Actual source code: borthog.c
petsc-3.3-p7 2013-05-11
2: /*
3: Routines used for the orthogonalization of the Hessenberg matrix.
5: Note that for the complex numbers version, the VecDot() and
6: VecMDot() arguments within the code MUST remain in the order
7: given for correct computation of inner products.
8: */
9: #include <../src/ksp/ksp/impls/gmres/gmresimpl.h>
11: /*@C
12: KSPGMRESModifiedGramSchmidtOrthogonalization - This is the basic orthogonalization routine
13: using modified Gram-Schmidt.
15: Collective on KSP
17: Input Parameters:
18: + ksp - KSP object, must be associated with GMRES, FGMRES, or LGMRES Krylov method
19: - its - one less then the current GMRES restart iteration, i.e. the size of the Krylov space
21: Options Database Keys:
22: . -ksp_gmres_modifiedgramschmidt - Activates KSPGMRESModifiedGramSchmidtOrthogonalization()
24: Level: intermediate
26: .seealso: KSPGMRESSetOrthogonalization(), KSPGMRESClassicalGramSchmidtOrthogonalization(), KSPGMRESGetOrthogonalization()
28: @*/
31: PetscErrorCode KSPGMRESModifiedGramSchmidtOrthogonalization(KSP ksp,PetscInt it)
32: {
33: KSP_GMRES *gmres = (KSP_GMRES *)(ksp->data);
35: PetscInt j;
36: PetscScalar *hh,*hes;
39: PetscLogEventBegin(KSP_GMRESOrthogonalization,ksp,0,0,0);
40: /* update Hessenberg matrix and do Gram-Schmidt */
41: hh = HH(0,it);
42: hes = HES(0,it);
43: for (j=0; j<=it; j++) {
44: /* (vv(it+1), vv(j)) */
45: VecDot(VEC_VV(it+1),VEC_VV(j),hh);
46: *hes++ = *hh;
47: /* vv(it+1) <- vv(it+1) - hh[it+1][j] vv(j) */
48: VecAXPY(VEC_VV(it+1),-(*hh++),VEC_VV(j));
49: }
50: PetscLogEventEnd(KSP_GMRESOrthogonalization,ksp,0,0,0);
51: return(0);
52: }