Actual source code: tr.c

  1: #include <../src/snes/impls/tr/trimpl.h>

  3: typedef struct {
  4:   SNES snes;
  5:   PetscErrorCode (*convtest)(KSP, PetscInt, PetscReal, KSPConvergedReason *, void *);
  6:   PetscErrorCode (*convdestroy)(void *);
  7:   void *convctx;
  8: } SNES_TR_KSPConverged_Ctx;

 10: const char *const SNESNewtonTRFallbackTypes[] = {"NEWTON", "CAUCHY", "DOGLEG", "SNESNewtonTRFallbackType", "SNES_TR_FALLBACK_", NULL};
 11: const char *const SNESNewtonTRQNTypes[]       = {"NONE", "SAME", "DIFFERENT", "SNESNewtonTRQNType", "SNES_TR_QN_", NULL};

 13: static PetscErrorCode SNESComputeJacobian_MATLMVM(SNES snes, Vec X, Mat J, Mat B, void *dummy)
 14: {
 15:   PetscFunctionBegin;
 16:   // PetscCall(MatLMVMSymBroydenSetDelta(B, _some_delta));
 17:   PetscCall(MatLMVMUpdate(B, X, snes->vec_func));
 18:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
 19:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
 20:   if (J != B) {
 21:     // PetscCall(MatLMVMSymBroydenSetDelta(J, _some_delta));
 22:     PetscCall(MatLMVMUpdate(J, X, snes->vec_func));
 23:     PetscCall(MatAssemblyBegin(J, MAT_FINAL_ASSEMBLY));
 24:     PetscCall(MatAssemblyEnd(J, MAT_FINAL_ASSEMBLY));
 25:   }
 26:   PetscFunctionReturn(PETSC_SUCCESS);
 27: }

 29: static PetscErrorCode SNESTR_KSPConverged_Private(KSP ksp, PetscInt n, PetscReal rnorm, KSPConvergedReason *reason, void *cctx)
 30: {
 31:   SNES_TR_KSPConverged_Ctx *ctx  = (SNES_TR_KSPConverged_Ctx *)cctx;
 32:   SNES                      snes = ctx->snes;
 33:   SNES_NEWTONTR            *neP  = (SNES_NEWTONTR *)snes->data;
 34:   Vec                       x;
 35:   PetscReal                 nrm;

 37:   PetscFunctionBegin;
 38:   /* Determine norm of solution */
 39:   PetscCall(KSPBuildSolution(ksp, NULL, &x));
 40:   PetscCall(VecNorm(x, neP->norm, &nrm));
 41:   if (nrm >= neP->delta) {
 42:     PetscCall(PetscInfo(snes, "Ending linear iteration early due to exiting trust region, delta=%g, length=%g\n", (double)neP->delta, (double)nrm));
 43:     *reason = KSP_CONVERGED_STEP_LENGTH;
 44:     PetscFunctionReturn(PETSC_SUCCESS);
 45:   }
 46:   PetscCall((*ctx->convtest)(ksp, n, rnorm, reason, ctx->convctx));
 47:   if (*reason) PetscCall(PetscInfo(snes, "Default or user provided convergence test KSP iterations=%" PetscInt_FMT ", rnorm=%g\n", n, (double)rnorm));
 48:   PetscFunctionReturn(PETSC_SUCCESS);
 49: }

 51: static PetscErrorCode SNESTR_KSPConverged_Destroy(void *cctx)
 52: {
 53:   SNES_TR_KSPConverged_Ctx *ctx = (SNES_TR_KSPConverged_Ctx *)cctx;

 55:   PetscFunctionBegin;
 56:   PetscCall((*ctx->convdestroy)(ctx->convctx));
 57:   PetscCall(PetscFree(ctx));
 58:   PetscFunctionReturn(PETSC_SUCCESS);
 59: }

 61: static PetscErrorCode SNESTR_Converged_Private(SNES snes, PetscInt it, PetscReal xnorm, PetscReal pnorm, PetscReal fnorm, SNESConvergedReason *reason, void *dummy)
 62: {
 63:   SNES_NEWTONTR *neP = (SNES_NEWTONTR *)snes->data;

 65:   PetscFunctionBegin;
 66:   *reason = SNES_CONVERGED_ITERATING;
 67:   if (neP->delta < snes->deltatol) {
 68:     PetscCall(PetscInfo(snes, "Diverged due to too small a trust region %g<%g\n", (double)neP->delta, (double)snes->deltatol));
 69:     *reason = SNES_DIVERGED_TR_DELTA;
 70:   } else if (snes->nfuncs >= snes->max_funcs && snes->max_funcs >= 0) {
 71:     PetscCall(PetscInfo(snes, "Exceeded maximum number of function evaluations: %" PetscInt_FMT "\n", snes->max_funcs));
 72:     *reason = SNES_DIVERGED_FUNCTION_COUNT;
 73:   }
 74:   PetscFunctionReturn(PETSC_SUCCESS);
 75: }

 77: /*@
 78:   SNESNewtonTRSetNormType - Specify the type of norm to use for the computation of the trust region.

