Actual source code: ex4.c

  1: /*
  2:   Note:
  3:     -hratio is the ratio between mesh size of coarse grids and fine grids
  4: */

  6: static const char help[] = "1D periodic Finite Volume solver in slope-limiter form with semidiscrete time stepping.\n"
  7:                            "  advect      - Constant coefficient scalar advection\n"
  8:                            "                u_t       + (a*u)_x               = 0\n"
  9:                            "  shallow     - 1D Shallow water equations (Saint Venant System)\n"
 10:                            "                h_t + (q)_x = 0 \n"
 11:                            "                q_t + (\frac{q^2}{h} + g/2*h^2)_x = 0  \n"
 12:                            "                where, h(x,t) denotes the height of the water and q(x,t) the momentum.\n"
 13:                            "  for this toy problem, we choose different meshsizes for different sub-domains (slow-fast-slow), say\n"
 14:                            "                hxs  = hratio*hxf \n"
 15:                            "  where hxs and hxf are the grid spacings for coarse and fine grids respectively.\n"
 16:                            "  exact       - Exact Riemann solver which usually needs to perform a Newton iteration to connect\n"
 17:                            "                the states across shocks and rarefactions\n"
 18:                            "  simulation  - use reference solution which is generated by smaller time step size to be true solution,\n"
 19:                            "                also the reference solution should be generated by user and stored in a binary file.\n"
 20:                            "  characteristic - Limit the characteristic variables, this is usually preferred (default)\n"
 21:                            "  bc_type     - Boundary condition for the problem, options are: periodic, outflow, inflow "
 22:                            "Several problem descriptions (initial data, physics specific features, boundary data) can be chosen with -initial N\n\n"
 23:                            "The problem size should be set with -da_grid_x M\n\n";

 25: /*
 26:   Example:
 27:      ./ex4 -da_grid_x 40 -initial 1 -hratio 1 -limit mc -ts_dt 0.01 -ts_max_time 7.0 -ts_type mprk -ts_mprk_type 2a22 -ts_monitor_draw_solution -physics shallow -bc_type outflow -xmin 0 -xmax 50 -ts_use_splitrhsfunction 0
 28:      ./ex4 -da_grid_x 40 -initial 2 -hratio 1 -limit mc -ts_dt 0.01 -ts_max_time 2.5 -ts_type mprk -ts_mprk_type 2a22 -ts_monitor_draw_solution -physics shallow -bc_type outflow -xmin 0 -xmax 50 -ts_use_splitrhsfunction 0
 29:      ./ex4 -da_grid_x 40 -initial 3 -hratio 1 -limit mc -ts_dt 0.01 -ts_max_time 4.0 -ts_type mprk -ts_mprk_type 2a22 -ts_monitor_draw_solution -physics shallow -bc_type outflow -xmin 0 -xmax 50 -ts_use_splitrhsfunction 0
 30:      ./ex4 -da_grid_x 40 -initial 4 -hratio 1 -limit koren3 -ts_dt 0.01 -ts_max_time 4.0 -ts_type mprk -ts_mprk_type 2a22 -ts_monitor_draw_solution -physics shallow -bc_type outflow -xmin 0 -xmax 50 -ts_use_splitrhsfunction 0
 31:      ./ex4 -da_grid_x 40 -initial 5 -hratio 1 -limit mc -ts_dt 0.01 -ts_max_time 5.0 -ts_type mprk -ts_mprk_type 2a22 -ts_monitor_draw_solution -physics shallow -bc_type outflow -xmin 0 -xmax 50 -ts_use_splitrhsfunction 0

 33:   Contributed by: Aidan Hamilton <aidan@udel.edu>
 34: */

 36: #include <petscts.h>
 37: #include <petscdm.h>
 38: #include <petscdmda.h>
 39: #include <petscdraw.h>
 40: #include "finitevolume1d.h"
 41: #include <petsc/private/kernels/blockinvert.h>

 43: static inline PetscReal RangeMod(PetscReal a, PetscReal xmin, PetscReal xmax)
 44: {
 45:   PetscReal range = xmax - xmin;
 46:   return xmin + PetscFmodReal(range + PetscFmodReal(a, range), range);
 47: }
 48: static inline PetscReal MaxAbs(PetscReal a, PetscReal b)
 49: {
 50:   return (PetscAbs(a) > PetscAbs(b)) ? a : b;
 51: }
 52: /* --------------------------------- Advection ----------------------------------- */
 53: typedef struct {
 54:   PetscReal a; /* advective velocity */
 55: } AdvectCtx;

 57: static PetscErrorCode PhysicsRiemann_Advect(void *vctx, PetscInt m, const PetscScalar *uL, const PetscScalar *uR, PetscScalar *flux, PetscReal *maxspeed)
 58: {
 59:   AdvectCtx *ctx = (AdvectCtx *)vctx;
 60:   PetscReal  speed;

 62:   PetscFunctionBeginUser;
 63:   speed     = ctx->a;
 64:   flux[0]   = PetscMax(0, speed) * uL[0] + PetscMin(0, speed) * uR[0];
 65:   *maxspeed = speed;
 66:   PetscFunctionReturn(PETSC_SUCCESS);
 67: }

 69: static PetscErrorCode PhysicsCharacteristic_Advect(void *vctx, PetscInt m, const PetscScalar *u, PetscScalar *X, PetscScalar *Xi, PetscReal *speeds)
 70: {
 71:   AdvectCtx *ctx = (AdvectCtx *)vctx;

 73:   PetscFunctionBeginUser;
 74:   X[0]      = 1.;
 75:   Xi[0]     = 1.;
 76:   speeds[0] = ctx->a;
 77:   PetscFunctionReturn(PETSC_SUCCESS);
 78: }

 80: static PetscErrorCode PhysicsSample_Advect(void *vctx, PetscInt initial, FVBCType bctype, PetscReal xmin, PetscReal xmax, PetscReal t, PetscReal x, PetscReal *u)
 81: {
 82:   AdvectCtx *ctx = (AdvectCtx *)vctx;
 83:   PetscReal  a   = ctx->a, x0;

 85:   PetscFunctionBeginUser;
 86:   switch (bctype) {
 87:   case FVBC_OUTFLOW:
 88:     x0 = x - a * t;
 89:     break;
 90:   case FVBC_PERIODIC:
 91:     x0 = RangeMod(x - a * t, xmin, xmax);
 92:     break;
 93:   default:
 94:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_UNKNOWN_TYPE, "unknown BCType");
 95:   }
 96:   switch (initial) {
 97:   case 0:
 98:     u[0] = (x0 < 0) ? 1 : -1;
 99:     break;
100:   case 1:
101:     u[0] = (x0 < 0) ? -1 : 1;
102:     break;
103:   case 2:
104:     u[0] = (0 < x0 && x0 < 1) ? 1 : 0;
105:     break;
106:   case 3:
107:     u[0] = PetscSinReal(2 * PETSC_PI * x0);
108:     break;
109:   case 4:
110:     u[0] = PetscAbs(x0);
111:     break;
112:   case 5:
113:     u[0] = (x0 < 0 || x0 > 0.5) ? 0 : PetscSqr(PetscSinReal(2 * PETSC_PI * x0));
114:     break;
115:   case 6:
116:     u[0] = (x0 < 0) ? 0 : ((x0 < 1) ? x0 : ((x0 < 2) ? 2 - x0 : 0));
117:     break;
118:   case 7:
119:     u[0] = PetscPowReal(PetscSinReal(PETSC_PI * x0), 10.0);
120:     break;
121:   default:
122:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_UNKNOWN_TYPE, "unknown initial condition");
123:   }
124:   PetscFunctionReturn(PETSC_SUCCESS);
125: }

127: static PetscErrorCode PhysicsCreate_Advect(FVCtx *ctx)
128: {
129:   AdvectCtx *user;

131:   PetscFunctionBeginUser;
132:   PetscCall(PetscNew(&user));
133:   ctx->physics2.sample2         = PhysicsSample_Advect;
134:   ctx->physics2.riemann2        = PhysicsRiemann_Advect;
135:   ctx->physics2.characteristic2 = PhysicsCharacteristic_Advect;
136:   ctx->physics2.destroy         = PhysicsDestroy_SimpleFree;
137:   ctx->physics2.user            = user;
138:   ctx->physics2.dof             = 1;

140:   PetscCall(PetscStrallocpy("u", &ctx->physics2.fieldname[0]));
141:   user->a = 1;
142:   PetscOptionsBegin(ctx->comm, ctx->prefix, "Options for advection", "");
143:   PetscCall(PetscOptionsReal("-physics_advect_a", "Speed", "", user->a, &user->a, NULL));
144:   PetscOptionsEnd();
145:   PetscFunctionReturn(PETSC_SUCCESS);
146: }
147: /* --------------------------------- Shallow Water ----------------------------------- */

149: typedef struct {
150:   PetscReal gravity;
151: } ShallowCtx;

153: static inline void ShallowFlux(ShallowCtx *phys, const PetscScalar *u, PetscScalar *f)
154: {
155:   f[0] = u[1];
156:   f[1] = PetscSqr(u[1]) / u[0] + 0.5 * phys->gravity * PetscSqr(u[0]);
157: }

159: static PetscErrorCode PhysicsRiemann_Shallow_Exact(void *vctx, PetscInt m, const PetscScalar *uL, const PetscScalar *uR, PetscScalar *flux, PetscReal *maxspeed)
160: {
161:   ShallowCtx *phys = (ShallowCtx *)vctx;
162:   PetscScalar g    = phys->gravity, ustar[2], cL, cR, c, cstar;
163:   struct {
164:     PetscScalar h, u;
165:   } L = {uL[0], uL[1] / uL[0]}, R = {uR[0], uR[1] / uR[0]}, star;
166:   PetscInt i;

