Actual source code: ex3sa.c

  1: static char help[] = "Adjoint and tangent linear sensitivity analysis of the basic equation for generator stability analysis.\n";

  3: /*F

  5: \begin{eqnarray}
  6:                  \frac{d \theta}{dt} = \omega_b (\omega - \omega_s)
  7:                  \frac{2 H}{\omega_s}\frac{d \omega}{dt} & = & P_m - P_max \sin(\theta) -D(\omega - \omega_s)\\
  8: \end{eqnarray}

 10: F*/

 12: /*
 13:   This code demonstrate the sensitivity analysis interface to a system of ordinary differential equations with discontinuities.
 14:   It computes the sensitivities of an integral cost function
 15:   \int c*max(0,\theta(t)-u_s)^beta dt
 16:   w.r.t. initial conditions and the parameter P_m.
 17:   Backward Euler method is used for time integration.
 18:   The discontinuities are detected with TSEvent.
 19:  */

 21: #include <petscts.h>
 22: #include "ex3.h"

 24: int main(int argc, char **argv)
 25: {
 26:   TS           ts, quadts; /* ODE integrator */
 27:   Vec          U;          /* solution will be stored here */
 28:   PetscMPIInt  size;
 29:   PetscInt     n = 2;
 30:   AppCtx       ctx;
 31:   PetscScalar *u;
 32:   PetscReal    du[2]    = {0.0, 0.0};
 33:   PetscBool    ensemble = PETSC_FALSE, flg1, flg2;
 34:   PetscReal    ftime;
 35:   PetscInt     steps;
 36:   PetscScalar *x_ptr, *y_ptr, *s_ptr;
 37:   Vec          lambda[1], q, mu[1];
 38:   PetscInt     direction[2];
 39:   PetscBool    terminate[2];
 40:   Mat          qgrad;
 41:   Mat          sp; /* Forward sensitivity matrix */
 42:   SAMethod     sa;

 44:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 45:      Initialize program
 46:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 47:   PetscFunctionBeginUser;
 48:   PetscCall(PetscInitialize(&argc, &argv, (char *)0, help));
 49:   PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD, &size));
 50:   PetscCheck(size == 1, PETSC_COMM_WORLD, PETSC_ERR_WRONG_MPI_SIZE, "Only for sequential runs");

 52:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 53:     Create necessary matrix and vectors
 54:     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 55:   PetscCall(MatCreate(PETSC_COMM_WORLD, &ctx.Jac));
 56:   PetscCall(MatSetSizes(ctx.Jac, n, n, PETSC_DETERMINE, PETSC_DETERMINE));
 57:   PetscCall(MatSetType(ctx.Jac, MATDENSE));
 58:   PetscCall(MatSetFromOptions(ctx.Jac));
 59:   PetscCall(MatSetUp(ctx.Jac));
 60:   PetscCall(MatCreateVecs(ctx.Jac, &U, NULL));
 61:   PetscCall(MatCreate(PETSC_COMM_WORLD, &ctx.Jacp));
 62:   PetscCall(MatSetSizes(ctx.Jacp, PETSC_DECIDE, PETSC_DECIDE, 2, 1));
 63:   PetscCall(MatSetFromOptions(ctx.Jacp));
 64:   PetscCall(MatSetUp(ctx.Jacp));
 65:   PetscCall(MatCreateDense(PETSC_COMM_WORLD, PETSC_DECIDE, PETSC_DECIDE, 1, 1, NULL, &ctx.DRDP));
 66:   PetscCall(MatSetUp(ctx.DRDP));
 67:   PetscCall(MatCreateDense(PETSC_COMM_WORLD, PETSC_DECIDE, PETSC_DECIDE, 2, 1, NULL, &ctx.DRDU));
 68:   PetscCall(MatSetUp(ctx.DRDU));

 70:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 71:     Set runtime options
 72:     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 73:   PetscOptionsBegin(PETSC_COMM_WORLD, NULL, "Swing equation options", "");
 74:   {
 75:     ctx.beta    = 2;
 76:     ctx.c       = 10000.0;
 77:     ctx.u_s     = 1.0;
 78:     ctx.omega_s = 1.0;
 79:     ctx.omega_b = 120.0 * PETSC_PI;
 80:     ctx.H       = 5.0;
 81:     PetscCall(PetscOptionsScalar("-Inertia", "", "", ctx.H, &ctx.H, NULL));
 82:     ctx.D = 5.0;
 83:     PetscCall(PetscOptionsScalar("-D", "", "", ctx.D, &ctx.D, NULL));
 84:     ctx.E        = 1.1378;
 85:     ctx.V        = 1.0;
 86:     ctx.X        = 0.545;
 87:     ctx.Pmax     = ctx.E * ctx.V / ctx.X;
 88:     ctx.Pmax_ini = ctx.Pmax;
 89:     PetscCall(PetscOptionsScalar("-Pmax", "", "", ctx.Pmax, &ctx.Pmax, NULL));
 90:     ctx.Pm = 1.1;
 91:     PetscCall(PetscOptionsScalar("-Pm", "", "", ctx.Pm, &ctx.Pm, NULL));
 92:     ctx.tf  = 0.1;
 93:     ctx.tcl = 0.2;
 94:     PetscCall(PetscOptionsReal("-tf", "Time to start fault", "", ctx.tf, &ctx.tf, NULL));
 95:     PetscCall(PetscOptionsReal("-tcl", "Time to end fault", "", ctx.tcl, &ctx.tcl, NULL));
 96:     PetscCall(PetscOptionsBool("-ensemble", "Run ensemble of different initial conditions", "", ensemble, &ensemble, NULL));
 97:     if (ensemble) {
 98:       ctx.tf  = -1;
 99:       ctx.tcl = -1;
100:     }