 80:   Input Parameters:
 81: + snes - the nonlinear solver object
 82: - norm - the norm type

 84:   Level: intermediate

 86: .seealso: `SNESNEWTONTR`, `NormType`
 87: @*/
 88: PetscErrorCode SNESNewtonTRSetNormType(SNES snes, NormType norm)
 89: {
 90:   PetscBool flg;

 92:   PetscFunctionBegin;
 95:   PetscCall(PetscObjectTypeCompare((PetscObject)snes, SNESNEWTONTR, &flg));
 96:   if (flg) {
 97:     SNES_NEWTONTR *tr = (SNES_NEWTONTR *)snes->data;

 99:     tr->norm = norm;
100:   }
101:   PetscFunctionReturn(PETSC_SUCCESS);
102: }

104: /*@
105:   SNESNewtonTRSetQNType - Specify to use a quasi-Newton model.

107:   Input Parameters:
108: + snes - the nonlinear solver object
109: - use  - the type of approximations to be used

111:   Level: intermediate

113:   Notes:
114:   Options for the approximations can be set with the snes_tr_qn_ and snes_tr_qn_pre_ prefixes.

116: .seealso: `SNESNEWTONTR`, `SNESNewtonTRQNType`, `MATLMVM`
117: @*/
118: PetscErrorCode SNESNewtonTRSetQNType(SNES snes, SNESNewtonTRQNType use)
119: {
120:   PetscBool flg;

122:   PetscFunctionBegin;
125:   PetscCall(PetscObjectTypeCompare((PetscObject)snes, SNESNEWTONTR, &flg));
126:   if (flg) {
127:     SNES_NEWTONTR *tr = (SNES_NEWTONTR *)snes->data;

129:     tr->qn = use;
130:   }
131:   PetscFunctionReturn(PETSC_SUCCESS);
132: }

134: /*@
135:   SNESNewtonTRSetFallbackType - Set the type of fallback to use if the solution of the trust region subproblem is outside the radius

137:   Input Parameters:
138: + snes  - the nonlinear solver object
139: - ftype - the fallback type, see `SNESNewtonTRFallbackType`

141:   Level: intermediate

143: .seealso: [](ch_snes), `SNESNEWTONTR`, `SNESNewtonTRPreCheck()`, `SNESNewtonTRGetPreCheck()`, `SNESNewtonTRSetPreCheck()`,
144:           `SNESNewtonTRSetPostCheck()`, `SNESNewtonTRGetPostCheck()`
145: @*/
146: PetscErrorCode SNESNewtonTRSetFallbackType(SNES snes, SNESNewtonTRFallbackType ftype)
147: {
148:   SNES_NEWTONTR *tr = (SNES_NEWTONTR *)snes->data;
149:   PetscBool      flg;

151:   PetscFunctionBegin;
154:   PetscCall(PetscObjectTypeCompare((PetscObject)snes, SNESNEWTONTR, &flg));
155:   if (flg) tr->fallback = ftype;
156:   PetscFunctionReturn(PETSC_SUCCESS);
157: }

159: /*@C
160:   SNESNewtonTRSetPreCheck - Sets a user function that is called before the search step has been determined.
161:   Allows the user a chance to change or override the trust region decision.

163:   Logically Collective

165:   Input Parameters:
166: + snes - the nonlinear solver object
167: . func - [optional] function evaluation routine, for the calling sequence see `SNESNewtonTRPreCheck()`
168: - ctx  - [optional] user-defined context for private data for the function evaluation routine (may be `NULL`)

170:   Level: intermediate

172:   Note:
173:   This function is called BEFORE the function evaluation within the solver.

