Actual source code: asm.c

petsc-3.3-p7 2013-05-11
  2: /*
  3:   This file defines an additive Schwarz preconditioner for any Mat implementation.

  5:   Note that each processor may have any number of subdomains. But in order to 
  6:   deal easily with the VecScatter(), we treat each processor as if it has the
  7:   same number of subdomains.

  9:        n - total number of true subdomains on all processors
 10:        n_local_true - actual number of subdomains on this processor
 11:        n_local = maximum over all processors of n_local_true
 12: */
 13: #include <petsc-private/pcimpl.h>     /*I "petscpc.h" I*/

 15: typedef struct {
 16:   PetscInt   n, n_local, n_local_true;
 17:   PetscInt   overlap;             /* overlap requested by user */
 18:   KSP        *ksp;                /* linear solvers for each block */
 19:   VecScatter *restriction;        /* mapping from global to subregion */
 20:   VecScatter *localization;       /* mapping from overlapping to non-overlapping subregion */
 21:   VecScatter *prolongation;       /* mapping from subregion to global */
 22:   Vec        *x,*y,*y_local;      /* work vectors */
 23:   IS         *is;                 /* index set that defines each overlapping subdomain */
 24:   IS         *is_local;           /* index set that defines each non-overlapping subdomain, may be NULL */
 25:   Mat        *mat,*pmat;          /* mat is not currently used */
 26:   PCASMType  type;                /* use reduced interpolation, restriction or both */
 27:   PetscBool  type_set;            /* if user set this value (so won't change it for symmetric problems) */
 28:   PetscBool  same_local_solves;   /* flag indicating whether all local solvers are same */
 29:   PetscBool  sort_indices;        /* flag to sort subdomain indices */
 30: } PC_ASM;

 34: static PetscErrorCode PCView_ASM(PC pc,PetscViewer viewer)
 35: {
 36:   PC_ASM         *osm = (PC_ASM*)pc->data;
 38:   PetscMPIInt    rank;
 39:   PetscInt       i,bsz;
 40:   PetscBool      iascii,isstring;
 41:   PetscViewer    sviewer;


 45:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
 46:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
 47:   if (iascii) {
 48:     char overlaps[256] = "user-defined overlap",blocks[256] = "total subdomain blocks not yet set";
 49:     if (osm->overlap >= 0) {PetscSNPrintf(overlaps,sizeof overlaps,"amount of overlap = %D",osm->overlap);}
 50:     if (osm->n > 0) {PetscSNPrintf(blocks,sizeof blocks,"total subdomain blocks = %D",osm->n);}
 51:     PetscViewerASCIIPrintf(viewer,"  Additive Schwarz: %s, %s\n",blocks,overlaps);
 52:     PetscViewerASCIIPrintf(viewer,"  Additive Schwarz: restriction/interpolation type - %s\n",PCASMTypes[osm->type]);
 53:     MPI_Comm_rank(((PetscObject)pc)->comm,&rank);
 54:     if (osm->same_local_solves) {
 55:       if (osm->ksp) {
 56:         PetscViewerASCIIPrintf(viewer,"  Local solve is same for all blocks, in the following KSP and PC objects:\n");
 57:         PetscViewerGetSingleton(viewer,&sviewer);
 58:         if (!rank) {
 59:           PetscViewerASCIIPushTab(viewer);
 60:           KSPView(osm->ksp[0],sviewer);
 61:           PetscViewerASCIIPopTab(viewer);
 62:         }
 63:         PetscViewerRestoreSingleton(viewer,&sviewer);
 64:       }
 65:     } else {
 66:       PetscViewerASCIISynchronizedAllow(viewer,PETSC_TRUE);
 67:       PetscViewerASCIISynchronizedPrintf(viewer,"  [%d] number of local blocks = %D\n",(int)rank,osm->n_local_true);
 68:       PetscViewerFlush(viewer);
 69:       PetscViewerASCIIPrintf(viewer,"  Local solve info for each block is in the following KSP and PC objects:\n");
 70:       PetscViewerASCIIPushTab(viewer);
 71:       PetscViewerASCIIPrintf(viewer,"- - - - - - - - - - - - - - - - - -\n");
 72:       for (i=0; i<osm->n_local; i++) {
 73:         PetscViewerGetSingleton(viewer,&sviewer);
 74:         if (i < osm->n_local_true) {
 75:           ISGetLocalSize(osm->is[i],&bsz);
 76:           PetscViewerASCIISynchronizedPrintf(sviewer,"[%d] local block number %D, size = %D\n",(int)rank,i,bsz);
 77:           KSPView(osm->ksp[i],sviewer);
 78:           PetscViewerASCIISynchronizedPrintf(sviewer,"- - - - - - - - - - - - - - - - - -\n");
 79:         }
 80:         PetscViewerRestoreSingleton(viewer,&sviewer);
 81:       }
 82:       PetscViewerASCIIPopTab(viewer);
 83:       PetscViewerFlush(viewer);
 84:       PetscViewerASCIISynchronizedAllow(viewer,PETSC_FALSE);
 85:     }
 86:   } else if (isstring) {
 87:     PetscViewerStringSPrintf(viewer," blocks=%D, overlap=%D, type=%s",osm->n,osm->overlap,PCASMTypes[osm->type]);
 88:     PetscViewerGetSingleton(viewer,&sviewer);
 89:     if (osm->ksp) {KSPView(osm->ksp[0],sviewer);}
 90:     PetscViewerRestoreSingleton(viewer,&sviewer);
 91:   } else {
 92:     SETERRQ1(((PetscObject)pc)->comm,PETSC_ERR_SUP,"Viewer type %s not supported for PCASM",((PetscObject)viewer)->type_name);
 93:   }
 94:   return(0);
 95: }

 99: static PetscErrorCode PCASMPrintSubdomains(PC pc)
100: {
101:   PC_ASM         *osm  = (PC_ASM*)pc->data;
102:   const char     *prefix;
103:   char           fname[PETSC_MAX_PATH_LEN+1];
104:   PetscViewer    viewer, sviewer;
105:   char           *s;
106:   PetscInt       i,j,nidx;
107:   const PetscInt *idx;
108:   PetscMPIInt    rank, size;

112:   MPI_Comm_size(((PetscObject)pc)->comm, &size);
113:   MPI_Comm_rank(((PetscObject)pc)->comm, &rank);
114:   PCGetOptionsPrefix(pc,&prefix);
115:   PetscOptionsGetString(prefix,"-pc_asm_print_subdomains",fname,PETSC_MAX_PATH_LEN,PETSC_NULL);
116:   if (fname[0] == 0) { PetscStrcpy(fname,"stdout"); };
117:   PetscViewerASCIIOpen(((PetscObject)pc)->comm,fname,&viewer);
118:   for (i=0;i<osm->n_local;i++) {
119:     if(i < osm->n_local_true) {
120:       ISGetLocalSize(osm->is[i],&nidx);
121:       ISGetIndices(osm->is[i],&idx);
122:       /* Print to a string viewer; no more than 15 characters per index plus 512 char for the header.*/
123:       PetscMalloc(sizeof(char)*(16*(nidx+1)+512), &s);
124:       PetscViewerStringOpen(PETSC_COMM_SELF, s, 16*(nidx+1)+512, &sviewer);
125:       PetscViewerStringSPrintf(sviewer, "[%D:%D] Subdomain %D with overlap:\n", rank, size, i);
126:       for (j=0; j<nidx; j++) {
127:         PetscViewerStringSPrintf(sviewer,"%D ",idx[j]);
128:       }
129:       ISRestoreIndices(osm->is[i],&idx);
130:       PetscViewerStringSPrintf(sviewer,"\n");
131:       PetscViewerDestroy(&sviewer);
132:       PetscViewerASCIISynchronizedAllow(viewer, PETSC_TRUE);
133:       PetscViewerASCIISynchronizedPrintf(viewer, s);
134:       PetscViewerFlush(viewer);
135:       PetscViewerASCIISynchronizedAllow(viewer, PETSC_FALSE);
136:       PetscFree(s);
137:       if (osm->is_local) {
138:         /* Print to a string viewer; no more than 15 characters per index plus 512 char for the header.*/
139:         PetscMalloc(sizeof(char)*(16*(nidx+1)+512), &s);
140:         PetscViewerStringOpen(PETSC_COMM_SELF, s, 16*(nidx+1)+512, &sviewer);
141:         PetscViewerStringSPrintf(sviewer, "[%D:%D] Subdomain %D without overlap:\n", rank, size, i);
142:         ISGetLocalSize(osm->is_local[i],&nidx);
143:         ISGetIndices(osm->is_local[i],&idx);
144:         for (j=0; j<nidx; j++) {
145:           PetscViewerStringSPrintf(sviewer,"%D ",idx[j]);
146:         }
147:         ISRestoreIndices(osm->is_local[i],&idx);
148:         PetscViewerStringSPrintf(sviewer,"\n");
149:         PetscViewerDestroy(&sviewer);
150:         PetscViewerASCIISynchronizedAllow(viewer, PETSC_TRUE);
151:         PetscViewerASCIISynchronizedPrintf(viewer, s);
152:         PetscViewerFlush(viewer);
153:         PetscViewerASCIISynchronizedAllow(viewer, PETSC_FALSE);
154:         PetscFree(s);
155:       }
156:     }
157:     else {
158:       /* Participate in collective viewer calls. */
159:       PetscViewerASCIISynchronizedAllow(viewer, PETSC_TRUE);
160:       PetscViewerFlush(viewer);
161:       PetscViewerASCIISynchronizedAllow(viewer, PETSC_FALSE);
162:       /* Assume either all ranks have is_local or none do. */
163:       if(osm->is_local) {
164:         PetscViewerASCIISynchronizedAllow(viewer, PETSC_TRUE);
165:         PetscViewerFlush(viewer);
166:         PetscViewerASCIISynchronizedAllow(viewer, PETSC_FALSE);
167:       }
168:     }
169:   }
170:   PetscViewerFlush(viewer);
171:   PetscViewerDestroy(&viewer);
172:   return(0);
173: }

