Actual source code: ex17.c

petsc-3.4.5 2014-06-29
  1: static const char help[] = "Time-dependent PDE in 1d. Simplified from ex15.c for illustrating how to solve DAEs. \n";
  2: /*
  3:    u_t = uxx
  4:    0 < x < 1;
  5:    At t=0: u(x) = exp(c*r*r*r), if r=PetscSqrtReal((x-.5)*(x-.5)) < .125
  6:            u(x) = 0.0           if r >= .125


  9:    Boundary conditions:
 10:    Dirichlet BC:
 11:    At x=0, x=1, u = 0.0

 13:    Neumann BC:
 14:    At x=0, x=1: du(x,t)/dx = 0

 16:    mpiexec -n 2 ./ex17 -da_grid_x 40 -ts_max_steps 2 -snes_monitor -ksp_monitor
 17:          ./ex17 -da_grid_x 40 -monitor_solution
 18:          ./ex17 -da_grid_x 100  -ts_type theta -ts_theta_theta 0.5 # Midpoint is not L-stable
 19:          ./ex17 -jac_type fd_coloring  -da_grid_x 500 -boundary 1
 20:          ./ex17 -da_grid_x 100  -ts_type gl -ts_adapt_type none -ts_max_steps 2
 21: */

 23: #include <petscdmda.h>
 24: #include <petscts.h>

 26: typedef enum {JACOBIAN_ANALYTIC,JACOBIAN_FD_COLORING,JACOBIAN_FD_FULL} JacobianType;
 27: static const char *const JacobianTypes[] = {"analytic","fd_coloring","fd_full","JacobianType","fd_",0};

 29: /*
 30:    User-defined data structures and routines
 31: */
 32: typedef struct {
 33:   PetscReal c;
 34:   PetscInt  boundary;            /* Type of boundary condition */
 35:   PetscBool viewJacobian;
 36: } AppCtx;

 38: static PetscErrorCode FormIFunction(TS,PetscReal,Vec,Vec,Vec,void*);
 39: static PetscErrorCode FormIJacobian(TS,PetscReal,Vec,Vec,PetscReal,Mat*,Mat*,MatStructure*,void*);
 40: static PetscErrorCode FormInitialSolution(TS,Vec,void*);

 44: int main(int argc,char **argv)
 45: {
 46:   TS             ts;                   /* nonlinear solver */
 47:   Vec            u;                    /* solution, residual vectors */
 48:   Mat            J;                    /* Jacobian matrix */
 49:   PetscInt       maxsteps = 1000;     /* iterations for convergence */
 50:   PetscInt       nsteps;
 51:   PetscReal      vmin,vmax,norm;
 53:   DM             da;
 54:   PetscReal      ftime,dt;
 55:   AppCtx         user;              /* user-defined work context */
 56:   JacobianType   jacType;

 58:   PetscInitialize(&argc,&argv,(char*)0,help);

 60:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 61:      Create distributed array (DMDA) to manage parallel grid and vectors
 62:   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 63:   DMDACreate1d(PETSC_COMM_WORLD,DMDA_BOUNDARY_NONE,-11,1,1,NULL,&da);

 65:   /*  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 66:      Extract global vectors from DMDA;
 67:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 68:   DMCreateGlobalVector(da,&u);

 70:   /* Initialize user application context */
 71:   user.c            = -30.0;
 72:   user.boundary     = 0;  /* 0: Dirichlet BC; 1: Neumann BC */
 73:   user.viewJacobian = PETSC_FALSE;

 75:   PetscOptionsGetInt(NULL,"-boundary",&user.boundary,NULL);
 76:   PetscOptionsHasName(NULL,"-viewJacobian",&user.viewJacobian);

 78:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 79:      Create timestepping solver context
 80:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 81:   TSCreate(PETSC_COMM_WORLD,&ts);
 82:   TSSetProblemType(ts,TS_NONLINEAR);
 83:   TSSetType(ts,TSTHETA);
 84:   TSThetaSetTheta(ts,1.0); /* Make the Theta method behave like backward Euler */
 85:   TSSetIFunction(ts,NULL,FormIFunction,&user);

 87:   DMCreateMatrix(da,MATAIJ,&J);
 88:   jacType = JACOBIAN_ANALYTIC; /* use user-provide Jacobian */

 90:   TSSetDM(ts,da); /* Use TSGetDM() to access. Setting here allows easy use of geometric multigrid. */

 92:   ftime = 1.0;
 93:   TSSetDuration(ts,maxsteps,ftime);

