Actual source code: ex10.c

  1: /*
  2:    Include "petscsnes.h" so that we can use SNES solvers.  Note that this
  3:    file automatically includes:
  4:      petscsys.h       - base PETSc routines   petscvec.h - vectors
  5:      petscmat.h - matrices
  6:      petscis.h     - index sets            petscksp.h - Krylov subspace methods
  7:      petscviewer.h - viewers               petscpc.h  - preconditioners
  8:      petscksp.h   - linear solvers
  9: */
 10: #include <petscsnes.h>
 11: #include <petscao.h>

 13: static char help[] = "An Unstructured Grid Example.\n\
 14: This example demonstrates how to solve a nonlinear system in parallel\n\
 15: with SNES for an unstructured mesh. The mesh and partitioning information\n\
 16: is read in an application defined ordering,which is later transformed\n\
 17: into another convenient ordering (called the local ordering). The local\n\
 18: ordering, apart from being efficient on cpu cycles and memory, allows\n\
 19: the use of the SPMD model of parallel programming. After partitioning\n\
 20: is done, scatters are created between local (sequential)and global\n\
 21: (distributed) vectors. Finally, we set up the nonlinear solver context\n\
 22: in the usual way as a structured grid  (see\n\
 23: petsc/src/snes/tutorials/ex5.c).\n\
 24: This example also illustrates the use of parallel matrix coloring.\n\
 25: The command line options include:\n\
 26:   -vert <Nv>, where Nv is the global number of nodes\n\
 27:   -elem <Ne>, where Ne is the global number of elements\n\
 28:   -nl_par <lambda>, where lambda is the multiplier for the non linear term (u*u) term\n\
 29:   -lin_par <alpha>, where alpha is the multiplier for the linear term (u)\n\
 30:   -fd_jacobian_coloring -mat_coloring_type lf\n";

 32: /* ------------------------------------------------------------------------

 34:    PDE Solved : L(u) + lambda*u*u + alpha*u = 0 where L(u) is the Laplacian.

 36:    The Laplacian is approximated in the following way: each edge is given a weight
 37:    of one meaning that the diagonal term will have the weight equal to the degree
 38:    of a node. The off-diagonal terms will get a weight of -1.

 40:    -----------------------------------------------------------------------*/

 42: #define MAX_ELEM      500 /* Maximum number of elements */
 43: #define MAX_VERT      100 /* Maximum number of vertices */
 44: #define MAX_VERT_ELEM 3   /* Vertices per element       */

 46: /*
 47:   Application-defined context for problem specific data
 48: */
 49: typedef struct {
 50:   PetscInt   Nvglobal, Nvlocal;            /* global and local number of vertices */
 51:   PetscInt   Neglobal, Nelocal;            /* global and local number of vertices */
 52:   PetscInt   AdjM[MAX_VERT][50];           /* adjacency list of a vertex */
 53:   PetscInt   itot[MAX_VERT];               /* total number of neighbors for a vertex */
 54:   PetscInt   icv[MAX_ELEM][MAX_VERT_ELEM]; /* vertices belonging to an element */
 55:   PetscInt   v2p[MAX_VERT];                /* processor number for a vertex */
 56:   PetscInt  *locInd, *gloInd;              /* local and global orderings for a node */
 57:   Vec        localX, localF;               /* local solution (u) and f(u) vectors */
 58:   PetscReal  non_lin_param;                /* nonlinear parameter for the PDE */
 59:   PetscReal  lin_param;                    /* linear parameter for the PDE */
 60:   VecScatter scatter;                      /* scatter context for the local and
 61:                                                distributed vectors */
 62: } AppCtx;

 64: /*
 65:   User-defined routines
 66: */
 67: PetscErrorCode FormJacobian(SNES, Vec, Mat, Mat, void *);
 68: PetscErrorCode FormFunction(SNES, Vec, Vec, void *);
 69: PetscErrorCode FormInitialGuess(AppCtx *, Vec);