177: static PetscErrorCode PCSetUp_ASM(PC pc)
178: {
179:   PC_ASM         *osm  = (PC_ASM*)pc->data;
181:   PetscBool      symset,flg;
182:   PetscInt       i,m,m_local,firstRow,lastRow;
183:   MatReuse       scall = MAT_REUSE_MATRIX;
184:   IS             isl;
185:   KSP            ksp;
186:   PC             subpc;
187:   const char     *prefix,*pprefix;
188:   Vec            vec;
189:   DM             *domain_dm = PETSC_NULL;

192:   if (!pc->setupcalled) {

194:     if (!osm->type_set) {
195:       MatIsSymmetricKnown(pc->pmat,&symset,&flg);
196:       if (symset && flg) { osm->type = PC_ASM_BASIC; }
197:     }

199:     /* Note: if subdomains have been set either via PCASMSetTotalSubdomains() or via PCASMSetLocalSubdomains(), osm->n_local_true will not be PETSC_DECIDE */
200:     if (osm->n_local_true == PETSC_DECIDE) {
201:       /* no subdomains given */
202:       /* try pc->dm first */
203:       if(pc->dm) {
204:         char      ddm_name[1024];
205:         DM        ddm;
206:         PetscBool flg;
207:         PetscInt     num_domains, d;
208:         char         **domain_names;
209:         IS           *inner_domain_is, *outer_domain_is;
210:         /* Allow the user to request a decomposition DM by name */
211:         PetscStrncpy(ddm_name, "", 1024);
212:         PetscOptionsString("-pc_asm_decomposition", "Name of the DM defining the composition", "PCSetDM", ddm_name, ddm_name,1024,&flg);
213:         if(flg) {
214:           DMCreateDomainDecompositionDM(pc->dm, ddm_name, &ddm);
215:           if(!ddm) {
216:             SETERRQ1(((PetscObject)pc)->comm, PETSC_ERR_ARG_WRONGSTATE, "Uknown DM decomposition name %s", ddm_name);
217:           }
218:           PetscInfo(pc,"Using domain decomposition DM defined using options database\n");
219:           PCSetDM(pc,ddm);
220:         }
221:         DMCreateDomainDecomposition(pc->dm, &num_domains, &domain_names, &inner_domain_is, &outer_domain_is, &domain_dm);
222:         if(num_domains) {
223:           PCASMSetLocalSubdomains(pc, num_domains, outer_domain_is, inner_domain_is);
224:         }
225:         for(d = 0; d < num_domains; ++d) {
226:           PetscFree(domain_names[d]);
227:           ISDestroy(&inner_domain_is[d]);
228:           ISDestroy(&outer_domain_is[d]);
229:         }
230:         PetscFree(domain_names);
231:         PetscFree(inner_domain_is);
232:         PetscFree(outer_domain_is);
233:       }
234:       if (osm->n_local_true == PETSC_DECIDE) {
235:         /* still no subdomains; use one subdomain per processor */
236:         osm->n_local_true = 1;
237:       }
238:     }
239:     {/* determine the global and max number of subdomains */
240:       PetscInt inwork[2],outwork[2];
241:       inwork[0] = inwork[1] = osm->n_local_true;
242:       MPI_Allreduce(inwork,outwork,1,MPIU_2INT,PetscMaxSum_Op,((PetscObject)pc)->comm);
243:       osm->n_local = outwork[0];
244:       osm->n       = outwork[1];
245:     }
246:     if (!osm->is){ /* create the index sets */
247:       PCASMCreateSubdomains(pc->pmat,osm->n_local_true,&osm->is);
248:     }
249:     if (osm->n_local_true > 1 && !osm->is_local) {
250:       PetscMalloc(osm->n_local_true*sizeof(IS),&osm->is_local);
251:       for (i=0; i<osm->n_local_true; i++) {
252:         if (osm->overlap > 0) { /* With positive overlap, osm->is[i] will be modified */
253:           ISDuplicate(osm->is[i],&osm->is_local[i]);
254:           ISCopy(osm->is[i],osm->is_local[i]);
255:         } else {
256:           PetscObjectReference((PetscObject)osm->is[i]);
257:           osm->is_local[i] = osm->is[i];
258:         }
259:       }
260:     }
261:     PCGetOptionsPrefix(pc,&prefix);
262:     flg  = PETSC_FALSE;
263:     PetscOptionsGetBool(prefix,"-pc_asm_print_subdomains",&flg,PETSC_NULL);
264:     if (flg) { PCASMPrintSubdomains(pc); }

266:     if (osm->overlap > 0) {
267:       /* Extend the "overlapping" regions by a number of steps */
268:       MatIncreaseOverlap(pc->pmat,osm->n_local_true,osm->is,osm->overlap);
269:     }
270:     if (osm->sort_indices) {
271:       for (i=0; i<osm->n_local_true; i++) {
272:         ISSort(osm->is[i]);
273:         if (osm->is_local) {
274:           ISSort(osm->is_local[i]);
275:         }
276:       }
277:     }
278:     /* Create the local work vectors and scatter contexts */
279:     MatGetVecs(pc->pmat,&vec,0);
280:     PetscMalloc(osm->n_local*sizeof(VecScatter),&osm->restriction);
281:     if (osm->is_local) {PetscMalloc(osm->n_local*sizeof(VecScatter),&osm->localization);}
282:     PetscMalloc(osm->n_local*sizeof(VecScatter),&osm->prolongation);
283:     PetscMalloc(osm->n_local*sizeof(Vec),&osm->x);
284:     PetscMalloc(osm->n_local*sizeof(Vec),&osm->y);
285:     PetscMalloc(osm->n_local*sizeof(Vec),&osm->y_local);
286:     VecGetOwnershipRange(vec, &firstRow, &lastRow);
287:     for (i=0; i<osm->n_local_true; ++i, firstRow += m_local) {
288:       ISGetLocalSize(osm->is[i],&m);
289:       VecCreateSeq(PETSC_COMM_SELF,m,&osm->x[i]);
290:       ISCreateStride(PETSC_COMM_SELF,m,0,1,&isl);
291:       VecScatterCreate(vec,osm->is[i],osm->x[i],isl,&osm->restriction[i]);
292:       ISDestroy(&isl);
293:       VecDuplicate(osm->x[i],&osm->y[i]);
294:       if (osm->is_local) {
295:         ISLocalToGlobalMapping ltog;
296:         IS                     isll;
297:         const PetscInt         *idx_local;
298:         PetscInt               *idx,nout;

300:         ISLocalToGlobalMappingCreateIS(osm->is[i],&ltog);
301:         ISGetLocalSize(osm->is_local[i],&m_local);
302:         ISGetIndices(osm->is_local[i], &idx_local);
303:         PetscMalloc(m_local*sizeof(PetscInt),&idx);
304:         ISGlobalToLocalMappingApply(ltog,IS_GTOLM_DROP,m_local,idx_local,&nout,idx);
305:         ISLocalToGlobalMappingDestroy(&ltog);
306:         if (nout != m_local) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"is_local not a subset of is");
307:         ISRestoreIndices(osm->is_local[i], &idx_local);
308:         ISCreateGeneral(PETSC_COMM_SELF,m_local,idx,PETSC_OWN_POINTER,&isll);
309:         ISCreateStride(PETSC_COMM_SELF,m_local,0,1,&isl);
310:         VecCreateSeq(PETSC_COMM_SELF,m_local,&osm->y_local[i]);
311:         VecScatterCreate(osm->y[i],isll,osm->y_local[i],isl,&osm->localization[i]);
312:         ISDestroy(&isll);

