Actual source code: ex3.c

  1: static char help[] = "Model Equations for Advection-Diffusion\n";

  3: /*
  4:     Page 9, Section 1.2 Model Equations for Advection-Diffusion

  6:           u_t = a u_x + d u_xx

  8:    The initial conditions used here different then in the book.

 10: */

 12: /*
 13:      Helpful runtime linear solver options:
 14:            -pc_type mg -da_refine 2 -snes_monitor -ksp_monitor -ts_view   (geometric multigrid with three levels)

 16: */

 18: /*
 19:    Include "petscts.h" so that we can use TS solvers.  Note that this file
 20:    automatically includes:
 21:      petscsys.h       - base PETSc routines   petscvec.h  - vectors
 22:      petscmat.h  - matrices
 23:      petscis.h     - index sets            petscksp.h  - Krylov subspace methods
 24:      petscviewer.h - viewers               petscpc.h   - preconditioners
 25:      petscksp.h   - linear solvers        petscsnes.h - nonlinear solvers
 26: */

 28: #include <petscts.h>
 29: #include <petscdm.h>
 30: #include <petscdmda.h>

 32: /*
 33:    User-defined application context - contains data needed by the
 34:    application-provided call-back routines.
 35: */
 36: typedef struct {
 37:   PetscScalar a, d; /* advection and diffusion strength */
 38:   PetscBool   upwind;
 39: } AppCtx;

 41: /*
 42:    User-defined routines
 43: */
 44: extern PetscErrorCode InitialConditions(TS, Vec, AppCtx *);
 45: extern PetscErrorCode RHSMatrixHeat(TS, PetscReal, Vec, Mat, Mat, void *);
 46: extern PetscErrorCode Solution(TS, PetscReal, Vec, AppCtx *);

 48: int main(int argc, char **argv)
 49: {
 50:   AppCtx    appctx; /* user-defined application context */
 51:   TS        ts;     /* timestepping context */
 52:   Vec       U;      /* approximate solution vector */
 53:   PetscReal dt;
 54:   DM        da;
 55:   PetscInt  M;

 57:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 58:      Initialize program and set problem parameters
 59:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 61:   PetscFunctionBeginUser;
 62:   PetscCall(PetscInitialize(&argc, &argv, (char *)0, help));
 63:   appctx.a = 1.0;
 64:   appctx.d = 0.0;
 65:   PetscCall(PetscOptionsGetScalar(NULL, NULL, "-a", &appctx.a, NULL));
 66:   PetscCall(PetscOptionsGetScalar(NULL, NULL, "-d", &appctx.d, NULL));
 67:   appctx.upwind = PETSC_TRUE;
 68:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-upwind", &appctx.upwind, NULL));

 70:   PetscCall(DMDACreate1d(PETSC_COMM_WORLD, DM_BOUNDARY_PERIODIC, 60, 1, 1, NULL, &da));
 71:   PetscCall(DMSetFromOptions(da));
 72:   PetscCall(DMSetUp(da));
 73:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 74:      Create vector data structures
 75:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 77:   /*
 78:      Create vector data structures for approximate and exact solutions
 79:   */
 80:   PetscCall(DMCreateGlobalVector(da, &U));

 82:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 83:      Create timestepping solver context
 84:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 86:   PetscCall(TSCreate(PETSC_COMM_WORLD, &ts));
 87:   PetscCall(TSSetDM(ts, da));

 89:   /*
 90:       For linear problems with a time-dependent f(U,t) in the equation
 91:      u_t = f(u,t), the user provides the discretized right-hand side
 92:       as a time-dependent matrix.
 93:   */
 94:   PetscCall(TSSetRHSFunction(ts, NULL, TSComputeRHSFunctionLinear, &appctx));
 95:   PetscCall(TSSetRHSJacobian(ts, NULL, NULL, RHSMatrixHeat, &appctx));
 96:   PetscCall(TSSetSolutionFunction(ts, (PetscErrorCode(*)(TS, PetscReal, Vec, void *))Solution, &appctx));