 71: int main(int argc, char **argv)
 72: {
 73:   SNES                   snes;                /* SNES context */
 74:   SNESType               type = SNESNEWTONLS; /* default nonlinear solution method */
 75:   Vec                    x, r;                /* solution, residual vectors */
 76:   Mat                    Jac;                 /* Jacobian matrix */
 77:   AppCtx                 user;                /* user-defined application context */
 78:   AO                     ao;                  /* Application Ordering object */
 79:   IS                     isglobal, islocal;   /* global and local index sets */
 80:   PetscMPIInt            rank, size;          /* rank of a process, number of processors */
 81:   PetscInt               rstart;              /* starting index of PETSc ordering for a processor */
 82:   PetscInt               nfails;              /* number of unsuccessful Newton steps */
 83:   PetscInt               bs = 1;              /* block size for multicomponent systems */
 84:   PetscInt               nvertices;           /* number of local plus ghost nodes of a processor */
 85:   PetscInt              *pordering;           /* PETSc ordering */
 86:   PetscInt              *vertices;            /* list of all vertices (incl. ghost ones) on a processor */
 87:   PetscInt              *verticesmask;
 88:   PetscInt              *tmp;
 89:   PetscInt               i, j, jstart, inode, nb, nbrs, Nvneighborstotal = 0;
 90:   PetscInt               its, N;
 91:   PetscScalar           *xx;
 92:   char                   str[256], form[256], part_name[256];
 93:   FILE                  *fptr, *fptr1;
 94:   ISLocalToGlobalMapping isl2g;
 95:   int                    dtmp;
 96: #if defined(UNUSED_VARIABLES)
 97:   PetscDraw    draw; /* drawing context */
 98:   PetscScalar *ff, *gg;
 99:   PetscReal    tiny = 1.0e-10, zero = 0.0, one = 1.0, big = 1.0e+10;
100:   PetscInt    *tmp1, *tmp2;
101: #endif
102:   MatFDColoring matfdcoloring        = 0;
103:   PetscBool     fd_jacobian_coloring = PETSC_FALSE;

105:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
106:      Initialize program
107:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

109:   PetscFunctionBeginUser;
110:   PetscCall(PetscInitialize(&argc, &argv, "options.inf", help));
111:   PetscCallMPI(MPI_Comm_rank(MPI_COMM_WORLD, &rank));
112:   PetscCallMPI(MPI_Comm_size(MPI_COMM_WORLD, &size));

114:   /* The current input file options.inf is for 2 proc run only */
115:   PetscCheck(size == 2, PETSC_COMM_WORLD, PETSC_ERR_WRONG_MPI_SIZE, "This example currently runs on 2 procs only.");

117:   /*
118:      Initialize problem parameters
119:   */
120:   user.Nvglobal = 16; /* Global # of vertices  */
121:   user.Neglobal = 18; /* Global # of elements  */

123:   PetscCall(PetscOptionsGetInt(NULL, NULL, "-vert", &user.Nvglobal, NULL));
124:   PetscCall(PetscOptionsGetInt(NULL, NULL, "-elem", &user.Neglobal, NULL));

126:   user.non_lin_param = 0.06;

128:   PetscCall(PetscOptionsGetReal(NULL, NULL, "-nl_par", &user.non_lin_param, NULL));

130:   user.lin_param = -1.0;

132:   PetscCall(PetscOptionsGetReal(NULL, NULL, "-lin_par", &user.lin_param, NULL));

134:   user.Nvlocal = 0;
135:   user.Nelocal = 0;

137:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
138:       Read the mesh and partitioning information
139:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

141:   /*
142:      Read the mesh and partitioning information from 'adj.in'.
143:      The file format is as follows.
144:      For each line the first entry is the processor rank where the
145:      current node belongs. The second entry is the number of
146:      neighbors of a node. The rest of the line is the adjacency
147:      list of a node. Currently this file is set up to work on two
148:      processors.

