Actual source code: bcgsl.c

petsc-3.3-p7 2013-05-11
  1: /*
  2:  * Implementation of BiCGstab(L) the paper by D.R. Fokkema,
  3:  * "Enhanced implementation of BiCGStab(L) for solving linear systems
  4:  * of equations". This uses tricky delayed updating ideas to prevent
  5:  * round-off buildup.
  6:  *
  7:  * This has not been completely cleaned up into PETSc style.
  8:  *
  9:  * All the BLAS and LAPACK calls below should be removed and replaced with 
 10:  * loops and the macros for block solvers converted from LINPACK; there is no way
 11:  * calls to BLAS/LAPACK make sense for size 2, 3, 4, etc.
 12:  */
 13: #include <petsc-private/kspimpl.h>              /*I   "petscksp.h" I*/
 14: #include <../src/ksp/ksp/impls/bcgsl/bcgslimpl.h>
 15: #include <petscblaslapack.h>


 20: static PetscErrorCode  KSPSolve_BCGSL(KSP ksp)
 21: {
 22:   KSP_BCGSL      *bcgsl = (KSP_BCGSL *) ksp->data;
 23:   PetscScalar    alpha, beta, omega, sigma;
 24:   PetscScalar    rho0, rho1;
 25:   PetscReal      kappa0, kappaA, kappa1;
 26:   PetscReal      ghat;
 27:   PetscReal      zeta, zeta0, rnmax_computed, rnmax_true, nrm0;
 28:   PetscBool      bUpdateX;
 29:   PetscInt       maxit;
 30:   PetscInt       h, i, j, k, vi, ell;
 31:   PetscBLASInt   ldMZ,bierr;


 36:   /* set up temporary vectors */
 37:   vi = 0;
 38:   ell = bcgsl->ell;
 39:   bcgsl->vB    = ksp->work[vi]; vi++;
 40:   bcgsl->vRt   = ksp->work[vi]; vi++;
 41:   bcgsl->vTm   = ksp->work[vi]; vi++;
 42:   bcgsl->vvR   = ksp->work+vi; vi += ell+1;
 43:   bcgsl->vvU   = ksp->work+vi; vi += ell+1;
 44:   bcgsl->vXr   = ksp->work[vi]; vi++;
 45:   ldMZ = PetscBLASIntCast(ell+1);

 47:   /* Prime the iterative solver */
 48:   KSPInitialResidual(ksp, VX, VTM, VB, VVR[0], ksp->vec_rhs);
 49:   VecNorm(VVR[0], NORM_2, &zeta0);
 50:   rnmax_computed = zeta0;
 51:   rnmax_true = zeta0;

 53:   (*ksp->converged)(ksp, 0, zeta0, &ksp->reason, ksp->cnvP);
 54:   if (ksp->reason) {
 55:     PetscObjectTakeAccess(ksp);
 56:     ksp->its   = 0;
 57:     ksp->rnorm = zeta0;
 58:     PetscObjectGrantAccess(ksp);
 59:     return(0);
 60:   }

 62:   VecSet(VVU[0],0.0);
 63:   alpha = 0.;
 64:   rho0 = omega = 1;

 66:   if (bcgsl->delta>0.0) {
 67:     VecCopy(VX, VXR);
 68:     VecSet(VX,0.0);
 69:     VecCopy(VVR[0], VB);
 70:   } else {
 71:     VecCopy(ksp->vec_rhs, VB);
 72:   }

 74:   /* Life goes on */
 75:   VecCopy(VVR[0], VRT);
 76:   zeta = zeta0;

 78:   KSPGetTolerances(ksp, PETSC_NULL, PETSC_NULL, PETSC_NULL, &maxit);

 80:   for (k=0; k<maxit; k += bcgsl->ell) {
 81:     ksp->its   = k;
 82:     ksp->rnorm = zeta;

 84:     KSPLogResidualHistory(ksp, zeta);
 85:     KSPMonitor(ksp, ksp->its, zeta);

 87:     (*ksp->converged)(ksp, k, zeta, &ksp->reason, ksp->cnvP);
 88:     if (ksp->reason < 0) return(0);
 89:     else if (ksp->reason) break;