168:   PetscFunctionBeginUser;
169:   PetscCheck((L.h > 0 && R.h > 0), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Reconstructed thickness is negative");
170:   cL = PetscSqrtScalar(g * L.h);
171:   cR = PetscSqrtScalar(g * R.h);
172:   c  = PetscMax(cL, cR);
173:   {
174:     /* Solve for star state */
175:     const PetscInt maxits = 50;
176:     PetscScalar    tmp, res, res0 = 0, h0, h = 0.5 * (L.h + R.h); /* initial guess */
177:     h0 = h;
178:     for (i = 0; i < maxits; i++) {
179:       PetscScalar fr, fl, dfr, dfl;
180:       fl  = (L.h < h) ? PetscSqrtScalar(0.5 * g * (h * h - L.h * L.h) * (1 / L.h - 1 / h)) /* shock */
181:                       : 2 * PetscSqrtScalar(g * h) - 2 * PetscSqrtScalar(g * L.h);         /* rarefaction */
182:       fr  = (R.h < h) ? PetscSqrtScalar(0.5 * g * (h * h - R.h * R.h) * (1 / R.h - 1 / h)) /* shock */
183:                       : 2 * PetscSqrtScalar(g * h) - 2 * PetscSqrtScalar(g * R.h);         /* rarefaction */
184:       res = R.u - L.u + fr + fl;
185:       PetscCheck(!PetscIsInfOrNanScalar(res), PETSC_COMM_SELF, PETSC_ERR_FP, "Infinity or Not-a-Number generated in computation");
186:       if (PetscAbsScalar(res) < PETSC_SQRT_MACHINE_EPSILON || (i > 0 && PetscAbsScalar(h - h0) < PETSC_SQRT_MACHINE_EPSILON)) {
187:         star.h = h;
188:         star.u = L.u - fl;
189:         goto converged;
190:       } else if (i > 0 && PetscAbsScalar(res) >= PetscAbsScalar(res0)) { /* Line search */
191:         h = 0.8 * h0 + 0.2 * h;
192:         continue;
193:       }
194:       /* Accept the last step and take another */
195:       res0 = res;
196:       h0   = h;
197:       dfl  = (L.h < h) ? 0.5 / fl * 0.5 * g * (-L.h * L.h / (h * h) - 1 + 2 * h / L.h) : PetscSqrtScalar(g / h);
198:       dfr  = (R.h < h) ? 0.5 / fr * 0.5 * g * (-R.h * R.h / (h * h) - 1 + 2 * h / R.h) : PetscSqrtScalar(g / h);
199:       tmp  = h - res / (dfr + dfl);
200:       if (tmp <= 0) h /= 2; /* Guard against Newton shooting off to a negative thickness */
201:       else h = tmp;
202:       PetscCheck(((h > 0) && PetscIsNormalScalar(h)), PETSC_COMM_SELF, PETSC_ERR_FP, "non-normal iterate h=%g", (double)h);
203:     }
204:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_NOT_CONVERGED, "Newton iteration for star.h diverged after %" PetscInt_FMT " iterations", i);
205:   }
206: converged:
207:   cstar = PetscSqrtScalar(g * star.h);
208:   if (L.u - cL < 0 && 0 < star.u - cstar) { /* 1-wave is sonic rarefaction */
209:     PetscScalar ufan[2];
210:     ufan[0] = 1 / g * PetscSqr(L.u / 3 + 2. / 3 * cL);
211:     ufan[1] = PetscSqrtScalar(g * ufan[0]) * ufan[0];
212:     ShallowFlux(phys, ufan, flux);
213:   } else if (star.u + cstar < 0 && 0 < R.u + cR) { /* 2-wave is sonic rarefaction */
214:     PetscScalar ufan[2];
215:     ufan[0] = 1 / g * PetscSqr(R.u / 3 - 2. / 3 * cR);
216:     ufan[1] = -PetscSqrtScalar(g * ufan[0]) * ufan[0];
217:     ShallowFlux(phys, ufan, flux);
218:   } else if ((L.h >= star.h && L.u - c >= 0) || (L.h < star.h && (star.h * star.u - L.h * L.u) / (star.h - L.h) > 0)) {
219:     /* 1-wave is right-travelling shock (supersonic) */
220:     ShallowFlux(phys, uL, flux);
221:   } else if ((star.h <= R.h && R.u + c <= 0) || (star.h > R.h && (R.h * R.u - star.h * star.h) / (R.h - star.h) < 0)) {
222:     /* 2-wave is left-travelling shock (supersonic) */
223:     ShallowFlux(phys, uR, flux);
224:   } else {
225:     ustar[0] = star.h;
226:     ustar[1] = star.h * star.u;
227:     ShallowFlux(phys, ustar, flux);
228:   }
229:   *maxspeed = MaxAbs(MaxAbs(star.u - cstar, star.u + cstar), MaxAbs(L.u - cL, R.u + cR));
230:   PetscFunctionReturn(PETSC_SUCCESS);
231: }

233: static PetscErrorCode PhysicsRiemann_Shallow_Rusanov(void *vctx, PetscInt m, const PetscScalar *uL, const PetscScalar *uR, PetscScalar *flux, PetscReal *maxspeed)
234: {
235:   ShallowCtx *phys = (ShallowCtx *)vctx;
236:   PetscScalar g    = phys->gravity, fL[2], fR[2], s;
237:   struct {
238:     PetscScalar h, u;
239:   } L = {uL[0], uL[1] / uL[0]}, R = {uR[0], uR[1] / uR[0]};
240:   PetscReal tol = 1e-6;

242:   PetscFunctionBeginUser;
243:   /* Positivity preserving modification*/
244:   if (L.h < tol) L.u = 0.0;
245:   if (R.h < tol) R.u = 0.0;

247:   /*simple pos preserve limiter*/
248:   if (L.h < 0) L.h = 0;
249:   if (R.h < 0) R.h = 0;

251:   ShallowFlux(phys, uL, fL);
252:   ShallowFlux(phys, uR, fR);

254:   s         = PetscMax(PetscAbs(L.u) + PetscSqrtScalar(g * L.h), PetscAbs(R.u) + PetscSqrtScalar(g * R.h));
255:   flux[0]   = 0.5 * (fL[0] + fR[0]) + 0.5 * s * (L.h - R.h);
256:   flux[1]   = 0.5 * (fL[1] + fR[1]) + 0.5 * s * (uL[1] - uR[1]);
257:   *maxspeed = s;
258:   PetscFunctionReturn(PETSC_SUCCESS);
259: }

261: static PetscErrorCode PhysicsCharacteristic_Conservative(void *vctx, PetscInt m, const PetscScalar *u, PetscScalar *X, PetscScalar *Xi, PetscReal *speeds)
262: {
263:   PetscInt i, j;

265:   PetscFunctionBeginUser;
266:   for (i = 0; i < m; i++) {
267:     for (j = 0; j < m; j++) Xi[i * m + j] = X[i * m + j] = (PetscScalar)(i == j);
268:     speeds[i] = PETSC_MAX_REAL; /* Indicates invalid */
269:   }
270:   PetscFunctionReturn(PETSC_SUCCESS);
271: }

273: static PetscErrorCode PhysicsCharacteristic_Shallow(void *vctx, PetscInt m, const PetscScalar *u, PetscScalar *X, PetscScalar *Xi, PetscReal *speeds)
274: {
275:   ShallowCtx *phys = (ShallowCtx *)vctx;
276:   PetscReal   c;
277:   PetscReal   tol = 1e-6;

279:   PetscFunctionBeginUser;
280:   c = PetscSqrtScalar(u[0] * phys->gravity);

282:   if (u[0] < tol) { /*Use conservative variables*/
283:     X[0 * 2 + 0] = 1;
284:     X[0 * 2 + 1] = 0;
285:     X[1 * 2 + 0] = 0;
286:     X[1 * 2 + 1] = 1;
287:   } else {
288:     speeds[0]    = u[1] / u[0] - c;
289:     speeds[1]    = u[1] / u[0] + c;
290:     X[0 * 2 + 0] = 1;
291:     X[0 * 2 + 1] = speeds[0];
292:     X[1 * 2 + 0] = 1;
293:     X[1 * 2 + 1] = speeds[1];
294:   }

296:   PetscCall(PetscArraycpy(Xi, X, 4));
297:   PetscCall(PetscKernel_A_gets_inverse_A_2(Xi, 0, PETSC_FALSE, NULL));
298:   PetscFunctionReturn(PETSC_SUCCESS);
299: }

301: static PetscErrorCode PhysicsSample_Shallow(void *vctx, PetscInt initial, FVBCType bctype, PetscReal xmin, PetscReal xmax, PetscReal t, PetscReal x, PetscReal *u)
302: {
303:   PetscFunctionBeginUser;
304:   PetscCheck(t <= 0, PETSC_COMM_SELF, PETSC_ERR_SUP, "Exact solutions not implemented for t > 0");
305:   switch (initial) {
306:   case 0:
307:     u[0] = (x < 0) ? 2 : 1; /* Standard Dam Break Problem */
308:     u[1] = (x < 0) ? 0 : 0;
309:     break;
310:   case 1:
311:     u[0] = (x < 10) ? 1 : 0.1; /*The Next 5 problems are standard Riemann problem tests */
312:     u[1] = (x < 10) ? 2.5 : 0;
313:     break;
314:   case 2:
315:     u[0] = (x < 25) ? 1 : 1;
316:     u[1] = (x < 25) ? -5 : 5;
317:     break;
318:   case 3:
319:     u[0] = (x < 20) ? 1 : 1e-12;
320:     u[1] = (x < 20) ? 0 : 0;
321:     break;
322:   case 4:
323:     u[0] = (x < 30) ? 1e-12 : 1;
324:     u[1] = (x < 30) ? 0 : 0;
325:     break;
326:   case 5:
327:     u[0] = (x < 25) ? 0.1 : 0.1;
328:     u[1] = (x < 25) ? -0.3 : 0.3;
329:     break;
330:   case 6:
331:     u[0] = 1 + 0.5 * PetscSinReal(2 * PETSC_PI * x);
332:     u[1] = 1 * u[0];
333:     break;
334:   case 7:
335:     if (x < -0.1) {
336:       u[0] = 1e-9;
337:       u[1] = 0.0;
338:     } else if (x < 0.1) {
339:       u[0] = 1.0;
340:       u[1] = 0.0;
341:     } else {
342:       u[0] = 1e-9;
343:       u[1] = 0.0;
344:     }
345:     break;
346:   case 8:
347:     if (x < -0.1) {
348:       u[0] = 2;
349:       u[1] = 0.0;
350:     } else if (x < 0.1) {
351:       u[0] = 3.0;
352:       u[1] = 0.0;
353:     } else {
354:       u[0] = 2;
355:       u[1] = 0.0;
356:     }
357:     break;
358:   default:
359:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_UNKNOWN_TYPE, "unknown initial condition");
360:   }
361:   PetscFunctionReturn(PETSC_SUCCESS);
362: }

364: /* Implements inflow conditions for the given initial conditions. Which conditions are actually enforced depends on
365:    on the results of PhysicsSetInflowType_Shallow. */
366: static PetscErrorCode PhysicsInflow_Shallow(void *vctx, PetscReal t, PetscReal x, PetscReal *u)
367: {
368:   FVCtx *ctx = (FVCtx *)vctx;

370:   PetscFunctionBeginUser;
371:   if (ctx->bctype == FVBC_INFLOW) {
372:     switch (ctx->initial) {
373:     case 0:
374:     case 1:
375:     case 2:
376:     case 3:
377:     case 4:
378:     case 5:
379:       u[0] = 0;
380:       u[1] = 0.0; /* Left boundary conditions */
381:       u[2] = 0;
382:       u[3] = 0.0; /* Right boundary conditions */
383:       break;
384:     case 6:
385:       u[0] = 0;
386:       u[1] = 0.0; /* Left boundary conditions */
387:       u[2] = 0;
388:       u[3] = 0.0; /* Right boundary conditions */
389:       break;
390:     case 7:
391:       u[0] = 0;
392:       u[1] = 0.0; /* Left boundary conditions */
393:       u[2] = 0;
394:       u[3] = 0.0; /* Right boundary conditions */
395:       break;
396:     case 8:
397:       u[0] = 0;
398:       u[1] = 1.0; /* Left boundary conditions */
399:       u[2] = 0;
400:       u[3] = -1.0; /* Right boundary conditions */
401:       break;
402:     default:
403:       SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_UNKNOWN_TYPE, "unknown initial condition");
404:     }
405:   }
406:   PetscFunctionReturn(PETSC_SUCCESS);
407: }

