Actual source code: ex2.c
petsc-3.3-p7 2013-05-11
1: /*
2: * Test file for the PCFactorSetShiftType() routine or -pc_factor_shift_type POSITIVE_DEFINITE option.
3: * The test matrix is the example from Kershaw's paper [J.Comp.Phys 1978]
4: * of a positive definite matrix for which ILU(0) will give a negative pivot.
5: * This means that the CG method will break down; the Manteuffel shift
6: * [Math. Comp. 1980] repairs this.
7: *
8: * Run the executable twice:
9: * 1/ without options: the iterative method diverges because of an
10: * indefinite preconditioner
11: * 2/ with -pc_factor_shift_positive_definite option (or comment in the PCFactorSetShiftType() line below):
12: * the method will now successfully converge.
13: */
15: #include <stdlib.h>
16: #include <petscksp.h>
20: int main(int argc,char **argv)
21: {
22: KSP ksp;
23: PC pc;
24: Mat A,M;
25: Vec X,B,D;
26: MPI_Comm comm;
27: PetscScalar v;
28: KSPConvergedReason reason;
29: PetscInt i,j,its;
30: PetscErrorCode ierr;
33: PetscInitialize(&argc,&argv,0,0);
34: PetscOptionsSetValue("-options_left",PETSC_NULL);
35: comm = MPI_COMM_SELF;
36:
37: /*
38: * Construct the Kershaw matrix
39: * and a suitable rhs / initial guess
40: */
41: MatCreateSeqAIJ(comm,4,4,4,0,&A);
42: VecCreateSeq(comm,4,&B);
43: VecDuplicate(B,&X);
44: for (i=0; i<4; i++) {
45: v=3;
46: MatSetValues(A,1,&i,1,&i,&v,INSERT_VALUES);
47: v=1;
48: VecSetValues(B,1,&i,&v,INSERT_VALUES);
49: VecSetValues(X,1,&i,&v,INSERT_VALUES);
50: }
52: i=0; v=0;
53: VecSetValues(X,1,&i,&v,INSERT_VALUES);
55: for (i=0; i<3; i++) {
56: v=-2; j=i+1;
57: MatSetValues(A,1,&i,1,&j,&v,INSERT_VALUES);
58: MatSetValues(A,1,&j,1,&i,&v,INSERT_VALUES);
59: }
60: i=0; j=3; v=2;
61: MatSetValues(A,1,&i,1,&j,&v,INSERT_VALUES);
62: MatSetValues(A,1,&j,1,&i,&v,INSERT_VALUES);
63: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
64: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
65: VecAssemblyBegin(B);
66: VecAssemblyEnd(B);
67: printf("\nThe Kershaw matrix:\n\n"); MatView(A,0);
69: /*
70: * A Conjugate Gradient method
71: * with ILU(0) preconditioning
72: */
73: KSPCreate(comm,&ksp);
74: KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_PATTERN);
76: KSPSetType(ksp,KSPCG);
77: KSPSetInitialGuessNonzero(ksp,PETSC_TRUE);
79: /*
80: * ILU preconditioner;
81: * The iterative method will break down unless you comment in the SetShift
82: * line below, or use the -pc_factor_shift_positive_definite option.
83: * Run the code twice: once as given to see the negative pivot and the
84: * divergence behaviour, then comment in the Shift line, or add the
85: * command line option, and see that the pivots are all positive and
86: * the method converges.
87: */
88: KSPGetPC(ksp,&pc);
89: PCSetType(pc,PCICC);
90: /* PCFactorSetShiftType(prec,MAT_SHIFT_POSITIVE_DEFINITE); */
92: KSPSetFromOptions(ksp);
93: KSPSetUp(ksp);
95: /*
96: * Now that the factorisation is done, show the pivots;
97: * note that the last one is negative. This in itself is not an error,
98: * but it will make the iterative method diverge.
99: */
100: PCFactorGetMatrix(pc,&M);
101: VecDuplicate(B,&D);
102: MatGetDiagonal(M,D);
103: printf("\nPivots:\n\n"); VecView(D,0);
105: /*
106: * Solve the system;
107: * without the shift this will diverge with
108: * an indefinite preconditioner
109: */
110: KSPSolve(ksp,B,X);
111: KSPGetConvergedReason(ksp,&reason);
112: if (reason==KSP_DIVERGED_INDEFINITE_PC) {
113: printf("\nDivergence because of indefinite preconditioner;\n");
114: printf("Run the executable again but with -pc_factor_shift_positive_definite option.\n");
115: } else if (reason<0) {
116: printf("\nOther kind of divergence: this should not happen.\n");
117: } else {
118: KSPGetIterationNumber(ksp,&its);
119: printf("\nConvergence in %d iterations.\n",(int)its);
120: }
121: printf("\n");
123: KSPDestroy(&ksp);
124: MatDestroy(&A);
125: VecDestroy(&B);
126: VecDestroy(&X);
127: VecDestroy(&D);
128: PetscFinalize();
129: return(0);
130: }