Actual source code: ex1.c
petsc-3.3-p7 2013-05-11
1: /*
2: * Test file for the PCFactorSetShiftTypem() routine or -pc_factor_shift_type POSITIVE_DEFINITE option.
3: * The test matrix is the example from Kershaw's paper [J.Comp.Phys 1978]
4: * of a positive definite matrix for which ILU(0) will give a negative pivot.
5: * This means that the CG method will break down; the Manteuffel shift
6: * [Math. Comp. 1980] repairs this.
7: *
8: * Run the executable twice:
9: * 1/ without options: the iterative method diverges because of an
10: * indefinite preconditioner
11: * 2/ with -pc_factor_shift_type POSITIVE_DEFINITE option (or comment in the PCFactorSetShiftType() line below):
12: * the method will now successfully converge.
13: *
14: * Contributed by Victor Eijkhout 2003.
15: */
17: #include <petscksp.h>
21: int main(int argc,char **argv)
22: {
23: KSP solver;
24: PC prec;
25: Mat A,M;
26: Vec X,B,D;
27: MPI_Comm comm;
28: PetscScalar v;
29: KSPConvergedReason reason;
30: PetscInt i,j,its;
31: PetscErrorCode ierr;
33: PetscInitialize(&argc,&argv,0,0);
34: comm = MPI_COMM_SELF;
35:
36: /*
37: * Construct the Kershaw matrix
38: * and a suitable rhs / initial guess
39: */
40: MatCreateSeqAIJ(comm,4,4,4,0,&A);
41: VecCreateSeq(comm,4,&B);
42: VecDuplicate(B,&X);
43: for (i=0; i<4; i++) {
44: v=3;
45: MatSetValues(A,1,&i,1,&i,&v,INSERT_VALUES);
46: v=1;
47: VecSetValues(B,1,&i,&v,INSERT_VALUES);
48: VecSetValues(X,1,&i,&v,INSERT_VALUES);
49: }
51: i=0; v=0;
52: VecSetValues(X,1,&i,&v,INSERT_VALUES);
54: for (i=0; i<3; i++) {
55: v=-2; j=i+1;
56: MatSetValues(A,1,&i,1,&j,&v,INSERT_VALUES);
57: MatSetValues(A,1,&j,1,&i,&v,INSERT_VALUES);
58: }
59: i=0; j=3; v=2;
60: MatSetValues(A,1,&i,1,&j,&v,INSERT_VALUES);
61: MatSetValues(A,1,&j,1,&i,&v,INSERT_VALUES);
62: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
63: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
64: VecAssemblyBegin(B);
65: VecAssemblyEnd(B);
67: /*
68: * A Conjugate Gradient method
69: * with ILU(0) preconditioning
70: */
71: KSPCreate(comm,&solver);
72: KSPSetOperators(solver,A,A,SAME_NONZERO_PATTERN);
74: KSPSetType(solver,KSPCG);
75: KSPSetInitialGuessNonzero(solver,PETSC_TRUE);
77: /*
78: * ILU preconditioner;
79: * this will break down unless you add the Shift line,
80: * or use the -pc_factor_shift_positive_definite option */
81: KSPGetPC(solver,&prec);
82: PCSetType(prec,PCILU);
83: /* PCFactorSetShiftType(prec,MAT_SHIFT_POSITIVE_DEFINITE); */
85: KSPSetFromOptions(solver);
86: KSPSetUp(solver);
88: /*
89: * Now that the factorisation is done, show the pivots;
90: * note that the last one is negative. This in itself is not an error,
91: * but it will make the iterative method diverge.
92: */
93: PCFactorGetMatrix(prec,&M);
94: VecDuplicate(B,&D);
95: MatGetDiagonal(M,D);
97: /*
98: * Solve the system;
99: * without the shift this will diverge with
100: * an indefinite preconditioner
101: */
102: KSPSolve(solver,B,X);
103: KSPGetConvergedReason(solver,&reason);
104: if (reason==KSP_DIVERGED_INDEFINITE_PC) {
105: PetscPrintf(PETSC_COMM_WORLD,"\nDivergence because of indefinite preconditioner;\n");
106: PetscPrintf(PETSC_COMM_WORLD,"Run the executable again but with '-pc_factor_shift_type POSITIVE_DEFINITE' option.\n");
107: } else if (reason<0) {
108: PetscPrintf(PETSC_COMM_WORLD,"\nOther kind of divergence: this should not happen.\n");
109: } else {
110: KSPGetIterationNumber(solver,&its);
111: }
113: VecDestroy(&X);
114: VecDestroy(&B);
115: VecDestroy(&D);
116: MatDestroy(&A);
117: KSPDestroy(&solver);
118: PetscFinalize();
119: return 0;
120: }