314:         VecScatterCreate(vec,osm->is_local[i],osm->y_local[i],isl,&osm->prolongation[i]);
315:         ISDestroy(&isl);
316:       } else {
317:         VecGetLocalSize(vec,&m_local);
318:         osm->y_local[i] = osm->y[i];
319:         PetscObjectReference((PetscObject) osm->y[i]);
320:         osm->prolongation[i] = osm->restriction[i];
321:         PetscObjectReference((PetscObject) osm->restriction[i]);
322:       }
323:     }
324:     if (firstRow != lastRow) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_PLIB, "Specified ASM subdomain sizes were invalid: %d != %d", firstRow, lastRow);
325:     for (i=osm->n_local_true; i<osm->n_local; i++) {
326:       VecCreateSeq(PETSC_COMM_SELF,0,&osm->x[i]);
327:       VecDuplicate(osm->x[i],&osm->y[i]);
328:       VecDuplicate(osm->x[i],&osm->y_local[i]);
329:       ISCreateStride(PETSC_COMM_SELF,0,0,1,&isl);
330:       VecScatterCreate(vec,isl,osm->x[i],isl,&osm->restriction[i]);
331:       if (osm->is_local) {
332:         VecScatterCreate(osm->y[i],isl,osm->y_local[i],isl,&osm->localization[i]);
333:         VecScatterCreate(vec,isl,osm->x[i],isl,&osm->prolongation[i]);
334:       } else {
335:         osm->prolongation[i] = osm->restriction[i];
336:         PetscObjectReference((PetscObject) osm->restriction[i]);
337:       }
338:       ISDestroy(&isl);
339:     }
340:     VecDestroy(&vec);

342:     if (!osm->ksp) {
343:       /* Create the local solvers */
344:       PetscMalloc(osm->n_local_true*sizeof(KSP *),&osm->ksp);
345:       if(domain_dm) {
346:         PetscInfo(pc,"Setting up ASM subproblems using the embedded DM\n");
347:       }
348:       for (i=0; i<osm->n_local_true; i++) {
349:         KSPCreate(PETSC_COMM_SELF,&ksp);
350:         PetscLogObjectParent(pc,ksp);
351:         PetscObjectIncrementTabLevel((PetscObject)ksp,(PetscObject)pc,1);
352:         KSPSetType(ksp,KSPPREONLY);
353:         KSPGetPC(ksp,&subpc);
354:         PCGetOptionsPrefix(pc,&prefix);
355:         KSPSetOptionsPrefix(ksp,prefix);
356:         KSPAppendOptionsPrefix(ksp,"sub_");
357:         if(domain_dm){
358:           KSPSetDM(ksp, domain_dm[i]);
359:           KSPSetDMActive(ksp, PETSC_FALSE);
360:           DMDestroy(&domain_dm[i]);
361:         }
362:         osm->ksp[i] = ksp;
363:       }
364:       if(domain_dm) {
365:         PetscFree(domain_dm);
366:       }
367:     }
368:     scall = MAT_INITIAL_MATRIX;
369:   } else {
370:     /* 
371:        Destroy the blocks from the previous iteration
372:     */
373:     if (pc->flag == DIFFERENT_NONZERO_PATTERN) {
374:       MatDestroyMatrices(osm->n_local_true,&osm->pmat);
375:       scall = MAT_INITIAL_MATRIX;
376:     }
377:   }

379:   /* 
380:      Extract out the submatrices
381:   */
382:   MatGetSubMatrices(pc->pmat,osm->n_local_true,osm->is,osm->is,scall,&osm->pmat);
383:   if (scall == MAT_INITIAL_MATRIX) {
384:     PetscObjectGetOptionsPrefix((PetscObject)pc->pmat,&pprefix);
385:     for (i=0; i<osm->n_local_true; i++) {
386:       PetscLogObjectParent(pc,osm->pmat[i]);
387:       PetscObjectSetOptionsPrefix((PetscObject)osm->pmat[i],pprefix);
388:     }
389:   }

391:   /* Return control to the user so that the submatrices can be modified (e.g., to apply
392:      different boundary conditions for the submatrices than for the global problem) */
393:   PCModifySubMatrices(pc,osm->n_local_true,osm->is,osm->is,osm->pmat,pc->modifysubmatricesP);

395:   /* 
396:      Loop over subdomains putting them into local ksp
397:   */
398:   for (i=0; i<osm->n_local_true; i++) {
399:     KSPSetOperators(osm->ksp[i],osm->pmat[i],osm->pmat[i],pc->flag);
400:     if (!pc->setupcalled) {
401:       KSPSetFromOptions(osm->ksp[i]);
402:     }
403:   }

405:   return(0);
406: }

410: static PetscErrorCode PCSetUpOnBlocks_ASM(PC pc)
411: {
412:   PC_ASM         *osm = (PC_ASM*)pc->data;
414:   PetscInt       i;

417:   for (i=0; i<osm->n_local_true; i++) {
418:     KSPSetUp(osm->ksp[i]);
419:   }
420:   return(0);
421: }

425: static PetscErrorCode PCApply_ASM(PC pc,Vec x,Vec y)
426: {
427:   PC_ASM         *osm = (PC_ASM*)pc->data;
429:   PetscInt       i,n_local = osm->n_local,n_local_true = osm->n_local_true;
430:   ScatterMode    forward = SCATTER_FORWARD,reverse = SCATTER_REVERSE;

433:   /*
434:      Support for limiting the restriction or interpolation to only local 
435:      subdomain values (leaving the other values 0). 
436:   */
437:   if (!(osm->type & PC_ASM_RESTRICT)) {
438:     forward = SCATTER_FORWARD_LOCAL;
439:     /* have to zero the work RHS since scatter may leave some slots empty */
440:     for (i=0; i<n_local_true; i++) {
441:       VecZeroEntries(osm->x[i]);
442:     }
443:   }
444:   if (!(osm->type & PC_ASM_INTERPOLATE)) {
445:     reverse = SCATTER_REVERSE_LOCAL;
446:   }

448:   for (i=0; i<n_local; i++) {
449:     VecScatterBegin(osm->restriction[i],x,osm->x[i],INSERT_VALUES,forward);
450:   }
451:   VecZeroEntries(y);
452:   /* do the local solves */
453:   for (i=0; i<n_local_true; i++) {
454:     VecScatterEnd(osm->restriction[i],x,osm->x[i],INSERT_VALUES,forward);
455:     KSPSolve(osm->ksp[i],osm->x[i],osm->y[i]);
456:     if (osm->localization) {
457:       VecScatterBegin(osm->localization[i],osm->y[i],osm->y_local[i],INSERT_VALUES,forward);
458:       VecScatterEnd(osm->localization[i],osm->y[i],osm->y_local[i],INSERT_VALUES,forward);
459:     }
460:     VecScatterBegin(osm->prolongation[i],osm->y_local[i],y,ADD_VALUES,reverse);
461:   }
462:   /* handle the rest of the scatters that do not have local solves */
463:   for (i=n_local_true; i<n_local; i++) {
464:     VecScatterEnd(osm->restriction[i],x,osm->x[i],INSERT_VALUES,forward);
465:     VecScatterBegin(osm->prolongation[i],osm->y_local[i],y,ADD_VALUES,reverse);
466:   }
467:   for (i=0; i<n_local; i++) {
468:     VecScatterEnd(osm->prolongation[i],osm->y_local[i],y,ADD_VALUES,reverse);
469:   }
470:   return(0);
471: }

475: static PetscErrorCode PCApplyTranspose_ASM(PC pc,Vec x,Vec y)
476: {
477:   PC_ASM         *osm = (PC_ASM*)pc->data;
479:   PetscInt       i,n_local = osm->n_local,n_local_true = osm->n_local_true;
480:   ScatterMode    forward = SCATTER_FORWARD,reverse = SCATTER_REVERSE;

483:   /*
484:      Support for limiting the restriction or interpolation to only local 
485:      subdomain values (leaving the other values 0).