 98:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 99:      Customize timestepping solver:
100:        - Set timestepping duration info
101:      Then set runtime options, which can override these defaults.
102:      For example,
103:           -ts_max_steps <maxsteps> -ts_max_time <maxtime>
104:      to override the defaults set by TSSetMaxSteps()/TSSetMaxTime().
105:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

107:   PetscCall(DMDAGetInfo(da, PETSC_IGNORE, &M, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
108:   dt = .48 / (M * M);
109:   PetscCall(TSSetTimeStep(ts, dt));
110:   PetscCall(TSSetMaxSteps(ts, 1000));
111:   PetscCall(TSSetMaxTime(ts, 100.0));
112:   PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));
113:   PetscCall(TSSetType(ts, TSARKIMEX));
114:   PetscCall(TSSetFromOptions(ts));

116:   /*
117:      Evaluate initial conditions
118:   */
119:   PetscCall(InitialConditions(ts, U, &appctx));

121:   /*
122:      Run the timestepping solver
123:   */
124:   PetscCall(TSSolve(ts, U));

126:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
127:      Free work space.  All PETSc objects should be destroyed when they
128:      are no longer needed.
129:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

131:   PetscCall(TSDestroy(&ts));
132:   PetscCall(VecDestroy(&U));
133:   PetscCall(DMDestroy(&da));

135:   /*
136:      Always call PetscFinalize() before exiting a program.  This routine
137:        - finalizes the PETSc libraries as well as MPI
138:        - provides summary and diagnostic information if certain runtime
139:          options are chosen (e.g., -log_view).
140:   */
141:   PetscCall(PetscFinalize());
142:   return 0;
143: }
144: /* --------------------------------------------------------------------- */
145: /*
146:    InitialConditions - Computes the solution at the initial time.

148:    Input Parameter:
149:    u - uninitialized solution vector (global)
150:    appctx - user-defined application context

152:    Output Parameter:
153:    u - vector with solution at initial time (global)
154: */
155: PetscErrorCode InitialConditions(TS ts, Vec U, AppCtx *appctx)
156: {
157:   PetscScalar *u, h;
158:   PetscInt     i, mstart, mend, xm, M;
159:   DM           da;

161:   PetscFunctionBeginUser;
162:   PetscCall(TSGetDM(ts, &da));
163:   PetscCall(DMDAGetCorners(da, &mstart, 0, 0, &xm, 0, 0));
164:   PetscCall(DMDAGetInfo(da, PETSC_IGNORE, &M, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
165:   h    = 1.0 / M;
166:   mend = mstart + xm;
167:   /*
168:     Get a pointer to vector data.
169:     - For default PETSc vectors, VecGetArray() returns a pointer to
170:       the data array.  Otherwise, the routine is implementation dependent.
171:     - You MUST call VecRestoreArray() when you no longer need access to
172:       the array.
173:     - Note that the Fortran interface to VecGetArray() differs from the
174:       C version.  See the users manual for details.
175:   */
176:   PetscCall(DMDAVecGetArray(da, U, &u));

178:   /*
179:      We initialize the solution array by simply writing the solution
180:      directly into the array locations.  Alternatively, we could use
181:      VecSetValues() or VecSetValuesLocal().
182:   */
183:   for (i = mstart; i < mend; i++) u[i] = PetscSinScalar(PETSC_PI * i * 6. * h) + 3. * PetscSinScalar(PETSC_PI * i * 2. * h);

185:   /*
186:      Restore vector
187:   */
188:   PetscCall(DMDAVecRestoreArray(da, U, &u));
189:   PetscFunctionReturn(PETSC_SUCCESS);
190: }
191: /* --------------------------------------------------------------------- */
192: /*
193:    Solution - Computes the exact solution at a given time.

