Actual source code: ex30.c

petsc-3.4.5 2014-06-29
  2: static char help[] = "Tests ILU and ICC factorization with and without matrix ordering on seqaij format, and illustrates drawing of matrix sparsity structure with MatView().\n\
  3:   Input parameters are:\n\
  4:   -lf <level> : level of fill for ILU (default is 0)\n\
  5:   -lu : use full LU or Cholesky factorization\n\
  6:   -m <value>,-n <value> : grid dimensions\n\
  7: Note that most users should employ the KSP interface to the\n\
  8: linear solvers instead of using the factorization routines\n\
  9: directly.\n\n";

 11: #include <petscmat.h>

 15: int main(int argc,char **args)
 16: {
 17:   Mat            C,A;
 18:   PetscInt       i,j,m = 5,n = 5,Ii,J,lf = 0;
 20:   PetscBool      LU=PETSC_FALSE,CHOLESKY,TRIANGULAR=PETSC_FALSE,MATDSPL=PETSC_FALSE,flg,matordering;
 21:   PetscScalar    v;
 22:   IS             row,col;
 23:   PetscViewer    viewer1,viewer2;
 24:   MatFactorInfo  info;
 25:   Vec            x,y,b,ytmp;
 26:   PetscReal      norm2,norm2_inplace;
 27:   PetscRandom    rdm;
 28:   PetscMPIInt    size;

 30:   PetscInitialize(&argc,&args,(char*)0,help);
 31:   MPI_Comm_size(PETSC_COMM_WORLD,&size);
 32:   if (size != 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"This is a uniprocessor example only!");
 33:   PetscOptionsGetInt(NULL,"-m",&m,NULL);
 34:   PetscOptionsGetInt(NULL,"-n",&n,NULL);
 35:   PetscOptionsGetInt(NULL,"-lf",&lf,NULL);

 37:   PetscViewerDrawOpen(PETSC_COMM_SELF,0,0,0,0,400,400,&viewer1);
 38:   PetscViewerDrawOpen(PETSC_COMM_SELF,0,0,400,0,400,400,&viewer2);

 40:   MatCreate(PETSC_COMM_SELF,&C);
 41:   MatSetSizes(C,m*n,m*n,m*n,m*n);
 42:   MatSetFromOptions(C);
 43:   MatSetUp(C);

 45:   /* Create matrix C in seqaij format and sC in seqsbaij. (This is five-point stencil with some extra elements) */
 46:   for (i=0; i<m; i++) {
 47:     for (j=0; j<n; j++) {
 48:       v = -1.0;  Ii = j + n*i;
 49:       J = Ii - n; if (J>=0)  {MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);}
 50:       J = Ii + n; if (J<m*n) {MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);}
 51:       J = Ii - 1; if (J>=0)  {MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);}
 52:       J = Ii + 1; if (J<m*n) {MatSetValues(C,1,&Ii,1,&J,&v,INSERT_VALUES);}
 53:       v = 4.0; MatSetValues(C,1,&Ii,1,&Ii,&v,INSERT_VALUES);
 54:     }
 55:   }
 56:   MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
 57:   MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);

 59:   MatIsSymmetric(C,0.0,&flg);
 60:   if (!flg) SETERRQ(PETSC_COMM_SELF,1,"C is non-symmetric");

 62:   /* Create vectors for error checking */
 63:   MatGetVecs(C,&x,&b);
 64:   VecDuplicate(x,&y);
 65:   VecDuplicate(x,&ytmp);
 66:   PetscRandomCreate(PETSC_COMM_SELF,&rdm);
 67:   PetscRandomSetFromOptions(rdm);
 68:   VecSetRandom(x,rdm);
 69:   MatMult(C,x,b);

 71:   PetscOptionsHasName(NULL,"-mat_ordering",&matordering);
 72:   if (matordering) {
 73:     MatGetOrdering(C,MATORDERINGRCM,&row,&col);
 74:   } else {
 75:     MatGetOrdering(C,MATORDERINGNATURAL,&row,&col);
 76:   }

 78:   PetscOptionsHasName(NULL,"-display_matrices",&MATDSPL);
 79:   if (MATDSPL) {
 80:     printf("original matrix:\n");
 81:     PetscViewerPushFormat(PETSC_VIEWER_STDOUT_SELF,PETSC_VIEWER_ASCII_INFO);
 82:     MatView(C,PETSC_VIEWER_STDOUT_SELF);
 83:     PetscViewerPopFormat(PETSC_VIEWER_STDOUT_SELF);
 84:     MatView(C,PETSC_VIEWER_STDOUT_SELF);
 85:     MatView(C,viewer1);
 86:   }

 88:   /* Compute LU or ILU factor A */
 89:   MatFactorInfoInitialize(&info);

 91:   info.fill          = 1.0;
 92:   info.diagonal_fill = 0;
 93:   info.zeropivot     = 0.0;

 95:   PetscOptionsHasName(NULL,"-lu",&LU);
 96:   if (LU) {
 97:     printf("Test LU...\n");
 98:     MatGetFactor(C,MATSOLVERPETSC,MAT_FACTOR_LU,&A);
 99:     MatLUFactorSymbolic(A,C,row,col,&info);
100:   } else {
101:     printf("Test ILU...\n");
102:     info.levels = lf;