102:     PetscCall(VecGetArray(U, &u));
103:     u[0] = PetscAsinScalar(ctx.Pm / ctx.Pmax);
104:     u[1] = 1.0;
105:     PetscCall(PetscOptionsRealArray("-u", "Initial solution", "", u, &n, &flg1));
106:     n = 2;
107:     PetscCall(PetscOptionsRealArray("-du", "Perturbation in initial solution", "", du, &n, &flg2));
108:     u[0] += du[0];
109:     u[1] += du[1];
110:     PetscCall(VecRestoreArray(U, &u));
111:     if (flg1 || flg2) {
112:       ctx.tf  = -1;
113:       ctx.tcl = -1;
114:     }
115:     sa = SA_ADJ;
116:     PetscCall(PetscOptionsEnum("-sa_method", "Sensitivity analysis method (adj or tlm)", "", SAMethods, (PetscEnum)sa, (PetscEnum *)&sa, NULL));
117:   }
118:   PetscOptionsEnd();

120:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
121:      Create timestepping solver context
122:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
123:   PetscCall(TSCreate(PETSC_COMM_WORLD, &ts));
124:   PetscCall(TSSetProblemType(ts, TS_NONLINEAR));
125:   PetscCall(TSSetType(ts, TSBEULER));
126:   PetscCall(TSSetRHSFunction(ts, NULL, (TSRHSFunctionFn *)RHSFunction, &ctx));
127:   PetscCall(TSSetRHSJacobian(ts, ctx.Jac, ctx.Jac, (TSRHSJacobianFn *)RHSJacobian, &ctx));

129:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
130:      Set initial conditions
131:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
132:   PetscCall(TSSetSolution(ts, U));

134:   /*   Set RHS JacobianP */
135:   PetscCall(TSSetRHSJacobianP(ts, ctx.Jacp, RHSJacobianP, &ctx));

137:   PetscCall(TSCreateQuadratureTS(ts, PETSC_FALSE, &quadts));
138:   PetscCall(TSSetRHSFunction(quadts, NULL, (TSRHSFunctionFn *)CostIntegrand, &ctx));
139:   PetscCall(TSSetRHSJacobian(quadts, ctx.DRDU, ctx.DRDU, (TSRHSJacobianFn *)DRDUJacobianTranspose, &ctx));
140:   PetscCall(TSSetRHSJacobianP(quadts, ctx.DRDP, DRDPJacobianTranspose, &ctx));
141:   if (sa == SA_ADJ) {
142:     /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
143:       Save trajectory of solution so that TSAdjointSolve() may be used
144:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
145:     PetscCall(TSSetSaveTrajectory(ts));
146:     PetscCall(MatCreateVecs(ctx.Jac, &lambda[0], NULL));
147:     PetscCall(MatCreateVecs(ctx.Jacp, &mu[0], NULL));
148:     PetscCall(TSSetCostGradients(ts, 1, lambda, mu));
149:   }

151:   if (sa == SA_TLM) {
152:     PetscScalar val[2];
153:     PetscInt    row[] = {0, 1}, col[] = {0};

155:     PetscCall(MatCreateDense(PETSC_COMM_WORLD, PETSC_DECIDE, PETSC_DECIDE, 1, 1, NULL, &qgrad));
156:     PetscCall(MatCreateDense(PETSC_COMM_WORLD, PETSC_DECIDE, PETSC_DECIDE, 2, 1, NULL, &sp));
157:     PetscCall(TSForwardSetSensitivities(ts, 1, sp));
158:     PetscCall(TSForwardSetSensitivities(quadts, 1, qgrad));
159:     val[0] = 1. / PetscSqrtScalar(1. - (ctx.Pm / ctx.Pmax) * (ctx.Pm / ctx.Pmax)) / ctx.Pmax;
160:     val[1] = 0.0;
161:     PetscCall(MatSetValues(sp, 2, row, 1, col, val, INSERT_VALUES));
162:     PetscCall(MatAssemblyBegin(sp, MAT_FINAL_ASSEMBLY));
163:     PetscCall(MatAssemblyEnd(sp, MAT_FINAL_ASSEMBLY));
164:   }

166:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
167:      Set solver options
168:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
169:   PetscCall(TSSetMaxTime(ts, 1.0));
170:   PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_MATCHSTEP));
171:   PetscCall(TSSetTimeStep(ts, 0.03125));
172:   PetscCall(TSSetFromOptions(ts));

174:   direction[0] = direction[1] = 1;
175:   terminate[0] = terminate[1] = PETSC_FALSE;

177:   PetscCall(TSSetEventHandler(ts, 2, direction, terminate, EventFunction, PostEventFunction, (void *)&ctx));

179:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
180:      Solve nonlinear system
181:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
182:   if (ensemble) {
183:     for (du[1] = -2.5; du[1] <= .01; du[1] += .1) {
184:       PetscCall(VecGetArray(U, &u));
185:       u[0] = PetscAsinScalar(ctx.Pm / ctx.Pmax);
186:       u[1] = ctx.omega_s;
187:       u[0] += du[0];
188:       u[1] += du[1];
189:       PetscCall(VecRestoreArray(U, &u));
190:       PetscCall(TSSetTimeStep(ts, 0.03125));
191:       PetscCall(TSSolve(ts, U));
192:     }
193:   } else {
194:     PetscCall(TSSolve(ts, U));
195:   }
196:   PetscCall(TSGetSolveTime(ts, &ftime));
197:   PetscCall(TSGetStepNumber(ts, &steps));

199:   if (sa == SA_ADJ) {
200:     /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
201:        Adjoint model starts here
202:        - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
203:     /*   Set initial conditions for the adjoint integration */
204:     PetscCall(VecGetArray(lambda[0], &y_ptr));
205:     y_ptr[0] = 0.0;
206:     y_ptr[1] = 0.0;
207:     PetscCall(VecRestoreArray(lambda[0], &y_ptr));

209:     PetscCall(VecGetArray(mu[0], &x_ptr));
210:     x_ptr[0] = 0.0;
211:     PetscCall(VecRestoreArray(mu[0], &x_ptr));

213:     PetscCall(TSAdjointSolve(ts));

215:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n lambda: d[Psi(tf)]/d[phi0]  d[Psi(tf)]/d[omega0]\n"));
216:     PetscCall(VecView(lambda[0], PETSC_VIEWER_STDOUT_WORLD));
217:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n mu: d[Psi(tf)]/d[pm]\n"));
218:     PetscCall(VecView(mu[0], PETSC_VIEWER_STDOUT_WORLD));
219:     PetscCall(TSGetCostIntegral(ts, &q));
220:     PetscCall(VecGetArray(q, &x_ptr));
221:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n cost function=%g\n", (double)(x_ptr[0] - ctx.Pm)));
222:     PetscCall(VecRestoreArray(q, &x_ptr));
223:     PetscCall(ComputeSensiP(lambda[0], mu[0], &ctx));
224:     PetscCall(VecGetArray(mu[0], &x_ptr));
225:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n gradient=%g\n", (double)x_ptr[0]));
226:     PetscCall(VecRestoreArray(mu[0], &x_ptr));
227:     PetscCall(VecDestroy(&lambda[0]));
228:     PetscCall(VecDestroy(&mu[0]));
229:   }
230:   if (sa == SA_TLM) {
231:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n trajectory sensitivity: d[phi(tf)]/d[pm]  d[omega(tf)]/d[pm]\n"));
232:     PetscCall(MatView(sp, PETSC_VIEWER_STDOUT_WORLD));
233:     PetscCall(TSGetCostIntegral(ts, &q));
234:     PetscCall(VecGetArray(q, &s_ptr));
235:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n cost function=%g\n", (double)(s_ptr[0] - ctx.Pm)));
236:     PetscCall(VecRestoreArray(q, &s_ptr));
237:     PetscCall(MatDenseGetArray(qgrad, &s_ptr));
238:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n gradient=%g\n", (double)s_ptr[0]));
239:     PetscCall(MatDenseRestoreArray(qgrad, &s_ptr));
240:     PetscCall(MatDestroy(&qgrad));
241:     PetscCall(MatDestroy(&sp));
242:   }
243:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
244:      Free work space.  All PETSc objects should be destroyed when they are no longer needed.
245:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
246:   PetscCall(MatDestroy(&ctx.Jac));
247:   PetscCall(MatDestroy(&ctx.Jacp));
248:   PetscCall(MatDestroy(&ctx.DRDU));
249:   PetscCall(MatDestroy(&ctx.DRDP));
250:   PetscCall(VecDestroy(&U));
251:   PetscCall(TSDestroy(&ts));
252:   PetscCall(PetscFinalize());
253:   return 0;
254: }

256: /*TEST

258:    build:
259:       requires: !complex !single

261:    test:
262:       args: -sa_method adj -viewer_binary_skip_info -ts_type cn -pc_type lu

264:    test:
265:       suffix: 2
266:       args: -sa_method tlm -ts_type cn -pc_type lu

268:    test:
269:       suffix: 3
270:       args: -sa_method adj -ts_type rk -ts_rk_type 2a -ts_adapt_type dsp

272: TEST*/