175: .seealso: [](ch_snes), `SNESNEWTONTR`, `SNESNewtonTRPreCheck()`, `SNESNewtonTRGetPreCheck()`, `SNESNewtonTRSetPostCheck()`, `SNESNewtonTRGetPostCheck()`,
176: @*/
177: PetscErrorCode SNESNewtonTRSetPreCheck(SNES snes, PetscErrorCode (*func)(SNES, Vec, Vec, PetscBool *, void *), void *ctx)
178: {
179:   SNES_NEWTONTR *tr = (SNES_NEWTONTR *)snes->data;
180:   PetscBool      flg;

182:   PetscFunctionBegin;
184:   PetscCall(PetscObjectTypeCompare((PetscObject)snes, SNESNEWTONTR, &flg));
185:   if (flg) {
186:     if (func) tr->precheck = func;
187:     if (ctx) tr->precheckctx = ctx;
188:   }
189:   PetscFunctionReturn(PETSC_SUCCESS);
190: }

192: /*@C
193:   SNESNewtonTRGetPreCheck - Gets the pre-check function

195:   Not Collective

197:   Input Parameter:
198: . snes - the nonlinear solver context

200:   Output Parameters:
201: + func - [optional] function evaluation routine, for the calling sequence see `SNESNewtonTRPreCheck()`
202: - ctx  - [optional] user-defined context for private data for the function evaluation routine (may be `NULL`)

204:   Level: intermediate

206: .seealso: [](ch_snes), `SNESNEWTONTR`, `SNESNewtonTRSetPreCheck()`, `SNESNewtonTRPreCheck()`
207: @*/
208: PetscErrorCode SNESNewtonTRGetPreCheck(SNES snes, PetscErrorCode (**func)(SNES, Vec, Vec, PetscBool *, void *), void **ctx)
209: {
210:   SNES_NEWTONTR *tr = (SNES_NEWTONTR *)snes->data;
211:   PetscBool      flg;

213:   PetscFunctionBegin;
215:   PetscCall(PetscObjectTypeCompare((PetscObject)snes, SNESNEWTONTR, &flg));
216:   PetscAssert(flg, PetscObjectComm((PetscObject)snes), PETSC_ERR_ARG_WRONG, "Not for type %s", ((PetscObject)snes)->type_name);
217:   if (func) *func = tr->precheck;
218:   if (ctx) *ctx = tr->precheckctx;
219:   PetscFunctionReturn(PETSC_SUCCESS);
220: }

222: /*@C
223:   SNESNewtonTRSetPostCheck - Sets a user function that is called after the search step has been determined but before the next
224:   function evaluation. Allows the user a chance to change or override the internal decision of the solver

226:   Logically Collective

228:   Input Parameters:
229: + snes - the nonlinear solver object
230: . func - [optional] function evaluation routine, for the calling sequence see `SNESNewtonTRPostCheck()`
231: - ctx  - [optional] user-defined context for private data for the function evaluation routine (may be `NULL`)

233:   Level: intermediate

235:   Note:
236:   This function is called BEFORE the function evaluation within the solver while the function set in
237:   `SNESLineSearchSetPostCheck()` is called AFTER the function evaluation.

239: .seealso: [](ch_snes), `SNESNEWTONTR`, `SNESNewtonTRPostCheck()`, `SNESNewtonTRGetPostCheck()`, `SNESNewtonTRSetPreCheck()`, `SNESNewtonTRGetPreCheck()`
240: @*/
241: PetscErrorCode SNESNewtonTRSetPostCheck(SNES snes, PetscErrorCode (*func)(SNES, Vec, Vec, Vec, PetscBool *, PetscBool *, void *), void *ctx)
242: {
243:   SNES_NEWTONTR *tr = (SNES_NEWTONTR *)snes->data;
244:   PetscBool      flg;

246:   PetscFunctionBegin;
248:   PetscCall(PetscObjectTypeCompare((PetscObject)snes, SNESNEWTONTR, &flg));
249:   if (flg) {
250:     if (func) tr->postcheck = func;
251:     if (ctx) tr->postcheckctx = ctx;
252:   }
253:   PetscFunctionReturn(PETSC_SUCCESS);
254: }

256: /*@C
257:   SNESNewtonTRGetPostCheck - Gets the post-check function

259:   Not Collective

261:   Input Parameter:
262: . snes - the nonlinear solver context

264:   Output Parameters:
265: + func - [optional] function evaluation routine, for the calling sequence see `SNESNewtonTRPostCheck()`
266: - ctx  - [optional] user-defined context for private data for the function evaluation routine (may be `NULL`)

