Actual source code: relax.h

petsc-3.4.5 2014-06-29
  2: /*
  3:     This is included by sbaij.c to generate unsigned short and regular versions of these two functions
  4: */
  6: #if defined(USESHORT)
  8: PetscErrorCode MatMult_SeqSBAIJ_1_Hermitian_ushort(Mat A,Vec xx,Vec zz)
  9: #else
 11: PetscErrorCode MatMult_SeqSBAIJ_1_Hermitian(Mat A,Vec xx,Vec zz)
 12: #endif
 13: {
 14:   Mat_SeqSBAIJ      *a = (Mat_SeqSBAIJ*)A->data;
 15:   const PetscScalar *x;
 16:   PetscScalar       *z,x1,sum;
 17:   const MatScalar   *v;
 18:   MatScalar         vj;
 19:   PetscErrorCode    ierr;
 20:   PetscInt          mbs=a->mbs,i,j,nz;
 21:   const PetscInt    *ai=a->i;
 22: #if defined(USESHORT)
 23:   const unsigned short *ib=a->jshort;
 24:   unsigned short       ibt;
 25: #else
 26:   const PetscInt *ib=a->j;
 27:   PetscInt       ibt;
 28: #endif
 29:   PetscInt nonzerorow = 0,jmin;

 32:   VecSet(zz,0.0);
 33:   VecGetArrayRead(xx,&x);
 34:   VecGetArray(zz,&z);

 36:   v = a->a;
 37:   for (i=0; i<mbs; i++) {
 38:     nz = ai[i+1] - ai[i];    /* length of i_th row of A */
 39:     if (!nz) continue; /* Move to the next row if the current row is empty */
 40:     nonzerorow++;
 41:     x1   = x[i];
 42:     sum  = 0.0;
 43:     jmin = 0;
 44:     if (ib[0] == i) {
 45:       sum = v[0]*x1;           /* diagonal term */
 46:       jmin++;
 47:     }
 48:     for (j=jmin; j<nz; j++) {
 49:       ibt     = ib[j];
 50:       vj      = v[j];
 51:       sum    += vj * x[ibt]; /* (strict upper triangular part of A)*x  */
 52:       z[ibt] += PetscConj(v[j]) * x1;    /* (strict lower triangular part of A)*x  */
 53:     }
 54:     z[i] += sum;
 55:     v    +=    nz;
 56:     ib   += nz;
 57:   }

 59:   VecRestoreArrayRead(xx,&x);
 60:   VecRestoreArray(zz,&z);
 61:   PetscLogFlops(2.0*(2.0*a->nz - nonzerorow) - nonzerorow);
 62:   return(0);
 63: }

 66: #if defined(USESHORT)
 68: PetscErrorCode MatMult_SeqSBAIJ_1_ushort(Mat A,Vec xx,Vec zz)
 69: #else
 71: PetscErrorCode MatMult_SeqSBAIJ_1(Mat A,Vec xx,Vec zz)
 72: #endif
 73: {
 74:   Mat_SeqSBAIJ      *a = (Mat_SeqSBAIJ*)A->data;
 75:   const PetscScalar *x;
 76:   PetscScalar       *z,x1,sum;
 77:   const MatScalar   *v;
 78:   MatScalar         vj;
 79:   PetscErrorCode    ierr;
 80:   PetscInt          mbs=a->mbs,i,j,nz;
 81:   const PetscInt    *ai=a->i;
 82: #if defined(USESHORT)
 83:   const unsigned short *ib=a->jshort;
 84:   unsigned short       ibt;
 85: #else
 86:   const PetscInt *ib=a->j;
 87:   PetscInt       ibt;
 88: #endif
 89:   PetscInt nonzerorow=0,jmin;

 92:   VecSet(zz,0.0);
 93:   VecGetArrayRead(xx,&x);
 94:   VecGetArray(zz,&z);

 96:   v = a->a;
 97:   for (i=0; i<mbs; i++) {
 98:     nz = ai[i+1] - ai[i];          /* length of i_th row of A */
 99:     if (!nz) continue; /* Move to the next row if the current row is empty */
100:     nonzerorow++;
101:     sum  = 0.0;
102:     jmin = 0;
103:     x1   = x[i];
104:     if (ib[0] == i) {
105:       sum = v[0]*x1;                 /* diagonal term */
106:       jmin++;
107:     }
108:     PetscPrefetchBlock(ib+nz,nz,0,PETSC_PREFETCH_HINT_NTA); /* Indices for the next row (assumes same size as this one) */
109:     PetscPrefetchBlock(v+nz,nz,0,PETSC_PREFETCH_HINT_NTA);  /* Entries for the next row */
110:     for (j=jmin; j<nz; j++) {
111:       ibt     = ib[j];
112:       vj      = v[j];
113:       z[ibt] += vj * x1;       /* (strict lower triangular part of A)*x  */
114:       sum    += vj * x[ibt];   /* (strict upper triangular part of A)*x  */
115:     }
116:     z[i] += sum;
117:     v    += nz;
118:     ib   += nz;
119:   }