 91:     /* BiCG part */
 92:     rho0 = -omega*rho0;
 93:     nrm0 = zeta;
 94:     for (j=0; j<bcgsl->ell; j++) {
 95:       /* rho1 <- r_j' * r_tilde */
 96:       VecDot(VVR[j], VRT, &rho1);
 97:       if (rho1 == 0.0) {
 98:         ksp->reason = KSP_DIVERGED_BREAKDOWN_BICG;
 99:         return(0);
100:       }
101:       beta = alpha*(rho1/rho0);
102:       rho0 = rho1;
103:       for (i=0; i<=j; i++) {
104:         /* u_i <- r_i - beta*u_i */
105:         VecAYPX(VVU[i], -beta, VVR[i]);
106:       }
107:       /* u_{j+1} <- inv(K)*A*u_j */
108:       KSP_PCApplyBAorAB(ksp, VVU[j], VVU[j+1], VTM);

110:       VecDot(VVU[j+1], VRT, &sigma);
111:       if (sigma == 0.0) {
112:         ksp->reason = KSP_DIVERGED_BREAKDOWN_BICG;
113:         return(0);
114:       }
115:       alpha = rho1/sigma;

117:       /* x <- x + alpha*u_0 */
118:       VecAXPY(VX, alpha, VVU[0]);

120:       for (i=0; i<=j; i++) {
121:         /* r_i <- r_i - alpha*u_{i+1} */
122:         VecAXPY(VVR[i], -alpha, VVU[i+1]);
123:       }

125:       /* r_{j+1} <- inv(K)*A*r_j */
126:       KSP_PCApplyBAorAB(ksp, VVR[j], VVR[j+1], VTM);

128:       VecNorm(VVR[0], NORM_2, &nrm0);
129:       if (bcgsl->delta>0.0) {
130:         if (rnmax_computed<nrm0) rnmax_computed = nrm0;
131:         if (rnmax_true<nrm0) rnmax_true = nrm0;
132:       }

134:       /* NEW: check for early exit */
135:       (*ksp->converged)(ksp, k+j, nrm0, &ksp->reason, ksp->cnvP);
136:       if (ksp->reason) {
137:         PetscObjectTakeAccess(ksp);
138:         ksp->its   = k+j;
139:         ksp->rnorm = nrm0;
140:         PetscObjectGrantAccess(ksp);
141:         if (ksp->reason < 0) return(0);
142:       }
143:     }

145:     /* Polynomial part */
146:     for(i = 0; i <= bcgsl->ell; ++i) {
147:       VecMDot(VVR[i], i+1, VVR, &MZa[i*ldMZ]);
148:     }
149:     /* Symmetrize MZa */
150:     for(i = 0; i <= bcgsl->ell; ++i) {
151:       for(j = i+1; j <= bcgsl->ell; ++j) {
152:         MZa[i*ldMZ+j] = MZa[j*ldMZ+i] = PetscConj(MZa[j*ldMZ+i]);
153:       }
154:     }
155:     /* Copy MZa to MZb */
156:     PetscMemcpy(MZb,MZa,ldMZ*ldMZ*sizeof(PetscScalar));

158:     if (!bcgsl->bConvex || bcgsl->ell==1) {
159:       PetscBLASInt ione = 1,bell = PetscBLASIntCast(bcgsl->ell);

161:       AY0c[0] = -1;
162: #if defined(PETSC_MISSING_LAPACK_POTRF)
163:   SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"POTRF - Lapack routine is unavailable.");
164: #else
165:       LAPACKpotrf_("Lower", &bell, &MZa[1+ldMZ], &ldMZ, &bierr);
166: #endif
167:       if (ierr!=0) {
168:         ksp->reason = KSP_DIVERGED_BREAKDOWN;
169:         return(0);
170:       }
171:       PetscMemcpy(&AY0c[1],&MZb[1],bcgsl->ell*sizeof(PetscScalar));
172:       LAPACKpotrs_("Lower", &bell, &ione, &MZa[1+ldMZ], &ldMZ, &AY0c[1], &ldMZ, &bierr);
173:     } else {
174:       PetscBLASInt ione = 1;
175:       PetscScalar aone = 1.0, azero = 0.0;
176:       PetscBLASInt neqs = PetscBLASIntCast(bcgsl->ell-1);