268:   Level: intermediate

270: .seealso: [](ch_snes), `SNESNEWTONTR`, `SNESNewtonTRSetPostCheck()`, `SNESNewtonTRPostCheck()`
271: @*/
272: PetscErrorCode SNESNewtonTRGetPostCheck(SNES snes, PetscErrorCode (**func)(SNES, Vec, Vec, Vec, PetscBool *, PetscBool *, void *), void **ctx)
273: {
274:   SNES_NEWTONTR *tr = (SNES_NEWTONTR *)snes->data;
275:   PetscBool      flg;

277:   PetscFunctionBegin;
279:   PetscCall(PetscObjectTypeCompare((PetscObject)snes, SNESNEWTONTR, &flg));
280:   PetscAssert(flg, PetscObjectComm((PetscObject)snes), PETSC_ERR_ARG_WRONG, "Not for type %s", ((PetscObject)snes)->type_name);
281:   if (func) *func = tr->postcheck;
282:   if (ctx) *ctx = tr->postcheckctx;
283:   PetscFunctionReturn(PETSC_SUCCESS);
284: }

286: /*@C
287:   SNESNewtonTRPreCheck - Runs the precheck routine

289:   Logically Collective

291:   Input Parameters:
292: + snes - the solver
293: . X    - The last solution
294: - Y    - The step direction

296:   Output Parameter:
297: . changed_Y - Indicator that the step direction `Y` has been changed.

299:   Level: intermediate

301: .seealso: [](ch_snes), `SNESNEWTONTR`, `SNESNewtonTRSetPreCheck()`, `SNESNewtonTRGetPreCheck()`, `SNESNewtonTRPostCheck()`
302: @*/
303: PetscErrorCode SNESNewtonTRPreCheck(SNES snes, Vec X, Vec Y, PetscBool *changed_Y)
304: {
305:   SNES_NEWTONTR *tr = (SNES_NEWTONTR *)snes->data;
306:   PetscBool      flg;

308:   PetscFunctionBegin;
310:   PetscCall(PetscObjectTypeCompare((PetscObject)snes, SNESNEWTONTR, &flg));
311:   PetscAssert(flg, PetscObjectComm((PetscObject)snes), PETSC_ERR_ARG_WRONG, "Not for type %s", ((PetscObject)snes)->type_name);
312:   *changed_Y = PETSC_FALSE;
313:   if (tr->precheck) {
314:     PetscCall((*tr->precheck)(snes, X, Y, changed_Y, tr->precheckctx));
316:   }
317:   PetscFunctionReturn(PETSC_SUCCESS);
318: }

320: /*@C
321:   SNESNewtonTRPostCheck - Runs the postcheck routine

323:   Logically Collective

325:   Input Parameters:
326: + snes - the solver
327: . X    - The last solution
328: . Y    - The full step direction
329: - W    - The updated solution, W = X - Y

331:   Output Parameters:
332: + changed_Y - indicator if step has been changed
333: - changed_W - Indicator if the new candidate solution W has been changed.

335:   Note:
336:   If Y is changed then W is recomputed as X - Y

338:   Level: intermediate

340: .seealso: [](ch_snes), `SNESNEWTONTR`, `SNESNewtonTRSetPostCheck()`, `SNESNewtonTRGetPostCheck()`, `SNESNewtonTRPreCheck()`
341: @*/
342: PetscErrorCode SNESNewtonTRPostCheck(SNES snes, Vec X, Vec Y, Vec W, PetscBool *changed_Y, PetscBool *changed_W)
343: {
344:   SNES_NEWTONTR *tr = (SNES_NEWTONTR *)snes->data;
345:   PetscBool      flg;

347:   PetscFunctionBegin;
349:   PetscCall(PetscObjectTypeCompare((PetscObject)snes, SNESNEWTONTR, &flg));
350:   PetscAssert(flg, PetscObjectComm((PetscObject)snes), PETSC_ERR_ARG_WRONG, "Not for type %s", ((PetscObject)snes)->type_name);
351:   *changed_Y = PETSC_FALSE;
352:   *changed_W = PETSC_FALSE;
353:   if (tr->postcheck) {
354:     PetscCall((*tr->postcheck)(snes, X, Y, W, changed_Y, changed_W, tr->postcheckctx));
357:   }
358:   PetscFunctionReturn(PETSC_SUCCESS);
359: }