150:      This is not a very good example of reading input. In the future,
151:      we will put an example that shows the style that should be
152:      used in a real application, where partitioning will be done
153:      dynamically by calling partitioning routines (at present, we have
154:      a  ready interface to ParMeTiS).
155:    */
156:   fptr = fopen("adj.in", "r");
157:   PetscCheck(fptr, PETSC_COMM_SELF, PETSC_ERR_FILE_OPEN, "Could not open adj.in");

159:   /*
160:      Each processor writes to the file output.<rank> where rank is the
161:      processor's rank.
162:   */
163:   snprintf(part_name, PETSC_STATIC_ARRAY_LENGTH(part_name), "output.%d", rank);
164:   fptr1 = fopen(part_name, "w");
165:   PetscCheck(fptr1, PETSC_COMM_SELF, PETSC_ERR_FILE_OPEN, "Could no open output file");
166:   PetscCall(PetscMalloc1(user.Nvglobal, &user.gloInd));
167:   PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "Rank is %d\n", rank));
168:   for (inode = 0; inode < user.Nvglobal; inode++) {
169:     PetscCheck(fgets(str, 256, fptr), PETSC_COMM_SELF, PETSC_ERR_FILE_READ, "fgets read failed");
170:     sscanf(str, "%d", &dtmp);
171:     user.v2p[inode] = dtmp;
172:     if (user.v2p[inode] == rank) {
173:       PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "Node %" PetscInt_FMT " belongs to processor %" PetscInt_FMT "\n", inode, user.v2p[inode]));

175:       user.gloInd[user.Nvlocal] = inode;
176:       sscanf(str, "%*d %d", &dtmp);
177:       nbrs = dtmp;
178:       PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "Number of neighbors for the vertex %" PetscInt_FMT " is %" PetscInt_FMT "\n", inode, nbrs));

180:       user.itot[user.Nvlocal] = nbrs;
181:       Nvneighborstotal += nbrs;
182:       for (i = 0; i < user.itot[user.Nvlocal]; i++) {
183:         form[0] = '\0';
184:         for (j = 0; j < i + 2; j++) PetscCall(PetscStrlcat(form, "%*d ", sizeof(form)));
185:         PetscCall(PetscStrlcat(form, "%d", sizeof(form)));

187:         sscanf(str, form, &dtmp);
188:         user.AdjM[user.Nvlocal][i] = dtmp;

190:         PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "%" PetscInt_FMT " ", user.AdjM[user.Nvlocal][i]));
191:       }
192:       PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "\n"));
193:       user.Nvlocal++;
194:     }
195:   }
196:   PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "Total # of Local Vertices is %" PetscInt_FMT " \n", user.Nvlocal));

198:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
199:      Create different orderings
200:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

202:   /*
203:     Create the local ordering list for vertices. First a list using the PETSc global
204:     ordering is created. Then we use the AO object to get the PETSc-to-application and
205:     application-to-PETSc mappings. Each vertex also gets a local index (stored in the
206:     locInd array).
207:   */
208:   PetscCallMPI(MPI_Scan(&user.Nvlocal, &rstart, 1, MPIU_INT, MPI_SUM, PETSC_COMM_WORLD));
209:   rstart -= user.Nvlocal;
210:   PetscCall(PetscMalloc1(user.Nvlocal, &pordering));

212:   for (i = 0; i < user.Nvlocal; i++) pordering[i] = rstart + i;

214:   /*
215:     Create the AO object
216:   */
217:   PetscCall(AOCreateBasic(MPI_COMM_WORLD, user.Nvlocal, user.gloInd, pordering, &ao));
218:   PetscCall(PetscFree(pordering));

220:   /*
221:     Keep the global indices for later use
222:   */
223:   PetscCall(PetscMalloc1(user.Nvlocal, &user.locInd));
224:   PetscCall(PetscMalloc1(Nvneighborstotal, &tmp));

226:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
227:     Demonstrate the use of AO functionality
228:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

230:   PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "Before AOApplicationToPetsc, local indices are : \n"));
231:   for (i = 0; i < user.Nvlocal; i++) {
232:     PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, " %" PetscInt_FMT " ", user.gloInd[i]));

234:     user.locInd[i] = user.gloInd[i];
235:   }
236:   PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "\n"));
237:   jstart = 0;
238:   for (i = 0; i < user.Nvlocal; i++) {
239:     PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "Neghbors of local vertex %" PetscInt_FMT " are : ", user.gloInd[i]));
240:     for (j = 0; j < user.itot[i]; j++) {
241:       PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "%" PetscInt_FMT " ", user.AdjM[i][j]));