178: #if defined(PETSC_MISSING_LAPACK_POTRF)
179:   SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"POTRF - Lapack routine is unavailable.");
180: #else
181:       LAPACKpotrf_("Lower", &neqs, &MZa[1+ldMZ], &ldMZ, &bierr);
182: #endif
183:       if (ierr!=0) {
184:         ksp->reason = KSP_DIVERGED_BREAKDOWN;
185:         return(0);
186:       }
187:       PetscMemcpy(&AY0c[1],&MZb[1],(bcgsl->ell-1)*sizeof(PetscScalar));
188:       LAPACKpotrs_("Lower", &neqs, &ione, &MZa[1+ldMZ], &ldMZ, &AY0c[1], &ldMZ, &bierr);
189:       AY0c[0] = -1;
190:       AY0c[bcgsl->ell] = 0.;

192:       PetscMemcpy(&AYlc[1],&MZb[1+ldMZ*(bcgsl->ell)],(bcgsl->ell-1)*sizeof(PetscScalar));
193:       LAPACKpotrs_("Lower", &neqs, &ione, &MZa[1+ldMZ], &ldMZ, &AYlc[1], &ldMZ, &bierr);

195:       AYlc[0] = 0.;
196:       AYlc[bcgsl->ell] = -1;

198:       BLASgemv_("NoTr", &ldMZ, &ldMZ, &aone, MZb, &ldMZ, AY0c, &ione, &azero, AYtc, &ione);

200:       kappa0 = PetscRealPart(BLASdot_(&ldMZ, AY0c, &ione, AYtc, &ione));

202:       /* round-off can cause negative kappa's */
203:       if (kappa0<0) kappa0 = -kappa0;
204:       kappa0 = PetscSqrtReal(kappa0);

206:       kappaA = PetscRealPart(BLASdot_(&ldMZ, AYlc, &ione, AYtc, &ione));

208:       BLASgemv_("noTr", &ldMZ, &ldMZ, &aone, MZb, &ldMZ, AYlc, &ione, &azero, AYtc, &ione);

210:       kappa1 = PetscRealPart(BLASdot_(&ldMZ, AYlc, &ione, AYtc, &ione));

212:       if (kappa1<0) kappa1 = -kappa1;
213:       kappa1 = PetscSqrtReal(kappa1);

215:       if (kappa0!=0.0 && kappa1!=0.0) {
216:         if (kappaA<0.7*kappa0*kappa1) {
217:           ghat = (kappaA<0.0) ?  -0.7*kappa0/kappa1 : 0.7*kappa0/kappa1;
218:         } else {
219:           ghat = kappaA/(kappa1*kappa1);
220:         }
221:         for (i=0; i<=bcgsl->ell; i++) {
222:           AY0c[i] = AY0c[i] - ghat* AYlc[i];
223:         }
224:       }
225:     }

227:     omega = AY0c[bcgsl->ell];
228:     for (h=bcgsl->ell; h>0 && omega==0.0; h--) {
229:       omega = AY0c[h];
230:     }
231:     if (omega==0.0) {
232:       ksp->reason = KSP_DIVERGED_BREAKDOWN;
233:       return(0);
234:     }


237:     VecMAXPY(VX, bcgsl->ell,AY0c+1, VVR);
238:     for (i=1; i<=bcgsl->ell; i++) {
239:       AY0c[i] *= -1.0;
240:     }
241:     VecMAXPY(VVU[0], bcgsl->ell,AY0c+1, VVU+1);
242:     VecMAXPY(VVR[0], bcgsl->ell,AY0c+1, VVR+1);
243:     for (i=1; i<=bcgsl->ell; i++) {
244:       AY0c[i] *= -1.0;
245:     }
246:     VecNorm(VVR[0], NORM_2, &zeta);

248:     /* Accurate Update */
249:     if (bcgsl->delta>0.0) {
250:       if (rnmax_computed<zeta) rnmax_computed = zeta;
251:       if (rnmax_true<zeta) rnmax_true = zeta;

253:       bUpdateX = (PetscBool) (zeta<bcgsl->delta*zeta0 && zeta0<=rnmax_computed);
254:       if ((zeta<bcgsl->delta*rnmax_true && zeta0<=rnmax_true) || bUpdateX) {
255:         /* r0 <- b-inv(K)*A*X */
256:         KSP_PCApplyBAorAB(ksp, VX, VVR[0], VTM);
257:         VecAYPX(VVR[0], -1.0, VB);
258:         rnmax_true = zeta;