195:    Input Parameters:
196:    t - current time
197:    solution - vector in which exact solution will be computed
198:    appctx - user-defined application context

200:    Output Parameter:
201:    solution - vector with the newly computed exact solution
202: */
203: PetscErrorCode Solution(TS ts, PetscReal t, Vec U, AppCtx *appctx)
204: {
205:   PetscScalar *u, ex1, ex2, sc1, sc2, h;
206:   PetscInt     i, mstart, mend, xm, M;
207:   DM           da;

209:   PetscFunctionBeginUser;
210:   PetscCall(TSGetDM(ts, &da));
211:   PetscCall(DMDAGetCorners(da, &mstart, 0, 0, &xm, 0, 0));
212:   PetscCall(DMDAGetInfo(da, PETSC_IGNORE, &M, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
213:   h    = 1.0 / M;
214:   mend = mstart + xm;
215:   /*
216:      Get a pointer to vector data.
217:   */
218:   PetscCall(DMDAVecGetArray(da, U, &u));

220:   /*
221:      Simply write the solution directly into the array locations.
222:      Alternatively, we culd use VecSetValues() or VecSetValuesLocal().
223:   */
224:   ex1 = PetscExpScalar(-36. * PETSC_PI * PETSC_PI * appctx->d * t);
225:   ex2 = PetscExpScalar(-4. * PETSC_PI * PETSC_PI * appctx->d * t);
226:   sc1 = PETSC_PI * 6. * h;
227:   sc2 = PETSC_PI * 2. * h;
228:   for (i = mstart; i < mend; i++) u[i] = PetscSinScalar(sc1 * (PetscReal)i + appctx->a * PETSC_PI * 6. * t) * ex1 + 3. * PetscSinScalar(sc2 * (PetscReal)i + appctx->a * PETSC_PI * 2. * t) * ex2;

230:   /*
231:      Restore vector
232:   */
233:   PetscCall(DMDAVecRestoreArray(da, U, &u));
234:   PetscFunctionReturn(PETSC_SUCCESS);
235: }

237: /* --------------------------------------------------------------------- */
238: /*
239:    RHSMatrixHeat - User-provided routine to compute the right-hand-side
240:    matrix for the heat equation.

242:    Input Parameters:
243:    ts - the TS context
244:    t - current time
245:    global_in - global input vector
246:    dummy - optional user-defined context, as set by TSetRHSJacobian()

248:    Output Parameters:
249:    AA - Jacobian matrix
250:    BB - optionally different preconditioning matrix
251:    str - flag indicating matrix structure

253:    Notes:
254:    Recall that MatSetValues() uses 0-based row and column numbers
255:    in Fortran as well as in C.
256: */
257: PetscErrorCode RHSMatrixHeat(TS ts, PetscReal t, Vec U, Mat AA, Mat BB, void *ctx)
258: {
259:   Mat         A      = AA;            /* Jacobian matrix */
260:   AppCtx     *appctx = (AppCtx *)ctx; /* user-defined application context */
261:   PetscInt    mstart, mend;
262:   PetscInt    i, idx[3], M, xm;
263:   PetscScalar v[3], h;
264:   DM          da;

266:   PetscFunctionBeginUser;
267:   PetscCall(TSGetDM(ts, &da));
268:   PetscCall(DMDAGetInfo(da, 0, &M, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
269:   PetscCall(DMDAGetCorners(da, &mstart, 0, 0, &xm, 0, 0));
270:   h    = 1.0 / M;
271:   mend = mstart + xm;
272:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
273:      Compute entries for the locally owned part of the matrix
274:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
275:   /*
276:      Set matrix rows corresponding to boundary data
277:   */

279:   /* diffusion */
280:   v[0] = appctx->d / (h * h);
281:   v[1] = -2.0 * appctx->d / (h * h);
282:   v[2] = appctx->d / (h * h);
283:   if (!mstart) {
284:     idx[0] = M - 1;
285:     idx[1] = 0;
286:     idx[2] = 1;
287:     PetscCall(MatSetValues(A, 1, &mstart, 3, idx, v, INSERT_VALUES));
288:     mstart++;
289:   }