361: /* stable implementation of roots of a*x^2 + b*x + c = 0 */
362: static inline void PetscQuadraticRoots(PetscReal a, PetscReal b, PetscReal c, PetscReal *xm, PetscReal *xp)
363: {
364:   PetscReal temp = -0.5 * (b + PetscCopysignReal(1.0, b) * PetscSqrtReal(b * b - 4 * a * c));
365:   PetscReal x1   = temp / a;
366:   PetscReal x2   = c / temp;
367:   *xm            = PetscMin(x1, x2);
368:   *xp            = PetscMax(x1, x2);
369: }

371: /* Computes the quadratic model difference */
372: static PetscErrorCode SNESNewtonTRQuadraticDelta(SNES snes, Mat J, PetscBool has_objective, Vec Y, Vec GradF, Vec W, PetscReal *yTHy_, PetscReal *gTy_, PetscReal *deltaqm)
373: {
374:   PetscReal yTHy, gTy;

376:   PetscFunctionBegin;
377:   PetscCall(MatMult(J, Y, W));
378:   if (has_objective) PetscCall(VecDotRealPart(Y, W, &yTHy));
379:   else PetscCall(VecDotRealPart(W, W, &yTHy)); /* Gauss-Newton approximation J^t * J */
380:   PetscCall(VecDotRealPart(GradF, Y, &gTy));
381:   *deltaqm = -(-(gTy) + 0.5 * (yTHy)); /* difference in quadratic model, -gTy because SNES solves it this way */
382:   if (yTHy_) *yTHy_ = yTHy;
383:   if (gTy_) *gTy_ = gTy;
384:   PetscFunctionReturn(PETSC_SUCCESS);
385: }

387: /* Computes the new objective given X = Xk, Y = direction
388:    W work vector, on output W = X - Y
389:    G work vector, on output G = SNESFunction(W) */
390: static PetscErrorCode SNESNewtonTRObjective(SNES snes, PetscBool has_objective, Vec X, Vec Y, Vec W, Vec G, PetscReal *gnorm, PetscReal *fkp1)
391: {
392:   PetscBool changed_y, changed_w;

394:   PetscFunctionBegin;
395:   /* TODO: we can add a linesearch here */
396:   PetscCall(SNESNewtonTRPreCheck(snes, X, Y, &changed_y));
397:   PetscCall(VecWAXPY(W, -1.0, Y, X)); /* Xkp1 */
398:   PetscCall(SNESNewtonTRPostCheck(snes, X, Y, W, &changed_y, &changed_w));
399:   if (changed_y && !changed_w) PetscCall(VecWAXPY(W, -1.0, Y, X));

401:   PetscCall(SNESComputeFunction(snes, W, G)); /*  F(Xkp1) = G */
402:   PetscCall(VecNorm(G, NORM_2, gnorm));
403:   if (has_objective) PetscCall(SNESComputeObjective(snes, W, fkp1));
404:   else *fkp1 = 0.5 * PetscSqr(*gnorm);
405:   PetscFunctionReturn(PETSC_SUCCESS);
406: }

408: static PetscErrorCode SNESSetUpQN_NEWTONTR(SNES snes)
409: {
410:   SNES_NEWTONTR *tr = (SNES_NEWTONTR *)snes->data;

412:   PetscFunctionBegin;
413:   PetscCall(MatDestroy(&tr->qnB));
414:   PetscCall(MatDestroy(&tr->qnB_pre));
415:   if (tr->qn) {
416:     PetscInt    n, N;
417:     const char *optionsprefix;
418:     Mat         B;

420:     PetscCall(MatCreate(PetscObjectComm((PetscObject)snes), &B));
421:     PetscCall(SNESGetOptionsPrefix(snes, &optionsprefix));
422:     PetscCall(MatSetOptionsPrefix(B, "snes_tr_qn_"));
423:     PetscCall(MatAppendOptionsPrefix(B, optionsprefix));
424:     PetscCall(MatSetType(B, MATLMVMBFGS));
425:     PetscCall(VecGetLocalSize(snes->vec_sol, &n));
426:     PetscCall(VecGetSize(snes->vec_sol, &N));
427:     PetscCall(MatSetSizes(B, n, n, N, N));
428:     PetscCall(MatSetUp(B));
429:     PetscCall(MatSetFromOptions(B));
430:     PetscCall(MatLMVMAllocate(B, snes->vec_sol, snes->vec_func));
431:     tr->qnB = B;
432:     if (tr->qn == SNES_TR_QN_DIFFERENT) {
433:       PetscCall(MatCreate(PetscObjectComm((PetscObject)snes), &B));
434:       PetscCall(SNESGetOptionsPrefix(snes, &optionsprefix));
435:       PetscCall(MatSetOptionsPrefix(B, "snes_tr_qn_pre_"));
436:       PetscCall(MatAppendOptionsPrefix(B, optionsprefix));
437:       PetscCall(MatSetType(B, MATLMVMBFGS));
438:       PetscCall(MatSetSizes(B, n, n, N, N));
439:       PetscCall(MatSetUp(B));
440:       PetscCall(MatSetFromOptions(B));
441:       PetscCall(MatLMVMAllocate(B, snes->vec_sol, snes->vec_func));
442:       tr->qnB_pre = B;
443:     } else {
444:       PetscCall(PetscObjectReference((PetscObject)tr->qnB));
445:       tr->qnB_pre = tr->qnB;
446:     }
447:   }
448:   PetscFunctionReturn(PETSC_SUCCESS);
449: }

