work);
3289:   TSComputeSolutionFunction(ts,ptime,work);
3290:   VecAXPY(work,-1.0,u);
3291:   VecView(work,viewer);
3292:   VecDestroy(&work);
3293:   return(0);
3294: }

3296: #include <petsc-private/dmimpl.h>
3299: /*@
3300:    TSSetDM - Sets the DM that may be used by some preconditioners

3302:    Logically Collective on TS and DM

3304:    Input Parameters:
3305: +  ts - the preconditioner context
3306: -  dm - the dm

3308:    Level: intermediate


3311: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
3312: @*/
3313: PetscErrorCode  TSSetDM(TS ts,DM dm)
3314: {
3316:   SNES           snes;
3317:   DMTS           tsdm;

3321:   PetscObjectReference((PetscObject)dm);
3322:   if (ts->dm) {               /* Move the DMTS context over to the new DM unless the new DM already has one */
3323:     if (ts->dm->dmts && !dm->dmts) {
3324:       DMCopyDMTS(ts->dm,dm);
3325:       DMGetDMTS(ts->dm,&tsdm);
3326:       if (tsdm->originaldm == ts->dm) { /* Grant write privileges to the replacement DM */
3327:         tsdm->originaldm = dm;
3328:       }
3329:     }
3330:     DMDestroy(&ts->dm);
3331:   }
3332:   ts->dm = dm;

3334:   TSGetSNES(ts,&snes);
3335:   SNESSetDM(snes,dm);
3336:   return(0);
3337: }

3341: /*@
3342:    TSGetDM - Gets the DM that may be used by some preconditioners

3344:    Not Collective

3346:    Input Parameter:
3347: . ts - the preconditioner context

3349:    Output Parameter:
3350: .  dm - the dm

3352:    Level: intermediate


3355: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
3356: @*/
3357: PetscErrorCode  TSGetDM(TS ts,DM *dm)
3358: {

3363:   if (!ts->dm) {
3364:     DMShellCreate(PetscObjectComm((PetscObject)ts),&ts->dm);
3365:     if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
3366:   }
3367:   *dm = ts->dm;
3368:   return(0);
3369: }

3373: /*@
3374:    SNESTSFormFunction - Function to evaluate nonlinear residual

3376:    Logically Collective on SNES

3378:    Input Parameter:
3379: + snes - nonlinear solver
3380: . U - the current state at which to evaluate the residual
3381: - ctx - user context, must be a TS

3383:    Output Parameter:
3384: . F - the nonlinear residual

3386:    Notes:
3387:    This function is not normally called by users and is automatically registered with the SNES used by TS.
3388:    It is most frequently passed to MatFDColoringSetFunction().

3390:    Level: advanced

3392: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
3393: @*/
3394: PetscErrorCode  SNESTSFormFunction(SNES snes,Vec U,Vec F,void *ctx)
3395: {
3396:   TS             ts = (TS)ctx;

3404:   (ts->ops->snesfunction)(snes,U,F,ts);
3405:   return(0);
3406: }

3410: /*@
3411:    SNESTSFormJacobian - Function to evaluate the Jacobian

3413:    Collective on SNES

3415:    Input Parameter:
3416: + snes - nonlinear solver
3417: . U - the current state at which to evaluate the residual
3418: - ctx - user context, must be a TS

3420:    Output Parameter:
3421: + A - the Jacobian
3422: . B - the preconditioning matrix (may be the same as A)
3423: - flag - indicates any structure change in the matrix

3425:    Notes:
3426:    This function is not normally called by users and is automatically registered with the SNES used by TS.

3428:    Level: developer

3430: .seealso: SNESSetJacobian()
3431: @*/
3432: PetscErrorCode  SNESTSFormJacobian(SNES snes,Vec U,Mat *A,Mat *B,MatStructure *flag,void *ctx)
3433: {
3434:   TS             ts = (TS)ctx;

3446:   (ts->ops->snesjacobian)(snes,U,A,B,flag,ts);
3447:   return(0);
3448: }

3452: /*@C
3453:    TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems only

3455:    Collective on TS

3457:    Input Arguments:
3458: +  ts - time stepping context
3459: .  t - time at which to evaluate
3460: .  U - state at which to evaluate
3461: -  ctx - context

3463:    Output Arguments:
3464: .  F - right hand side

3466:    Level: intermediate

3468:    Notes:
3469:    This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
3470:    The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().

3472: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
3473: @*/
3474: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
3475: {
3477:   Mat            Arhs,Brhs;
3478:   MatStructure   flg2;

3481:   TSGetRHSMats_Private(ts,&Arhs,&Brhs);
3482:   TSComputeRHSJacobian(ts,t,U,&Arhs,&Brhs,&flg2);
3483:   MatMult(Arhs,U,F);
3484:   return(0);
3485: }

3489: /*@C
3490:    TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.

3492:    Collective on TS

3494:    Input Arguments:
3495: +  ts - time stepping context
3496: .  t - time at which to evaluate
3497: .  U - state at which to evaluate
3498: -  ctx - context

3500:    Output Arguments:
3501: +  A - pointer to operator
3502: .  B - pointer to preconditioning matrix
3503: -  flg - matrix structure flag

3505:    Level: intermediate

3507:    Notes:
3508:    This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.