487:      Note: these are reversed from the PCApply_ASM() because we are applying the 
488:      transpose of the three terms 
489:   */
490:   if (!(osm->type & PC_ASM_INTERPOLATE)) {
491:     forward = SCATTER_FORWARD_LOCAL;
492:     /* have to zero the work RHS since scatter may leave some slots empty */
493:     for (i=0; i<n_local_true; i++) {
494:       VecZeroEntries(osm->x[i]);
495:     }
496:   }
497:   if (!(osm->type & PC_ASM_RESTRICT)) {
498:     reverse = SCATTER_REVERSE_LOCAL;
499:   }

501:   for (i=0; i<n_local; i++) {
502:     VecScatterBegin(osm->restriction[i],x,osm->x[i],INSERT_VALUES,forward);
503:   }
504:   VecZeroEntries(y);
505:   /* do the local solves */
506:   for (i=0; i<n_local_true; i++) {
507:     VecScatterEnd(osm->restriction[i],x,osm->x[i],INSERT_VALUES,forward);
508:     KSPSolveTranspose(osm->ksp[i],osm->x[i],osm->y[i]);
509:     if (osm->localization) {
510:       VecScatterBegin(osm->localization[i],osm->y[i],osm->y_local[i],INSERT_VALUES,forward);
511:       VecScatterEnd(osm->localization[i],osm->y[i],osm->y_local[i],INSERT_VALUES,forward);
512:     }
513:     VecScatterBegin(osm->prolongation[i],osm->y_local[i],y,ADD_VALUES,reverse);
514:   }
515:   /* handle the rest of the scatters that do not have local solves */
516:   for (i=n_local_true; i<n_local; i++) {
517:     VecScatterEnd(osm->restriction[i],x,osm->x[i],INSERT_VALUES,forward);
518:     VecScatterBegin(osm->prolongation[i],osm->y_local[i],y,ADD_VALUES,reverse);
519:   }
520:   for (i=0; i<n_local; i++) {
521:     VecScatterEnd(osm->prolongation[i],osm->y_local[i],y,ADD_VALUES,reverse);
522:   }
523:   return(0);
524: }

528: static PetscErrorCode PCReset_ASM(PC pc)
529: {
530:   PC_ASM         *osm = (PC_ASM*)pc->data;
532:   PetscInt       i;

535:   if (osm->ksp) {
536:     for (i=0; i<osm->n_local_true; i++) {
537:       KSPReset(osm->ksp[i]);
538:     }
539:   }
540:   if (osm->pmat) {
541:     if (osm->n_local_true > 0) {
542:       MatDestroyMatrices(osm->n_local_true,&osm->pmat);
543:     }
544:   }
545:   if (osm->restriction) {
546:     for (i=0; i<osm->n_local; i++) {
547:       VecScatterDestroy(&osm->restriction[i]);
548:       if (osm->localization) {VecScatterDestroy(&osm->localization[i]);}
549:       VecScatterDestroy(&osm->prolongation[i]);
550:       VecDestroy(&osm->x[i]);
551:       VecDestroy(&osm->y[i]);
552:       VecDestroy(&osm->y_local[i]);
553:     }
554:     PetscFree(osm->restriction);
555:     if (osm->localization) {PetscFree(osm->localization);}
556:     PetscFree(osm->prolongation);
557:     PetscFree(osm->x);
558:     PetscFree(osm->y);
559:     PetscFree(osm->y_local);
560:   }
561:   if (osm->is) {
562:     PCASMDestroySubdomains(osm->n_local_true,osm->is,osm->is_local);
563:     osm->is       = 0;
564:     osm->is_local = 0;
565:   }
566:   return(0);
567: }

571: static PetscErrorCode PCDestroy_ASM(PC pc)
572: {
573:   PC_ASM         *osm = (PC_ASM*)pc->data;
575:   PetscInt       i;

578:   PCReset_ASM(pc);
579:   if (osm->ksp) {
580:     for (i=0; i<osm->n_local_true; i++) {
581:       KSPDestroy(&osm->ksp[i]);
582:     }
583:     PetscFree(osm->ksp);
584:   }
585:   PetscFree(pc->data);
586:   return(0);
587: }

591: static PetscErrorCode PCSetFromOptions_ASM(PC pc)
592: {
593:   PC_ASM         *osm = (PC_ASM*)pc->data;
595:   PetscInt       blocks,ovl;
596:   PetscBool      symset,flg;
597:   PCASMType      asmtype;

600:   /* set the type to symmetric if matrix is symmetric */
601:   if (!osm->type_set && pc->pmat) {
602:     MatIsSymmetricKnown(pc->pmat,&symset,&flg);
603:     if (symset && flg) { osm->type = PC_ASM_BASIC; }
604:   }
605:   PetscOptionsHead("Additive Schwarz options");
606:     PetscOptionsInt("-pc_asm_blocks","Number of subdomains","PCASMSetTotalSubdomains",osm->n,&blocks,&flg);
607:     if (flg) {PCASMSetTotalSubdomains(pc,blocks,PETSC_NULL,PETSC_NULL); }
608:     PetscOptionsInt("-pc_asm_overlap","Number of grid points overlap","PCASMSetOverlap",osm->overlap,&ovl,&flg);
609:     if (flg) {PCASMSetOverlap(pc,ovl); }
610:     flg  = PETSC_FALSE;
611:     PetscOptionsEnum("-pc_asm_type","Type of restriction/extension","PCASMSetType",PCASMTypes,(PetscEnum)osm->type,(PetscEnum*)&asmtype,&flg);
612:     if (flg) {PCASMSetType(pc,asmtype); }
613:   PetscOptionsTail();
614:   return(0);
615: }

617: /*------------------------------------------------------------------------------------*/

619: EXTERN_C_BEGIN
622: PetscErrorCode  PCASMSetLocalSubdomains_ASM(PC pc,PetscInt n,IS is[],IS is_local[])
623: {
624:   PC_ASM         *osm = (PC_ASM*)pc->data;
626:   PetscInt       i;

629:   if (n < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Each process must have 1 or more blocks, n = %D",n);
630:   if (pc->setupcalled && (n != osm->n_local_true || is)) SETERRQ(((PetscObject)pc)->comm,PETSC_ERR_ARG_WRONGSTATE,"PCASMSetLocalSubdomains() should be called before calling PCSetUp().");

632:   if (!pc->setupcalled) {
633:     if (is) {
634:       for (i=0; i<n; i++) {PetscObjectReference((PetscObject)is[i]);}
635:     }
636:     if (is_local) {
637:       for (i=0; i<n; i++) {PetscObjectReference((PetscObject)is_local[i]);}
638:     }
639:     if (osm->is) {
640:       PCASMDestroySubdomains(osm->n_local_true,osm->is,osm->is_local);
641:     }
642:     osm->n_local_true = n;
643:     osm->is           = 0;
644:     osm->is_local     = 0;
645:     if (is) {
646:       PetscMalloc(n*sizeof(IS),&osm->is);
647:       for (i=0; i<n; i++) { osm->is[i] = is[i]; }
648:       /* Flag indicating that the user has set overlapping subdomains so PCASM should not increase their size. */
649:       osm->overlap = -1;
650:     }
651:     if (is_local) {
652:       PetscMalloc(n*sizeof(IS),&osm->is_local);
653:       for (i=0; i<n; i++) { osm->is_local[i] = is_local[i]; }
654:     }
655:   }
656:   return(0);
657: }
658: EXTERN_C_END

660: EXTERN_C_BEGIN
663: PetscErrorCode  PCASMSetTotalSubdomains_ASM(PC pc,PetscInt N,IS *is,IS *is_local)
664: {
665:   PC_ASM         *osm = (PC_ASM*)pc->data;
667:   PetscMPIInt    rank,size;
668:   PetscInt       n;

671:   if (N < 1) SETERRQ1(((PetscObject)pc)->comm,PETSC_ERR_ARG_OUTOFRANGE,"Number of total blocks must be > 0, N = %D",N);
672:   if (is || is_local) SETERRQ(((PetscObject)pc)->comm,PETSC_ERR_SUP,"Use PCASMSetLocalSubdomains() to set specific index sets\n\they cannot be set globally yet.");

674:   /*
675:      Split the subdomains equally among all processors
676:   */
677:   MPI_Comm_rank(((PetscObject)pc)->comm,&rank);
678:   MPI_Comm_size(((PetscObject)pc)->comm,&size);
679:   n = N/size + ((N % size) > rank);
680:   if (!n) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Process %d must have at least one block: total processors %d total blocks %D",(int)rank,(int)size,N);
681:   if (pc->setupcalled && n != osm->n_local_true) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"PCASMSetTotalSubdomains() should be called before PCSetUp().");
682:   if (!pc->setupcalled) {
683:     if (osm->is) {
684:       PCASMDestroySubdomains(osm->n_local_true,osm->is,osm->is_local);
685:     }
686:     osm->n_local_true = n;
687:     osm->is           = 0;
688:     osm->is_local     = 0;
689:   }
690:   return(0);
691: }
692: EXTERN_C_END