451: /*
452:    SNESSolve_NEWTONTR - Implements Newton's Method with trust-region subproblem and adds dogleg Cauchy
453:    (Steepest Descent direction) step and direction if the trust region is not satisfied for solving system of
454:    nonlinear equations

456: */
457: static PetscErrorCode SNESSolve_NEWTONTR(SNES snes)
458: {
459:   SNES_NEWTONTR            *neP = (SNES_NEWTONTR *)snes->data;
460:   Vec                       X, F, Y, G, W, GradF, YU, Yc;
461:   PetscInt                  maxits, lits;
462:   PetscReal                 rho, fnorm, gnorm = 0.0, xnorm = 0.0, delta, ynorm;
463:   PetscReal                 deltaM, fk, fkp1, deltaqm = 0.0, gTy = 0.0, yTHy = 0.0;
464:   PetscReal                 auk, tauk, gfnorm, gfnorm_k, ycnorm, gTBg, objmin = 0.0, beta_k = 1.0;
465:   PC                        pc;
466:   Mat                       J, Jp;
467:   PetscBool                 already_done = PETSC_FALSE, on_boundary;
468:   PetscBool                 clear_converged_test, rho_satisfied, has_objective;
469:   SNES_TR_KSPConverged_Ctx *ctx;
470:   void                     *convctx;

472:   PetscErrorCode (*convtest)(KSP, PetscInt, PetscReal, KSPConvergedReason *, void *), (*convdestroy)(void *);
473:   PetscErrorCode (*objective)(SNES, Vec, PetscReal *, void *);

475:   PetscFunctionBegin;
476:   PetscCall(SNESGetObjective(snes, &objective, NULL));
477:   has_objective = objective ? PETSC_TRUE : PETSC_FALSE;

479:   maxits = snes->max_its;                                   /* maximum number of iterations */
480:   X      = snes->vec_sol;                                   /* solution vector */
481:   F      = snes->vec_func;                                  /* residual vector */
482:   Y      = snes->vec_sol_update;                            /* update vector */
483:   G      = snes->work[0];                                   /* updated residual */
484:   W      = snes->work[1];                                   /* temporary vector */
485:   GradF  = !has_objective ? snes->work[2] : snes->vec_func; /* grad f = J^T F */
486:   YU     = snes->work[3];                                   /* work vector for dogleg method */
487:   Yc     = snes->work[4];                                   /* Cauchy point */

489:   PetscCheck(!snes->xl && !snes->xu && !snes->ops->computevariablebounds, PetscObjectComm((PetscObject)snes), PETSC_ERR_ARG_WRONGSTATE, "SNES solver %s does not support bounds", ((PetscObject)snes)->type_name);

491:   PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
492:   snes->iter = 0;
493:   PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));

495:   /* setup QN matrices if needed */
496:   PetscCall(SNESSetUpQN_NEWTONTR(snes));

498:   /* Set the linear stopping criteria to use the More' trick if needed */
499:   clear_converged_test = PETSC_FALSE;
500:   PetscCall(SNESGetKSP(snes, &snes->ksp));
501:   PetscCall(KSPGetConvergenceTest(snes->ksp, &convtest, &convctx, &convdestroy));
502:   if (convtest != SNESTR_KSPConverged_Private) {
503:     clear_converged_test = PETSC_TRUE;
504:     PetscCall(PetscNew(&ctx));
505:     ctx->snes = snes;
506:     PetscCall(KSPGetAndClearConvergenceTest(snes->ksp, &ctx->convtest, &ctx->convctx, &ctx->convdestroy));
507:     PetscCall(KSPSetConvergenceTest(snes->ksp, SNESTR_KSPConverged_Private, ctx, SNESTR_KSPConverged_Destroy));
508:     PetscCall(PetscInfo(snes, "Using Krylov convergence test SNESTR_KSPConverged_Private\n"));
509:   }