243:       tmp[j + jstart] = user.AdjM[i][j];
244:     }
245:     jstart += user.itot[i];
246:     PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "\n"));
247:   }

249:   /*
250:     Now map the vlocal and neighbor lists to the PETSc ordering
251:   */
252:   PetscCall(AOApplicationToPetsc(ao, user.Nvlocal, user.locInd));
253:   PetscCall(AOApplicationToPetsc(ao, Nvneighborstotal, tmp));
254:   PetscCall(AODestroy(&ao));

256:   PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "After AOApplicationToPetsc, local indices are : \n"));
257:   for (i = 0; i < user.Nvlocal; i++) PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, " %" PetscInt_FMT " ", user.locInd[i]));
258:   PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "\n"));

260:   jstart = 0;
261:   for (i = 0; i < user.Nvlocal; i++) {
262:     PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "Neghbors of local vertex %" PetscInt_FMT " are : ", user.locInd[i]));
263:     for (j = 0; j < user.itot[i]; j++) {
264:       user.AdjM[i][j] = tmp[j + jstart];

266:       PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "%" PetscInt_FMT " ", user.AdjM[i][j]));
267:     }
268:     jstart += user.itot[i];
269:     PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "\n"));
270:   }

272:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
273:      Extract the ghost vertex information for each processor
274:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
275:   /*
276:    Next, we need to generate a list of vertices required for this processor
277:    and a local numbering scheme for all vertices required on this processor.
278:       vertices - integer array of all vertices needed on this processor in PETSc
279:                  global numbering; this list consists of first the "locally owned"
280:                  vertices followed by the ghost vertices.
281:       verticesmask - integer array that for each global vertex lists its local
282:                      vertex number (in vertices) + 1. If the global vertex is not
283:                      represented on this processor, then the corresponding
284:                      entry in verticesmask is zero

286:       Note: vertices and verticesmask are both Nvglobal in length; this may
287:     sound terribly non-scalable, but in fact is not so bad for a reasonable
288:     number of processors. Importantly, it allows us to use NO SEARCHING
289:     in setting up the data structures.
290:   */
291:   PetscCall(PetscMalloc1(user.Nvglobal, &vertices));
292:   PetscCall(PetscCalloc1(user.Nvglobal, &verticesmask));
293:   nvertices = 0;

295:   /*
296:     First load "owned vertices" into list
297:   */
298:   for (i = 0; i < user.Nvlocal; i++) {
299:     vertices[nvertices++]        = user.locInd[i];
300:     verticesmask[user.locInd[i]] = nvertices;
301:   }

303:   /*
304:     Now load ghost vertices into list
305:   */
306:   for (i = 0; i < user.Nvlocal; i++) {
307:     for (j = 0; j < user.itot[i]; j++) {
308:       nb = user.AdjM[i][j];
309:       if (!verticesmask[nb]) {
310:         vertices[nvertices++] = nb;
311:         verticesmask[nb]      = nvertices;
312:       }
313:     }
314:   }

316:   PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "\n"));
317:   PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "The array vertices is :\n"));
318:   for (i = 0; i < nvertices; i++) PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "%" PetscInt_FMT " ", vertices[i]));
319:   PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "\n"));

321:   /*
322:      Map the vertices listed in the neighbors to the local numbering from
323:     the global ordering that they contained initially.
324:   */
325:   PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "\n"));
326:   PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "After mapping neighbors in the local contiguous ordering\n"));
327:   for (i = 0; i < user.Nvlocal; i++) {
328:     PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "Neghbors of local vertex %" PetscInt_FMT " are :\n", i));
329:     for (j = 0; j < user.itot[i]; j++) {
330:       nb              = user.AdjM[i][j];
331:       user.AdjM[i][j] = verticesmask[nb] - 1;

333:       PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "%" PetscInt_FMT " ", user.AdjM[i][j]));
334:     }
335:     PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "\n"));
336:   }

338:   N = user.Nvglobal;

340:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
341:      Create vector and matrix data structures
342:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

