Actual source code: ido.c

petsc-3.4.5 2014-06-29
  1: /* ido.f -- translated by f2c (version of 25 March 1992  12:58:56).*/

  3: #include <../src/mat/color/color.h>

  5: static PetscInt c_n1 = -1;

  9: PetscErrorCode MINPACKido(PetscInt *m,PetscInt * n,const PetscInt * indrow,const PetscInt * jpntr,const PetscInt * indcol,const PetscInt * ipntr,PetscInt * ndeg,
 10:                PetscInt *list,PetscInt *maxclq, PetscInt *iwa1, PetscInt *iwa2, PetscInt *iwa3, PetscInt *iwa4)
 11: {
 12:   /* System generated locals */
 13:   PetscInt i__1, i__2, i__3, i__4;

 15:   /* Local variables */
 16:   PetscInt jcol = 0, ncomp = 0, ic, ip, jp, ir, maxinc, numinc, numord, maxlst, numwgt, numlst;

 18: /*     Given the sparsity pattern of an m by n matrix A, this */
 19: /*     subroutine determines an incidence-degree ordering of the */
 20: /*     columns of A. */
 21: /*     The incidence-degree ordering is defined for the loopless */
 22: /*     graph G with vertices a(j), j = 1,2,...,n where a(j) is the */
 23: /*     j-th column of A and with edge (a(i),a(j)) if and only if */
 24: /*     columns i and j have a non-zero in the same row position. */
 25: /*     The incidence-degree ordering is determined recursively by */
 26: /*     letting list(k), k = 1,...,n be a column with maximal */
 27: /*     incidence to the subgraph spanned by the ordered columns. */
 28: /*     Among all the columns of maximal incidence, ido chooses a */
 29: /*     column of maximal degree. */
 30: /*     The subroutine statement is */
 31: /*       subroutine ido(m,n,indrow,jpntr,indcol,ipntr,ndeg,list, */
 32: /*                      maxclq,iwa1,iwa2,iwa3,iwa4) */
 33: /*     where */
 34: /*       m is a positive integer input variable set to the number */
 35: /*         of rows of A. */
 36: /*       n is a positive integer input variable set to the number */
 37: /*         of columns of A. */
 38: /*       indrow is an integer input array which contains the row */
 39: /*         indices for the non-zeroes in the matrix A. */
 40: /*       jpntr is an integer input array of length n + 1 which */
 41: /*         specifies the locations of the row indices in indrow. */
 42: /*         The row indices for column j are */
 43: /*               indrow(k), k = jpntr(j),...,jpntr(j+1)-1. */
 44: /*         Note that jpntr(n+1)-1 is then the number of non-zero */
 45: /*         elements of the matrix A. */
 46: /*       indcol is an integer input array which contains the */
 47: /*         column indices for the non-zeroes in the matrix A. */
 48: /*       ipntr is an integer input array of length m + 1 which */
 49: /*         specifies the locations of the column indices in indcol. */
 50: /*         The column indices for row i are */
 51: /*               indcol(k), k = ipntr(i),...,ipntr(i+1)-1. */
 52: /*         Note that ipntr(m+1)-1 is then the number of non-zero */
 53: /*         elements of the matrix A. */
 54: /*       ndeg is an integer input array of length n which specifies */
 55: /*         the degree sequence. The degree of the j-th column */
 56: /*         of A is ndeg(j). */
 57: /*       list is an integer output array of length n which specifies */
 58: /*         the incidence-degree ordering of the columns of A. The j-th */
 59: /*         column in this order is list(j). */
 60: /*       maxclq is an integer output variable set to the size */
 61: /*         of the largest clique found during the ordering. */
 62: /*       iwa1,iwa2,iwa3, and iwa4 are integer work arrays of length n. */
 63: /*     Subprograms called */
 64: /*       MINPACK-supplied ... numsrt */
 65: /*       FORTRAN-supplied ... max */
 66: /*     Argonne National Laboratory. MINPACK Project. August 1984. */
 67: /*     Thomas F. Coleman, Burton S. Garbow, Jorge J. More' */

 69: /*     Sort the degree sequence. */

 72:   /* Parameter adjustments */
 73:   --iwa4;
 74:   --iwa3;
 75:   --iwa2;
 76:   --list;
 77:   --ndeg;
 78:   --ipntr;
 79:   --indcol;
 80:   --jpntr;
 81:   --indrow;

 83:   /* Function Body */
 84:   i__1 = *n - 1;
 85:   MINPACKnumsrt(n, &i__1, &ndeg[1], &c_n1, &iwa4[1], &iwa2[1], &iwa3[1]);

 87: /*     Initialization block. */
 88: /*     Create a doubly-linked list to access the incidences of the */
 89: /*     columns. The pointers for the linked list are as follows. */
 90: /*     Each un-ordered column ic is in a list (the incidence list) */
 91: /*     of columns with the same incidence. */
 92: /*     iwa1(numinc) is the first column in the numinc list */
 93: /*     unless iwa1(numinc) = 0. In this case there are */
 94: /*     no columns in the numinc list. */
 95: /*     iwa2(ic) is the column before ic in the incidence list */
 96: /*     unless iwa2(ic) = 0. In this case ic is the first */
 97: /*     column in this incidence list. */
 98: /*     iwa3(ic) is the column after ic in the incidence list */
 99: /*     unless iwa3(ic) = 0. In this case ic is the last */
100: /*     column in this incidence list. */
101: /*     If ic is an un-ordered column, then list(ic) is the */
102: /*     incidence of ic to the graph induced by the ordered */
103: /*     columns. If jcol is an ordered column, then list(jcol) */
104: /*     is the incidence-degree order of column jcol. */

