Actual source code: ex5.c

petsc-3.3-p7 2013-05-11
  2: /* Program usage:  ex3 [-help] [all PETSc options] */

  4: static char help[] ="Solves a simple time-dependent linear PDE (the heat equation).\n\
  5: Input parameters include:\n\
  6:   -m <points>, where <points> = number of grid points\n\
  7:   -time_dependent_rhs : Treat the problem as having a time-dependent right-hand side\n\
  8:   -debug              : Activate debugging printouts\n\
  9:   -nox                : Deactivate x-window graphics\n\n";

 11: /*
 12:    Concepts: TS^time-dependent linear problems
 13:    Concepts: TS^heat equation
 14:    Concepts: TS^diffusion equation
 15:    Processors: 1
 16: */

 18: /* ------------------------------------------------------------------------

 20:    This program solves the one-dimensional heat equation (also called the
 21:    diffusion equation),
 22:        u_t = u_xx, 
 23:    on the domain 0 <= x <= 1, with the boundary conditions
 24:        u(t,0) = 1, u(t,1) = 1,
 25:    and the initial condition
 26:        u(0,x) = cos(6*pi*x) + 3*cos(2*pi*x).
 27:    This is a linear, second-order, parabolic equation.

 29:    We discretize the right-hand side using finite differences with
 30:    uniform grid spacing h:
 31:        u_xx = (u_{i+1} - 2u_{i} + u_{i-1})/(h^2)
 32:    We then demonstrate time evolution using the various TS methods by
 33:    running the program via
 34:        ex3 -ts_type <timestepping solver>

 36:    We compare the approximate solution with the exact solution, given by
 37:        u_exact(x,t) = exp(-36*pi*pi*t) * cos(6*pi*x) +
 38:                       3*exp(-4*pi*pi*t) * cos(2*pi*x)

 40:    Notes:
 41:    This code demonstrates the TS solver interface to two variants of 
 42:    linear problems, u_t = f(u,t), namely
 43:      - time-dependent f:   f(u,t) is a function of t
 44:      - time-independent f: f(u,t) is simply just f(u)

 46:     The parallel version of this code is ts/examples/tutorials/ex4.c

 48:   ------------------------------------------------------------------------- */

 50: /* 
 51:    Include "petscts.h" so that we can use TS solvers.  Note that this file
 52:    automatically includes:
 53:      petscsys.h       - base PETSc routines   petscvec.h  - vectors
 54:      petscmat.h  - matrices
 55:      petscis.h     - index sets            petscksp.h  - Krylov subspace methods
 56:      petscviewer.h - viewers               petscpc.h   - preconditioners
 57:      petscksp.h   - linear solvers        petscsnes.h - nonlinear solvers
 58: */

 60: #include <petscts.h>

 62: /* 
 63:    User-defined application context - contains data needed by the 
 64:    application-provided call-back routines.
 65: */
 66: typedef struct {
 67:   Vec         solution;          /* global exact solution vector */
 68:   PetscInt         m;                 /* total number of grid points */
 69:   PetscReal   h;                 /* mesh width h = 1/(m-1) */
 70:   PetscBool   debug;             /* flag (1 indicates activation of debugging printouts) */
 71:   PetscViewer viewer1,viewer2;  /* viewers for the solution and error */
 72:   PetscReal   norm_2,norm_max;  /* error norms */
 73: } AppCtx;

 75: /* 
 76:    User-defined routines
 77: */
 78: extern PetscErrorCode InitialConditions(Vec,AppCtx*);
 79: extern PetscErrorCode RHSMatrixHeat(TS,PetscReal,Vec,Mat*,Mat*,MatStructure*,void*);
 80: extern PetscErrorCode Monitor(TS,PetscInt,PetscReal,Vec,void*);
 81: extern PetscErrorCode ExactSolution(PetscReal,Vec,AppCtx*);