344:   /*
345:     Create vector data structures
346:   */
347:   PetscCall(VecCreate(MPI_COMM_WORLD, &x));
348:   PetscCall(VecSetSizes(x, user.Nvlocal, N));
349:   PetscCall(VecSetFromOptions(x));
350:   PetscCall(VecDuplicate(x, &r));
351:   PetscCall(VecCreateSeq(MPI_COMM_SELF, bs * nvertices, &user.localX));
352:   PetscCall(VecDuplicate(user.localX, &user.localF));

354:   /*
355:     Create the scatter between the global representation and the
356:     local representation
357:   */
358:   PetscCall(ISCreateStride(MPI_COMM_SELF, bs * nvertices, 0, 1, &islocal));
359:   PetscCall(ISCreateBlock(MPI_COMM_SELF, bs, nvertices, vertices, PETSC_COPY_VALUES, &isglobal));
360:   PetscCall(VecScatterCreate(x, isglobal, user.localX, islocal, &user.scatter));
361:   PetscCall(ISDestroy(&isglobal));
362:   PetscCall(ISDestroy(&islocal));

364:   /*
365:      Create matrix data structure; Just to keep the example simple, we have not done any
366:      preallocation of memory for the matrix. In real application code with big matrices,
367:      preallocation should always be done to expedite the matrix creation.
368:   */
369:   PetscCall(MatCreate(MPI_COMM_WORLD, &Jac));
370:   PetscCall(MatSetSizes(Jac, PETSC_DECIDE, PETSC_DECIDE, N, N));
371:   PetscCall(MatSetFromOptions(Jac));
372:   PetscCall(MatSetUp(Jac));

374:   /*
375:     The following routine allows us to set the matrix values in local ordering
376:   */
377:   PetscCall(ISLocalToGlobalMappingCreate(MPI_COMM_SELF, bs, nvertices, vertices, PETSC_COPY_VALUES, &isl2g));
378:   PetscCall(MatSetLocalToGlobalMapping(Jac, isl2g, isl2g));

380:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
381:      Create nonlinear solver context
382:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

384:   PetscCall(SNESCreate(MPI_COMM_WORLD, &snes));
385:   PetscCall(SNESSetType(snes, type));

387:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
388:     Set routines for function and Jacobian evaluation
389:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
390:   PetscCall(SNESSetFunction(snes, r, FormFunction, (void *)&user));

392:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-fd_jacobian_coloring", &fd_jacobian_coloring, 0));
393:   if (!fd_jacobian_coloring) {
394:     PetscCall(SNESSetJacobian(snes, Jac, Jac, FormJacobian, (void *)&user));
395:   } else { /* Use matfdcoloring */
396:     ISColoring  iscoloring;
397:     MatColoring mc;

399:     /* Get the data structure of Jac */
400:     PetscCall(FormJacobian(snes, x, Jac, Jac, &user));
401:     /* Create coloring context */
402:     PetscCall(MatColoringCreate(Jac, &mc));
403:     PetscCall(MatColoringSetType(mc, MATCOLORINGSL));
404:     PetscCall(MatColoringSetFromOptions(mc));
405:     PetscCall(MatColoringApply(mc, &iscoloring));
406:     PetscCall(MatColoringDestroy(&mc));
407:     PetscCall(MatFDColoringCreate(Jac, iscoloring, &matfdcoloring));
408:     PetscCall(MatFDColoringSetFunction(matfdcoloring, (PetscErrorCode(*)(void))FormFunction, &user));
409:     PetscCall(MatFDColoringSetFromOptions(matfdcoloring));
410:     PetscCall(MatFDColoringSetUp(Jac, iscoloring, matfdcoloring));
411:     /* PetscCall(MatFDColoringView(matfdcoloring,PETSC_VIEWER_STDOUT_WORLD)); */
412:     PetscCall(SNESSetJacobian(snes, Jac, Jac, SNESComputeJacobianDefaultColor, matfdcoloring));
413:     PetscCall(ISColoringDestroy(&iscoloring));
414:   }

416:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
417:      Customize nonlinear solver; set runtime options
418:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

420:   PetscCall(SNESSetFromOptions(snes));

422:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
423:      Evaluate initial guess; then solve nonlinear system
424:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