409: /* Selects which boundary conditions are marked as inflow and which as outflow when FVBC_INFLOW is selected. */
410: static PetscErrorCode PhysicsSetInflowType_Shallow(FVCtx *ctx)
411: {
412:   PetscFunctionBeginUser;
413:   switch (ctx->initial) {
414:   case 0:
415:   case 1:
416:   case 2:
417:   case 3:
418:   case 4:
419:   case 5:
420:   case 6:
421:   case 7:
422:   case 8: /* Fix left and right momentum, height is outflow */
423:     ctx->physics2.bcinflowindex[0] = PETSC_FALSE;
424:     ctx->physics2.bcinflowindex[1] = PETSC_TRUE;
425:     ctx->physics2.bcinflowindex[2] = PETSC_FALSE;
426:     ctx->physics2.bcinflowindex[3] = PETSC_TRUE;
427:     break;
428:   default:
429:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_UNKNOWN_TYPE, "unknown initial condition");
430:   }
431:   PetscFunctionReturn(PETSC_SUCCESS);
432: }

434: static PetscErrorCode PhysicsCreate_Shallow(FVCtx *ctx)
435: {
436:   ShallowCtx       *user;
437:   PetscFunctionList rlist = 0, rclist = 0;
438:   char              rname[256] = "rusanov", rcname[256] = "characteristic";

440:   PetscFunctionBeginUser;
441:   PetscCall(PetscNew(&user));
442:   ctx->physics2.sample2         = PhysicsSample_Shallow;
443:   ctx->physics2.inflow          = PhysicsInflow_Shallow;
444:   ctx->physics2.destroy         = PhysicsDestroy_SimpleFree;
445:   ctx->physics2.riemann2        = PhysicsRiemann_Shallow_Rusanov;
446:   ctx->physics2.characteristic2 = PhysicsCharacteristic_Shallow;
447:   ctx->physics2.user            = user;
448:   ctx->physics2.dof             = 2;

450:   PetscCall(PetscMalloc1(2 * (ctx->physics2.dof), &ctx->physics2.bcinflowindex));
451:   PetscCall(PhysicsSetInflowType_Shallow(ctx));

453:   PetscCall(PetscStrallocpy("height", &ctx->physics2.fieldname[0]));
454:   PetscCall(PetscStrallocpy("momentum", &ctx->physics2.fieldname[1]));

456:   user->gravity = 9.81;

458:   PetscCall(RiemannListAdd_2WaySplit(&rlist, "exact", PhysicsRiemann_Shallow_Exact));
459:   PetscCall(RiemannListAdd_2WaySplit(&rlist, "rusanov", PhysicsRiemann_Shallow_Rusanov));
460:   PetscCall(ReconstructListAdd_2WaySplit(&rclist, "characteristic", PhysicsCharacteristic_Shallow));
461:   PetscCall(ReconstructListAdd_2WaySplit(&rclist, "conservative", PhysicsCharacteristic_Conservative));
462:   PetscOptionsBegin(ctx->comm, ctx->prefix, "Options for Shallow", "");
463:   PetscCall(PetscOptionsReal("-physics_shallow_gravity", "Gravity", "", user->gravity, &user->gravity, NULL));
464:   PetscCall(PetscOptionsFList("-physics_shallow_riemann", "Riemann solver", "", rlist, rname, rname, sizeof(rname), NULL));
465:   PetscCall(PetscOptionsFList("-physics_shallow_reconstruct", "Reconstruction", "", rclist, rcname, rcname, sizeof(rcname), NULL));
466:   PetscOptionsEnd();
467:   PetscCall(RiemannListFind_2WaySplit(rlist, rname, &ctx->physics2.riemann2));
468:   PetscCall(ReconstructListFind_2WaySplit(rclist, rcname, &ctx->physics2.characteristic2));
469:   PetscCall(PetscFunctionListDestroy(&rlist));
470:   PetscCall(PetscFunctionListDestroy(&rclist));
471:   PetscFunctionReturn(PETSC_SUCCESS);
472: }

474: PetscErrorCode FVSample_2WaySplit(FVCtx *ctx, DM da, PetscReal time, Vec U)
475: {
476:   PetscScalar   *u, *uj, xj, xi;
477:   PetscInt       i, j, k, dof, xs, xm, Mx;
478:   const PetscInt N = 200;
479:   PetscReal      hs, hf;

481:   PetscFunctionBeginUser;
482:   PetscCheck(ctx->physics2.sample2, PETSC_COMM_SELF, PETSC_ERR_SUP, "Physics has not provided a sampling function");
483:   PetscCall(DMDAGetInfo(da, 0, &Mx, 0, 0, 0, 0, 0, &dof, 0, 0, 0, 0, 0));
484:   PetscCall(DMDAGetCorners(da, &xs, 0, 0, &xm, 0, 0));
485:   PetscCall(DMDAVecGetArray(da, U, &u));
486:   PetscCall(PetscMalloc1(dof, &uj));
487:   hs = (ctx->xmax - ctx->xmin) * 3.0 / 8.0 / ctx->sf;
488:   hf = (ctx->xmax - ctx->xmin) / 4.0 / (ctx->fs - ctx->sf);
489:   for (i = xs; i < xs + xm; i++) {
490:     if (i < ctx->sf) {
491:       xi = ctx->xmin + 0.5 * hs + i * hs;
492:       /* Integrate over cell i using trapezoid rule with N points. */
493:       for (k = 0; k < dof; k++) u[i * dof + k] = 0;
494:       for (j = 0; j < N + 1; j++) {
495:         xj = xi + hs * (j - N / 2) / (PetscReal)N;
496:         PetscCall((*ctx->physics2.sample2)(ctx->physics2.user, ctx->initial, ctx->bctype, ctx->xmin, ctx->xmax, time, xj, uj));
497:         for (k = 0; k < dof; k++) u[i * dof + k] += ((j == 0 || j == N) ? 0.5 : 1.0) * uj[k] / N;
498:       }
499:     } else if (i < ctx->fs) {
500:       xi = ctx->xmin + ctx->sf * hs + 0.5 * hf + (i - ctx->sf) * hf;
501:       /* Integrate over cell i using trapezoid rule with N points. */
502:       for (k = 0; k < dof; k++) u[i * dof + k] = 0;
503:       for (j = 0; j < N + 1; j++) {
504:         xj = xi + hf * (j - N / 2) / (PetscReal)N;
505:         PetscCall((*ctx->physics2.sample2)(ctx->physics2.user, ctx->initial, ctx->bctype, ctx->xmin, ctx->xmax, time, xj, uj));
506:         for (k = 0; k < dof; k++) u[i * dof + k] += ((j == 0 || j == N) ? 0.5 : 1.0) * uj[k] / N;
507:       }
508:     } else {
509:       xi = ctx->xmin + ctx->sf * hs + (ctx->fs - ctx->sf) * hf + 0.5 * hs + (i - ctx->fs) * hs;
510:       /* Integrate over cell i using trapezoid rule with N points. */
511:       for (k = 0; k < dof; k++) u[i * dof + k] = 0;
512:       for (j = 0; j < N + 1; j++) {
513:         xj = xi + hs * (j - N / 2) / (PetscReal)N;
514:         PetscCall((*ctx->physics2.sample2)(ctx->physics2.user, ctx->initial, ctx->bctype, ctx->xmin, ctx->xmax, time, xj, uj));
515:         for (k = 0; k < dof; k++) u[i * dof + k] += ((j == 0 || j == N) ? 0.5 : 1.0) * uj[k] / N;
516:       }
517:     }
518:   }
519:   PetscCall(DMDAVecRestoreArray(da, U, &u));
520:   PetscCall(PetscFree(uj));
521:   PetscFunctionReturn(PETSC_SUCCESS);
522: }

524: static PetscErrorCode SolutionErrorNorms_2WaySplit(FVCtx *ctx, DM da, PetscReal t, Vec X, PetscReal *nrm1)
525: {
526:   Vec                Y;
527:   PetscInt           i, Mx;
528:   const PetscScalar *ptr_X, *ptr_Y;
529:   PetscReal          hs, hf;

531:   PetscFunctionBeginUser;
532:   PetscCall(VecGetSize(X, &Mx));
533:   PetscCall(VecDuplicate(X, &Y));
534:   PetscCall(FVSample_2WaySplit(ctx, da, t, Y));
535:   hs = (ctx->xmax - ctx->xmin) * 3.0 / 8.0 / ctx->sf;
536:   hf = (ctx->xmax - ctx->xmin) / 4.0 / (ctx->fs - ctx->sf);
537:   PetscCall(VecGetArrayRead(X, &ptr_X));
538:   PetscCall(VecGetArrayRead(Y, &ptr_Y));
539:   for (i = 0; i < Mx; i++) {
540:     if (i < ctx->sf || i > ctx->fs - 1) *nrm1 += hs * PetscAbs(ptr_X[i] - ptr_Y[i]);
541:     else *nrm1 += hf * PetscAbs(ptr_X[i] - ptr_Y[i]);
542:   }
543:   PetscCall(VecRestoreArrayRead(X, &ptr_X));
544:   PetscCall(VecRestoreArrayRead(Y, &ptr_Y));
545:   PetscCall(VecDestroy(&Y));
546:   PetscFunctionReturn(PETSC_SUCCESS);
547: }

549: PetscErrorCode FVRHSFunction_2WaySplit(TS ts, PetscReal time, Vec X, Vec F, void *vctx)
550: {
551:   FVCtx       *ctx = (FVCtx *)vctx;
552:   PetscInt     i, j, k, Mx, dof, xs, xm, sf = ctx->sf, fs = ctx->fs;
553:   PetscReal    hxf, hxs, cfl_idt = 0;
554:   PetscScalar *x, *f, *slope;
555:   Vec          Xloc;
556:   DM           da;

558:   PetscFunctionBeginUser;
559:   PetscCall(TSGetDM(ts, &da));
560:   PetscCall(DMGetLocalVector(da, &Xloc));                                 /* Xloc contains ghost points                                     */
561:   PetscCall(DMDAGetInfo(da, 0, &Mx, 0, 0, 0, 0, 0, &dof, 0, 0, 0, 0, 0)); /* Mx is the number of center points                              */
562:   hxs = (ctx->xmax - ctx->xmin) * 3.0 / 8.0 / ctx->sf;
563:   hxf = (ctx->xmax - ctx->xmin) / 4.0 / (ctx->fs - ctx->sf);
564:   PetscCall(DMGlobalToLocalBegin(da, X, INSERT_VALUES, Xloc)); /* X is solution vector which does not contain ghost points       */
565:   PetscCall(DMGlobalToLocalEnd(da, X, INSERT_VALUES, Xloc));

567:   PetscCall(VecZeroEntries(F)); /* F is the right-hand side function corresponds to center points */