 95:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 96:      Set initial conditions
 97:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 98:   FormInitialSolution(ts,u,&user);
 99:   TSSetSolution(ts,u);
100:   dt   = .01;
101:   TSSetInitialTimeStep(ts,0.0,dt);


104:   /* Use slow fd Jacobian or fast fd Jacobian with colorings.
105:      Note: this requirs snes which is not created until TSSetUp()/TSSetFromOptions() is called */
106:   PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"Options for Jacobian evaluation",NULL);
107:   PetscOptionsEnum("-jac_type","Type of Jacobian","",JacobianTypes,(PetscEnum)jacType,(PetscEnum*)&jacType,0);
108:   PetscOptionsEnd();
109:   if (jacType == JACOBIAN_ANALYTIC) {
110:     TSSetIJacobian(ts,J,J,FormIJacobian,&user);
111:   } else if (jacType == JACOBIAN_FD_COLORING) {
112:     SNES snes;
113:     TSGetSNES(ts,&snes);
114:     SNESSetJacobian(snes,J,J,SNESComputeJacobianDefaultColor,0);
115:   } else if (jacType == JACOBIAN_FD_FULL) {
116:     SNES snes;
117:     TSGetSNES(ts,&snes);
118:     SNESSetJacobian(snes,J,J,SNESComputeJacobianDefault,&user);
119:   }

121:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
122:      Set runtime options
123:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
124:   TSSetFromOptions(ts);

126:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
127:      Integrate ODE system
128:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
129:   TSSolve(ts,u);

131:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
132:    Compute diagnostics of the solution
133:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
134:   VecNorm(u,NORM_1,&norm);
135:   VecMax(u,NULL,&vmax);
136:   VecMin(u,NULL,&vmin);
137:   TSGetTimeStepNumber(ts,&nsteps);
138:   TSGetTime(ts,&ftime);
139:   PetscPrintf(PETSC_COMM_WORLD,"timestep %D: time %G, solution norm %G, max %G, min %G\n",nsteps,ftime,norm,vmax,vmin);

141:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
142:      Free work space.
143:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
144:   MatDestroy(&J);
145:   VecDestroy(&u);
146:   TSDestroy(&ts);
147:   DMDestroy(&da);
148:   PetscFinalize();
149:   return(0);
150: }
151: /* ------------------------------------------------------------------- */
154: static PetscErrorCode FormIFunction(TS ts,PetscReal ftime,Vec U,Vec Udot,Vec F,void *ptr)
155: {
156:   AppCtx         *user=(AppCtx*)ptr;
157:   DM             da;
159:   PetscInt       i,Mx,xs,xm;
160:   PetscReal      hx,sx;
161:   PetscScalar    *u,*udot,*f;
162:   Vec            localU;

165:   TSGetDM(ts,&da);
166:   DMGetLocalVector(da,&localU);
167:   DMDAGetInfo(da,PETSC_IGNORE,&Mx,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,
168:                      PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE);

170:   hx = 1.0/(PetscReal)(Mx-1); sx = 1.0/(hx*hx);

172:   /*
173:      Scatter ghost points to local vector,using the 2-step process
174:         DMGlobalToLocalBegin(),DMGlobalToLocalEnd().
175:      By placing code between these two statements, computations can be
176:      done while messages are in transition.
177:   */
178:   DMGlobalToLocalBegin(da,U,INSERT_VALUES,localU);
179:   DMGlobalToLocalEnd(da,U,INSERT_VALUES,localU);

181:   /* Get pointers to vector data */
182:   DMDAVecGetArray(da,localU,&u);
183:   DMDAVecGetArray(da,Udot,&udot);
184:   DMDAVecGetArray(da,F,&f);

186:   /* Get local grid boundaries */
187:   DMDAGetCorners(da,&xs,NULL,NULL,&xm,NULL,NULL);

189:   /* Compute function over the locally owned part of the grid */
190:   for (i=xs; i<xs+xm; i++) {
191:     if (user->boundary == 0) { /* Dirichlet BC */
192:       if (i == 0 || i == Mx-1) f[i] = u[i]; /* F = U */
193:       else                     f[i] = udot[i] + (2.*u[i] - u[i-1] - u[i+1])*sx;
194:     } else { /* Neumann BC */
195:       if (i == 0)         f[i] = u[0] - u[1];
196:       else if (i == Mx-1) f[i] = u[i] - u[i-1];
197:       else                f[i] = udot[i] + (2.*u[i] - u[i-1] - u[i+1])*sx;
198:     }
199:   }