426:   /*
427:      Note: The user should initialize the vector, x, with the initial guess
428:      for the nonlinear solver prior to calling SNESSolve().  In particular,
429:      to employ an initial guess of zero, the user should explicitly set
430:      this vector to zero by calling VecSet().
431:   */
432:   PetscCall(FormInitialGuess(&user, x));

434:   /*
435:     Print the initial guess
436:   */
437:   PetscCall(VecGetArray(x, &xx));
438:   for (inode = 0; inode < user.Nvlocal; inode++) PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "Initial Solution at node %" PetscInt_FMT " is %f \n", inode, (double)PetscRealPart(xx[inode])));
439:   PetscCall(VecRestoreArray(x, &xx));

441:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
442:      Now solve the nonlinear system
443:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

445:   PetscCall(SNESSolve(snes, NULL, x));
446:   PetscCall(SNESGetIterationNumber(snes, &its));
447:   PetscCall(SNESGetNonlinearStepFailures(snes, &nfails));

449:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
450:     Print the output : solution vector and other information
451:      Each processor writes to the file output.<rank> where rank is the
452:      processor's rank.
453:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

455:   PetscCall(VecGetArray(x, &xx));
456:   for (inode = 0; inode < user.Nvlocal; inode++) PetscCall(PetscFPrintf(PETSC_COMM_SELF, fptr1, "Solution at node %" PetscInt_FMT " is %f \n", inode, (double)PetscRealPart(xx[inode])));
457:   PetscCall(VecRestoreArray(x, &xx));
458:   fclose(fptr1);
459:   PetscCall(PetscPrintf(MPI_COMM_WORLD, "number of SNES iterations = %" PetscInt_FMT ", ", its));
460:   PetscCall(PetscPrintf(MPI_COMM_WORLD, "number of unsuccessful steps = %" PetscInt_FMT "\n", nfails));

462:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
463:      Free work space.  All PETSc objects should be destroyed when they
464:      are no longer needed.
465:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
466:   PetscCall(PetscFree(user.gloInd));
467:   PetscCall(PetscFree(user.locInd));
468:   PetscCall(PetscFree(vertices));
469:   PetscCall(PetscFree(verticesmask));
470:   PetscCall(PetscFree(tmp));
471:   PetscCall(VecScatterDestroy(&user.scatter));
472:   PetscCall(ISLocalToGlobalMappingDestroy(&isl2g));
473:   PetscCall(VecDestroy(&x));
474:   PetscCall(VecDestroy(&r));
475:   PetscCall(VecDestroy(&user.localX));
476:   PetscCall(VecDestroy(&user.localF));
477:   PetscCall(SNESDestroy(&snes));
478:   PetscCall(MatDestroy(&Jac));
479:   /* PetscCall(PetscDrawDestroy(draw));*/
480:   if (fd_jacobian_coloring) PetscCall(MatFDColoringDestroy(&matfdcoloring));
481:   PetscCall(PetscFinalize());
482:   return 0;
483: }
484: /* --------------------  Form initial approximation ----------------- */

486: /*
487:    FormInitialGuess - Forms initial approximation.

489:    Input Parameters:
490:    user - user-defined application context
491:    X - vector

493:    Output Parameter:
494:    X - vector
495:  */
496: PetscErrorCode FormInitialGuess(AppCtx *user, Vec X)
497: {
498:   PetscInt     Nvlocal;
499:   PetscInt    *gloInd;
500:   PetscScalar *x;
501: #if defined(UNUSED_VARIABLES)
502:   PetscReal temp1, temp, hx, hy, hxdhy, hydhx, sc;
503:   PetscInt  Neglobal, Nvglobal, j, row;
504:   PetscReal alpha, lambda;

506:   Nvglobal = user->Nvglobal;
507:   Neglobal = user->Neglobal;
508:   lambda   = user->non_lin_param;
509:   alpha    = user->lin_param;
510: #endif

512:   PetscFunctionBeginUser;
513:   Nvlocal = user->Nvlocal;
514:   gloInd  = user->gloInd;