694: EXTERN_C_BEGIN
697: PetscErrorCode  PCASMSetOverlap_ASM(PC pc,PetscInt ovl)
698: {
699:   PC_ASM *osm = (PC_ASM*)pc->data;

702:   if (ovl < 0) SETERRQ(((PetscObject)pc)->comm,PETSC_ERR_ARG_OUTOFRANGE,"Negative overlap value requested");
703:   if (pc->setupcalled && ovl != osm->overlap) SETERRQ(((PetscObject)pc)->comm,PETSC_ERR_ARG_WRONGSTATE,"PCASMSetOverlap() should be called before PCSetUp().");
704:   if (!pc->setupcalled) {
705:     osm->overlap = ovl;
706:   }
707:   return(0);
708: }
709: EXTERN_C_END

711: EXTERN_C_BEGIN
714: PetscErrorCode  PCASMSetType_ASM(PC pc,PCASMType type)
715: {
716:   PC_ASM *osm = (PC_ASM*)pc->data;

719:   osm->type     = type;
720:   osm->type_set = PETSC_TRUE;
721:   return(0);
722: }
723: EXTERN_C_END

725: EXTERN_C_BEGIN
728: PetscErrorCode  PCASMSetSortIndices_ASM(PC pc,PetscBool  doSort)
729: {
730:   PC_ASM *osm = (PC_ASM*)pc->data;

733:   osm->sort_indices = doSort;
734:   return(0);
735: }
736: EXTERN_C_END

738: EXTERN_C_BEGIN
741: PetscErrorCode  PCASMGetSubKSP_ASM(PC pc,PetscInt *n_local,PetscInt *first_local,KSP **ksp)
742: {
743:   PC_ASM         *osm = (PC_ASM*)pc->data;

747:   if (osm->n_local_true < 1) SETERRQ(((PetscObject)pc)->comm,PETSC_ERR_ORDER,"Need to call PCSetUP() on PC (or KSPSetUp() on the outer KSP object) before calling here");

749:   if (n_local) {
750:     *n_local = osm->n_local_true;
751:   }
752:   if (first_local) {
753:     MPI_Scan(&osm->n_local_true,first_local,1,MPIU_INT,MPI_SUM,((PetscObject)pc)->comm);
754:     *first_local -= osm->n_local_true;
755:   }
756:   if (ksp) {
757:     /* Assume that local solves are now different; not necessarily
758:        true though!  This flag is used only for PCView_ASM() */
759:     *ksp                   = osm->ksp;
760:     osm->same_local_solves = PETSC_FALSE;
761:   }
762:   return(0);
763: }
764: EXTERN_C_END


769: /*@C
770:     PCASMSetLocalSubdomains - Sets the local subdomains (for this processor only) for the additive Schwarz preconditioner. 

772:     Collective on PC 

774:     Input Parameters:
775: +   pc - the preconditioner context
776: .   n - the number of subdomains for this processor (default value = 1)
777: .   is - the index set that defines the subdomains for this processor
778:          (or PETSC_NULL for PETSc to determine subdomains)
779: -   is_local - the index sets that define the local part of the subdomains for this processor
780:          (or PETSC_NULL to use the default of 1 subdomain per process)

782:     Notes:
783:     The IS numbering is in the parallel, global numbering of the vector for both is and is_local

785:     By default the ASM preconditioner uses 1 block per processor.  

787:     Use PCASMSetTotalSubdomains() to set the subdomains for all processors.

789:     Level: advanced

791: .keywords: PC, ASM, set, local, subdomains, additive Schwarz

793: .seealso: PCASMSetTotalSubdomains(), PCASMSetOverlap(), PCASMGetSubKSP(),
794:           PCASMCreateSubdomains2D(), PCASMGetLocalSubdomains()
795: @*/
796: PetscErrorCode  PCASMSetLocalSubdomains(PC pc,PetscInt n,IS is[],IS is_local[])
797: {

802:   PetscTryMethod(pc,"PCASMSetLocalSubdomains_C",(PC,PetscInt,IS[],IS[]),(pc,n,is,is_local));
803:   return(0);
804: }

808: /*@C
809:     PCASMSetTotalSubdomains - Sets the subdomains for all processors for the 
810:     additive Schwarz preconditioner.  Either all or no processors in the
811:     PC communicator must call this routine, with the same index sets.

813:     Collective on PC

815:     Input Parameters:
816: +   pc - the preconditioner context
817: .   N  - the number of subdomains for all processors
818: .   is - the index sets that define the subdomains for all processors
819:          (or PETSC_NULL to ask PETSc to compe up with subdomains)
820: -   is_local - the index sets that define the local part of the subdomains for this processor
821:          (or PETSC_NULL to use the default of 1 subdomain per process)

823:     Options Database Key:
824:     To set the total number of subdomain blocks rather than specify the
825:     index sets, use the option
826: .    -pc_asm_blocks <blks> - Sets total blocks

828:     Notes:
829:     Currently you cannot use this to set the actual subdomains with the argument is.

831:     By default the ASM preconditioner uses 1 block per processor.  

833:     These index sets cannot be destroyed until after completion of the
834:     linear solves for which the ASM preconditioner is being used.

836:     Use PCASMSetLocalSubdomains() to set local subdomains.

838:     The IS numbering is in the parallel, global numbering of the vector for both is and is_local

840:     Level: advanced

842: .keywords: PC, ASM, set, total, global, subdomains, additive Schwarz

844: .seealso: PCASMSetLocalSubdomains(), PCASMSetOverlap(), PCASMGetSubKSP(),
845:           PCASMCreateSubdomains2D()
846: @*/
847: PetscErrorCode  PCASMSetTotalSubdomains(PC pc,PetscInt N,IS is[],IS is_local[])
848: {

853:   PetscTryMethod(pc,"PCASMSetTotalSubdomains_C",(PC,PetscInt,IS[],IS[]),(pc,N,is,is_local));
854:   return(0);
855: }

859: /*@
860:     PCASMSetOverlap - Sets the overlap between a pair of subdomains for the
861:     additive Schwarz preconditioner.  Either all or no processors in the
862:     PC communicator must call this routine. 

864:     Logically Collective on PC

866:     Input Parameters:
867: +   pc  - the preconditioner context
868: -   ovl - the amount of overlap between subdomains (ovl >= 0, default value = 1)

870:     Options Database Key:
871: .   -pc_asm_overlap <ovl> - Sets overlap

873:     Notes:
874:     By default the ASM preconditioner uses 1 block per processor.  To use
875:     multiple blocks per perocessor, see PCASMSetTotalSubdomains() and
876:     PCASMSetLocalSubdomains() (and the option -pc_asm_blocks <blks>).

878:     The overlap defaults to 1, so if one desires that no additional
879:     overlap be computed beyond what may have been set with a call to
880:     PCASMSetTotalSubdomains() or PCASMSetLocalSubdomains(), then ovl
881:     must be set to be 0.  In particular, if one does not explicitly set
882:     the subdomains an application code, then all overlap would be computed
883:     internally by PETSc, and using an overlap of 0 would result in an ASM 
884:     variant that is equivalent to the block Jacobi preconditioner.  

886:     Note that one can define initial index sets with any overlap via
887:     PCASMSetTotalSubdomains() or PCASMSetLocalSubdomains(); the routine
888:     PCASMSetOverlap() merely allows PETSc to extend that overlap further
889:     if desired.

891:     Level: intermediate

893: .keywords: PC, ASM, set, overlap

895: .seealso: PCASMSetTotalSubdomains(), PCASMSetLocalSubdomains(), PCASMGetSubKSP(),
896:           PCASMCreateSubdomains2D(), PCASMGetLocalSubdomains()
897: @*/
898: PetscErrorCode  PCASMSetOverlap(PC pc,PetscInt ovl)
899: {

905:   PetscTryMethod(pc,"PCASMSetOverlap_C",(PC,PetscInt),(pc,ovl));
906:   return(0);
907: }

911: /*@
912:     PCASMSetType - Sets the type of restriction and interpolation used
913:     for local problems in the additive Schwarz method.