104:     MatGetFactor(C,MATSOLVERPETSC,MAT_FACTOR_ILU,&A);
105:     MatILUFactorSymbolic(A,C,row,col,&info);
106:   }
107:   MatLUFactorNumeric(A,C,&info);

109:   if (MATDSPL) {
110:     printf("factored matrix:\n");
111:     PetscViewerPushFormat(PETSC_VIEWER_STDOUT_SELF,PETSC_VIEWER_ASCII_INFO);
112:     MatView(A,PETSC_VIEWER_STDOUT_SELF);
113:     PetscViewerPopFormat(PETSC_VIEWER_STDOUT_SELF);
114:     MatView(A,PETSC_VIEWER_STDOUT_SELF);
115:     MatView(A,viewer2);
116:   }

118:   /* Solve A*y = b, then check the error */
119:   MatSolve(A,b,y);
120:   VecAXPY(y,-1.0,x);
121:   VecNorm(y,NORM_2,&norm2);
122:   MatDestroy(&A);

124:   /* Test in-place ILU(0) and compare it with the out-place ILU(0) */
125:   if (!LU && lf==0) {
126:     MatDuplicate(C,MAT_COPY_VALUES,&A);
127:     MatILUFactor(A,row,col,&info);
128:     /*
129:     printf("In-place factored matrix:\n");
130:     MatView(C,PETSC_VIEWER_STDOUT_SELF);
131:     */
132:     MatSolve(A,b,y);
133:     VecAXPY(y,-1.0,x);
134:     VecNorm(y,NORM_2,&norm2_inplace);
135:     if (PetscAbs(norm2 - norm2_inplace) > 1.e-14) SETERRQ2(PETSC_COMM_SELF,1,"ILU(0) %G and in-place ILU(0) %G give different residuals",norm2,norm2_inplace);
136:     MatDestroy(&A);
137:   }

139:   /* Test Cholesky and ICC on seqaij matrix with matrix reordering on aij matrix C */
140:   CHOLESKY = LU;
141:   if (CHOLESKY) {
142:     printf("Test Cholesky...\n");
143:     lf   = -1;
144:     MatGetFactor(C,MATSOLVERPETSC,MAT_FACTOR_CHOLESKY,&A);
145:     MatCholeskyFactorSymbolic(A,C,row,&info);
146:   } else {
147:     printf("Test ICC...\n");
148:     info.levels        = lf;
149:     info.fill          = 1.0;
150:     info.diagonal_fill = 0;
151:     info.zeropivot     = 0.0;

153:     MatGetFactor(C,MATSOLVERPETSC,MAT_FACTOR_ICC,&A);
154:     MatICCFactorSymbolic(A,C,row,&info);
155:   }
156:   MatCholeskyFactorNumeric(A,C,&info);

158:   /* test MatForwardSolve() and MatBackwardSolve() with matrix reordering on aij matrix C */
159:   if (lf == -1) {
160:     PetscOptionsHasName(NULL,"-triangular_solve",&TRIANGULAR);
161:     if (TRIANGULAR) {
162:       printf("Test MatForwardSolve...\n");
163:       MatForwardSolve(A,b,ytmp);
164:       printf("Test MatBackwardSolve...\n");
165:       MatBackwardSolve(A,ytmp,y);
166:       VecAXPY(y,-1.0,x);
167:       VecNorm(y,NORM_2,&norm2);
168:       if (norm2 > 1.e-14) {
169:         PetscPrintf(PETSC_COMM_SELF,"MatForwardSolve and BackwardSolve: Norm of error=%G\n",norm2);
170:       }
171:     }
172:   }

174:   MatSolve(A,b,y);
175:   MatDestroy(&A);
176:   VecAXPY(y,-1.0,x);
177:   VecNorm(y,NORM_2,&norm2);
178:   if (lf == -1 && norm2 > 1.e-14) {
179:     PetscPrintf(PETSC_COMM_SELF, " reordered SEQAIJ:   Cholesky/ICC levels %d, residual %g\n",lf,norm2);
180:   }

182:   /* Test in-place ICC(0) and compare it with the out-place ICC(0) */
183:   if (!CHOLESKY && lf==0 && !matordering) {
184:     MatConvert(C,MATSBAIJ,MAT_INITIAL_MATRIX,&A);
185:     MatICCFactor(A,row,&info);
186:     /*
187:     printf("In-place factored matrix:\n");
188:     MatView(A,PETSC_VIEWER_STDOUT_SELF);
189:     */
190:     MatSolve(A,b,y);
191:     VecAXPY(y,-1.0,x);
192:     VecNorm(y,NORM_2,&norm2_inplace);
193:     if (PetscAbs(norm2 - norm2_inplace) > 1.e-14) SETERRQ2(PETSC_COMM_SELF,1,"ICC(0) %G and in-place ICC(0) %G give different residuals",norm2,norm2_inplace);
194:     MatDestroy(&A);
195:   }

197:   /* Free data structures */
198:   ISDestroy(&row);
199:   ISDestroy(&col);
200:   MatDestroy(&C);
201:   PetscViewerDestroy(&viewer1);
202:   PetscViewerDestroy(&viewer2);
203:   PetscRandomDestroy(&rdm);
204:   VecDestroy(&x);
205:   VecDestroy(&y);
206:   VecDestroy(&ytmp);
207:   VecDestroy(&b);
208:   PetscFinalize();
209:   return 0;
210: }