516:   /*
517:      Get a pointer to vector data.
518:        - For default PETSc vectors, VecGetArray() returns a pointer to
519:          the data array.  Otherwise, the routine is implementation dependent.
520:        - You MUST call VecRestoreArray() when you no longer need access to
521:          the array.
522:   */
523:   PetscCall(VecGetArray(X, &x));

525:   /*
526:      Compute initial guess over the locally owned part of the grid
527:   */
528:   for (PetscInt i = 0; i < Nvlocal; i++) x[i] = (PetscReal)gloInd[i];

530:   /*
531:      Restore vector
532:   */
533:   PetscCall(VecRestoreArray(X, &x));
534:   PetscFunctionReturn(PETSC_SUCCESS);
535: }
536: /* --------------------  Evaluate Function F(x) --------------------- */
537: /*
538:    FormFunction - Evaluates nonlinear function, F(x).

540:    Input Parameters:
541: .  snes - the SNES context
542: .  X - input vector
543: .  ptr - optional user-defined context, as set by SNESSetFunction()

545:    Output Parameter:
546: .  F - function vector
547:  */
548: PetscErrorCode FormFunction(SNES snes, Vec X, Vec F, void *ptr)
549: {
550:   AppCtx      *user = (AppCtx *)ptr;
551:   PetscInt     Nvlocal;
552:   PetscReal    alpha, lambda;
553:   PetscScalar *x, *f;
554:   VecScatter   scatter;
555:   Vec          localX = user->localX;
556: #if defined(UNUSED_VARIABLES)
557:   PetscScalar ut, ub, ul, ur, u, *g, sc, uyy, uxx;
558:   PetscReal   hx, hy, hxdhy, hydhx;
559:   PetscReal   two = 2.0, one = 1.0;
560:   PetscInt    Nvglobal, Neglobal, row;
561:   PetscInt   *gloInd;

563:   Nvglobal = user->Nvglobal;
564:   Neglobal = user->Neglobal;
565:   gloInd   = user->gloInd;
566: #endif

568:   PetscFunctionBeginUser;
569:   Nvlocal = user->Nvlocal;
570:   lambda  = user->non_lin_param;
571:   alpha   = user->lin_param;
572:   scatter = user->scatter;

574:   /*
575:      PDE : L(u) + lambda*u*u +alpha*u = 0 where L(u) is the approximate Laplacian as
576:      described in the beginning of this code

578:      First scatter the distributed vector X into local vector localX (that includes
579:      values for ghost nodes. If we wish,we can put some other work between
580:      VecScatterBegin() and VecScatterEnd() to overlap the communication with
581:      computation.
582:  */
583:   PetscCall(VecScatterBegin(scatter, X, localX, INSERT_VALUES, SCATTER_FORWARD));
584:   PetscCall(VecScatterEnd(scatter, X, localX, INSERT_VALUES, SCATTER_FORWARD));

586:   /*
587:      Get pointers to vector data
588:   */
589:   PetscCall(VecGetArray(localX, &x));
590:   PetscCall(VecGetArray(F, &f));

592:   /*
593:     Now compute the f(x). As mentioned earlier, the computed Laplacian is just an
594:     approximate one chosen for illustrative purpose only. Another point to notice
595:     is that this is a local (completely parallel) calculation. In practical application
596:     codes, function calculation time is a dominat portion of the overall execution time.
597:   */
598:   for (PetscInt i = 0; i < Nvlocal; i++) {
599:     f[i] = (user->itot[i] - alpha) * x[i] - lambda * x[i] * x[i];
600:     for (PetscInt j = 0; j < user->itot[i]; j++) f[i] -= x[user->AdjM[i][j]];
601:   }

603:   /*
604:      Restore vectors
605:   */
606:   PetscCall(VecRestoreArray(localX, &x));
607:   PetscCall(VecRestoreArray(F, &f));
608:   /* PetscCall(VecView(F,PETSC_VIEWER_STDOUT_WORLD)); */
609:   PetscFunctionReturn(PETSC_SUCCESS);
610: }

612: /* --------------------  Evaluate Jacobian F'(x) -------------------- */
613: /*
614:    FormJacobian - Evaluates Jacobian matrix.