915:     Logically Collective on PC

917:     Input Parameters:
918: +   pc  - the preconditioner context
919: -   type - variant of ASM, one of
920: .vb
921:       PC_ASM_BASIC       - full interpolation and restriction
922:       PC_ASM_RESTRICT    - full restriction, local processor interpolation
923:       PC_ASM_INTERPOLATE - full interpolation, local processor restriction
924:       PC_ASM_NONE        - local processor restriction and interpolation
925: .ve

927:     Options Database Key:
928: .   -pc_asm_type [basic,restrict,interpolate,none] - Sets ASM type

930:     Level: intermediate

932: .keywords: PC, ASM, set, type

934: .seealso: PCASMSetTotalSubdomains(), PCASMSetTotalSubdomains(), PCASMGetSubKSP(),
935:           PCASMCreateSubdomains2D()
936: @*/
937: PetscErrorCode  PCASMSetType(PC pc,PCASMType type)
938: {

944:   PetscTryMethod(pc,"PCASMSetType_C",(PC,PCASMType),(pc,type));
945:   return(0);
946: }

950: /*@
951:     PCASMSetSortIndices - Determines whether subdomain indices are sorted.

953:     Logically Collective on PC

955:     Input Parameters:
956: +   pc  - the preconditioner context
957: -   doSort - sort the subdomain indices

959:     Level: intermediate

961: .keywords: PC, ASM, set, type

963: .seealso: PCASMSetLocalSubdomains(), PCASMSetTotalSubdomains(), PCASMGetSubKSP(),
964:           PCASMCreateSubdomains2D()
965: @*/
966: PetscErrorCode  PCASMSetSortIndices(PC pc,PetscBool  doSort)
967: {

973:   PetscTryMethod(pc,"PCASMSetSortIndices_C",(PC,PetscBool),(pc,doSort));
974:   return(0);
975: }

979: /*@C
980:    PCASMGetSubKSP - Gets the local KSP contexts for all blocks on
981:    this processor.
982:    
983:    Collective on PC iff first_local is requested

985:    Input Parameter:
986: .  pc - the preconditioner context

988:    Output Parameters:
989: +  n_local - the number of blocks on this processor or PETSC_NULL
990: .  first_local - the global number of the first block on this processor or PETSC_NULL,
991:                  all processors must request or all must pass PETSC_NULL
992: -  ksp - the array of KSP contexts

994:    Note:  
995:    After PCASMGetSubKSP() the array of KSPes is not to be freed.

997:    Currently for some matrix implementations only 1 block per processor 
998:    is supported.
999:    
1000:    You must call KSPSetUp() before calling PCASMGetSubKSP().

1002:    Fortran note:
1003:    The output argument 'ksp' must be an array of sufficient length or PETSC_NULL_OBJECT. The latter can be used to learn the necessary length.

1005:    Level: advanced

1007: .keywords: PC, ASM, additive Schwarz, get, sub, KSP, context

1009: .seealso: PCASMSetTotalSubdomains(), PCASMSetTotalSubdomains(), PCASMSetOverlap(),
1010:           PCASMCreateSubdomains2D(),
1011: @*/
1012: PetscErrorCode  PCASMGetSubKSP(PC pc,PetscInt *n_local,PetscInt *first_local,KSP *ksp[])
1013: {

1018:   PetscUseMethod(pc,"PCASMGetSubKSP_C",(PC,PetscInt*,PetscInt*,KSP **),(pc,n_local,first_local,ksp));
1019:   return(0);
1020: }

1022: /* -------------------------------------------------------------------------------------*/
1023: /*MC
1024:    PCASM - Use the (restricted) additive Schwarz method, each block is (approximately) solved with 
1025:            its own KSP object.

1027:    Options Database Keys:
1028: +  -pc_asm_truelocal - Activates PCASMSetUseTrueLocal()
1029: .  -pc_asm_blocks <blks> - Sets total blocks
1030: .  -pc_asm_overlap <ovl> - Sets overlap
1031: -  -pc_asm_type [basic,restrict,interpolate,none] - Sets ASM type

1033:      IMPORTANT: If you run with, for example, 3 blocks on 1 processor or 3 blocks on 3 processors you 
1034:       will get a different convergence rate due to the default option of -pc_asm_type restrict. Use
1035:       -pc_asm_type basic to use the standard ASM. 

1037:    Notes: Each processor can have one or more blocks, but a block cannot be shared by more
1038:      than one processor. Defaults to one block per processor.

1040:      To set options on the solvers for each block append -sub_ to all the KSP, and PC
1041:         options database keys. For example, -sub_pc_type ilu -sub_pc_factor_levels 1 -sub_ksp_type preonly
1042:         
1043:      To set the options on the solvers separate for each block call PCASMGetSubKSP()
1044:          and set the options directly on the resulting KSP object (you can access its PC
1045:          with KSPGetPC())


1048:    Level: beginner

1050:    Concepts: additive Schwarz method

1052:     References:
1053:     An additive variant of the Schwarz alternating method for the case of many subregions
1054:     M Dryja, OB Widlund - Courant Institute, New York University Technical report

1056:     Domain Decompositions: Parallel Multilevel Methods for Elliptic Partial Differential Equations, 
1057:     Barry Smith, Petter Bjorstad, and William Gropp, Cambridge University Press, ISBN 0-521-49589-X.

1059: .seealso:  PCCreate(), PCSetType(), PCType (for list of available types), PC,
1060:            PCBJACOBI, PCASMSetUseTrueLocal(), PCASMGetSubKSP(), PCASMSetLocalSubdomains(),
1061:            PCASMSetTotalSubdomains(), PCSetModifySubmatrices(), PCASMSetOverlap(), PCASMSetType()

1063: M*/

1065: EXTERN_C_BEGIN
1068: PetscErrorCode  PCCreate_ASM(PC pc)
1069: {
1071:   PC_ASM         *osm;

1074:   PetscNewLog(pc,PC_ASM,&osm);
1075:   osm->n                 = PETSC_DECIDE;
1076:   osm->n_local           = 0;
1077:   osm->n_local_true      = PETSC_DECIDE;
1078:   osm->overlap           = 1;
1079:   osm->ksp               = 0;
1080:   osm->restriction       = 0;
1081:   osm->localization      = 0;
1082:   osm->prolongation      = 0;
1083:   osm->x                 = 0;
1084:   osm->y                 = 0;
1085:   osm->y_local           = 0;
1086:   osm->is                = 0;
1087:   osm->is_local          = 0;
1088:   osm->mat               = 0;
1089:   osm->pmat              = 0;
1090:   osm->type              = PC_ASM_RESTRICT;
1091:   osm->same_local_solves = PETSC_TRUE;
1092:   osm->sort_indices      = PETSC_TRUE;

1094:   pc->data                   = (void*)osm;
1095:   pc->ops->apply             = PCApply_ASM;
1096:   pc->ops->applytranspose    = PCApplyTranspose_ASM;
1097:   pc->ops->setup             = PCSetUp_ASM;
1098:   pc->ops->reset             = PCReset_ASM;
1099:   pc->ops->destroy           = PCDestroy_ASM;
1100:   pc->ops->setfromoptions    = PCSetFromOptions_ASM;
1101:   pc->ops->setuponblocks     = PCSetUpOnBlocks_ASM;
1102:   pc->ops->view              = PCView_ASM;
1103:   pc->ops->applyrichardson   = 0;

1105:   PetscObjectComposeFunctionDynamic((PetscObject)pc,"PCASMSetLocalSubdomains_C","PCASMSetLocalSubdomains_ASM",
1106:                     PCASMSetLocalSubdomains_ASM);
1107:   PetscObjectComposeFunctionDynamic((PetscObject)pc,"PCASMSetTotalSubdomains_C","PCASMSetTotalSubdomains_ASM",
1108:                     PCASMSetTotalSubdomains_ASM);
1109:   PetscObjectComposeFunctionDynamic((PetscObject)pc,"PCASMSetOverlap_C","PCASMSetOverlap_ASM",
1110:                     PCASMSetOverlap_ASM);
1111:   PetscObjectComposeFunctionDynamic((PetscObject)pc,"PCASMSetType_C","PCASMSetType_ASM",
1112:                     PCASMSetType_ASM);
1113:   PetscObjectComposeFunctionDynamic((PetscObject)pc,"PCASMSetSortIndices_C","PCASMSetSortIndices_ASM",
1114:                     PCASMSetSortIndices_ASM);
1115:   PetscObjectComposeFunctionDynamic((PetscObject)pc,"PCASMGetSubKSP_C","PCASMGetSubKSP_ASM",
1116:                     PCASMGetSubKSP_ASM);
1117:   return(0);
1118: }
1119: EXTERN_C_END


1124: /*@C
1125:    PCASMCreateSubdomains - Creates the index sets for the overlapping Schwarz
1126:    preconditioner for a any problem on a general grid.