3510: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
3511: @*/
3512: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec U,Mat *A,Mat *B,MatStructure *flg,void *ctx)
3513: {
3515:   *flg = SAME_PRECONDITIONER;
3516:   return(0);
3517: }

3521: /*@C
3522:    TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only

3524:    Collective on TS

3526:    Input Arguments:
3527: +  ts - time stepping context
3528: .  t - time at which to evaluate
3529: .  U - state at which to evaluate
3530: .  Udot - time derivative of state vector
3531: -  ctx - context

3533:    Output Arguments:
3534: .  F - left hand side

3536:    Level: intermediate

3538:    Notes:
3539:    The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
3540:    user is required to write their own TSComputeIFunction.
3541:    This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
3542:    The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().

3544: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant()
3545: @*/
3546: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
3547: {
3549:   Mat            A,B;
3550:   MatStructure   flg2;

3553:   TSGetIJacobian(ts,&A,&B,NULL,NULL);
3554:   TSComputeIJacobian(ts,t,U,Udot,1.0,&A,&B,&flg2,PETSC_TRUE);
3555:   MatMult(A,Udot,F);
3556:   return(0);
3557: }

3561: /*@C
3562:    TSComputeIJacobianConstant - Reuses a time-independent for a semi-implicit DAE or ODE

3564:    Collective on TS

3566:    Input Arguments:
3567: +  ts - time stepping context
3568: .  t - time at which to evaluate
3569: .  U - state at which to evaluate
3570: .  Udot - time derivative of state vector
3571: .  shift - shift to apply
3572: -  ctx - context

3574:    Output Arguments:
3575: +  A - pointer to operator
3576: .  B - pointer to preconditioning matrix
3577: -  flg - matrix structure flag

3579:    Level: advanced

3581:    Notes:
3582:    This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.

3584:    It is only appropriate for problems of the form

3586: $     M Udot = F(U,t)

3588:   where M is constant and F is non-stiff.  The user must pass M to TSSetIJacobian().  The current implementation only
3589:   works with IMEX time integration methods such as TSROSW and TSARKIMEX, since there is no support for de-constructing
3590:   an implicit operator of the form

3592: $    shift*M + J

3594:   where J is the Jacobian of -F(U).  Support may be added in a future version of PETSc, but for now, the user must store
3595:   a copy of M or reassemble it when requested.

3597: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
3598: @*/
3599: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat *A,Mat *B,MatStructure *flg,void *ctx)
3600: {

3604:   MatScale(*A, shift / ts->ijacobian.shift);
3605:   ts->ijacobian.shift = shift;
3606:   *flg = SAME_PRECONDITIONER;
3607:   return(0);
3608: }

3612: /*@
3613:    TSGetEquationType - Gets the type of the equation that TS is solving.

3615:    Not Collective

3617:    Input Parameter:
3618: .  ts - the TS context

3620:    Output Parameter:
3621: .  equation_type - see TSEquationType

3623:    Level: beginner

3625: .keywords: TS, equation type

3627: .seealso: TSSetEquationType(), TSEquationType
3628: @*/
3629: PetscErrorCode  TSGetEquationType(TS ts,TSEquationType *equation_type)
3630: {
3634:   *equation_type = ts->equation_type;
3635:   return(0);
3636: }

3640: /*@
3641:    TSSetEquationType - Sets the type of the equation that TS is solving.

3643:    Not Collective

3645:    Input Parameter:
3646: +  ts - the TS context
3647: .  equation_type - see TSEquationType

3649:    Level: advanced

3651: .keywords: TS, equation type

3653: .seealso: TSGetEquationType(), TSEquationType
3654: @*/
3655: PetscErrorCode  TSSetEquationType(TS ts,TSEquationType equation_type)
3656: {
3659:   ts->equation_type = equation_type;
3660:   return(0);
3661: }

3665: /*@
3666:    TSGetConvergedReason - Gets the reason the TS iteration was stopped.

3668:    Not Collective

3670:    Input Parameter:
3671: .  ts - the TS context

3673:    Output Parameter:
3674: .  reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
3675:             manual pages for the individual convergence tests for complete lists

3677:    Level: beginner

3679:    Notes:
3680:    Can only be called after the call to TSSolve() is complete.

3682: .keywords: TS, nonlinear, set, convergence, test

3684: .seealso: TSSetConvergenceTest(), TSConvergedReason
3685: @*/
3686: PetscErrorCode  TSGetConvergedReason(TS ts,TSConvergedReason *reason)
3687: {
3691:   *reason = ts->reason;
3692:   return(0);
3693: }

3697: /*@
3698:    TSSetConvergedReason - Sets the reason for handling the convergence of TSSolve.

3700:    Not Collective

3702:    Input Parameter:
3703: +  ts - the TS context
3704: .  reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
3705:             manual pages for the individual convergence tests for complete lists

3707:    Level: advanced

3709:    Notes:
3710:    Can only be called during TSSolve() is active.

3712: .keywords: TS, nonlinear, set, convergence, test

3714: .seealso: TSConvergedReason
3715: @*/
3716: PetscErrorCode  TSSetConvergedReason(TS ts,TSConvergedReason reason)
3717: {
3720:   ts->reason = reason;
3721:   return(0);
3722: }

3726: /*@
3727:    TSGetSolveTime - Gets the time after a call to TSSolve()

3729:    Not Collective

3731:    Input Parameter:
3732: .  ts - the TS context

3734:    Output Parameter:
3735: .  ftime - the final time. This time should correspond to the final time set with TSSetDuration()

3737:    Level: beginner

3739:    Notes:
3740:    Can only be called after the call to TSSolve() is complete.