260:         if (bUpdateX) {
261:           VecAXPY(VXR,1.0,VX);
262:           VecSet(VX,0.0);
263:           VecCopy(VVR[0], VB);
264:           rnmax_computed = zeta;
265:         }
266:       }
267:     }
268:   }
269:   if (bcgsl->delta>0.0) {
270:     VecAXPY(VX,1.0,VXR);
271:   }

273:   (*ksp->converged)(ksp, k, zeta, &ksp->reason, ksp->cnvP);
274:   if (!ksp->reason) ksp->reason = KSP_DIVERGED_ITS;
275:   return(0);
276: }

280: /*@
281:    KSPBCGSLSetXRes - Sets the parameter governing when
282:    exact residuals will be used instead of computed residuals.

284:    Logically Collective on KSP

286:    Input Parameters:
287: +  ksp - iterative context obtained from KSPCreate
288: -  delta - computed residuals are used alone when delta is not positive

290:    Options Database Keys:

292: .  -ksp_bcgsl_xres delta

294:    Level: intermediate

296: .keywords: KSP, BiCGStab(L), set, exact residuals

298: .seealso: KSPBCGSLSetEll(), KSPBCGSLSetPol()
299: @*/
300: PetscErrorCode  KSPBCGSLSetXRes(KSP ksp, PetscReal delta)
301: {
302:   KSP_BCGSL      *bcgsl = (KSP_BCGSL *)ksp->data;

307:   if (ksp->setupstage) {
308:     if ((delta<=0 && bcgsl->delta>0) || (delta>0 && bcgsl->delta<=0)) {
309:       VecDestroyVecs(ksp->nwork,&ksp->work);
310:       PetscFree5(AY0c,AYlc,AYtc,MZa,MZb);
311:       ksp->setupstage = KSP_SETUP_NEW;
312:     }
313:   }
314:   bcgsl->delta = delta;
315:   return(0);
316: }

320: /*@
321:    KSPBCGSLSetPol - Sets the type of polynomial part will
322:    be used in the BiCGSTab(L) solver.

324:    Logically Collective on KSP

326:    Input Parameters:
327: +  ksp - iterative context obtained from KSPCreate
328: -  uMROR - set to PETSC_TRUE when the polynomial is a convex combination of an MR and an OR step.

330:    Options Database Keys:

332: +  -ksp_bcgsl_cxpoly - use enhanced polynomial
333: .  -ksp_bcgsl_mrpoly - use standard polynomial

335:    Level: intermediate

337: .keywords: KSP, BiCGStab(L), set, polynomial

339: .seealso: @()
340: @*/
341: PetscErrorCode  KSPBCGSLSetPol(KSP ksp, PetscBool  uMROR)
342: {
343:   KSP_BCGSL      *bcgsl = (KSP_BCGSL *)ksp->data;


349:   if (!ksp->setupstage) {
350:     bcgsl->bConvex = uMROR;
351:   } else if (bcgsl->bConvex != uMROR) {
352:     /* free the data structures,
353:        then create them again
354:      */
355:     VecDestroyVecs(ksp->nwork,&ksp->work);
356:     PetscFree5(AY0c,AYlc,AYtc,MZa,MZb);
357:     bcgsl->bConvex = uMROR;
358:     ksp->setupstage = KSP_SETUP_NEW;
359:   }
360:   return(0);
361: }

365: /*@
366:    KSPBCGSLSetEll - Sets the number of search directions in BiCGStab(L).

368:    Logically Collective on KSP

370:    Input Parameters:
371: +  ksp - iterative context obtained from KSPCreate
372: -  ell - number of search directions

374:    Options Database Keys:

376: .  -ksp_bcgsl_ell ell

378:    Level: intermediate

380: .keywords: KSP, BiCGStab(L), set, exact residuals,

382: .seealso: @()
383: @*/
384: PetscErrorCode  KSPBCGSLSetEll(KSP ksp, PetscInt ell)
385: {
386:   KSP_BCGSL      *bcgsl = (KSP_BCGSL *)ksp->data;

390:   if (ell < 1) SETERRQ(((PetscObject)ksp)->comm,PETSC_ERR_ARG_OUTOFRANGE, "KSPBCGSLSetEll: second argument must be positive");