201:   /* Restore vectors */
202:   DMDAVecRestoreArray(da,localU,&u);
203:   DMDAVecRestoreArray(da,Udot,&udot);
204:   DMDAVecRestoreArray(da,F,&f);
205:   DMRestoreLocalVector(da,&localU);
206:   return(0);
207: }

209: /* --------------------------------------------------------------------- */
210: /*
211:   IJacobian - Compute IJacobian = dF/dU + a dF/dUdot
212: */
215: PetscErrorCode FormIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal a,Mat *J,Mat *Jpre,MatStructure *str,void *ctx)
216: {
218:   PetscInt       i,rstart,rend,Mx;
219:   PetscReal      hx,sx;
220:   AppCtx         *user = (AppCtx*)ctx;
221:   DM             da;
222:   MatStencil     col[3],row;
223:   PetscInt       nc;
224:   PetscScalar    vals[3];

227:   TSGetDM(ts,&da);
228:   MatGetOwnershipRange(*Jpre,&rstart,&rend);
229:   DMDAGetInfo(da,PETSC_IGNORE,&Mx,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,
230:                      PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE);
231:   hx = 1.0/(PetscReal)(Mx-1); sx = 1.0/(hx*hx);
232:   for (i=rstart; i<rend; i++) {
233:     nc    = 0;
234:     row.i = i;
235:     if (user->boundary == 0 && (i == 0 || i == Mx-1)) {
236:       col[nc].i = i; vals[nc++] = 1.0;
237:     } else if (user->boundary > 0 && i == 0) { /* Left Neumann */
238:       col[nc].i = i;   vals[nc++] = 1.0;
239:       col[nc].i = i+1; vals[nc++] = -1.0;
240:     } else if (user->boundary > 0 && i == Mx-1) { /* Right Neumann */
241:       col[nc].i = i-1; vals[nc++] = -1.0;
242:       col[nc].i = i;   vals[nc++] = 1.0;
243:     } else {                    /* Interior */
244:       col[nc].i = i-1; vals[nc++] = -1.0*sx;
245:       col[nc].i = i;   vals[nc++] = 2.0*sx + a;
246:       col[nc].i = i+1; vals[nc++] = -1.0*sx;
247:     }
248:     MatSetValuesStencil(*Jpre,1,&row,nc,col,vals,INSERT_VALUES);
249:   }

251:   MatAssemblyBegin(*Jpre,MAT_FINAL_ASSEMBLY);
252:   MatAssemblyEnd(*Jpre,MAT_FINAL_ASSEMBLY);
253:   if (*J != *Jpre) {
254:     MatAssemblyBegin(*J,MAT_FINAL_ASSEMBLY);
255:     MatAssemblyEnd(*J,MAT_FINAL_ASSEMBLY);
256:   }
257:   if (user->viewJacobian) {
258:     PetscPrintf(PETSC_COMM_WORLD,"Jpre:\n");
259:     MatView(*Jpre,PETSC_VIEWER_STDOUT_WORLD);
260:   }
261:   return(0);
262: }

264: /* ------------------------------------------------------------------- */
267: PetscErrorCode FormInitialSolution(TS ts,Vec U,void *ptr)
268: {
269:   AppCtx         *user=(AppCtx*)ptr;
270:   PetscReal      c    =user->c;
271:   DM             da;
273:   PetscInt       i,xs,xm,Mx;
274:   PetscScalar    *u;
275:   PetscReal      hx,x,r;

278:   TSGetDM(ts,&da);
279:   DMDAGetInfo(da,PETSC_IGNORE,&Mx,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,
280:                      PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE);

282:   hx = 1.0/(PetscReal)(Mx-1);

284:   /* Get pointers to vector data */
285:   DMDAVecGetArray(da,U,&u);

287:   /* Get local grid boundaries */
288:   DMDAGetCorners(da,&xs,NULL,NULL,&xm,NULL,NULL);

290:   /* Compute function over the locally owned part of the grid */
291:   for (i=xs; i<xs+xm; i++) {
292:     x = i*hx;
293:     r = PetscSqrtScalar((x-.5)*(x-.5));
294:     if (r < .125) u[i] = PetscExpScalar(c*r*r*r);
295:     else          u[i] = 0.0;
296:   }

298:   /* Restore vectors */
299:   DMDAVecRestoreArray(da,U,&u);
300:   return(0);
301: }