3742: .keywords: TS, nonlinear, set, convergence, test

3744: .seealso: TSSetConvergenceTest(), TSConvergedReason
3745: @*/
3746: PetscErrorCode  TSGetSolveTime(TS ts,PetscReal *ftime)
3747: {
3751:   *ftime = ts->solvetime;
3752:   return(0);
3753: }

3757: /*@
3758:    TSGetSNESIterations - Gets the total number of nonlinear iterations
3759:    used by the time integrator.

3761:    Not Collective

3763:    Input Parameter:
3764: .  ts - TS context

3766:    Output Parameter:
3767: .  nits - number of nonlinear iterations

3769:    Notes:
3770:    This counter is reset to zero for each successive call to TSSolve().

3772:    Level: intermediate

3774: .keywords: TS, get, number, nonlinear, iterations

3776: .seealso:  TSGetKSPIterations()
3777: @*/
3778: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
3779: {
3783:   *nits = ts->snes_its;
3784:   return(0);
3785: }

3789: /*@
3790:    TSGetKSPIterations - Gets the total number of linear iterations
3791:    used by the time integrator.

3793:    Not Collective

3795:    Input Parameter:
3796: .  ts - TS context

3798:    Output Parameter:
3799: .  lits - number of linear iterations

3801:    Notes:
3802:    This counter is reset to zero for each successive call to TSSolve().

3804:    Level: intermediate

3806: .keywords: TS, get, number, linear, iterations

3808: .seealso:  TSGetSNESIterations(), SNESGetKSPIterations()
3809: @*/
3810: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
3811: {
3815:   *lits = ts->ksp_its;
3816:   return(0);
3817: }

3821: /*@
3822:    TSGetStepRejections - Gets the total number of rejected steps.

3824:    Not Collective

3826:    Input Parameter:
3827: .  ts - TS context

3829:    Output Parameter:
3830: .  rejects - number of steps rejected

3832:    Notes:
3833:    This counter is reset to zero for each successive call to TSSolve().

3835:    Level: intermediate

3837: .keywords: TS, get, number

3839: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
3840: @*/
3841: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
3842: {
3846:   *rejects = ts->reject;
3847:   return(0);
3848: }

3852: /*@
3853:    TSGetSNESFailures - Gets the total number of failed SNES solves

3855:    Not Collective

3857:    Input Parameter:
3858: .  ts - TS context

3860:    Output Parameter:
3861: .  fails - number of failed nonlinear solves

3863:    Notes:
3864:    This counter is reset to zero for each successive call to TSSolve().

3866:    Level: intermediate

3868: .keywords: TS, get, number

3870: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
3871: @*/
3872: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
3873: {
3877:   *fails = ts->num_snes_failures;
3878:   return(0);
3879: }

3883: /*@
3884:    TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails

3886:    Not Collective

3888:    Input Parameter:
3889: +  ts - TS context
3890: -  rejects - maximum number of rejected steps, pass -1 for unlimited

3892:    Notes:
3893:    The counter is reset to zero for each step

3895:    Options Database Key:
3896:  .  -ts_max_reject - Maximum number of step rejections before a step fails

3898:    Level: intermediate

3900: .keywords: TS, set, maximum, number

3902: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
3903: @*/
3904: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
3905: {
3908:   ts->max_reject = rejects;
3909:   return(0);
3910: }

3914: /*@
3915:    TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves

3917:    Not Collective

3919:    Input Parameter:
3920: +  ts - TS context
3921: -  fails - maximum number of failed nonlinear solves, pass -1 for unlimited

3923:    Notes:
3924:    The counter is reset to zero for each successive call to TSSolve().

3926:    Options Database Key:
3927:  .  -ts_max_snes_failures - Maximum number of nonlinear solve failures

3929:    Level: intermediate

3931: .keywords: TS, set, maximum, number

3933: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
3934: @*/
3935: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
3936: {
3939:   ts->max_snes_failures = fails;
3940:   return(0);
3941: }

3945: /*@
3946:    TSSetErrorIfStepFails - Error if no step succeeds

3948:    Not Collective

3950:    Input Parameter:
3951: +  ts - TS context
3952: -  err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure

3954:    Options Database Key:
3955:  .  -ts_error_if_step_fails - Error if no step succeeds

3957:    Level: intermediate

3959: .keywords: TS, set, error

3961: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
3962: @*/
3963: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
3964: {
3967:   ts->errorifstepfailed = err;
3968:   return(0);
3969: }

3973: /*@C
3974:    TSMonitorSolutionBinary - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file

3976:    Collective on TS

3978:    Input Parameters:
3979: +  ts - the TS context
3980: .  step - current time-step
3981: .  ptime - current time
3982: .  u - current state
3983: -  viewer - binary viewer

3985:    Level: intermediate

3987: .keywords: TS,  vector, monitor, view

3989: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3990: @*/
3991: PetscErrorCode  TSMonitorSolutionBinary(TS ts,PetscInt step,PetscReal ptime,Vec u,void *viewer)
3992: {
3994:   PetscViewer    v = (PetscViewer)viewer;

3997:   VecView(u,v);
3998:   return(0);
3999: }

4003: /*@C
4004:    TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.