 85: int main(int argc,char **argv)
 86: {
 87:   AppCtx         appctx;                 /* user-defined application context */
 88:   TS             ts;                     /* timestepping context */
 89:   Mat            A;                      /* matrix data structure */
 90:   Vec            u;                      /* approximate solution vector */
 91:   PetscReal      time_total_max = 100.0; /* default max total time */
 92:   PetscInt       time_steps_max = 100;   /* default max timesteps */
 93:   PetscDraw      draw;                   /* drawing context */
 95:   PetscInt       steps,m;
 96:   PetscMPIInt    size;
 97:   PetscBool      flg;
 98:   PetscReal      dt,ftime;

100:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
101:      Initialize program and set problem parameters
102:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
103: 
104:   PetscInitialize(&argc,&argv,(char*)0,help);
105:   MPI_Comm_size(PETSC_COMM_WORLD,&size);
106:   if (size != 1) SETERRQ(PETSC_COMM_SELF,1,"This is a uniprocessor example only!");

108:   m    = 60;
109:   PetscOptionsGetInt(PETSC_NULL,"-m",&m,PETSC_NULL);
110:   PetscOptionsHasName(PETSC_NULL,"-debug",&appctx.debug);
111:   appctx.m        = m;
112:   appctx.h        = 1.0/(m-1.0);
113:   appctx.norm_2   = 0.0;
114:   appctx.norm_max = 0.0;
115:   PetscPrintf(PETSC_COMM_SELF,"Solving a linear TS problem on 1 processor\n");

117:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
118:      Create vector data structures
119:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

121:   /* 
122:      Create vector data structures for approximate and exact solutions
123:   */
124:   VecCreateSeq(PETSC_COMM_SELF,m,&u);
125:   VecDuplicate(u,&appctx.solution);

127:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
128:      Set up displays to show graphs of the solution and error 
129:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

131:   PetscViewerDrawOpen(PETSC_COMM_SELF,0,"",80,380,400,160,&appctx.viewer1);
132:   PetscViewerDrawGetDraw(appctx.viewer1,0,&draw);
133:   PetscDrawSetDoubleBuffer(draw);
134:   PetscViewerDrawOpen(PETSC_COMM_SELF,0,"",80,0,400,160,&appctx.viewer2);
135:   PetscViewerDrawGetDraw(appctx.viewer2,0,&draw);
136:   PetscDrawSetDoubleBuffer(draw);

138:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
139:      Create timestepping solver context
140:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

142:   TSCreate(PETSC_COMM_SELF,&ts);
143:   TSSetProblemType(ts,TS_LINEAR);

145:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
146:      Set optional user-defined monitoring routine
147:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

149:   TSMonitorSet(ts,Monitor,&appctx,PETSC_NULL);

151:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

153:      Create matrix data structure; set matrix evaluation routine.
154:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

156:   MatCreate(PETSC_COMM_SELF,&A);
157:   MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,m,m);
158:   MatSetFromOptions(A);

160:   PetscOptionsHasName(PETSC_NULL,"-time_dependent_rhs",&flg);
161:   if (flg) {
162:     /*
163:        For linear problems with a time-dependent f(u,t) in the equation 
164:        u_t = f(u,t), the user provides the discretized right-hand-side
165:        as a time-dependent matrix.
166:     */
167:     TSSetRHSFunction(ts,PETSC_NULL,TSComputeRHSFunctionLinear,&appctx);
168:     TSSetRHSJacobian(ts,A,A,RHSMatrixHeat,&appctx);
169:   } else {
170:     /*
171:        For linear problems with a time-independent f(u) in the equation 
172:        u_t = f(u), the user provides the discretized right-hand-side
173:        as a matrix only once, and then sets a null matrix evaluation
174:        routine.
175:     */
176:     MatStructure A_structure;
177:     RHSMatrixHeat(ts,0.0,u,&A,&A,&A_structure,&appctx);
178:     TSSetRHSFunction(ts,PETSC_NULL,TSComputeRHSFunctionLinear,&appctx);
179:     TSSetRHSJacobian(ts,A,A,TSComputeRHSJacobianConstant,&appctx);
180:   }

182:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
183:      Set solution vector and initial timestep
184:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

186:   dt = appctx.h*appctx.h/2.0;
187:   TSSetInitialTimeStep(ts,0.0,dt);
188:   TSSetSolution(ts,u);

190:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
191:      Customize timestepping solver:  
192:        - Set the solution method to be the Backward Euler method.
193:        - Set timestepping duration info 
194:      Then set runtime options, which can override these defaults.
195:      For example,
196:           -ts_max_steps <maxsteps> -ts_final_time <maxtime>
197:      to override the defaults set by TSSetDuration().
198:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

200:   TSSetDuration(ts,time_steps_max,time_total_max);
201:   TSSetFromOptions(ts);

203:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
204:      Solve the problem
205:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

207:   /*
208:      Evaluate initial conditions
209:   */
210:   InitialConditions(u,&appctx);

212:   /*
213:      Run the timestepping solver
214:   */
215:   TSSolve(ts,u,&ftime);
216:   TSGetTimeStepNumber(ts,&steps);

218:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
219:      View timestepping solver info
220:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

222:   PetscPrintf(PETSC_COMM_SELF,"avg. error (2 norm) = %G, avg. error (max norm) = %G\n",
223:               appctx.norm_2/steps,appctx.norm_max/steps);
224:   TSView(ts,PETSC_VIEWER_STDOUT_SELF);

226:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
227:      Free work space.  All PETSc objects should be destroyed when they
228:      are no longer needed.
229:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

231:   TSDestroy(&ts);
232:   MatDestroy(&A);
233:   VecDestroy(&u);
234:   PetscViewerDestroy(&appctx.viewer1);
235:   PetscViewerDestroy(&appctx.viewer2);
236:   VecDestroy(&appctx.solution);

238:   /*
239:      Always call PetscFinalize() before exiting a program.  This routine
240:        - finalizes the PETSc libraries as well as MPI
241:        - provides summary and diagnostic information if certain runtime
242:          options are chosen (e.g., -log_summary). 
243:   */
244:   PetscFinalize();
245:   return 0;
246: }
247: /* --------------------------------------------------------------------- */
250: /*
251:    InitialConditions - Computes the solution at the initial time. 

253:    Input Parameter:
254:    u - uninitialized solution vector (global)
255:    appctx - user-defined application context

257:    Output Parameter:
258:    u - vector with solution at initial time (global)
259: */
260: PetscErrorCode InitialConditions(Vec u,AppCtx *appctx)
261: {
262:   PetscScalar    *u_localptr,h = appctx->h;
263:   PetscInt       i;

266:   /* 
267:     Get a pointer to vector data.
268:     - For default PETSc vectors, VecGetArray() returns a pointer to
269:       the data array.  Otherwise, the routine is implementation dependent.
270:     - You MUST call VecRestoreArray() when you no longer need access to
271:       the array.
272:     - Note that the Fortran interface to VecGetArray() differs from the
273:       C version.  See the users manual for details.
274:   */
275:   VecGetArray(u,&u_localptr);

277:   /* 
278:      We initialize the solution array by simply writing the solution
279:      directly into the array locations.  Alternatively, we could use
280:      VecSetValues() or VecSetValuesLocal().
281:   */
282:   for (i=0; i<appctx->m; i++) {
283:     u_localptr[i] = PetscCosScalar(PETSC_PI*i*6.*h) + 3.*PetscCosScalar(PETSC_PI*i*2.*h);
284:   }

286:   /* 
287:      Restore vector
288:   */
289:   VecRestoreArray(u,&u_localptr);

291:   /* 
292:      Print debugging information if desired
293:   */
294:   if (appctx->debug) {
295:      printf("initial guess vector\n");
296:      VecView(u,PETSC_VIEWER_STDOUT_SELF);
297:   }

299:   return 0;
300: }
301: /* --------------------------------------------------------------------- */
304: /*
305:    ExactSolution - Computes the exact solution at a given time.