616:    Input Parameters:
617: .  snes - the SNES context
618: .  X - input vector
619: .  ptr - optional user-defined context, as set by SNESSetJacobian()

621:    Output Parameters:
622: .  A - Jacobian matrix
623: .  B - optionally different preconditioning matrix
624: .  flag - flag indicating matrix structure

626: */
627: PetscErrorCode FormJacobian(SNES snes, Vec X, Mat J, Mat jac, void *ptr)
628: {
629:   AppCtx      *user = (AppCtx *)ptr;
630:   PetscInt     Nvlocal, col[50];
631:   PetscScalar  alpha, lambda, value[50];
632:   Vec          localX = user->localX;
633:   VecScatter   scatter;
634:   PetscScalar *x;
635: #if defined(UNUSED_VARIABLES)
636:   PetscScalar two = 2.0, one = 1.0;
637:   PetscInt    row, Nvglobal, Neglobal;
638:   PetscInt   *gloInd;

640:   Nvglobal = user->Nvglobal;
641:   Neglobal = user->Neglobal;
642:   gloInd   = user->gloInd;
643: #endif

645:   PetscFunctionBeginUser;
646:   /*printf("Entering into FormJacobian \n");*/
647:   Nvlocal = user->Nvlocal;
648:   lambda  = user->non_lin_param;
649:   alpha   = user->lin_param;
650:   scatter = user->scatter;

652:   /*
653:      PDE : L(u) + lambda*u*u +alpha*u = 0 where L(u) is the approximate Laplacian as
654:      described in the beginning of this code

656:      First scatter the distributed vector X into local vector localX (that includes
657:      values for ghost nodes. If we wish, we can put some other work between
658:      VecScatterBegin() and VecScatterEnd() to overlap the communication with
659:      computation.
660:   */
661:   PetscCall(VecScatterBegin(scatter, X, localX, INSERT_VALUES, SCATTER_FORWARD));
662:   PetscCall(VecScatterEnd(scatter, X, localX, INSERT_VALUES, SCATTER_FORWARD));

664:   /*
665:      Get pointer to vector data
666:   */
667:   PetscCall(VecGetArray(localX, &x));

669:   for (PetscInt i = 0; i < Nvlocal; i++) {
670:     col[0]   = i;
671:     value[0] = user->itot[i] - 2.0 * lambda * x[i] - alpha;
672:     for (PetscInt j = 0; j < user->itot[i]; j++) {
673:       col[j + 1]   = user->AdjM[i][j];
674:       value[j + 1] = -1.0;
675:     }

677:     /*
678:       Set the matrix values in the local ordering. Note that in order to use this
679:       feature we must call the routine MatSetLocalToGlobalMapping() after the
680:       matrix has been created.
681:     */
682:     PetscCall(MatSetValuesLocal(jac, 1, &i, 1 + user->itot[i], col, value, INSERT_VALUES));
683:   }

685:   /*
686:      Assemble matrix, using the 2-step process:
687:        MatAssemblyBegin(), MatAssemblyEnd().
688:      Between these two calls, the pointer to vector data has been restored to
689:      demonstrate the use of overlapping communicationn with computation.
690:   */
691:   PetscCall(MatAssemblyBegin(jac, MAT_FINAL_ASSEMBLY));
692:   PetscCall(VecRestoreArray(localX, &x));
693:   PetscCall(MatAssemblyEnd(jac, MAT_FINAL_ASSEMBLY));

695:   /*
696:      Tell the matrix we will never add a new nonzero location to the
697:      matrix. If we do, it will generate an error.
698:   */
699:   PetscCall(MatSetOption(jac, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
700:   /* MatView(jac,PETSC_VIEWER_STDOUT_SELF); */
701:   PetscFunctionReturn(PETSC_SUCCESS);
702: }

704: /*TEST

706:    build:
707:       requires: !complex

709:    test:
710:       nsize: 2
711:       args: -snes_monitor_short
712:       localrunfiles: options.inf adj.in

714:    test:
715:       suffix: 2
716:       nsize: 2
717:       args: -snes_monitor_short -fd_jacobian_coloring
718:       localrunfiles: options.inf adj.in

720: TEST*/