569:   PetscCall(DMDAVecGetArray(da, Xloc, &x));
570:   PetscCall(DMDAVecGetArray(da, F, &f));
571:   PetscCall(DMDAGetArray(da, PETSC_TRUE, &slope)); /* contains ghost points                                           */
572:   PetscCall(DMDAGetCorners(da, &xs, 0, 0, &xm, 0, 0));

574:   if (ctx->bctype == FVBC_OUTFLOW) {
575:     for (i = xs - 2; i < 0; i++) {
576:       for (j = 0; j < dof; j++) x[i * dof + j] = x[j];
577:     }
578:     for (i = Mx; i < xs + xm + 2; i++) {
579:       for (j = 0; j < dof; j++) x[i * dof + j] = x[(xs + xm - 1) * dof + j];
580:     }
581:   }

583:   if (ctx->bctype == FVBC_INFLOW) {
584:     /* See LeVeque, R. (2002). Finite Volume Methods for Hyperbolic Problems. doi:10.1017/CBO9780511791253
585:     pages 137-138 for the scheme. */
586:     if (xs == 0) { /* Left Boundary */
587:       PetscCall(ctx->physics2.inflow(ctx, time, ctx->xmin, ctx->ub));
588:       for (j = 0; j < dof; j++) {
589:         if (ctx->physics2.bcinflowindex[j]) {
590:           for (i = -2; i < 0; i++) x[i * dof + j] = 2.0 * ctx->ub[j] - x[-(i + 1) * dof + j];
591:         } else {
592:           for (i = -2; i < 0; i++) x[i * dof + j] = x[j]; /* Outflow */
593:         }
594:       }
595:     }
596:     if (xs + xm == Mx) { /* Right Boundary */
597:       PetscCall(ctx->physics2.inflow(ctx, time, ctx->xmax, ctx->ub));
598:       for (j = 0; j < dof; j++) {
599:         if (ctx->physics2.bcinflowindex[dof + j]) {
600:           for (i = Mx; i < Mx + 2; i++) x[i * dof + j] = 2.0 * ctx->ub[dof + j] - x[(2 * Mx - (i + 1)) * dof + j];
601:         } else {
602:           for (i = Mx; i < Mx + 2; i++) x[i * dof + j] = x[(Mx - 1) * dof + j]; /* Outflow */
603:         }
604:       }
605:     }
606:   }

608:   for (i = xs - 1; i < xs + xm + 1; i++) {
609:     struct _LimitInfo info;
610:     PetscScalar      *cjmpL, *cjmpR;
611:     /* Determine the right eigenvectors R, where A = R \Lambda R^{-1} */
612:     PetscCall((*ctx->physics2.characteristic2)(ctx->physics2.user, dof, &x[i * dof], ctx->R, ctx->Rinv, ctx->speeds));
613:     /* Evaluate jumps across interfaces (i-1, i) and (i, i+1), put in characteristic basis */
614:     PetscCall(PetscArrayzero(ctx->cjmpLR, 2 * dof));
615:     cjmpL = &ctx->cjmpLR[0];
616:     cjmpR = &ctx->cjmpLR[dof];
617:     for (j = 0; j < dof; j++) {
618:       PetscScalar jmpL, jmpR;
619:       jmpL = x[(i + 0) * dof + j] - x[(i - 1) * dof + j];
620:       jmpR = x[(i + 1) * dof + j] - x[(i + 0) * dof + j];
621:       for (k = 0; k < dof; k++) {
622:         cjmpL[k] += ctx->Rinv[k + j * dof] * jmpL;
623:         cjmpR[k] += ctx->Rinv[k + j * dof] * jmpR;
624:       }
625:     }
626:     /* Apply limiter to the left and right characteristic jumps */
627:     info.m   = dof;
628:     info.hxs = hxs;
629:     info.hxf = hxf;
630:     (*ctx->limit2)(&info, cjmpL, cjmpR, ctx->sf, ctx->fs, i, ctx->cslope);
631:     for (j = 0; j < dof; j++) {
632:       PetscScalar tmp = 0;
633:       for (k = 0; k < dof; k++) tmp += ctx->R[j + k * dof] * ctx->cslope[k];
634:       slope[i * dof + j] = tmp;
635:     }
636:   }

638:   for (i = xs; i < xs + xm + 1; i++) {
639:     PetscReal    maxspeed;
640:     PetscScalar *uL, *uR;
641:     uL = &ctx->uLR[0];
642:     uR = &ctx->uLR[dof];
643:     if (i < sf) { /* slow region */
644:       for (j = 0; j < dof; j++) {
645:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxs / 2;
646:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxs / 2;
647:       }
648:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
649:       if (i > xs) {
650:         for (j = 0; j < dof; j++) f[(i - 1) * dof + j] -= ctx->flux[j] / hxs;
651:       }
652:       if (i < xs + xm) {
653:         for (j = 0; j < dof; j++) f[i * dof + j] += ctx->flux[j] / hxs;
654:       }
655:     } else if (i == sf) { /* interface between the slow region and the fast region */
656:       for (j = 0; j < dof; j++) {
657:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxs / 2;
658:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxf / 2;
659:       }
660:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
661:       if (i > xs) {
662:         for (j = 0; j < dof; j++) f[(i - 1) * dof + j] -= ctx->flux[j] / hxs;
663:       }
664:       if (i < xs + xm) {
665:         for (j = 0; j < dof; j++) f[i * dof + j] += ctx->flux[j] / hxf;
666:       }
667:     } else if (i > sf && i < fs) { /* fast region */
668:       for (j = 0; j < dof; j++) {
669:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxf / 2;
670:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxf / 2;
671:       }
672:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
673:       if (i > xs) {
674:         for (j = 0; j < dof; j++) f[(i - 1) * dof + j] -= ctx->flux[j] / hxf;
675:       }
676:       if (i < xs + xm) {
677:         for (j = 0; j < dof; j++) f[i * dof + j] += ctx->flux[j] / hxf;
678:       }
679:     } else if (i == fs) { /* interface between the fast region and the slow region */
680:       for (j = 0; j < dof; j++) {
681:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxf / 2;
682:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxs / 2;
683:       }
684:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
685:       if (i > xs) {
686:         for (j = 0; j < dof; j++) f[(i - 1) * dof + j] -= ctx->flux[j] / hxf;
687:       }
688:       if (i < xs + xm) {
689:         for (j = 0; j < dof; j++) f[i * dof + j] += ctx->flux[j] / hxs;
690:       }
691:     } else { /* slow region */
692:       for (j = 0; j < dof; j++) {
693:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxs / 2;
694:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxs / 2;
695:       }
696:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
697:       cfl_idt = PetscMax(cfl_idt, PetscAbsScalar(maxspeed / hxs)); /* Max allowable value of 1/Delta t */
698:       if (i > xs) {
699:         for (j = 0; j < dof; j++) f[(i - 1) * dof + j] -= ctx->flux[j] / hxs;
700:       }
701:       if (i < xs + xm) {
702:         for (j = 0; j < dof; j++) f[i * dof + j] += ctx->flux[j] / hxs;
703:       }
704:     }
705:   }
706:   PetscCall(DMDAVecRestoreArray(da, Xloc, &x));
707:   PetscCall(DMDAVecRestoreArray(da, F, &f));
708:   PetscCall(DMDARestoreArray(da, PETSC_TRUE, &slope));
709:   PetscCall(DMRestoreLocalVector(da, &Xloc));
710:   PetscCall(MPIU_Allreduce(&cfl_idt, &ctx->cfl_idt, 1, MPIU_SCALAR, MPIU_MAX, PetscObjectComm((PetscObject)da)));
711:   if (0) {
712:     /* We need to a way to inform the TS of a CFL constraint, this is a debugging fragment */
713:     PetscReal dt, tnow;
714:     PetscCall(TSGetTimeStep(ts, &dt));
715:     PetscCall(TSGetTime(ts, &tnow));
716:     if (dt > 0.5 / ctx->cfl_idt) {
717:       if (1) {
718:         PetscCall(PetscPrintf(ctx->comm, "Stability constraint exceeded at t=%g, dt %g > %g\n", (double)tnow, (double)dt, (double)(0.5 / ctx->cfl_idt)));
719:       } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Stability constraint exceeded, %g > %g", (double)dt, (double)(ctx->cfl / ctx->cfl_idt));
720:     }
721:   }
722:   PetscFunctionReturn(PETSC_SUCCESS);
723: }

725: /* --------------------------------- Finite Volume Solver for slow components ----------------------------------- */
726: PetscErrorCode FVRHSFunctionslow_2WaySplit(TS ts, PetscReal time, Vec X, Vec F, void *vctx)
727: {
728:   FVCtx       *ctx = (FVCtx *)vctx;
729:   PetscInt     i, j, k, Mx, dof, xs, xm, islow = 0, sf = ctx->sf, fs = ctx->fs, lsbwidth = ctx->lsbwidth, rsbwidth = ctx->rsbwidth;
730:   PetscReal    hxs, hxf, cfl_idt = 0;
731:   PetscScalar *x, *f, *slope;
732:   Vec          Xloc;
733:   DM           da;

735:   PetscFunctionBeginUser;
736:   PetscCall(TSGetDM(ts, &da));
737:   PetscCall(DMGetLocalVector(da, &Xloc));
738:   PetscCall(DMDAGetInfo(da, 0, &Mx, 0, 0, 0, 0, 0, &dof, 0, 0, 0, 0, 0));
739:   hxs = (ctx->xmax - ctx->xmin) * 3.0 / 8.0 / ctx->sf;
740:   hxf = (ctx->xmax - ctx->xmin) / 4.0 / (ctx->fs - ctx->sf);
741:   PetscCall(DMGlobalToLocalBegin(da, X, INSERT_VALUES, Xloc));
742:   PetscCall(DMGlobalToLocalEnd(da, X, INSERT_VALUES, Xloc));
743:   PetscCall(VecZeroEntries(F));
744:   PetscCall(DMDAVecGetArray(da, Xloc, &x));
745:   PetscCall(VecGetArray(F, &f));
746:   PetscCall(DMDAGetArray(da, PETSC_TRUE, &slope));
747:   PetscCall(DMDAGetCorners(da, &xs, 0, 0, &xm, 0, 0));