291:   if (mend == M) {
292:     mend--;
293:     idx[0] = M - 2;
294:     idx[1] = M - 1;
295:     idx[2] = 0;
296:     PetscCall(MatSetValues(A, 1, &mend, 3, idx, v, INSERT_VALUES));
297:   }

299:   /*
300:      Set matrix rows corresponding to interior data.  We construct the
301:      matrix one row at a time.
302:   */
303:   for (i = mstart; i < mend; i++) {
304:     idx[0] = i - 1;
305:     idx[1] = i;
306:     idx[2] = i + 1;
307:     PetscCall(MatSetValues(A, 1, &i, 3, idx, v, INSERT_VALUES));
308:   }
309:   PetscCall(MatAssemblyBegin(A, MAT_FLUSH_ASSEMBLY));
310:   PetscCall(MatAssemblyEnd(A, MAT_FLUSH_ASSEMBLY));

312:   PetscCall(DMDAGetCorners(da, &mstart, 0, 0, &xm, 0, 0));
313:   mend = mstart + xm;
314:   if (!appctx->upwind) {
315:     /* advection -- centered differencing */
316:     v[0] = -.5 * appctx->a / (h);
317:     v[1] = .5 * appctx->a / (h);
318:     if (!mstart) {
319:       idx[0] = M - 1;
320:       idx[1] = 1;
321:       PetscCall(MatSetValues(A, 1, &mstart, 2, idx, v, ADD_VALUES));
322:       mstart++;
323:     }

325:     if (mend == M) {
326:       mend--;
327:       idx[0] = M - 2;
328:       idx[1] = 0;
329:       PetscCall(MatSetValues(A, 1, &mend, 2, idx, v, ADD_VALUES));
330:     }

332:     for (i = mstart; i < mend; i++) {
333:       idx[0] = i - 1;
334:       idx[1] = i + 1;
335:       PetscCall(MatSetValues(A, 1, &i, 2, idx, v, ADD_VALUES));
336:     }
337:   } else {
338:     /* advection -- upwinding */
339:     v[0] = -appctx->a / (h);
340:     v[1] = appctx->a / (h);
341:     if (!mstart) {
342:       idx[0] = 0;
343:       idx[1] = 1;
344:       PetscCall(MatSetValues(A, 1, &mstart, 2, idx, v, ADD_VALUES));
345:       mstart++;
346:     }

348:     if (mend == M) {
349:       mend--;
350:       idx[0] = M - 1;
351:       idx[1] = 0;
352:       PetscCall(MatSetValues(A, 1, &mend, 2, idx, v, ADD_VALUES));
353:     }

355:     for (i = mstart; i < mend; i++) {
356:       idx[0] = i;
357:       idx[1] = i + 1;
358:       PetscCall(MatSetValues(A, 1, &i, 2, idx, v, ADD_VALUES));
359:     }
360:   }

362:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
363:      Complete the matrix assembly process and set some options
364:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
365:   /*
366:      Assemble matrix, using the 2-step process:
367:        MatAssemblyBegin(), MatAssemblyEnd()
368:      Computations can be done while messages are in transition
369:      by placing code between these two statements.
370:   */
371:   PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
372:   PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));

374:   /*
375:      Set and option to indicate that we will never add a new nonzero location
376:      to the matrix. If we do, it will generate an error.
377:   */
378:   PetscCall(MatSetOption(A, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
379:   PetscFunctionReturn(PETSC_SUCCESS);
380: }

382: /*TEST

384:    test:
385:       args: -pc_type mg -da_refine 2 -ts_view -ts_monitor -ts_max_time .3 -mg_levels_ksp_max_it 3
386:       requires: double
387:       filter: grep -v "total number of"

389:    test:
390:       suffix: 2
391:       args: -pc_type mg -da_refine 2 -ts_view -ts_monitor_draw_solution -ts_monitor -ts_max_time .3 -mg_levels_ksp_max_it 3
392:       requires: x
393:       output_file: output/ex3_1.out
394:       requires: double
395:       filter: grep -v "total number of"

397: TEST*/