511:   if (!snes->vec_func_init_set) {
512:     PetscCall(SNESComputeFunction(snes, X, F)); /* F(X) */
513:   } else snes->vec_func_init_set = PETSC_FALSE;

515:   PetscCall(VecNorm(F, NORM_2, &fnorm)); /* fnorm <- || F || */
516:   SNESCheckFunctionNorm(snes, fnorm);
517:   PetscCall(VecNorm(X, NORM_2, &xnorm)); /* xnorm <- || X || */

519:   PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
520:   snes->norm = fnorm;
521:   PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
522:   delta      = neP->delta0;
523:   deltaM     = neP->deltaM;
524:   neP->delta = delta;
525:   PetscCall(SNESLogConvergenceHistory(snes, fnorm, 0));

527:   /* test convergence */
528:   rho_satisfied = PETSC_FALSE;
529:   PetscCall(SNESConverged(snes, 0, 0.0, 0.0, fnorm));
530:   PetscCall(SNESMonitor(snes, 0, fnorm));
531:   if (snes->reason) PetscFunctionReturn(PETSC_SUCCESS);

533:   if (has_objective) PetscCall(SNESComputeObjective(snes, X, &fk));
534:   else fk = 0.5 * PetscSqr(fnorm); /* obj(x) = 0.5 * ||F(x)||^2 */

536:   /* hook state vector to BFGS preconditioner */
537:   PetscCall(KSPGetPC(snes->ksp, &pc));
538:   PetscCall(PCLMVMSetUpdateVec(pc, X));

540:   if (neP->kmdc) PetscCall(KSPSetComputeEigenvalues(snes->ksp, PETSC_TRUE));

542:   while (snes->iter < maxits) {
543:     /* calculating Jacobian and GradF of minimization function only once */
544:     if (!already_done) {
545:       /* Call general purpose update function */
546:       PetscTryTypeMethod(snes, update, snes->iter);

548:       /* apply the nonlinear preconditioner */
549:       if (snes->npc && snes->npcside == PC_RIGHT) {
550:         SNESConvergedReason reason;

552:         PetscCall(SNESSetInitialFunction(snes->npc, F));
553:         PetscCall(PetscLogEventBegin(SNES_NPCSolve, snes->npc, X, snes->vec_rhs, 0));
554:         PetscCall(SNESSolve(snes->npc, snes->vec_rhs, X));
555:         PetscCall(PetscLogEventEnd(SNES_NPCSolve, snes->npc, X, snes->vec_rhs, 0));
556:         PetscCall(SNESGetConvergedReason(snes->npc, &reason));
557:         if (reason < 0 && reason != SNES_DIVERGED_MAX_IT && reason != SNES_DIVERGED_TR_DELTA) {
558:           snes->reason = SNES_DIVERGED_INNER;
559:           PetscFunctionReturn(PETSC_SUCCESS);
560:         }
561:         // XXX
562:         PetscCall(SNESGetNPCFunction(snes, F, &fnorm));
563:       } else if (snes->ops->update) { /* if update is present, recompute objective function and function norm */
564:         PetscCall(SNESComputeFunction(snes, X, F));
565:       }

567:       /* Jacobian */
568:       J  = NULL;
569:       Jp = NULL;
570:       if (!neP->qnB) {
571:         PetscCall(SNESComputeJacobian(snes, X, snes->jacobian, snes->jacobian_pre));
572:         J  = snes->jacobian;
573:         Jp = snes->jacobian_pre;
574:       } else { /* QN model */
575:         PetscCall(SNESComputeJacobian_MATLMVM(snes, X, neP->qnB, neP->qnB_pre, NULL));
576:         J  = neP->qnB;
577:         Jp = neP->qnB_pre;
578:       }
579:       SNESCheckJacobianDomainerror(snes);

581:       /* objective function */
582:       PetscCall(VecNorm(F, NORM_2, &fnorm));
583:       if (has_objective) PetscCall(SNESComputeObjective(snes, X, &fk));
584:       else fk = 0.5 * PetscSqr(fnorm); /* obj(x) = 0.5 * ||F(x)||^2 */