393:   if (!ksp->setupstage) {
394:     bcgsl->ell = ell;
395:   } else if (bcgsl->ell != ell) {
396:     /* free the data structures, then create them again */
397:     VecDestroyVecs(ksp->nwork,&ksp->work);
398:     PetscFree5(AY0c,AYlc,AYtc,MZa,MZb);
399:     bcgsl->ell = ell;
400:     ksp->setupstage = KSP_SETUP_NEW;
401:   }
402:   return(0);
403: }

407: PetscErrorCode KSPView_BCGSL(KSP ksp, PetscViewer viewer)
408: {
409:   KSP_BCGSL       *bcgsl = (KSP_BCGSL *)ksp->data;
410:   PetscErrorCode  ierr;
411:   PetscBool       isascii, isstring;

414:   PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii);
415:   PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERSTRING, &isstring);

417:   if (isascii) {
418:     PetscViewerASCIIPrintf(viewer, "  BCGSL: Ell = %D\n", bcgsl->ell);
419:     PetscViewerASCIIPrintf(viewer, "  BCGSL: Delta = %lg\n", bcgsl->delta);
420:   } else {
421:     SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP, "Viewer type %s not supported for KSP BCGSL", ((PetscObject)viewer)->type_name);
422:   }
423:   return(0);
424: }

428: PetscErrorCode KSPSetFromOptions_BCGSL(KSP ksp)
429: {
430:   KSP_BCGSL      *bcgsl = (KSP_BCGSL *)ksp->data;
432:   PetscInt       this_ell;
433:   PetscReal      delta;
434:   PetscBool      flga = PETSC_FALSE, flg;

437:   /* PetscOptionsBegin/End are called in KSPSetFromOptions. They
438:      don't need to be called here.
439:   */
440:   PetscOptionsHead("KSP BiCGStab(L) Options");

442:   /* Set number of search directions */
443:   PetscOptionsInt("-ksp_bcgsl_ell","Number of Krylov search directions","KSPBCGSLSetEll",bcgsl->ell,&this_ell,&flg);
444:   if (flg) {
445:     KSPBCGSLSetEll(ksp, this_ell);
446:   }

448:   /* Set polynomial type */
449:   PetscOptionsBool("-ksp_bcgsl_cxpoly", "Polynomial part of BiCGStabL is MinRes + OR", "KSPBCGSLSetPol", flga,&flga,PETSC_NULL);
450:   if (flga) {
451:     KSPBCGSLSetPol(ksp, PETSC_TRUE);
452:   } else {
453:     flg  = PETSC_FALSE;
454:     PetscOptionsBool("-ksp_bcgsl_mrpoly", "Polynomial part of BiCGStabL is MinRes", "KSPBCGSLSetPol", flg,&flg,PETSC_NULL);
455:     KSPBCGSLSetPol(ksp, PETSC_FALSE);
456:   }

458:   /* Will computed residual be refreshed? */
459:   PetscOptionsReal("-ksp_bcgsl_xres", "Threshold used to decide when to refresh computed residuals", "KSPBCGSLSetXRes", bcgsl->delta, &delta, &flg);
460:   if (flg) {
461:     KSPBCGSLSetXRes(ksp, delta);
462:   }
463:   PetscOptionsTail();
464:   return(0);
465: }

469: PetscErrorCode KSPSetUp_BCGSL(KSP ksp)
470: {
471:   KSP_BCGSL      *bcgsl = (KSP_BCGSL *)ksp->data;
472:   PetscInt       ell = bcgsl->ell,ldMZ = ell+1;

476:   if (ksp->pc_side == PC_SYMMETRIC) SETERRQ(((PetscObject)ksp)->comm,PETSC_ERR_SUP, "no symmetric preconditioning for KSPBCGSL");
477:   else if (ksp->pc_side == PC_RIGHT) SETERRQ(((PetscObject)ksp)->comm,PETSC_ERR_SUP, "no right preconditioning for KSPBCGSL");
478:   KSPDefaultGetWork(ksp, 6+2*ell);
479:   PetscMalloc5(ldMZ,PetscScalar,&AY0c,ldMZ,PetscScalar,&AYlc,ldMZ,PetscScalar,&AYtc,ldMZ*ldMZ,PetscScalar,&MZa,ldMZ*ldMZ,PetscScalar,&MZb);
480:   return(0);
481: }