1128:    Collective

1130:    Input Parameters:
1131: +  A - The global matrix operator
1132: -  n - the number of local blocks

1134:    Output Parameters:
1135: .  outis - the array of index sets defining the subdomains

1137:    Level: advanced

1139:    Note: this generates nonoverlapping subdomains; the PCASM will generate the overlap
1140:     from these if you use PCASMSetLocalSubdomains()

1142:     In the Fortran version you must provide the array outis[] already allocated of length n.

1144: .keywords: PC, ASM, additive Schwarz, create, subdomains, unstructured grid

1146: .seealso: PCASMSetLocalSubdomains(), PCASMDestroySubdomains()
1147: @*/
1148: PetscErrorCode  PCASMCreateSubdomains(Mat A, PetscInt n, IS* outis[])
1149: {
1150:   MatPartitioning           mpart;
1151:   const char                *prefix;
1152:   PetscErrorCode            (*f)(Mat,Mat*);
1153:   PetscMPIInt               size;
1154:   PetscInt                  i,j,rstart,rend,bs;
1155:   PetscBool                 isbaij = PETSC_FALSE,foundpart = PETSC_FALSE;
1156:   Mat                       Ad = PETSC_NULL, adj;
1157:   IS                        ispart,isnumb,*is;
1158:   PetscErrorCode            ierr;

1163:   if (n < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"number of local blocks must be > 0, n = %D",n);

1165:   /* Get prefix, row distribution, and block size */
1166:   MatGetOptionsPrefix(A,&prefix);
1167:   MatGetOwnershipRange(A,&rstart,&rend);
1168:   MatGetBlockSize(A,&bs);
1169:   if (rstart/bs*bs != rstart || rend/bs*bs != rend) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"bad row distribution [%D,%D) for matrix block size %D",rstart,rend,bs);

1171:   /* Get diagonal block from matrix if possible */
1172:   MPI_Comm_size(((PetscObject)A)->comm,&size);
1173:   PetscObjectQueryFunction((PetscObject)A,"MatGetDiagonalBlock_C",(void (**)(void))&f);
1174:   if (f) {
1175:     MatGetDiagonalBlock(A,&Ad);
1176:   } else if (size == 1) {
1177:     Ad = A;
1178:   }
1179:   if (Ad) {
1180:     PetscObjectTypeCompare((PetscObject)Ad,MATSEQBAIJ,&isbaij);
1181:     if (!isbaij) {PetscObjectTypeCompare((PetscObject)Ad,MATSEQSBAIJ,&isbaij);}
1182:   }
1183:   if (Ad && n > 1) {
1184:     PetscBool  match,done;
1185:     /* Try to setup a good matrix partitioning if available */
1186:     MatPartitioningCreate(PETSC_COMM_SELF,&mpart);
1187:     PetscObjectSetOptionsPrefix((PetscObject)mpart,prefix);
1188:     MatPartitioningSetFromOptions(mpart);
1189:     PetscObjectTypeCompare((PetscObject)mpart,MATPARTITIONINGCURRENT,&match);
1190:     if (!match) {
1191:       PetscObjectTypeCompare((PetscObject)mpart,MATPARTITIONINGSQUARE,&match);
1192:     }
1193:     if (!match) { /* assume a "good" partitioner is available */
1194:       PetscInt na,*ia,*ja;
1195:       MatGetRowIJ(Ad,0,PETSC_TRUE,isbaij,&na,&ia,&ja,&done);
1196:       if (done) {
1197:         /* Build adjacency matrix by hand. Unfortunately a call to
1198:            MatConvert(Ad,MATMPIADJ,MAT_INITIAL_MATRIX,&adj) will
1199:            remove the block-aij structure and we cannot expect
1200:            MatPartitioning to split vertices as we need */
1201:         PetscInt i,j,*row,len,nnz,cnt,*iia=0,*jja=0;
1202:         nnz = 0;
1203:         for (i=0; i<na; i++) { /* count number of nonzeros */
1204:           len = ia[i+1] - ia[i];
1205:           row = ja + ia[i];
1206:           for (j=0; j<len; j++) {
1207:             if (row[j] == i) { /* don't count diagonal */
1208:               len--; break;
1209:             }
1210:           }
1211:           nnz += len;
1212:         }
1213:         PetscMalloc((na+1)*sizeof(PetscInt),&iia);
1214:         PetscMalloc((nnz)*sizeof(PetscInt),&jja);
1215:         nnz    = 0;
1216:         iia[0] = 0;
1217:         for (i=0; i<na; i++) { /* fill adjacency */
1218:           cnt = 0;
1219:           len = ia[i+1] - ia[i];
1220:           row = ja + ia[i];
1221:           for (j=0; j<len; j++) {
1222:             if (row[j] != i) { /* if not diagonal */
1223:               jja[nnz+cnt++] = row[j];
1224:             }
1225:           }
1226:           nnz += cnt;
1227:           iia[i+1] = nnz;
1228:         }
1229:         /* Partitioning of the adjacency matrix */
1230:         MatCreateMPIAdj(PETSC_COMM_SELF,na,na,iia,jja,PETSC_NULL,&adj);
1231:         MatPartitioningSetAdjacency(mpart,adj);
1232:         MatPartitioningSetNParts(mpart,n);
1233:         MatPartitioningApply(mpart,&ispart);
1234:         ISPartitioningToNumbering(ispart,&isnumb);
1235:         MatDestroy(&adj);
1236:         foundpart = PETSC_TRUE;
1237:       }
1238:       MatRestoreRowIJ(Ad,0,PETSC_TRUE,isbaij,&na,&ia,&ja,&done);
1239:     }
1240:     MatPartitioningDestroy(&mpart);
1241:   }

1243:   PetscMalloc(n*sizeof(IS),&is);
1244:   *outis = is;

1246:   if (!foundpart) {

1248:     /* Partitioning by contiguous chunks of rows */

1250:     PetscInt mbs   = (rend-rstart)/bs;
1251:     PetscInt start = rstart;
1252:     for (i=0; i<n; i++) {
1253:       PetscInt count = (mbs/n + ((mbs % n) > i)) * bs;
1254:       ISCreateStride(PETSC_COMM_SELF,count,start,1,&is[i]);
1255:       start += count;
1256:     }

1258:   } else {

1260:     /* Partitioning by adjacency of diagonal block  */

1262:     const PetscInt *numbering;
1263:     PetscInt       *count,nidx,*indices,*newidx,start=0;
1264:     /* Get node count in each partition */
1265:     PetscMalloc(n*sizeof(PetscInt),&count);
1266:     ISPartitioningCount(ispart,n,count);
1267:     if (isbaij && bs > 1) { /* adjust for the block-aij case */
1268:       for (i=0; i<n; i++) count[i] *= bs;
1269:     }
1270:     /* Build indices from node numbering */
1271:     ISGetLocalSize(isnumb,&nidx);
1272:     PetscMalloc(nidx*sizeof(PetscInt),&indices);
1273:     for (i=0; i<nidx; i++) indices[i] = i; /* needs to be initialized */
1274:     ISGetIndices(isnumb,&numbering);
1275:     PetscSortIntWithPermutation(nidx,numbering,indices);
1276:     ISRestoreIndices(isnumb,&numbering);
1277:     if (isbaij && bs > 1) { /* adjust for the block-aij case */
1278:       PetscMalloc(nidx*bs*sizeof(PetscInt),&newidx);
1279:       for (i=0; i<nidx; i++)
1280:         for (j=0; j<bs; j++)
1281:           newidx[i*bs+j] = indices[i]*bs + j;
1282:       PetscFree(indices);
1283:       nidx   *= bs;
1284:       indices = newidx;
1285:     }
1286:     /* Shift to get global indices */
1287:     for (i=0; i<nidx; i++) indices[i] += rstart;

1289:     /* Build the index sets for each block */
1290:     for (i=0; i<n; i++) {
1291:       ISCreateGeneral(PETSC_COMM_SELF,count[i],&indices[start],PETSC_COPY_VALUES,&is[i]);
1292:       ISSort(is[i]);
1293:       start += count[i];
1294:     }

1296:     PetscFree(count);
1297:     PetscFree(indices);
1298:     ISDestroy(&isnumb);
1299:     ISDestroy(&ispart);

1301:   }

1303:   return(0);
1304: }

1308: /*@C
1309:    PCASMDestroySubdomains - Destroys the index sets created with
1310:    PCASMCreateSubdomains(). Should be called after setting subdomains
1311:    with PCASMSetLocalSubdomains().