4006:    Collective on TS

4008:    Input Parameters:
4009: +  ts - the TS context
4010: .  step - current time-step
4011: .  ptime - current time
4012: .  u - current state
4013: -  filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)

4015:    Level: intermediate

4017:    Notes:
4018:    The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
4019:    These are named according to the file name template.

4021:    This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().

4023: .keywords: TS,  vector, monitor, view

4025: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4026: @*/
4027: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec u,void *filenametemplate)
4028: {
4030:   char           filename[PETSC_MAX_PATH_LEN];
4031:   PetscViewer    viewer;

4034:   PetscSNPrintf(filename,sizeof(filename),(const char*)filenametemplate,step);
4035:   PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts),filename,FILE_MODE_WRITE,&viewer);
4036:   VecView(u,viewer);
4037:   PetscViewerDestroy(&viewer);
4038:   return(0);
4039: }

4043: /*@C
4044:    TSMonitorSolutionVTKDestroy - Destroy context for monitoring

4046:    Collective on TS

4048:    Input Parameters:
4049: .  filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)

4051:    Level: intermediate

4053:    Note:
4054:    This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().

4056: .keywords: TS,  vector, monitor, view

4058: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
4059: @*/
4060: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
4061: {

4065:   PetscFree(*(char**)filenametemplate);
4066:   return(0);
4067: }

4071: /*@
4072:    TSGetAdapt - Get the adaptive controller context for the current method

4074:    Collective on TS if controller has not been created yet

4076:    Input Arguments:
4077: .  ts - time stepping context

4079:    Output Arguments:
4080: .  adapt - adaptive controller

4082:    Level: intermediate

4084: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
4085: @*/
4086: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
4087: {

4093:   if (!ts->adapt) {
4094:     TSAdaptCreate(PetscObjectComm((PetscObject)ts),&ts->adapt);
4095:     PetscLogObjectParent(ts,ts->adapt);
4096:     PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
4097:   }
4098:   *adapt = ts->adapt;
4099:   return(0);
4100: }

4104: /*@
4105:    TSSetTolerances - Set tolerances for local truncation error when using adaptive controller

4107:    Logically Collective

4109:    Input Arguments:
4110: +  ts - time integration context
4111: .  atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
4112: .  vatol - vector of absolute tolerances or NULL, used in preference to atol if present
4113: .  rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
4114: -  vrtol - vector of relative tolerances or NULL, used in preference to atol if present

4116:    Level: beginner

4118: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSGetTolerances()
4119: @*/
4120: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
4121: {

4125:   if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
4126:   if (vatol) {
4127:     PetscObjectReference((PetscObject)vatol);
4128:     VecDestroy(&ts->vatol);

4130:     ts->vatol = vatol;
4131:   }
4132:   if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
4133:   if (vrtol) {
4134:     PetscObjectReference((PetscObject)vrtol);
4135:     VecDestroy(&ts->vrtol);

4137:     ts->vrtol = vrtol;
4138:   }
4139:   return(0);
4140: }

4144: /*@
4145:    TSGetTolerances - Get tolerances for local truncation error when using adaptive controller

4147:    Logically Collective

4149:    Input Arguments:
4150: .  ts - time integration context

4152:    Output Arguments:
4153: +  atol - scalar absolute tolerances, NULL to ignore
4154: .  vatol - vector of absolute tolerances, NULL to ignore
4155: .  rtol - scalar relative tolerances, NULL to ignore
4156: -  vrtol - vector of relative tolerances, NULL to ignore

4158:    Level: beginner

4160: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSSetTolerances()
4161: @*/
4162: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
4163: {
4165:   if (atol)  *atol  = ts->atol;
4166:   if (vatol) *vatol = ts->vatol;
4167:   if (rtol)  *rtol  = ts->rtol;
4168:   if (vrtol) *vrtol = ts->vrtol;
4169:   return(0);
4170: }

4174: /*@
4175:    TSErrorNormWRMS - compute a weighted norm of the difference between a vector and the current state

4177:    Collective on TS

4179:    Input Arguments:
4180: +  ts - time stepping context
4181: -  Y - state vector to be compared to ts->vec_sol

4183:    Output Arguments:
4184: .  norm - weighted norm, a value of 1.0 is considered small

4186:    Level: developer

4188: .seealso: TSSetTolerances()
4189: @*/
4190: PetscErrorCode TSErrorNormWRMS(TS ts,Vec Y,PetscReal *norm)
4191: {
4192:   PetscErrorCode    ierr;
4193:   PetscInt          i,n,N;
4194:   const PetscScalar *u,*y;
4195:   Vec               U;
4196:   PetscReal         sum,gsum;

4202:   U = ts->vec_sol;
4204:   if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"Y cannot be the TS solution vector");