749:   if (ctx->bctype == FVBC_OUTFLOW) {
750:     for (i = xs - 2; i < 0; i++) {
751:       for (j = 0; j < dof; j++) x[i * dof + j] = x[j];
752:     }
753:     for (i = Mx; i < xs + xm + 2; i++) {
754:       for (j = 0; j < dof; j++) x[i * dof + j] = x[(xs + xm - 1) * dof + j];
755:     }
756:   }
757:   if (ctx->bctype == FVBC_INFLOW) {
758:     /* See LeVeque, R. (2002). Finite Volume Methods for Hyperbolic Problems. doi:10.1017/CBO9780511791253
759:     pages 137-138 for the scheme. */
760:     if (xs == 0) { /* Left Boundary */
761:       PetscCall(ctx->physics2.inflow(ctx, time, ctx->xmin, ctx->ub));
762:       for (j = 0; j < dof; j++) {
763:         if (ctx->physics2.bcinflowindex[j] == PETSC_TRUE) {
764:           for (i = -2; i < 0; i++) x[i * dof + j] = 2.0 * ctx->ub[j] - x[-(i + 1) * dof + j];
765:         } else {
766:           for (i = -2; i < 0; i++) x[i * dof + j] = x[j]; /* Outflow */
767:         }
768:       }
769:     }
770:     if (xs + xm == Mx) { /* Right Boundary */
771:       PetscCall(ctx->physics2.inflow(ctx, time, ctx->xmax, ctx->ub));
772:       for (j = 0; j < dof; j++) {
773:         if (ctx->physics2.bcinflowindex[dof + j] == PETSC_TRUE) {
774:           for (i = Mx; i < Mx + 2; i++) x[i * dof + j] = 2.0 * ctx->ub[dof + j] - x[(2 * Mx - (i + 1)) * dof + j];
775:         } else {
776:           for (i = Mx; i < Mx + 2; i++) x[i * dof + j] = x[(Mx - 1) * dof + j]; /* Outflow */
777:         }
778:       }
779:     }
780:   }
781:   for (i = xs - 1; i < xs + xm + 1; i++) {
782:     struct _LimitInfo info;
783:     PetscScalar      *cjmpL, *cjmpR;
784:     if (i < sf - lsbwidth + 1 || i > fs + rsbwidth - 2) { /* slow components and the first and last fast components */
785:       /* Determine the right eigenvectors R, where A = R \Lambda R^{-1} */
786:       PetscCall((*ctx->physics2.characteristic2)(ctx->physics2.user, dof, &x[i * dof], ctx->R, ctx->Rinv, ctx->speeds));
787:       /* Evaluate jumps across interfaces (i-1, i) and (i, i+1), put in characteristic basis */
788:       PetscCall(PetscArrayzero(ctx->cjmpLR, 2 * dof));
789:       cjmpL = &ctx->cjmpLR[0];
790:       cjmpR = &ctx->cjmpLR[dof];
791:       for (j = 0; j < dof; j++) {
792:         PetscScalar jmpL, jmpR;
793:         jmpL = x[(i + 0) * dof + j] - x[(i - 1) * dof + j];
794:         jmpR = x[(i + 1) * dof + j] - x[(i + 0) * dof + j];
795:         for (k = 0; k < dof; k++) {
796:           cjmpL[k] += ctx->Rinv[k + j * dof] * jmpL;
797:           cjmpR[k] += ctx->Rinv[k + j * dof] * jmpR;
798:         }
799:       }
800:       /* Apply limiter to the left and right characteristic jumps */
801:       info.m   = dof;
802:       info.hxs = hxs;
803:       info.hxf = hxf;
804:       (*ctx->limit2)(&info, cjmpL, cjmpR, ctx->sf, ctx->fs, i, ctx->cslope);
805:       for (j = 0; j < dof; j++) {
806:         PetscScalar tmp = 0;
807:         for (k = 0; k < dof; k++) tmp += ctx->R[j + k * dof] * ctx->cslope[k];
808:         slope[i * dof + j] = tmp;
809:       }
810:     }
811:   }

813:   for (i = xs; i < xs + xm + 1; i++) {
814:     PetscReal    maxspeed;
815:     PetscScalar *uL, *uR;
816:     uL = &ctx->uLR[0];
817:     uR = &ctx->uLR[dof];
818:     if (i < sf - lsbwidth) { /* slow region */
819:       for (j = 0; j < dof; j++) {
820:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxs / 2;
821:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxs / 2;
822:       }
823:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
824:       cfl_idt = PetscMax(cfl_idt, PetscAbsScalar(maxspeed / hxs)); /* Max allowable value of 1/Delta t */
825:       if (i > xs) {
826:         for (j = 0; j < dof; j++) f[(islow - 1) * dof + j] -= ctx->flux[j] / hxs;
827:       }
828:       if (i < xs + xm) {
829:         for (j = 0; j < dof; j++) f[islow * dof + j] += ctx->flux[j] / hxs;
830:         islow++;
831:       }
832:     }
833:     if (i == sf - lsbwidth) { /* interface between the slow region and the fast region */
834:       for (j = 0; j < dof; j++) {
835:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxs / 2;
836:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxs / 2;
837:       }
838:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
839:       if (i > xs) {
840:         for (j = 0; j < dof; j++) f[(islow - 1) * dof + j] -= ctx->flux[j] / hxs;
841:       }
842:     }
843:     if (i == fs + rsbwidth) { /* slow region */
844:       for (j = 0; j < dof; j++) {
845:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxs / 2;
846:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxs / 2;
847:       }
848:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
849:       if (i < xs + xm) {
850:         for (j = 0; j < dof; j++) f[islow * dof + j] += ctx->flux[j] / hxs;
851:         islow++;
852:       }
853:     }
854:     if (i > fs + rsbwidth) { /* slow region */
855:       for (j = 0; j < dof; j++) {
856:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxs / 2;
857:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxs / 2;
858:       }
859:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
860:       if (i > xs) {
861:         for (j = 0; j < dof; j++) f[(islow - 1) * dof + j] -= ctx->flux[j] / hxs;
862:       }
863:       if (i < xs + xm) {
864:         for (j = 0; j < dof; j++) f[islow * dof + j] += ctx->flux[j] / hxs;
865:         islow++;
866:       }
867:     }
868:   }
869:   PetscCall(DMDAVecRestoreArray(da, Xloc, &x));
870:   PetscCall(VecRestoreArray(F, &f));
871:   PetscCall(DMDARestoreArray(da, PETSC_TRUE, &slope));
872:   PetscCall(DMRestoreLocalVector(da, &Xloc));
873:   PetscCall(MPIU_Allreduce(&cfl_idt, &ctx->cfl_idt, 1, MPIU_SCALAR, MPIU_MAX, PetscObjectComm((PetscObject)da)));
874:   PetscFunctionReturn(PETSC_SUCCESS);
875: }

877: PetscErrorCode FVRHSFunctionslowbuffer_2WaySplit(TS ts, PetscReal time, Vec X, Vec F, void *vctx)
878: {
879:   FVCtx       *ctx = (FVCtx *)vctx;
880:   PetscInt     i, j, k, Mx, dof, xs, xm, islow = 0, sf = ctx->sf, fs = ctx->fs, lsbwidth = ctx->lsbwidth, rsbwidth = ctx->rsbwidth;
881:   PetscReal    hxs, hxf;
882:   PetscScalar *x, *f, *slope;
883:   Vec          Xloc;
884:   DM           da;

886:   PetscFunctionBeginUser;
887:   PetscCall(TSGetDM(ts, &da));
888:   PetscCall(DMGetLocalVector(da, &Xloc));
889:   PetscCall(DMDAGetInfo(da, 0, &Mx, 0, 0, 0, 0, 0, &dof, 0, 0, 0, 0, 0));
890:   hxs = (ctx->xmax - ctx->xmin) * 3.0 / 8.0 / ctx->sf;
891:   hxf = (ctx->xmax - ctx->xmin) / 4.0 / (ctx->fs - ctx->sf);
892:   PetscCall(DMGlobalToLocalBegin(da, X, INSERT_VALUES, Xloc));
893:   PetscCall(DMGlobalToLocalEnd(da, X, INSERT_VALUES, Xloc));
894:   PetscCall(VecZeroEntries(F));
895:   PetscCall(DMDAVecGetArray(da, Xloc, &x));
896:   PetscCall(VecGetArray(F, &f));
897:   PetscCall(DMDAGetArray(da, PETSC_TRUE, &slope));
898:   PetscCall(DMDAGetCorners(da, &xs, 0, 0, &xm, 0, 0));

900:   if (ctx->bctype == FVBC_OUTFLOW) {
901:     for (i = xs - 2; i < 0; i++) {
902:       for (j = 0; j < dof; j++) x[i * dof + j] = x[j];
903:     }
904:     for (i = Mx; i < xs + xm + 2; i++) {
905:       for (j = 0; j < dof; j++) x[i * dof + j] = x[(xs + xm - 1) * dof + j];
906:     }
907:   }
908:   if (ctx->bctype == FVBC_INFLOW) {
909:     /* See LeVeque, R. (2002). Finite Volume Methods for Hyperbolic Problems. doi:10.1017/CBO9780511791253
910:     pages 137-138 for the scheme. */
911:     if (xs == 0) { /* Left Boundary */
912:       PetscCall(ctx->physics2.inflow(ctx, time, ctx->xmin, ctx->ub));
913:       for (j = 0; j < dof; j++) {
914:         if (ctx->physics2.bcinflowindex[j] == PETSC_TRUE) {
915:           for (i = -2; i < 0; i++) x[i * dof + j] = 2.0 * ctx->ub[j] - x[-(i + 1) * dof + j];
916:         } else {
917:           for (i = -2; i < 0; i++) x[i * dof + j] = x[j]; /* Outflow */
918:         }
919:       }
920:     }
921:     if (xs + xm == Mx) { /* Right Boundary */
922:       PetscCall(ctx->physics2.inflow(ctx, time, ctx->xmax, ctx->ub));
923:       for (j = 0; j < dof; j++) {
924:         if (ctx->physics2.bcinflowindex[dof + j] == PETSC_TRUE) {
925:           for (i = Mx; i < Mx + 2; i++) x[i * dof + j] = 2.0 * ctx->ub[dof + j] - x[(2 * Mx - (i + 1)) * dof + j];
926:         } else {
927:           for (i = Mx; i < Mx + 2; i++) x[i * dof + j] = x[(Mx - 1) * dof + j]; /* Outflow */
928:         }
929:       }
930:     }
931:   }
932:   for (i = xs - 1; i < xs + xm + 1; i++) {
933:     struct _LimitInfo info;
934:     PetscScalar      *cjmpL, *cjmpR;
935:     if ((i > sf - lsbwidth - 2 && i < sf + 1) || (i > fs - 2 && i < fs + rsbwidth + 1)) {
936:       /* Determine the right eigenvectors R, where A = R \Lambda R^{-1} */
937:       PetscCall((*ctx->physics2.characteristic2)(ctx->physics2.user, dof, &x[i * dof], ctx->R, ctx->Rinv, ctx->speeds));
938:       /* Evaluate jumps across interfaces (i-1, i) and (i, i+1), put in characteristic basis */
939:       PetscCall(PetscArrayzero(ctx->cjmpLR, 2 * dof));
940:       cjmpL = &ctx->cjmpLR[0];
941:       cjmpR = &ctx->cjmpLR[dof];
942:       for (j = 0; j < dof; j++) {
943:         PetscScalar jmpL, jmpR;
944:         jmpL = x[(i + 0) * dof + j] - x[(i - 1) * dof + j];
945:         jmpR = x[(i + 1) * dof + j] - x[(i + 0) * dof + j];
946:         for (k = 0; k < dof; k++) {
947:           cjmpL[k] += ctx->Rinv[k + j * dof] * jmpL;
948:           cjmpR[k] += ctx->Rinv[k + j * dof] * jmpR;
949:         }
950:       }
951:       /* Apply limiter to the left and right characteristic jumps */
952:       info.m   = dof;
953:       info.hxs = hxs;
954:       info.hxf = hxf;
955:       (*ctx->limit2)(&info, cjmpL, cjmpR, ctx->sf, ctx->fs, i, ctx->cslope);
956:       for (j = 0; j < dof; j++) {
957:         PetscScalar tmp = 0;
958:         for (k = 0; k < dof; k++) tmp += ctx->R[j + k * dof] * ctx->cslope[k];
959:         slope[i * dof + j] = tmp;
960:       }
961:     }
962:   }