1313:    Collective

1315:    Input Parameters:
1316: +  n - the number of index sets
1317: .  is - the array of index sets
1318: -  is_local - the array of local index sets, can be PETSC_NULL

1320:    Level: advanced

1322: .keywords: PC, ASM, additive Schwarz, create, subdomains, unstructured grid

1324: .seealso: PCASMCreateSubdomains(), PCASMSetLocalSubdomains()
1325: @*/
1326: PetscErrorCode  PCASMDestroySubdomains(PetscInt n, IS is[], IS is_local[])
1327: {
1328:   PetscInt       i;
1331:   if (n <= 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"n must be > 0: n = %D",n);
1333:   for (i=0; i<n; i++) { ISDestroy(&is[i]); }
1334:   PetscFree(is);
1335:   if (is_local) {
1337:     for (i=0; i<n; i++) { ISDestroy(&is_local[i]); }
1338:     PetscFree(is_local);
1339:   }
1340:   return(0);
1341: }

1345: /*@
1346:    PCASMCreateSubdomains2D - Creates the index sets for the overlapping Schwarz 
1347:    preconditioner for a two-dimensional problem on a regular grid.

1349:    Not Collective

1351:    Input Parameters:
1352: +  m, n - the number of mesh points in the x and y directions
1353: .  M, N - the number of subdomains in the x and y directions
1354: .  dof - degrees of freedom per node
1355: -  overlap - overlap in mesh lines

1357:    Output Parameters:
1358: +  Nsub - the number of subdomains created
1359: .  is - array of index sets defining overlapping (if overlap > 0) subdomains
1360: -  is_local - array of index sets defining non-overlapping subdomains

1362:    Note:
1363:    Presently PCAMSCreateSubdomains2d() is valid only for sequential
1364:    preconditioners.  More general related routines are
1365:    PCASMSetTotalSubdomains() and PCASMSetLocalSubdomains().

1367:    Level: advanced

1369: .keywords: PC, ASM, additive Schwarz, create, subdomains, 2D, regular grid

1371: .seealso: PCASMSetTotalSubdomains(), PCASMSetLocalSubdomains(), PCASMGetSubKSP(),
1372:           PCASMSetOverlap()
1373: @*/
1374: PetscErrorCode  PCASMCreateSubdomains2D(PetscInt m,PetscInt n,PetscInt M,PetscInt N,PetscInt dof,PetscInt overlap,PetscInt *Nsub,IS **is,IS **is_local)
1375: {
1376:   PetscInt       i,j,height,width,ystart,xstart,yleft,yright,xleft,xright,loc_outer;
1378:   PetscInt       nidx,*idx,loc,ii,jj,count;

1381:   if (dof != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP," ");

1383:   *Nsub = N*M;
1384:   PetscMalloc((*Nsub)*sizeof(IS*),is);
1385:   PetscMalloc((*Nsub)*sizeof(IS*),is_local);
1386:   ystart = 0;
1387:   loc_outer = 0;
1388:   for (i=0; i<N; i++) {
1389:     height = n/N + ((n % N) > i); /* height of subdomain */
1390:     if (height < 2) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many N subdomains for mesh dimension n");
1391:     yleft  = ystart - overlap; if (yleft < 0) yleft = 0;
1392:     yright = ystart + height + overlap; if (yright > n) yright = n;
1393:     xstart = 0;
1394:     for (j=0; j<M; j++) {
1395:       width = m/M + ((m % M) > j); /* width of subdomain */
1396:       if (width < 2) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many M subdomains for mesh dimension m");
1397:       xleft  = xstart - overlap; if (xleft < 0) xleft = 0;
1398:       xright = xstart + width + overlap; if (xright > m) xright = m;
1399:       nidx   = (xright - xleft)*(yright - yleft);
1400:       PetscMalloc(nidx*sizeof(PetscInt),&idx);
1401:       loc    = 0;
1402:       for (ii=yleft; ii<yright; ii++) {
1403:         count = m*ii + xleft;
1404:         for (jj=xleft; jj<xright; jj++) {
1405:           idx[loc++] = count++;
1406:         }
1407:       }
1408:       ISCreateGeneral(PETSC_COMM_SELF,nidx,idx,PETSC_COPY_VALUES,(*is)+loc_outer);
1409:       if (overlap == 0) {
1410:         PetscObjectReference((PetscObject)(*is)[loc_outer]);
1411:         (*is_local)[loc_outer] = (*is)[loc_outer];
1412:       } else {
1413:         for (loc=0,ii=ystart; ii<ystart+height; ii++) {
1414:           for (jj=xstart; jj<xstart+width; jj++) {
1415:             idx[loc++] = m*ii + jj;
1416:           }
1417:         }
1418:         ISCreateGeneral(PETSC_COMM_SELF,loc,idx,PETSC_COPY_VALUES,*is_local+loc_outer);
1419:       }
1420:       PetscFree(idx);
1421:       xstart += width;
1422:       loc_outer++;
1423:     }
1424:     ystart += height;
1425:   }
1426:   for (i=0; i<*Nsub; i++) { ISSort((*is)[i]); }
1427:   return(0);
1428: }

1432: /*@C
1433:     PCASMGetLocalSubdomains - Gets the local subdomains (for this processor
1434:     only) for the additive Schwarz preconditioner. 

1436:     Not Collective

1438:     Input Parameter:
1439: .   pc - the preconditioner context

1441:     Output Parameters:
1442: +   n - the number of subdomains for this processor (default value = 1)
1443: .   is - the index sets that define the subdomains for this processor
1444: -   is_local - the index sets that define the local part of the subdomains for this processor (can be PETSC_NULL)
1445:          

1447:     Notes:
1448:     The IS numbering is in the parallel, global numbering of the vector.

1450:     Level: advanced

1452: .keywords: PC, ASM, set, local, subdomains, additive Schwarz

1454: .seealso: PCASMSetTotalSubdomains(), PCASMSetOverlap(), PCASMGetSubKSP(),
1455:           PCASMCreateSubdomains2D(), PCASMSetLocalSubdomains(), PCASMGetLocalSubmatrices()
1456: @*/
1457: PetscErrorCode  PCASMGetLocalSubdomains(PC pc,PetscInt *n,IS *is[],IS *is_local[])
1458: {
1459:   PC_ASM         *osm;
1461:   PetscBool      match;

1467:   PetscObjectTypeCompare((PetscObject)pc,PCASM,&match);
1468:   if (!match) {
1469:     if (n)  *n  = 0;
1470:     if (is) *is = PETSC_NULL;
1471:   } else {
1472:     osm = (PC_ASM*)pc->data;
1473:     if (n)  *n  = osm->n_local_true;
1474:     if (is) *is = osm->is;
1475:     if (is_local) *is_local = osm->is_local;
1476:   }
1477:   return(0);
1478: }

1482: /*@C
1483:     PCASMGetLocalSubmatrices - Gets the local submatrices (for this processor
1484:     only) for the additive Schwarz preconditioner. 

1486:     Not Collective

1488:     Input Parameter:
1489: .   pc - the preconditioner context

1491:     Output Parameters:
1492: +   n - the number of matrices for this processor (default value = 1)
1493: -   mat - the matrices
1494:          

1496:     Level: advanced

1498:     Notes: Call after PCSetUp() (or KSPSetUp()) but before PCApply() (or KSPApply()) and before PCSetUpOnBlocks())

1500:            Usually one would use PCSetModifySubmatrices() to change the submatrices in building the preconditioner.

1502: .keywords: PC, ASM, set, local, subdomains, additive Schwarz, block Jacobi

1504: .seealso: PCASMSetTotalSubdomains(), PCASMSetOverlap(), PCASMGetSubKSP(),
1505:           PCASMCreateSubdomains2D(), PCASMSetLocalSubdomains(), PCASMGetLocalSubdomains(), PCSetModifySubmatrices()
1506: @*/
1507: PetscErrorCode  PCASMGetLocalSubmatrices(PC pc,PetscInt *n,Mat *mat[])
1508: {
1509:   PC_ASM         *osm;
1511:   PetscBool      match;

1517:   if (!pc->setupcalled) SETERRQ(((PetscObject)pc)->comm,PETSC_ERR_ARG_WRONGSTATE,"Must call after KSPSetUP() or PCSetUp().");
1518:   PetscObjectTypeCompare((PetscObject)pc,PCASM,&match);
1519:   if (!match) {
1520:     if (n)   *n   = 0;
1521:     if (mat) *mat = PETSC_NULL;
1522:   } else {
1523:     osm = (PC_ASM*)pc->data;
1524:     if (n)   *n   = osm->n_local_true;
1525:     if (mat) *mat = osm->pmat;
1526:   }
1527:   return(0);
1528: }