4206:   VecGetSize(U,&N);
4207:   VecGetLocalSize(U,&n);
4208:   VecGetArrayRead(U,&u);
4209:   VecGetArrayRead(Y,&y);
4210:   sum  = 0.;
4211:   if (ts->vatol && ts->vrtol) {
4212:     const PetscScalar *atol,*rtol;
4213:     VecGetArrayRead(ts->vatol,&atol);
4214:     VecGetArrayRead(ts->vrtol,&rtol);
4215:     for (i=0; i<n; i++) {
4216:       PetscReal tol = PetscRealPart(atol[i]) + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4217:       sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4218:     }
4219:     VecRestoreArrayRead(ts->vatol,&atol);
4220:     VecRestoreArrayRead(ts->vrtol,&rtol);
4221:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
4222:     const PetscScalar *atol;
4223:     VecGetArrayRead(ts->vatol,&atol);
4224:     for (i=0; i<n; i++) {
4225:       PetscReal tol = PetscRealPart(atol[i]) + ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4226:       sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4227:     }
4228:     VecRestoreArrayRead(ts->vatol,&atol);
4229:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
4230:     const PetscScalar *rtol;
4231:     VecGetArrayRead(ts->vrtol,&rtol);
4232:     for (i=0; i<n; i++) {
4233:       PetscReal tol = ts->atol + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4234:       sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4235:     }
4236:     VecRestoreArrayRead(ts->vrtol,&rtol);
4237:   } else {                      /* scalar atol, scalar rtol */
4238:     for (i=0; i<n; i++) {
4239:       PetscReal tol = ts->atol + ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4240:       sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4241:     }
4242:   }
4243:   VecRestoreArrayRead(U,&u);
4244:   VecRestoreArrayRead(Y,&y);

4246:   MPI_Allreduce(&sum,&gsum,1,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
4247:   *norm = PetscSqrtReal(gsum / N);
4248:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
4249:   return(0);
4250: }

4254: /*@
4255:    TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler

4257:    Logically Collective on TS

4259:    Input Arguments:
4260: +  ts - time stepping context
4261: -  cfltime - maximum stable time step if using forward Euler (value can be different on each process)

4263:    Note:
4264:    After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()

4266:    Level: intermediate

4268: .seealso: TSGetCFLTime(), TSADAPTCFL
4269: @*/
4270: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
4271: {
4274:   ts->cfltime_local = cfltime;
4275:   ts->cfltime       = -1.;
4276:   return(0);
4277: }

4281: /*@
4282:    TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler

4284:    Collective on TS

4286:    Input Arguments:
4287: .  ts - time stepping context

4289:    Output Arguments:
4290: .  cfltime - maximum stable time step for forward Euler

4292:    Level: advanced

4294: .seealso: TSSetCFLTimeLocal()
4295: @*/
4296: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
4297: {

4301:   if (ts->cfltime < 0) {
4302:     MPI_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
4303:   }
4304:   *cfltime = ts->cfltime;
4305:   return(0);
4306: }

4310: /*@
4311:    TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu

4313:    Input Parameters:
4314: .  ts   - the TS context.
4315: .  xl   - lower bound.
4316: .  xu   - upper bound.

4318:    Notes:
4319:    If this routine is not called then the lower and upper bounds are set to
4320:    SNES_VI_NINF and SNES_VI_INF respectively during SNESSetUp().

4322:    Level: advanced

4324: @*/
4325: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
4326: {
4328:   SNES           snes;

4331:   TSGetSNES(ts,&snes);
4332:   SNESVISetVariableBounds(snes,xl,xu);
4333:   return(0);
4334: }

4336: #if defined(PETSC_HAVE_MATLAB_ENGINE)
4337: #include <mex.h>

4339: typedef struct {char *funcname; mxArray *ctx;} TSMatlabContext;

4343: /*
4344:    TSComputeFunction_Matlab - Calls the function that has been set with
4345:                          TSSetFunctionMatlab().

4347:    Collective on TS

4349:    Input Parameters:
4350: +  snes - the TS context
4351: -  u - input vector

4353:    Output Parameter:
4354: .  y - function vector, as set by TSSetFunction()

4356:    Notes:
4357:    TSComputeFunction() is typically used within nonlinear solvers
4358:    implementations, so most users would not generally call this routine
4359:    themselves.

4361:    Level: developer

4363: .keywords: TS, nonlinear, compute, function

4365: .seealso: TSSetFunction(), TSGetFunction()
4366: */
4367: PetscErrorCode  TSComputeFunction_Matlab(TS snes,PetscReal time,Vec u,Vec udot,Vec y, void *ctx)
4368: {
4369:   PetscErrorCode  ierr;
4370:   TSMatlabContext *sctx = (TSMatlabContext*)ctx;
4371:   int             nlhs  = 1,nrhs = 7;
4372:   mxArray         *plhs[1],*prhs[7];
4373:   long long int   lx = 0,lxdot = 0,ly = 0,ls = 0;


4383:   PetscMemcpy(&ls,&snes,sizeof(snes));
4384:   PetscMemcpy(&lx,&u,sizeof(u));
4385:   PetscMemcpy(&lxdot,&udot,sizeof(udot));
4386:   PetscMemcpy(&ly,&y,sizeof(u));