485: PetscErrorCode KSPReset_BCGSL(KSP ksp)
486: {
487:   KSP_BCGSL      *bcgsl = (KSP_BCGSL *)ksp->data;
490:   VecDestroyVecs(ksp->nwork,&ksp->work);
491:   PetscFree5(AY0c,AYlc,AYtc,MZa,MZb);
492:   return(0);
493: }

497: PetscErrorCode KSPDestroy_BCGSL(KSP ksp)
498: {

502:   KSPReset_BCGSL(ksp);
503:   KSPDefaultDestroy(ksp);
504:   return(0);
505: }

507: /*MC
508:      KSPBCGSL - Implements a slight variant of the Enhanced
509:                 BiCGStab(L) algorithm in (3) and (2).  The variation
510:                 concerns cases when either kappa0**2 or kappa1**2 is
511:                 negative due to round-off. Kappa0 has also been pulled
512:                 out of the denominator in the formula for ghat.

514:     References:
515:       1. G.L.G. Sleijpen, H.A. van der Vorst, "An overview of
516:          approaches for the stable computation of hybrid BiCG
517:          methods", Applied Numerical Mathematics: Transactions
518:          f IMACS, 19(3), pp 235-54, 1996.
519:       2. G.L.G. Sleijpen, H.A. van der Vorst, D.R. Fokkema,
520:          "BiCGStab(L) and other hybrid Bi-CG methods",
521:           Numerical Algorithms, 7, pp 75-109, 1994.
522:       3. D.R. Fokkema, "Enhanced implementation of BiCGStab(L)
523:          for solving linear systems of equations", preprint
524:          from www.citeseer.com.

526:    Contributed by: Joel M. Malard, email jm.malard@pnl.gov

528:    Options Database Keys:
529: +  -ksp_bcgsl_ell <ell> Number of Krylov search directions, defaults to 2 -- KSPBCGSLSetEll()
530: .  -ksp_bcgsl_cxpol - Use a convex function of the MinRes and OR polynomials after the BiCG step instead of default MinRes -- KSPBCGSLSetPol()
531: .  -ksp_bcgsl_mrpoly - Use the default MinRes polynomial after the BiCG step  -- KSPBCGSLSetPol()
532: -  -ksp_bcgsl_xres <res> Threshold used to decide when to refresh computed residuals -- KSPBCGSLSetXRes()

534:    Notes: Supports left preconditioning only

536:    Level: beginner

538: .seealso:  KSPCreate(), KSPSetType(), KSPType (for list of available types), KSP, KSPFGMRES, KSPBCGS, KSPSetPCSide(), KSPBCGSLSetEll(), KSPBCGSLSetXRes()

540: M*/
541: EXTERN_C_BEGIN
544: PetscErrorCode  KSPCreate_BCGSL(KSP ksp)
545: {
547:   KSP_BCGSL      *bcgsl;

550:   /* allocate BiCGStab(L) context */
551:   PetscNewLog(ksp, KSP_BCGSL, &bcgsl);
552:   ksp->data = (void*)bcgsl;

554:   KSPSetSupportedNorm(ksp,KSP_NORM_PRECONDITIONED,PC_LEFT,2);
555:   KSPSetSupportedNorm(ksp,KSP_NORM_UNPRECONDITIONED,PC_RIGHT,1);

557:   ksp->ops->setup           = KSPSetUp_BCGSL;
558:   ksp->ops->solve           = KSPSolve_BCGSL;
559:   ksp->ops->reset           = KSPReset_BCGSL;
560:   ksp->ops->destroy         = KSPDestroy_BCGSL;
561:   ksp->ops->buildsolution   = KSPDefaultBuildSolution;
562:   ksp->ops->buildresidual   = KSPDefaultBuildResidual;
563:   ksp->ops->setfromoptions  = KSPSetFromOptions_BCGSL;
564:   ksp->ops->view            = KSPView_BCGSL;

566:   /* Let the user redefine the number of directions vectors */
567:   bcgsl->ell = 2;

569:   /*Choose between a single MR step or an averaged MR/OR */
570:   bcgsl->bConvex = PETSC_FALSE;

572:   /* Set the threshold for when exact residuals will be used */
573:   bcgsl->delta = 0.0;
574:   return(0);
575: }
576: EXTERN_C_END