106:   maxinc = 0;
107:   for (jp = *n; jp >= 1; --jp) {
108:     ic            = iwa4[jp];
109:     iwa1[*n - jp] = 0;
110:     iwa2[ic]      = 0;
111:     iwa3[ic]      = iwa1[0];
112:     if (iwa1[0] > 0) iwa2[iwa1[0]] = ic;
113:     iwa1[0]  = ic;
114:     iwa4[jp] = 0;
115:     list[jp] = 0;
116:   }

118: /*     Determine the maximal search length for the list */
119: /*     of columns of maximal incidence. */

121:   maxlst = 0;
122:   i__1   = *m;
123:   for (ir = 1; ir <= i__1; ++ir) {
124: /* Computing 2nd power */
125:     i__2    = ipntr[ir + 1] - ipntr[ir];
126:     maxlst += i__2 * i__2;
127:   }
128:   maxlst /= *n;
129:   *maxclq = 0;
130:   numord  = 1;

132: /*     Beginning of iteration loop. */

134: L30:

136: /*        Choose a column jcol of maximal degree among the */
137: /*        columns of maximal incidence maxinc. */

139: L40:
140:   jp = iwa1[maxinc];
141:   if (jp > 0) goto L50;
142:   --maxinc;
143:   goto L40;
144: L50:
145:   numwgt = -1;
146:   i__1   = maxlst;
147:   for (numlst = 1; numlst <= i__1; ++numlst) {
148:     if (ndeg[jp] > numwgt) {
149:       numwgt = ndeg[jp];
150:       jcol   = jp;
151:     }
152:     jp = iwa3[jp];
153:     if (jp <= 0) goto L70;
154:   }
155: L70:
156:   list[jcol] = numord;

158: /*        Update the size of the largest clique */
159: /*        found during the ordering. */

161:   if (!maxinc) ncomp = 0;
162:   ++ncomp;
163:   if (maxinc + 1 == ncomp) *maxclq = PetscMax(*maxclq,ncomp);

165: /*        Termination test. */

167:   ++numord;
168:   if (numord > *n) goto L100;

170: /*        Delete column jcol from the maxinc list. */

172:   if (!iwa2[jcol]) iwa1[maxinc] = iwa3[jcol];
173:   else iwa3[iwa2[jcol]] = iwa3[jcol];

175:   if (iwa3[jcol] > 0) iwa2[iwa3[jcol]] = iwa2[jcol];

177: /*        Find all columns adjacent to column jcol. */

179:   iwa4[jcol] = *n;

181: /*        Determine all positions (ir,jcol) which correspond */
182: /*        to non-zeroes in the matrix. */

184:   i__1 = jpntr[jcol + 1] - 1;
185:   for (jp = jpntr[jcol]; jp <= i__1; ++jp) {
186:     ir = indrow[jp];

188: /*           For each row ir, determine all positions (ir,ic) */
189: /*           which correspond to non-zeroes in the matrix. */

191:     i__2 = ipntr[ir + 1] - 1;
192:     for (ip = ipntr[ir]; ip <= i__2; ++ip) {
193:       ic = indcol[ip];

195: /*              Array iwa4 marks columns which are adjacent to */
196: /*              column jcol. */

198:       if (iwa4[ic] < numord) {
199:         iwa4[ic] = numord;

201: /*                 Update the pointers to the current incidence lists. */

203:         numinc = list[ic];
204:         ++list[ic];
205: /* Computing MAX */
206:         i__3   = maxinc, i__4 = list[ic];
207:         maxinc = PetscMax(i__3,i__4);

209: /*                 Delete column ic from the numinc list. */

211:         if (!iwa2[ic]) iwa1[numinc] = iwa3[ic];
212:         else iwa3[iwa2[ic]] = iwa3[ic];

214:         if (iwa3[ic] > 0) iwa2[iwa3[ic]] = iwa2[ic];

216: /*                 Add column ic to the numinc+1 list. */

218:         iwa2[ic] = 0;
219:         iwa3[ic] = iwa1[numinc + 1];
220:         if (iwa1[numinc + 1] > 0) iwa2[iwa1[numinc + 1]] = ic;
221:         iwa1[numinc + 1] = ic;
222:       }
223:     }
224:   }

226: /*        End of iteration loop. */

228:   goto L30;
229: L100:

231: /*     Invert the array list. */

233:   i__1 = *n;
234:   for (jcol = 1; jcol <= i__1; ++jcol) iwa2[list[jcol]] = jcol;
235:   i__1 = *n;
236:   for (jp = 1; jp <= i__1; ++jp) list[jp] = iwa2[jp];
237:   return(0);
238: }