4388:   prhs[0] =  mxCreateDoubleScalar((double)ls);
4389:   prhs[1] =  mxCreateDoubleScalar(time);
4390:   prhs[2] =  mxCreateDoubleScalar((double)lx);
4391:   prhs[3] =  mxCreateDoubleScalar((double)lxdot);
4392:   prhs[4] =  mxCreateDoubleScalar((double)ly);
4393:   prhs[5] =  mxCreateString(sctx->funcname);
4394:   prhs[6] =  sctx->ctx;
4395:    mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeFunctionInternal");
4396:    mxGetScalar(plhs[0]);
4397:   mxDestroyArray(prhs[0]);
4398:   mxDestroyArray(prhs[1]);
4399:   mxDestroyArray(prhs[2]);
4400:   mxDestroyArray(prhs[3]);
4401:   mxDestroyArray(prhs[4]);
4402:   mxDestroyArray(prhs[5]);
4403:   mxDestroyArray(plhs[0]);
4404:   return(0);
4405: }


4410: /*
4411:    TSSetFunctionMatlab - Sets the function evaluation routine and function
4412:    vector for use by the TS routines in solving ODEs
4413:    equations from MATLAB. Here the function is a string containing the name of a MATLAB function

4415:    Logically Collective on TS

4417:    Input Parameters:
4418: +  ts - the TS context
4419: -  func - function evaluation routine

4421:    Calling sequence of func:
4422: $    func (TS ts,PetscReal time,Vec u,Vec udot,Vec f,void *ctx);

4424:    Level: beginner

4426: .keywords: TS, nonlinear, set, function

4428: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
4429: */
4430: PetscErrorCode  TSSetFunctionMatlab(TS ts,const char *func,mxArray *ctx)
4431: {
4432:   PetscErrorCode  ierr;
4433:   TSMatlabContext *sctx;

4436:   /* currently sctx is memory bleed */
4437:   PetscMalloc(sizeof(TSMatlabContext),&sctx);
4438:   PetscStrallocpy(func,&sctx->funcname);
4439:   /*
4440:      This should work, but it doesn't
4441:   sctx->ctx = ctx;
4442:   mexMakeArrayPersistent(sctx->ctx);
4443:   */
4444:   sctx->ctx = mxDuplicateArray(ctx);

4446:   TSSetIFunction(ts,NULL,TSComputeFunction_Matlab,sctx);
4447:   return(0);
4448: }

4452: /*
4453:    TSComputeJacobian_Matlab - Calls the function that has been set with
4454:                          TSSetJacobianMatlab().

4456:    Collective on TS

4458:    Input Parameters:
4459: +  ts - the TS context
4460: .  u - input vector
4461: .  A, B - the matrices
4462: -  ctx - user context

4464:    Output Parameter:
4465: .  flag - structure of the matrix

4467:    Level: developer

4469: .keywords: TS, nonlinear, compute, function

4471: .seealso: TSSetFunction(), TSGetFunction()
4472: @*/
4473: PetscErrorCode  TSComputeJacobian_Matlab(TS ts,PetscReal time,Vec u,Vec udot,PetscReal shift,Mat *A,Mat *B,MatStructure *flag, void *ctx)
4474: {
4475:   PetscErrorCode  ierr;
4476:   TSMatlabContext *sctx = (TSMatlabContext*)ctx;
4477:   int             nlhs  = 2,nrhs = 9;
4478:   mxArray         *plhs[2],*prhs[9];
4479:   long long int   lx = 0,lxdot = 0,lA = 0,ls = 0, lB = 0;


4485:   /* call Matlab function in ctx with arguments u and y */

4487:   PetscMemcpy(&ls,&ts,sizeof(ts));
4488:   PetscMemcpy(&lx,&u,sizeof(u));
4489:   PetscMemcpy(&lxdot,&udot,sizeof(u));
4490:   PetscMemcpy(&lA,A,sizeof(u));
4491:   PetscMemcpy(&lB,B,sizeof(u));

4493:   prhs[0] =  mxCreateDoubleScalar((double)ls);
4494:   prhs[1] =  mxCreateDoubleScalar((double)time);
4495:   prhs[2] =  mxCreateDoubleScalar((double)lx);
4496:   prhs[3] =  mxCreateDoubleScalar((double)lxdot);
4497:   prhs[4] =  mxCreateDoubleScalar((double)shift);
4498:   prhs[5] =  mxCreateDoubleScalar((double)lA);
4499:   prhs[6] =  mxCreateDoubleScalar((double)lB);
4500:   prhs[7] =  mxCreateString(sctx->funcname);
4501:   prhs[8] =  sctx->ctx;
4502:    mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeJacobianInternal");
4503:    mxGetScalar(plhs[0]);
4504:   *flag   =  (MatStructure) mxGetScalar(plhs[1]);
4505:   mxDestroyArray(prhs[0]);
4506:   mxDestroyArray(prhs[1]);
4507:   mxDestroyArray(prhs[2]);
4508:   mxDestroyArray(prhs[3]);
4509:   mxDestroyArray(prhs[4]);
4510:   mxDestroyArray(prhs[5]);
4511:   mxDestroyArray(prhs[6]);
4512:   mxDestroyArray(prhs[7]);
4513:   mxDestroyArray(plhs[0]);
4514:   mxDestroyArray(plhs[1]);
4515:   return(0);
4516: }


4521: /*
4522:    TSSetJacobianMatlab - Sets the Jacobian function evaluation routine and two empty Jacobian matrices
4523:    vector for use by the TS routines in solving ODEs from MATLAB. Here the function is a string containing the name of a MATLAB function