307:    Input Parameters:
308:    t - current time
309:    solution - vector in which exact solution will be computed
310:    appctx - user-defined application context

312:    Output Parameter:
313:    solution - vector with the newly computed exact solution
314: */
315: PetscErrorCode ExactSolution(PetscReal t,Vec solution,AppCtx *appctx)
316: {
317:   PetscScalar    *s_localptr,h = appctx->h,ex1,ex2,sc1,sc2,tc = t;
318:   PetscInt       i;

321:   /*
322:      Get a pointer to vector data.
323:   */
324:   VecGetArray(solution,&s_localptr);

326:   /* 
327:      Simply write the solution directly into the array locations.
328:      Alternatively, we culd use VecSetValues() or VecSetValuesLocal().
329:   */
330:   ex1 = PetscExpScalar(-36.*PETSC_PI*PETSC_PI*tc); ex2 = PetscExpScalar(-4.*PETSC_PI*PETSC_PI*tc);
331:   sc1 = PETSC_PI*6.*h;                 sc2 = PETSC_PI*2.*h;
332:   for (i=0; i<appctx->m; i++) {
333:     s_localptr[i] = PetscCosScalar(sc1*(PetscReal)i)*ex1 + 3.*PetscCosScalar(sc2*(PetscReal)i)*ex2;
334:   }

336:   /* 
337:      Restore vector
338:   */
339:   VecRestoreArray(solution,&s_localptr);
340:   return 0;
341: }
342: /* --------------------------------------------------------------------- */
345: /*
346:    Monitor - User-provided routine to monitor the solution computed at 
347:    each timestep.  This example plots the solution and computes the
348:    error in two different norms.

350:    Input Parameters:
351:    ts     - the timestep context
352:    step   - the count of the current step (with 0 meaning the
353:              initial condition)
354:    time   - the current time
355:    u      - the solution at this timestep
356:    ctx    - the user-provided context for this monitoring routine.
357:             In this case we use the application context which contains 
358:             information about the problem size, workspace and the exact 
359:             solution.
360: */
361: PetscErrorCode Monitor(TS ts,PetscInt step,PetscReal time,Vec u,void *ctx)
362: {
363:   AppCtx         *appctx = (AppCtx*) ctx;   /* user-defined application context */
365:   PetscReal      norm_2,norm_max;

367:   /* 
368:      View a graph of the current iterate
369:   */
370:   VecView(u,appctx->viewer2);

372:   /* 
373:      Compute the exact solution
374:   */
375:   ExactSolution(time,appctx->solution,appctx);

377:   /*
378:      Print debugging information if desired
379:   */
380:   if (appctx->debug) {
381:      printf("Computed solution vector\n");
382:      VecView(u,PETSC_VIEWER_STDOUT_SELF);
383:      printf("Exact solution vector\n");
384:      VecView(appctx->solution,PETSC_VIEWER_STDOUT_SELF);
385:   }

387:   /*
388:      Compute the 2-norm and max-norm of the error
389:   */
390:   VecAXPY(appctx->solution,-1.0,u);
391:   VecNorm(appctx->solution,NORM_2,&norm_2);
392:   norm_2 = PetscSqrtReal(appctx->h)*norm_2;
393:   VecNorm(appctx->solution,NORM_MAX,&norm_max);

395:   PetscPrintf(PETSC_COMM_WORLD,"Timestep %D: time = %G, 2-norm error = %G, max norm error = %G\n",
396:          step,time,norm_2,norm_max);
397:   appctx->norm_2   += norm_2;
398:   appctx->norm_max += norm_max;

400:   /* 
401:      View a graph of the error
402:   */
403:   VecView(appctx->solution,appctx->viewer1);

405:   /*
406:      Print debugging information if desired
407:   */
408:   if (appctx->debug) {
409:      printf("Error vector\n");
410:      VecView(appctx->solution,PETSC_VIEWER_STDOUT_SELF);
411:   }

413:   return 0;
414: }
415: /* --------------------------------------------------------------------- */
418: /*
419:    RHSMatrixHeat - User-provided routine to compute the right-hand-side
420:    matrix for the heat equation.