121:   VecRestoreArrayRead(xx,&x);
122:   VecRestoreArray(zz,&z);
123:   PetscLogFlops(2.0*(2.0*a->nz - nonzerorow) - nonzerorow);
124:   return(0);
125: }

128: #if defined(USESHORT)
130: PetscErrorCode MatSOR_SeqSBAIJ_ushort(Mat A,Vec bb,PetscReal omega,MatSORType flag,PetscReal fshift,PetscInt its,PetscInt lits,Vec xx)
131: #else
133: PetscErrorCode MatSOR_SeqSBAIJ(Mat A,Vec bb,PetscReal omega,MatSORType flag,PetscReal fshift,PetscInt its,PetscInt lits,Vec xx)
134: #endif
135: {
136:   Mat_SeqSBAIJ      *a = (Mat_SeqSBAIJ*)A->data;
137:   const MatScalar   *aa=a->a,*v,*v1,*aidiag;
138:   PetscScalar       *x,*t,sum;
139:   const PetscScalar *b;
140:   MatScalar         tmp;
141:   PetscErrorCode    ierr;
142:   PetscInt          m  =a->mbs,bs=A->rmap->bs,j;
143:   const PetscInt    *ai=a->i;
144: #if defined(USESHORT)
145:   const unsigned short *aj=a->jshort,*vj,*vj1;
146: #else
147:   const PetscInt *aj=a->j,*vj,*vj1;
148: #endif
149:   PetscInt nz,nz1,i;

152:   if (flag & SOR_EISENSTAT) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support yet for Eisenstat");

154:   its = its*lits;
155:   if (its <= 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Relaxation requires global its %D and local its %D both positive",its,lits);

157:   if (bs > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"SSOR for block size > 1 is not yet implemented");

159:   VecGetArray(xx,&x);
160:   VecGetArrayRead(bb,&b);

162:   if (!a->idiagvalid) {
163:     if (!a->idiag) {
164:       PetscMalloc(m*sizeof(PetscScalar),&a->idiag);
165:     }
166:     for (i=0; i<a->mbs; i++) a->idiag[i] = 1.0/a->a[a->i[i]];
167:     a->idiagvalid = PETSC_TRUE;
168:   }

170:   if (!a->sor_work) {
171:     PetscMalloc(m*sizeof(PetscScalar),&a->sor_work);
172:   }
173:   t = a->sor_work;

175:   aidiag = a->idiag;

177:   if (flag == SOR_APPLY_UPPER) {
178:     /* apply (U + D/omega) to the vector */
179:     PetscScalar d;
180:     for (i=0; i<m; i++) {
181:       d   = fshift + aa[ai[i]];
182:       nz  = ai[i+1] - ai[i] - 1;
183:       vj  = aj + ai[i] + 1;
184:       v   = aa + ai[i] + 1;
185:       sum = b[i]*d/omega;
186:       PetscSparseDensePlusDot(sum,b,v,vj,nz);
187:       x[i] = sum;
188:     }
189:     PetscLogFlops(a->nz);
190:   }

192:   if (flag & SOR_ZERO_INITIAL_GUESS) {
193:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
194:       PetscMemcpy(t,b,m*sizeof(PetscScalar));

196:       v  = aa + 1;
197:       vj = aj + 1;
198:       for (i=0; i<m; i++) {
199:         nz  = ai[i+1] - ai[i] - 1;
200:         tmp = -(x[i] = omega*t[i]*aidiag[i]);
201:         for (j=0; j<nz; j++) t[vj[j]] += tmp*v[j];
202:         v  += nz + 1;
203:         vj += nz + 1;
204:       }
205:       PetscLogFlops(2*a->nz);
206:     }

208:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
209:       int nz2;
210:       if (!(flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP)) {
211: #if defined(PETSC_USE_BACKWARD_LOOP)
212:         v  = aa + ai[m] - 1;
213:         vj = aj + ai[m] - 1;
214:         for (i=m-1; i>=0; i--) {
215:           sum = b[i];
216:           nz  = ai[i+1] - ai[i] - 1;
217:           {PetscInt __i;for (__i=0; __i<nz; __i++) sum -= v[-__i] * x[vj[-__i]];}
218: #else
219:         v  = aa + ai[m-1] + 1;
220:         vj = aj + ai[m-1] + 1;
221:         nz = 0;
222:         for (i=m-1; i>=0; i--) {
223:           sum = b[i];
224:           nz2 = ai[i] - ai[PetscMax(i-1,0)] - 1; /* avoid referencing ai[-1], nonsense nz2 is okay on last iteration */
225:           PETSC_Prefetch(v-nz2-1,0,PETSC_PREFETCH_HINT_NTA);
226:           PETSC_Prefetch(vj-nz2-1,0,PETSC_PREFETCH_HINT_NTA);
227:           PetscSparseDenseMinusDot(sum,x,v,vj,nz);
228:           nz = nz2;
229: #endif
230:           x[i] = omega*sum*aidiag[i];
231:           v   -= nz + 1;
232:           vj  -= nz + 1;
233:         }
234:         PetscLogFlops(2*a->nz);
235:       } else {
236:         v  = aa + ai[m-1] + 1;
237:         vj = aj + ai[m-1] + 1;
238:         nz = 0;
239:         for (i=m-1; i>=0; i--) {
240:           sum = t[i];
241:           nz2 = ai[i] - ai[PetscMax(i-1,0)] - 1; /* avoid referencing ai[-1], nonsense nz2 is okay on last iteration */
242:           PETSC_Prefetch(v-nz2-1,0,PETSC_PREFETCH_HINT_NTA);
243:           PETSC_Prefetch(vj-nz2-1,0,PETSC_PREFETCH_HINT_NTA);
244:           PetscSparseDenseMinusDot(sum,x,v,vj,nz);
245:           x[i] = (1-omega)*x[i] + omega*sum*aidiag[i];
246:           nz   = nz2;
247:           v   -= nz + 1;
248:           vj  -= nz + 1;
249:         }
250:         PetscLogFlops(2*a->nz);
251:       }
252:     }
253:     its--;
254:   }

256:   while (its--) {
257:     /*
258:        forward sweep:
259:        for i=0,...,m-1:
260:          sum[i] = (b[i] - U(i,:)x)/d[i];
261:          x[i]   = (1-omega)x[i] + omega*sum[i];
262:          b      = b - x[i]*U^T(i,:);

264:     */
265:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
266:       PetscMemcpy(t,b,m*sizeof(PetscScalar));

268:       for (i=0; i<m; i++) {
269:         v    = aa + ai[i] + 1; v1=v;
270:         vj   = aj + ai[i] + 1; vj1=vj;
271:         nz   = ai[i+1] - ai[i] - 1; nz1=nz;
272:         sum  = t[i];
273:         while (nz1--) sum -= (*v1++)*x[*vj1++];
274:         x[i] = (1-omega)*x[i] + omega*sum*aidiag[i];
275:         while (nz--) t[*vj++] -= x[i]*(*v++);
276:       }
277:       PetscLogFlops(4.0*a->nz);
278:     }

280:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
281:       /*
282:        backward sweep:
283:        b = b - x[i]*U^T(i,:), i=0,...,n-2
284:        for i=m-1,...,0:
285:          sum[i] = (b[i] - U(i,:)x)/d[i];
286:          x[i]   = (1-omega)x[i] + omega*sum[i];
287:       */
288:       /* if there was a forward sweep done above then I thing the next two for loops are not needed */
289:       PetscMemcpy(t,b,m*sizeof(PetscScalar));

291:       for (i=0; i<m-1; i++) {  /* update rhs */
292:         v    = aa + ai[i] + 1;
293:         vj   = aj + ai[i] + 1;
294:         nz   = ai[i+1] - ai[i] - 1;
295:         while (nz--) t[*vj++] -= x[i]*(*v++);
296:       }
297:       PetscLogFlops(2.0*(a->nz - m));
298:       for (i=m-1; i>=0; i--) {
299:         v    = aa + ai[i] + 1;
300:         vj   = aj + ai[i] + 1;
301:         nz   = ai[i+1] - ai[i] - 1;
302:         sum  = t[i];
303:         while (nz--) sum -= x[*vj++]*(*v++);
304:         x[i] =   (1-omega)*x[i] + omega*sum*aidiag[i];
305:       }
306:       PetscLogFlops(2.0*(a->nz + m));
307:     }
308:   }

310:   VecRestoreArray(xx,&x);
311:   VecRestoreArrayRead(bb,&b);
312:   return(0);
313: }