4525:    Logically Collective on TS

4527:    Input Parameters:
4528: +  ts - the TS context
4529: .  A,B - Jacobian matrices
4530: .  func - function evaluation routine
4531: -  ctx - user context

4533:    Calling sequence of func:
4534: $    flag = func (TS ts,PetscReal time,Vec u,Vec udot,Mat A,Mat B,void *ctx);


4537:    Level: developer

4539: .keywords: TS, nonlinear, set, function

4541: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
4542: */
4543: PetscErrorCode  TSSetJacobianMatlab(TS ts,Mat A,Mat B,const char *func,mxArray *ctx)
4544: {
4545:   PetscErrorCode  ierr;
4546:   TSMatlabContext *sctx;

4549:   /* currently sctx is memory bleed */
4550:   PetscMalloc(sizeof(TSMatlabContext),&sctx);
4551:   PetscStrallocpy(func,&sctx->funcname);
4552:   /*
4553:      This should work, but it doesn't
4554:   sctx->ctx = ctx;
4555:   mexMakeArrayPersistent(sctx->ctx);
4556:   */
4557:   sctx->ctx = mxDuplicateArray(ctx);

4559:   TSSetIJacobian(ts,A,B,TSComputeJacobian_Matlab,sctx);
4560:   return(0);
4561: }

4565: /*
4566:    TSMonitor_Matlab - Calls the function that has been set with TSMonitorSetMatlab().

4568:    Collective on TS

4570: .seealso: TSSetFunction(), TSGetFunction()
4571: @*/
4572: PetscErrorCode  TSMonitor_Matlab(TS ts,PetscInt it, PetscReal time,Vec u, void *ctx)
4573: {
4574:   PetscErrorCode  ierr;
4575:   TSMatlabContext *sctx = (TSMatlabContext*)ctx;
4576:   int             nlhs  = 1,nrhs = 6;
4577:   mxArray         *plhs[1],*prhs[6];
4578:   long long int   lx = 0,ls = 0;


4584:   PetscMemcpy(&ls,&ts,sizeof(ts));
4585:   PetscMemcpy(&lx,&u,sizeof(u));

4587:   prhs[0] =  mxCreateDoubleScalar((double)ls);
4588:   prhs[1] =  mxCreateDoubleScalar((double)it);
4589:   prhs[2] =  mxCreateDoubleScalar((double)time);
4590:   prhs[3] =  mxCreateDoubleScalar((double)lx);
4591:   prhs[4] =  mxCreateString(sctx->funcname);
4592:   prhs[5] =  sctx->ctx;
4593:    mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSMonitorInternal");
4594:    mxGetScalar(plhs[0]);
4595:   mxDestroyArray(prhs[0]);
4596:   mxDestroyArray(prhs[1]);
4597:   mxDestroyArray(prhs[2]);
4598:   mxDestroyArray(prhs[3]);
4599:   mxDestroyArray(prhs[4]);
4600:   mxDestroyArray(plhs[0]);
4601:   return(0);
4602: }


4607: /*
4608:    TSMonitorSetMatlab - Sets the monitor function from Matlab

4610:    Level: developer

4612: .keywords: TS, nonlinear, set, function

4614: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
4615: */
4616: PetscErrorCode  TSMonitorSetMatlab(TS ts,const char *func,mxArray *ctx)
4617: {
4618:   PetscErrorCode  ierr;
4619:   TSMatlabContext *sctx;

4622:   /* currently sctx is memory bleed */
4623:   PetscMalloc(sizeof(TSMatlabContext),&sctx);
4624:   PetscStrallocpy(func,&sctx->funcname);
4625:   /*
4626:      This should work, but it doesn't
4627:   sctx->ctx = ctx;
4628:   mexMakeArrayPersistent(sctx->ctx);
4629:   */
4630:   sctx->ctx = mxDuplicateArray(ctx);

4632:   TSMonitorSet(ts,TSMonitor_Matlab,sctx,NULL);
4633:   return(0);
4634: }
4635: #endif



4641: /*@C
4642:    TSMonitorLGSolution - Monitors progress of the TS solvers by plotting each component of the solution vector
4643:        in a time based line graph

4645:    Collective on TS

4647:    Input Parameters:
4648: +  ts - the TS context
4649: .  step - current time-step
4650: .  ptime - current time
4651: -  lg - a line graph object

4653:    Level: intermediate

4655:     Notes: each process in a parallel run displays its component solutions in a separate window

4657: .keywords: TS,  vector, monitor, view

4659: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4660: @*/
4661: PetscErrorCode  TSMonitorLGSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4662: {
4663:   PetscErrorCode    ierr;
4664:   TSMonitorLGCtx    ctx = (TSMonitorLGCtx)dummy;
4665:   const PetscScalar *yy;
4666:   PetscInt          dim;