964:   for (i = xs; i < xs + xm + 1; i++) {
965:     PetscReal    maxspeed;
966:     PetscScalar *uL, *uR;
967:     uL = &ctx->uLR[0];
968:     uR = &ctx->uLR[dof];
969:     if (i == sf - lsbwidth) {
970:       for (j = 0; j < dof; j++) {
971:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxs / 2;
972:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxs / 2;
973:       }
974:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
975:       if (i < xs + xm) {
976:         for (j = 0; j < dof; j++) f[islow * dof + j] += ctx->flux[j] / hxs;
977:         islow++;
978:       }
979:     }
980:     if (i > sf - lsbwidth && i < sf) {
981:       for (j = 0; j < dof; j++) {
982:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxs / 2;
983:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxs / 2;
984:       }
985:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
986:       if (i > xs) {
987:         for (j = 0; j < dof; j++) f[(islow - 1) * dof + j] -= ctx->flux[j] / hxs;
988:       }
989:       if (i < xs + xm) {
990:         for (j = 0; j < dof; j++) f[islow * dof + j] += ctx->flux[j] / hxs;
991:         islow++;
992:       }
993:     }
994:     if (i == sf) { /* interface between the slow region and the fast region */
995:       for (j = 0; j < dof; j++) {
996:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxs / 2;
997:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxf / 2;
998:       }
999:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
1000:       if (i > xs) {
1001:         for (j = 0; j < dof; j++) f[(islow - 1) * dof + j] -= ctx->flux[j] / hxs;
1002:       }
1003:     }
1004:     if (i == fs) { /* interface between the fast region and the slow region */
1005:       for (j = 0; j < dof; j++) {
1006:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxf / 2;
1007:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxs / 2;
1008:       }
1009:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
1010:       if (i < xs + xm) {
1011:         for (j = 0; j < dof; j++) f[islow * dof + j] += ctx->flux[j] / hxs;
1012:         islow++;
1013:       }
1014:     }
1015:     if (i > fs && i < fs + rsbwidth) {
1016:       for (j = 0; j < dof; j++) {
1017:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxs / 2;
1018:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxs / 2;
1019:       }
1020:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
1021:       if (i > xs) {
1022:         for (j = 0; j < dof; j++) f[(islow - 1) * dof + j] -= ctx->flux[j] / hxs;
1023:       }
1024:       if (i < xs + xm) {
1025:         for (j = 0; j < dof; j++) f[islow * dof + j] += ctx->flux[j] / hxs;
1026:         islow++;
1027:       }
1028:     }
1029:     if (i == fs + rsbwidth) {
1030:       for (j = 0; j < dof; j++) {
1031:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxs / 2;
1032:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxs / 2;
1033:       }
1034:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
1035:       if (i > xs) {
1036:         for (j = 0; j < dof; j++) f[(islow - 1) * dof + j] -= ctx->flux[j] / hxs;
1037:       }
1038:     }
1039:   }
1040:   PetscCall(DMDAVecRestoreArray(da, Xloc, &x));
1041:   PetscCall(VecRestoreArray(F, &f));
1042:   PetscCall(DMDARestoreArray(da, PETSC_TRUE, &slope));
1043:   PetscCall(DMRestoreLocalVector(da, &Xloc));
1044:   PetscFunctionReturn(PETSC_SUCCESS);
1045: }

1047: /* --------------------------------- Finite Volume Solver for fast  parts ----------------------------------- */
1048: PetscErrorCode FVRHSFunctionfast_2WaySplit(TS ts, PetscReal time, Vec X, Vec F, void *vctx)
1049: {
1050:   FVCtx       *ctx = (FVCtx *)vctx;
1051:   PetscInt     i, j, k, Mx, dof, xs, xm, ifast = 0, sf = ctx->sf, fs = ctx->fs;
1052:   PetscReal    hxs, hxf;
1053:   PetscScalar *x, *f, *slope;
1054:   Vec          Xloc;
1055:   DM           da;

1057:   PetscFunctionBeginUser;
1058:   PetscCall(TSGetDM(ts, &da));
1059:   PetscCall(DMGetLocalVector(da, &Xloc));
1060:   PetscCall(DMDAGetInfo(da, 0, &Mx, 0, 0, 0, 0, 0, &dof, 0, 0, 0, 0, 0));
1061:   hxs = (ctx->xmax - ctx->xmin) * 3.0 / 8.0 / ctx->sf;
1062:   hxf = (ctx->xmax - ctx->xmin) / 4.0 / (ctx->fs - ctx->sf);
1063:   PetscCall(DMGlobalToLocalBegin(da, X, INSERT_VALUES, Xloc));
1064:   PetscCall(DMGlobalToLocalEnd(da, X, INSERT_VALUES, Xloc));
1065:   PetscCall(VecZeroEntries(F));
1066:   PetscCall(DMDAVecGetArray(da, Xloc, &x));
1067:   PetscCall(VecGetArray(F, &f));
1068:   PetscCall(DMDAGetArray(da, PETSC_TRUE, &slope));
1069:   PetscCall(DMDAGetCorners(da, &xs, 0, 0, &xm, 0, 0));

1071:   if (ctx->bctype == FVBC_OUTFLOW) {
1072:     for (i = xs - 2; i < 0; i++) {
1073:       for (j = 0; j < dof; j++) x[i * dof + j] = x[j];
1074:     }
1075:     for (i = Mx; i < xs + xm + 2; i++) {
1076:       for (j = 0; j < dof; j++) x[i * dof + j] = x[(xs + xm - 1) * dof + j];
1077:     }
1078:   }
1079:   if (ctx->bctype == FVBC_INFLOW) {
1080:     /* See LeVeque, R. (2002). Finite Volume Methods for Hyperbolic Problems. doi:10.1017/CBO9780511791253
1081:     pages 137-138 for the scheme. */
1082:     if (xs == 0) { /* Left Boundary */
1083:       PetscCall(ctx->physics2.inflow(ctx, time, ctx->xmin, ctx->ub));
1084:       for (j = 0; j < dof; j++) {
1085:         if (ctx->physics2.bcinflowindex[j] == PETSC_TRUE) {
1086:           for (i = -2; i < 0; i++) x[i * dof + j] = 2.0 * ctx->ub[j] - x[-(i + 1) * dof + j];
1087:         } else {
1088:           for (i = -2; i < 0; i++) x[i * dof + j] = x[j]; /* Outflow */
1089:         }
1090:       }
1091:     }
1092:     if (xs + xm == Mx) { /* Right Boundary */
1093:       PetscCall(ctx->physics2.inflow(ctx, time, ctx->xmax, ctx->ub));
1094:       for (j = 0; j < dof; j++) {
1095:         if (ctx->physics2.bcinflowindex[dof + j] == PETSC_TRUE) {
1096:           for (i = Mx; i < Mx + 2; i++) x[i * dof + j] = 2.0 * ctx->ub[dof + j] - x[(2 * Mx - (i + 1)) * dof + j];
1097:         } else {
1098:           for (i = Mx; i < Mx + 2; i++) x[i * dof + j] = x[(Mx - 1) * dof + j]; /* Outflow */
1099:         }
1100:       }
1101:     }
1102:   }
1103:   for (i = xs - 1; i < xs + xm + 1; i++) {
1104:     struct _LimitInfo info;
1105:     PetscScalar      *cjmpL, *cjmpR;
1106:     if (i > sf - 2 && i < fs + 1) {
1107:       PetscCall((*ctx->physics2.characteristic2)(ctx->physics2.user, dof, &x[i * dof], ctx->R, ctx->Rinv, ctx->speeds));
1108:       PetscCall(PetscArrayzero(ctx->cjmpLR, 2 * dof));
1109:       cjmpL = &ctx->cjmpLR[0];
1110:       cjmpR = &ctx->cjmpLR[dof];
1111:       for (j = 0; j < dof; j++) {
1112:         PetscScalar jmpL, jmpR;
1113:         jmpL = x[(i + 0) * dof + j] - x[(i - 1) * dof + j];
1114:         jmpR = x[(i + 1) * dof + j] - x[(i + 0) * dof + j];
1115:         for (k = 0; k < dof; k++) {
1116:           cjmpL[k] += ctx->Rinv[k + j * dof] * jmpL;
1117:           cjmpR[k] += ctx->Rinv[k + j * dof] * jmpR;
1118:         }
1119:       }
1120:       /* Apply limiter to the left and right characteristic jumps */
1121:       info.m   = dof;
1122:       info.hxs = hxs;
1123:       info.hxf = hxf;
1124:       (*ctx->limit2)(&info, cjmpL, cjmpR, ctx->sf, ctx->fs, i, ctx->cslope);
1125:       for (j = 0; j < dof; j++) {
1126:         PetscScalar tmp = 0;
1127:         for (k = 0; k < dof; k++) tmp += ctx->R[j + k * dof] * ctx->cslope[k];
1128:         slope[i * dof + j] = tmp;
1129:       }
1130:     }
1131:   }

1133:   for (i = xs; i < xs + xm + 1; i++) {
1134:     PetscReal    maxspeed;
1135:     PetscScalar *uL, *uR;
1136:     uL = &ctx->uLR[0];
1137:     uR = &ctx->uLR[dof];
1138:     if (i == sf) { /* interface between the slow region and the fast region */
1139:       for (j = 0; j < dof; j++) {
1140:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxs / 2;
1141:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxf / 2;
1142:       }
1143:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
1144:       if (i < xs + xm) {
1145:         for (j = 0; j < dof; j++) f[ifast * dof + j] += ctx->flux[j] / hxf;
1146:         ifast++;
1147:       }
1148:     }
1149:     if (i > sf && i < fs) { /* fast region */
1150:       for (j = 0; j < dof; j++) {
1151:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxf / 2;
1152:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxf / 2;
1153:       }
1154:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
1155:       if (i > xs) {
1156:         for (j = 0; j < dof; j++) f[(ifast - 1) * dof + j] -= ctx->flux[j] / hxf;
1157:       }
1158:       if (i < xs + xm) {
1159:         for (j = 0; j < dof; j++) f[ifast * dof + j] += ctx->flux[j] / hxf;
1160:         ifast++;
1161:       }
1162:     }
1163:     if (i == fs) { /* interface between the fast region and the slow region */
1164:       for (j = 0; j < dof; j++) {
1165:         uL[j] = x[(i - 1) * dof + j] + slope[(i - 1) * dof + j] * hxf / 2;
1166:         uR[j] = x[(i - 0) * dof + j] - slope[(i - 0) * dof + j] * hxs / 2;
1167:       }
1168:       PetscCall((*ctx->physics2.riemann2)(ctx->physics2.user, dof, uL, uR, ctx->flux, &maxspeed));
1169:       if (i > xs) {
1170:         for (j = 0; j < dof; j++) f[(ifast - 1) * dof + j] -= ctx->flux[j] / hxf;
1171:       }
1172:     }
1173:   }
1174:   PetscCall(DMDAVecRestoreArray(da, Xloc, &x));
1175:   PetscCall(VecRestoreArray(F, &f));
1176:   PetscCall(DMDARestoreArray(da, PETSC_TRUE, &slope));
1177:   PetscCall(DMRestoreLocalVector(da, &Xloc));
1178:   PetscFunctionReturn(PETSC_SUCCESS);
1179: }