422:    Input Parameters:
423:    ts - the TS context
424:    t - current time
425:    global_in - global input vector
426:    dummy - optional user-defined context, as set by TSetRHSJacobian()

428:    Output Parameters:
429:    AA - Jacobian matrix
430:    BB - optionally different preconditioning matrix
431:    str - flag indicating matrix structure

433:   Notes:
434:   Recall that MatSetValues() uses 0-based row and column numbers
435:   in Fortran as well as in C.
436: */
437: PetscErrorCode RHSMatrixHeat(TS ts,PetscReal t,Vec X,Mat *AA,Mat *BB,MatStructure *str,void *ctx)
438: {
439:   Mat            A = *AA;                      /* Jacobian matrix */
440:   AppCtx         *appctx = (AppCtx*)ctx;     /* user-defined application context */
441:   PetscInt       mstart = 0;
442:   PetscInt       mend = appctx->m;
444:   PetscInt       i,idx[3];
445:   PetscScalar    v[3],stwo = -2./(appctx->h*appctx->h),sone = -.5*stwo;

447:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
448:      Compute entries for the locally owned part of the matrix
449:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
450:   /* 
451:      Set matrix rows corresponding to boundary data
452:   */

454:   mstart = 0;
455:   v[0] = 1.0;
456:   MatSetValues(A,1,&mstart,1,&mstart,v,INSERT_VALUES);
457:   mstart++;

459:   mend--;
460:   v[0] = 1.0;
461:   MatSetValues(A,1,&mend,1,&mend,v,INSERT_VALUES);

463:   /*
464:      Set matrix rows corresponding to interior data.  We construct the 
465:      matrix one row at a time.
466:   */
467:   v[0] = sone; v[1] = stwo; v[2] = sone;
468:   for (i=mstart; i<mend; i++) {
469:     idx[0] = i-1; idx[1] = i; idx[2] = i+1;
470:     MatSetValues(A,1,&i,3,idx,v,INSERT_VALUES);
471:   }

473:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
474:      Complete the matrix assembly process and set some options
475:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
476:   /*
477:      Assemble matrix, using the 2-step process:
478:        MatAssemblyBegin(), MatAssemblyEnd()
479:      Computations can be done while messages are in transition
480:      by placing code between these two statements.
481:   */
482:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
483:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

485:   /*
486:      Set flag to indicate that the Jacobian matrix retains an identical
487:      nonzero structure throughout all timestepping iterations (although the
488:      values of the entries change). Thus, we can save some work in setting
489:      up the preconditioner (e.g., no need to redo symbolic factorization for
490:      ILU/ICC preconditioners).
491:       - If the nonzero structure of the matrix is different during
492:         successive linear solves, then the flag DIFFERENT_NONZERO_PATTERN
493:         must be used instead.  If you are unsure whether the matrix
494:         structure has changed or not, use the flag DIFFERENT_NONZERO_PATTERN.
495:       - Caution:  If you specify SAME_NONZERO_PATTERN, PETSc
496:         believes your assertion and does not check the structure
497:         of the matrix.  If you erroneously claim that the structure
498:         is the same when it actually is not, the new preconditioner
499:         will not function correctly.  Thus, use this optimization
500:         feature with caution!
501:   */
502:   *str = SAME_NONZERO_PATTERN;

504:   /*
505:      Set and option to indicate that we will never add a new nonzero location 
506:      to the matrix. If we do, it will generate an error.
507:   */
508:   MatSetOption(A,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_TRUE);

510:   return 0;
511: }