4669:   if (!step) {
4670:     PetscDrawAxis axis;
4671:     PetscDrawLGGetAxis(ctx->lg,&axis);
4672:     PetscDrawAxisSetLabels(axis,"Solution as function of time","Time","Solution");
4673:     VecGetLocalSize(u,&dim);
4674:     PetscDrawLGSetDimension(ctx->lg,dim);
4675:     PetscDrawLGReset(ctx->lg);
4676:   }
4677:   VecGetArrayRead(u,&yy);
4678: #if defined(PETSC_USE_COMPLEX)
4679:   {
4680:     PetscReal *yreal;
4681:     PetscInt  i,n;
4682:     VecGetLocalSize(u,&n);
4683:     PetscMalloc(n*sizeof(PetscReal),&yreal);
4684:     for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
4685:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
4686:     PetscFree(yreal);
4687:   }
4688: #else
4689:   PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
4690: #endif
4691:   VecRestoreArrayRead(u,&yy);
4692:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
4693:     PetscDrawLGDraw(ctx->lg);
4694:   }
4695:   return(0);
4696: }

4700: /*@C
4701:    TSMonitorLGError - Monitors progress of the TS solvers by plotting each component of the solution vector
4702:        in a time based line graph

4704:    Collective on TS

4706:    Input Parameters:
4707: +  ts - the TS context
4708: .  step - current time-step
4709: .  ptime - current time
4710: -  lg - a line graph object

4712:    Level: intermediate

4714:    Notes:
4715:    Only for sequential solves.

4717:    The user must provide the solution using TSSetSolutionFunction() to use this monitor.

4719:    Options Database Keys:
4720: .  -ts_monitor_lg_error - create a graphical monitor of error history

4722: .keywords: TS,  vector, monitor, view

4724: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4725: @*/
4726: PetscErrorCode  TSMonitorLGError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4727: {
4728:   PetscErrorCode    ierr;
4729:   TSMonitorLGCtx    ctx = (TSMonitorLGCtx)dummy;
4730:   const PetscScalar *yy;
4731:   Vec               y;
4732:   PetscInt          dim;

4735:   if (!step) {
4736:     PetscDrawAxis axis;
4737:     PetscDrawLGGetAxis(ctx->lg,&axis);
4738:     PetscDrawAxisSetLabels(axis,"Error in solution as function of time","Time","Solution");
4739:     VecGetLocalSize(u,&dim);
4740:     PetscDrawLGSetDimension(ctx->lg,dim);
4741:     PetscDrawLGReset(ctx->lg);
4742:   }
4743:   VecDuplicate(u,&y);
4744:   TSComputeSolutionFunction(ts,ptime,y);
4745:   VecAXPY(y,-1.0,u);
4746:   VecGetArrayRead(y,&yy);
4747: #if defined(PETSC_USE_COMPLEX)
4748:   {
4749:     PetscReal *yreal;
4750:     PetscInt  i,n;
4751:     VecGetLocalSize(y,&n);
4752:     PetscMalloc(n*sizeof(PetscReal),&yreal);
4753:     for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
4754:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
4755:     PetscFree(yreal);
4756:   }
4757: #else
4758:   PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
4759: #endif
4760:   VecRestoreArrayRead(y,&yy);
4761:   VecDestroy(&y);
4762:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
4763:     PetscDrawLGDraw(ctx->lg);
4764:   }
4765:   return(0);
4766: }

4770: PetscErrorCode TSMonitorLGSNESIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
4771: {
4772:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
4773:   PetscReal      x   = ptime,y;
4775:   PetscInt       its;

4778:   if (!n) {
4779:     PetscDrawAxis axis;

4781:     PetscDrawLGGetAxis(ctx->lg,&axis);
4782:     PetscDrawAxisSetLabels(axis,"Nonlinear iterations as function of time","Time","SNES Iterations");
4783:     PetscDrawLGReset(ctx->lg);

4785:     ctx->snes_its = 0;
4786:   }
4787:   TSGetSNESIterations(ts,&its);
4788:   y    = its - ctx->snes_its;
4789:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
4790:   if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
4791:     PetscDrawLGDraw(ctx->lg);
4792:   }
4793:   ctx->snes_its = its;
4794:   return(0);
4795: }

4799: PetscErrorCode TSMonitorLGKSPIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
4800: {
4801:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
4802:   PetscReal      x   = ptime,y;
4804:   PetscInt       its;

4807:   if (!n) {
4808:     PetscDrawAxis axis;

4810:     PetscDrawLGGetAxis(ctx->lg,&axis);
4811:     PetscDrawAxisSetLabels(axis,"Linear iterations as function of time","Time","KSP Iterations");
4812:     PetscDrawLGReset(ctx->lg);

4814:     ctx->ksp_its = 0;
4815:   }
4816:   TSGetKSPIterations(ts,&its);
4817:   y    = its - ctx->ksp_its;
4818:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
4819:   if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
4820:     PetscDrawLGDraw(ctx->lg);
4821:   }
4822:   ctx->ksp_its = its;
4823:   return(0);
4824: }

4828: /*@
4829:    TSComputeLinearStability - computes the linear stability function at a point

4831:    Collective on TS and Vec

4833:    Input Parameters:
4834: +  ts - the TS context
4835: -  xr,xi - real and imaginary part of input arguments

4837:    Output Parameters:
4838: .  yr,yi - real and imaginary part of function value

4840:    Level: developer

4842: .keywords: TS, compute

4844: .seealso: TSSetRHSFunction(), TSComputeIFunction()
4845: @*/
4846: PetscErrorCode TSComputeLinearStability(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
4847: {

4852:   if (!ts->ops->linearstability) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Linearized stability function not provided for this method");
4853:   (*ts->ops->linearstability)(ts,xr,xi,yr,yi);
4854:   return(0);
4855: }