1181: int main(int argc, char *argv[])
1182: {
1183:   char              lname[256] = "mc", physname[256] = "advect", final_fname[256] = "solution.m";
1184:   PetscFunctionList limiters = 0, physics = 0;
1185:   MPI_Comm          comm;
1186:   TS                ts;
1187:   DM                da;
1188:   Vec               X, X0, R;
1189:   FVCtx             ctx;
1190:   PetscInt          i, k, dof, xs, xm, Mx, draw = 0, count_slow, count_fast, islow = 0, ifast = 0, islowbuffer = 0, *index_slow, *index_fast, *index_slowbuffer;
1191:   PetscBool         view_final = PETSC_FALSE;
1192:   PetscReal         ptime, maxtime;

1194:   PetscFunctionBeginUser;
1195:   PetscCall(PetscInitialize(&argc, &argv, 0, help));
1196:   comm = PETSC_COMM_WORLD;
1197:   PetscCall(PetscMemzero(&ctx, sizeof(ctx)));

1199:   /* Register limiters to be available on the command line */
1200:   PetscCall(PetscFunctionListAdd(&limiters, "upwind", Limit2_Upwind));
1201:   PetscCall(PetscFunctionListAdd(&limiters, "lax-wendroff", Limit2_LaxWendroff));
1202:   PetscCall(PetscFunctionListAdd(&limiters, "beam-warming", Limit2_BeamWarming));
1203:   PetscCall(PetscFunctionListAdd(&limiters, "fromm", Limit2_Fromm));
1204:   PetscCall(PetscFunctionListAdd(&limiters, "minmod", Limit2_Minmod));
1205:   PetscCall(PetscFunctionListAdd(&limiters, "superbee", Limit2_Superbee));
1206:   PetscCall(PetscFunctionListAdd(&limiters, "mc", Limit2_MC));
1207:   PetscCall(PetscFunctionListAdd(&limiters, "koren3", Limit2_Koren3));

1209:   /* Register physical models to be available on the command line */
1210:   PetscCall(PetscFunctionListAdd(&physics, "shallow", PhysicsCreate_Shallow));
1211:   PetscCall(PetscFunctionListAdd(&physics, "advect", PhysicsCreate_Advect));

1213:   ctx.comm       = comm;
1214:   ctx.cfl        = 0.9;
1215:   ctx.bctype     = FVBC_PERIODIC;
1216:   ctx.xmin       = -1.0;
1217:   ctx.xmax       = 1.0;
1218:   ctx.initial    = 1;
1219:   ctx.hratio     = 2;
1220:   maxtime        = 10.0;
1221:   ctx.simulation = PETSC_FALSE;
1222:   PetscOptionsBegin(comm, NULL, "Finite Volume solver options", "");
1223:   PetscCall(PetscOptionsReal("-xmin", "X min", "", ctx.xmin, &ctx.xmin, NULL));
1224:   PetscCall(PetscOptionsReal("-xmax", "X max", "", ctx.xmax, &ctx.xmax, NULL));
1225:   PetscCall(PetscOptionsFList("-limit", "Name of flux imiter to use", "", limiters, lname, lname, sizeof(lname), NULL));
1226:   PetscCall(PetscOptionsFList("-physics", "Name of physics model to use", "", physics, physname, physname, sizeof(physname), NULL));
1227:   PetscCall(PetscOptionsInt("-draw", "Draw solution vector, bitwise OR of (1=initial,2=final,4=final error)", "", draw, &draw, NULL));
1228:   PetscCall(PetscOptionsString("-view_final", "Write final solution in ASCII MATLAB format to given file name", "", final_fname, final_fname, sizeof(final_fname), &view_final));
1229:   PetscCall(PetscOptionsInt("-initial", "Initial condition (depends on the physics)", "", ctx.initial, &ctx.initial, NULL));
1230:   PetscCall(PetscOptionsBool("-exact", "Compare errors with exact solution", "", ctx.exact, &ctx.exact, NULL));
1231:   PetscCall(PetscOptionsBool("-simulation", "Compare errors with reference solution", "", ctx.simulation, &ctx.simulation, NULL));
1232:   PetscCall(PetscOptionsReal("-cfl", "CFL number to time step at", "", ctx.cfl, &ctx.cfl, NULL));
1233:   PetscCall(PetscOptionsEnum("-bc_type", "Boundary condition", "", FVBCTypes, (PetscEnum)ctx.bctype, (PetscEnum *)&ctx.bctype, NULL));
1234:   PetscCall(PetscOptionsInt("-hratio", "Spacing ratio", "", ctx.hratio, &ctx.hratio, NULL));
1235:   PetscOptionsEnd();

1237:   /* Choose the limiter from the list of registered limiters */
1238:   PetscCall(PetscFunctionListFind(limiters, lname, &ctx.limit2));
1239:   PetscCheck(ctx.limit2, PETSC_COMM_SELF, PETSC_ERR_ARG_UNKNOWN_TYPE, "Limiter '%s' not found", lname);

1241:   /* Choose the physics from the list of registered models */
1242:   {
1243:     PetscErrorCode (*r)(FVCtx *);
1244:     PetscCall(PetscFunctionListFind(physics, physname, &r));
1245:     PetscCheck(r, PETSC_COMM_SELF, PETSC_ERR_ARG_UNKNOWN_TYPE, "Physics '%s' not found", physname);
1246:     /* Create the physics, will set the number of fields and their names */
1247:     PetscCall((*r)(&ctx));
1248:   }

1250:   /* Create a DMDA to manage the parallel grid */
1251:   PetscCall(DMDACreate1d(comm, DM_BOUNDARY_PERIODIC, 50, ctx.physics2.dof, 2, NULL, &da));
1252:   PetscCall(DMSetFromOptions(da));
1253:   PetscCall(DMSetUp(da));
1254:   /* Inform the DMDA of the field names provided by the physics. */
1255:   /* The names will be shown in the title bars when run with -ts_monitor_draw_solution */
1256:   for (i = 0; i < ctx.physics2.dof; i++) PetscCall(DMDASetFieldName(da, i, ctx.physics2.fieldname[i]));
1257:   PetscCall(DMDAGetInfo(da, 0, &Mx, 0, 0, 0, 0, 0, &dof, 0, 0, 0, 0, 0));
1258:   PetscCall(DMDAGetCorners(da, &xs, 0, 0, &xm, 0, 0));

1260:   /* Set coordinates of cell centers */
1261:   PetscCall(DMDASetUniformCoordinates(da, ctx.xmin + 0.5 * (ctx.xmax - ctx.xmin) / Mx, ctx.xmax + 0.5 * (ctx.xmax - ctx.xmin) / Mx, 0, 0, 0, 0));

1263:   /* Allocate work space for the Finite Volume solver (so it doesn't have to be reallocated on each function evaluation) */
1264:   PetscCall(PetscMalloc4(dof * dof, &ctx.R, dof * dof, &ctx.Rinv, 2 * dof, &ctx.cjmpLR, 1 * dof, &ctx.cslope));
1265:   PetscCall(PetscMalloc3(2 * dof, &ctx.uLR, dof, &ctx.flux, dof, &ctx.speeds));
1266:   PetscCall(PetscMalloc1(2 * dof, &ctx.ub));

1268:   /* Create a vector to store the solution and to save the initial state */
1269:   PetscCall(DMCreateGlobalVector(da, &X));
1270:   PetscCall(VecDuplicate(X, &X0));
1271:   PetscCall(VecDuplicate(X, &R));

1273:   /* create index for slow parts and fast parts,
1274:      count_slow + count_fast = Mx, counts_slow*hs = 0.5, counts_fast*hf = 0.5 */
1275:   count_slow = Mx * 3 / (3 + ctx.hratio); // compute Mx / (1.0 + ctx.hratio / 3.0);
1276:   PetscCheck(count_slow % 2 == 0, PETSC_COMM_WORLD, PETSC_ERR_USER, "Please adjust grid size Mx (-da_grid_x) and hratio (-hratio) so that Mx/(1+hratio/3) is even");
1277:   count_fast = Mx - count_slow;
1278:   ctx.sf     = count_slow / 2;
1279:   ctx.fs     = ctx.sf + count_fast;
1280:   PetscCall(PetscMalloc1(xm * dof, &index_slow));
1281:   PetscCall(PetscMalloc1(xm * dof, &index_fast));
1282:   PetscCall(PetscMalloc1(8 * dof, &index_slowbuffer));
1283:   ctx.lsbwidth = 4;
1284:   ctx.rsbwidth = 4;

1286:   for (i = xs; i < xs + xm; i++) {
1287:     if (i < ctx.sf - ctx.lsbwidth || i > ctx.fs + ctx.rsbwidth - 1)
1288:       for (k = 0; k < dof; k++) index_slow[islow++] = i * dof + k;
1289:     else if ((i >= ctx.sf - ctx.lsbwidth && i < ctx.sf) || (i > ctx.fs - 1 && i <= ctx.fs + ctx.rsbwidth - 1))
1290:       for (k = 0; k < dof; k++) index_slowbuffer[islowbuffer++] = i * dof + k;
1291:     else
1292:       for (k = 0; k < dof; k++) index_fast[ifast++] = i * dof + k;
1293:   }
1294:   PetscCall(ISCreateGeneral(PETSC_COMM_WORLD, islow, index_slow, PETSC_COPY_VALUES, &ctx.iss));
1295:   PetscCall(ISCreateGeneral(PETSC_COMM_WORLD, ifast, index_fast, PETSC_COPY_VALUES, &ctx.isf));
1296:   PetscCall(ISCreateGeneral(PETSC_COMM_WORLD, islowbuffer, index_slowbuffer, PETSC_COPY_VALUES, &ctx.issb));

1298:   /* Create a time-stepping object */
1299:   PetscCall(TSCreate(comm, &ts));
1300:   PetscCall(TSSetDM(ts, da));
1301:   PetscCall(TSSetRHSFunction(ts, R, FVRHSFunction_2WaySplit, &ctx));
1302:   PetscCall(TSRHSSplitSetIS(ts, "slow", ctx.iss));
1303:   PetscCall(TSRHSSplitSetIS(ts, "slowbuffer", ctx.issb));
1304:   PetscCall(TSRHSSplitSetIS(ts, "fast", ctx.isf));
1305:   PetscCall(TSRHSSplitSetRHSFunction(ts, "slow", NULL, FVRHSFunctionslow_2WaySplit, &ctx));
1306:   PetscCall(TSRHSSplitSetRHSFunction(ts, "fast", NULL, FVRHSFunctionfast_2WaySplit, &ctx));
1307:   PetscCall(TSRHSSplitSetRHSFunction(ts, "slowbuffer", NULL, FVRHSFunctionslowbuffer_2WaySplit, &ctx));

1309:   PetscCall(TSSetType(ts, TSMPRK));
1310:   PetscCall(TSSetMaxTime(ts, maxtime));
1311:   PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));

1313:   /* Compute initial conditions and starting time step */
1314:   PetscCall(FVSample_2WaySplit(&ctx, da, 0, X0));
1315:   PetscCall(FVRHSFunction_2WaySplit(ts, 0, X0, X, (void *)&ctx)); /* Initial function evaluation, only used to determine max speed */
1316:   PetscCall(VecCopy(X0, X));                                      /* The function value was not used so we set X=X0 again */
1317:   PetscCall(TSSetTimeStep(ts, ctx.cfl / ctx.cfl_idt));
1318:   PetscCall(TSSetFromOptions(ts)); /* Take runtime options */
1319:   PetscCall(SolutionStatsView(da, X, PETSC_VIEWER_STDOUT_WORLD));
1320:   {
1321:     PetscInt           steps;
1322:     PetscScalar        mass_initial, mass_final, mass_difference, mass_differenceg;
1323:     const PetscScalar *ptr_X, *ptr_X0;
1324:     const PetscReal    hs = (ctx.xmax - ctx.xmin) * 3.0 / 4.0 / count_slow;
1325:     const PetscReal    hf = (ctx.xmax - ctx.xmin) / 4.0 / count_fast;

1327:     PetscCall(TSSolve(ts, X));
1328:     PetscCall(TSGetSolveTime(ts, &ptime));
1329:     PetscCall(TSGetStepNumber(ts, &steps));
1330:     /* calculate the total mass at initial time and final time */
1331:     mass_initial = 0.0;
1332:     mass_final   = 0.0;
1333:     PetscCall(DMDAVecGetArrayRead(da, X0, (void *)&ptr_X0));
1334:     PetscCall(DMDAVecGetArrayRead(da, X, (void *)&ptr_X));
1335:     for (i = xs; i < xs + xm; i++) {
1336:       if (i < ctx.sf || i > ctx.fs - 1) {
1337:         for (k = 0; k < dof; k++) {
1338:           mass_initial = mass_initial + hs * ptr_X0[i * dof + k];
1339:           mass_final   = mass_final + hs * ptr_X[i * dof + k];
1340:         }
1341:       } else {
1342:         for (k = 0; k < dof; k++) {
1343:           mass_initial = mass_initial + hf * ptr_X0[i * dof + k];
1344:           mass_final   = mass_final + hf * ptr_X[i * dof + k];
1345:         }
1346:       }
1347:     }
1348:     PetscCall(DMDAVecRestoreArrayRead(da, X0, (void *)&ptr_X0));
1349:     PetscCall(DMDAVecRestoreArrayRead(da, X, (void *)&ptr_X));
1350:     mass_difference = mass_final - mass_initial;
1351:     PetscCall(MPIU_Allreduce(&mass_difference, &mass_differenceg, 1, MPIU_SCALAR, MPIU_SUM, comm));
1352:     PetscCall(PetscPrintf(comm, "Mass difference %g\n", (double)mass_differenceg));
1353:     PetscCall(PetscPrintf(comm, "Final time %g, steps %" PetscInt_FMT "\n", (double)ptime, steps));
1354:     PetscCall(PetscPrintf(comm, "Maximum allowable stepsize according to CFL %g\n", (double)(1.0 / ctx.cfl_idt)));
1355:     if (ctx.exact) {
1356:       PetscReal nrm1 = 0;
1357:       PetscCall(SolutionErrorNorms_2WaySplit(&ctx, da, ptime, X, &nrm1));
1358:       PetscCall(PetscPrintf(comm, "Error ||x-x_e||_1 %g\n", (double)nrm1));
1359:     }
1360:     if (ctx.simulation) {
1361:       PetscReal          nrm1 = 0;
1362:       PetscViewer        fd;
1363:       char               filename[PETSC_MAX_PATH_LEN] = "binaryoutput";
1364:       Vec                XR;
1365:       PetscBool          flg;
1366:       const PetscScalar *ptr_XR;
1367:       PetscCall(PetscOptionsGetString(NULL, NULL, "-f", filename, sizeof(filename), &flg));
1368:       PetscCheck(flg, PETSC_COMM_WORLD, PETSC_ERR_USER, "Must indicate binary file with the -f option");
1369:       PetscCall(PetscViewerBinaryOpen(PETSC_COMM_WORLD, filename, FILE_MODE_READ, &fd));
1370:       PetscCall(VecDuplicate(X0, &XR));
1371:       PetscCall(VecLoad(XR, fd));
1372:       PetscCall(PetscViewerDestroy(&fd));
1373:       PetscCall(VecGetArrayRead(X, &ptr_X));
1374:       PetscCall(VecGetArrayRead(XR, &ptr_XR));
1375:       for (i = xs; i < xs + xm; i++) {
1376:         if (i < ctx.sf || i > ctx.fs - 1)
1377:           for (k = 0; k < dof; k++) nrm1 = nrm1 + hs * PetscAbs(ptr_X[i * dof + k] - ptr_XR[i * dof + k]);
1378:         else
1379:           for (k = 0; k < dof; k++) nrm1 = nrm1 + hf * PetscAbs(ptr_X[i * dof + k] - ptr_XR[i * dof + k]);
1380:       }
1381:       PetscCall(VecRestoreArrayRead(X, &ptr_X));
1382:       PetscCall(VecRestoreArrayRead(XR, &ptr_XR));
1383:       PetscCall(PetscPrintf(comm, "Error ||x-x_e||_1 %g\n", (double)nrm1));
1384:       PetscCall(VecDestroy(&XR));
1385:     }
1386:   }

1388:   PetscCall(SolutionStatsView(da, X, PETSC_VIEWER_STDOUT_WORLD));
1389:   if (draw & 0x1) PetscCall(VecView(X0, PETSC_VIEWER_DRAW_WORLD));
1390:   if (draw & 0x2) PetscCall(VecView(X, PETSC_VIEWER_DRAW_WORLD));
1391:   if (draw & 0x4) {
1392:     Vec Y;
1393:     PetscCall(VecDuplicate(X, &Y));
1394:     PetscCall(FVSample_2WaySplit(&ctx, da, ptime, Y));
1395:     PetscCall(VecAYPX(Y, -1, X));
1396:     PetscCall(VecView(Y, PETSC_VIEWER_DRAW_WORLD));
1397:     PetscCall(VecDestroy(&Y));
1398:   }

1400:   if (view_final) {
1401:     PetscViewer viewer;
1402:     PetscCall(PetscViewerASCIIOpen(PETSC_COMM_WORLD, final_fname, &viewer));
1403:     PetscCall(PetscViewerPushFormat(viewer, PETSC_VIEWER_ASCII_MATLAB));
1404:     PetscCall(VecView(X, viewer));
1405:     PetscCall(PetscViewerPopFormat(viewer));
1406:     PetscCall(PetscViewerDestroy(&viewer));
1407:   }

1409:   /* Clean up */
1410:   PetscCall((*ctx.physics2.destroy)(ctx.physics2.user));
1411:   for (i = 0; i < ctx.physics2.dof; i++) PetscCall(PetscFree(ctx.physics2.fieldname[i]));
1412:   PetscCall(PetscFree(ctx.physics2.bcinflowindex));
1413:   PetscCall(PetscFree(ctx.ub));
1414:   PetscCall(PetscFree4(ctx.R, ctx.Rinv, ctx.cjmpLR, ctx.cslope));
1415:   PetscCall(PetscFree3(ctx.uLR, ctx.flux, ctx.speeds));
1416:   PetscCall(VecDestroy(&X));
1417:   PetscCall(VecDestroy(&X0));
1418:   PetscCall(VecDestroy(&R));
1419:   PetscCall(DMDestroy(&da));
1420:   PetscCall(TSDestroy(&ts));
1421:   PetscCall(ISDestroy(&ctx.iss));
1422:   PetscCall(ISDestroy(&ctx.isf));
1423:   PetscCall(ISDestroy(&ctx.issb));
1424:   PetscCall(PetscFree(index_slow));
1425:   PetscCall(PetscFree(index_fast));
1426:   PetscCall(PetscFree(index_slowbuffer));
1427:   PetscCall(PetscFunctionListDestroy(&limiters));
1428:   PetscCall(PetscFunctionListDestroy(&physics));
1429:   PetscCall(PetscFinalize());
1430:   return 0;
1431: }

1433: /*TEST

1435:     build:
1436:       requires: !complex !single
1437:       depends: finitevolume1d.c

1439:     test:
1440:       suffix: 1
1441:       args: -da_grid_x 60 -initial 7 -xmin -1 -xmax 1 -hratio 2 -limit mc -ts_dt 0.025 -ts_max_steps 24 -ts_type mprk -ts_mprk_type 2a22
1442:       output_file: output/ex4_1.out

1444:     test:
1445:       suffix: 2
1446:       args: -da_grid_x 60 -initial 7 -xmin -1 -xmax 1 -hratio 2 -limit mc -ts_dt 0.025 -ts_max_steps 24 -ts_type mprk -ts_mprk_type 2a22 -ts_use_splitrhsfunction 1
1447:       output_file: output/ex4_1.out

1449:     test:
1450:       suffix: 3
1451:       args: -da_grid_x 40 -initial 1 -hratio 2 -limit mc -ts_dt 0.1 -ts_max_steps 24 -ts_max_time 7.0 -ts_type mprk -ts_mprk_type 2a22 -physics shallow -bc_type outflow -xmin 0 -xmax 50 -ts_use_splitrhsfunction 0
1452:       output_file: output/ex4_3.out

1454:     test:
1455:       suffix: 4
1456:       nsize: 2
1457:       args: -da_grid_x 40 -initial 1 -hratio 2 -limit mc -ts_dt 0.1 -ts_max_steps 24 -ts_max_time 7.0 -ts_type mprk -ts_mprk_type 2a22 -physics shallow -bc_type outflow -xmin 0 -xmax 50 -ts_use_splitrhsfunction 1
1458:       output_file: output/ex4_3.out

1460:     test:
1461:       suffix: 5
1462:       nsize: 4
1463:       args: -da_grid_x 40 -initial 1 -hratio 2 -limit mc -ts_dt 0.1 -ts_max_steps 24 -ts_max_time 7.0 -ts_type mprk -ts_mprk_type 2a22 -physics shallow -bc_type outflow -xmin 0 -xmax 50 -ts_use_splitrhsfunction 1
1464:       output_file: output/ex4_3.out
1465: TEST*/