586:       /* GradF */
587:       if (has_objective) gfnorm = fnorm;
588:       else {
589:         PetscCall(MatMultTranspose(J, F, GradF)); /* grad f = J^T F */
590:         PetscCall(VecNorm(GradF, NORM_2, &gfnorm));
591:       }
592:       PetscCall(VecNorm(GradF, neP->norm, &gfnorm_k));
593:     }
594:     already_done = PETSC_TRUE;

596:     /* solve trust-region subproblem */

598:     /* first compute Cauchy Point */
599:     PetscCall(MatMult(J, GradF, W));
600:     if (has_objective) PetscCall(VecDotRealPart(GradF, W, &gTBg));
601:     else PetscCall(VecDotRealPart(W, W, &gTBg)); /* B = J^t * J */
602:     /* Eqs 4.11 and 4.12 in Nocedal and Wright 2nd Edition (4.7 and 4.8 in 1st Edition) */
603:     auk = delta / gfnorm_k;
604:     if (gTBg < 0.0) tauk = 1.0;
605:     else tauk = PetscMin(gfnorm * gfnorm * gfnorm_k / (delta * gTBg), 1);
606:     auk *= tauk;
607:     ycnorm = auk * gfnorm;
608:     PetscCall(VecAXPBY(Yc, auk, 0.0, GradF));

610:     on_boundary = PETSC_FALSE;
611:     if (tauk != 1.0) {
612:       KSPConvergedReason reason;

614:       /* sufficient decrease (see 6.3.27 in Conn, Gould, Toint "Trust Region Methods")
615:          beta_k the largest eigenvalue of the Hessian. Here we use the previous estimated value */
616:       objmin = -neP->kmdc * gnorm * PetscMin(gnorm / beta_k, delta);
617:       PetscCall(KSPCGSetObjectiveTarget(snes->ksp, objmin));

619:       /* specify radius if looking for Newton step and trust region norm is the l2 norm */
620:       PetscCall(KSPCGSetRadius(snes->ksp, neP->fallback == SNES_TR_FALLBACK_NEWTON && neP->norm == NORM_2 ? delta : 0.0));
621:       PetscCall(KSPSetOperators(snes->ksp, J, Jp));
622:       PetscCall(KSPSolve(snes->ksp, F, Y));
623:       SNESCheckKSPSolve(snes);
624:       PetscCall(KSPGetIterationNumber(snes->ksp, &lits));
625:       PetscCall(KSPGetConvergedReason(snes->ksp, &reason));
626:       on_boundary = (PetscBool)(reason == KSP_CONVERGED_STEP_LENGTH);
627:       PetscCall(PetscInfo(snes, "iter=%" PetscInt_FMT ", linear solve iterations=%" PetscInt_FMT "\n", snes->iter, lits));
628:       if (neP->kmdc) { /* update estimated Hessian largest eigenvalue */
629:         PetscReal emax, emin;
630:         PetscCall(KSPComputeExtremeSingularValues(snes->ksp, &emax, &emin));
631:         if (emax > 0.0) beta_k = emax + 1;
632:       }
633:     } else { /* Cauchy point is on the boundary, accept it */
634:       on_boundary = PETSC_TRUE;
635:       PetscCall(VecCopy(Yc, Y));
636:       PetscCall(PetscInfo(snes, "CP evaluated on boundary. delta: %g, ycnorm: %g, gTBg: %g\n", (double)delta, (double)ycnorm, (double)gTBg));
637:     }
638:     PetscCall(VecNorm(Y, neP->norm, &ynorm));

640:     /* decide what to do when the update is outside of trust region */
641:     if (tauk != 1.0 && (ynorm > delta || ynorm == 0.0)) {
642:       SNESNewtonTRFallbackType fallback = ynorm > 0.0 ? neP->fallback : SNES_TR_FALLBACK_CAUCHY;

644:       PetscCheck(neP->norm == NORM_2 || fallback != SNES_TR_FALLBACK_DOGLEG, PetscObjectComm((PetscObject)snes), PETSC_ERR_SUP, "DOGLEG without l2 norm not implemented");
645:       switch (fallback) {
646:       case SNES_TR_FALLBACK_NEWTON:
647:         auk = delta / ynorm;
648:         PetscCall(VecScale(Y, auk));
649:         PetscCall(PetscInfo(snes, "SN evaluated. delta: %g, ynorm: %g\n", (double)delta, (double)ynorm));
650:         break;
651:       case SNES_TR_FALLBACK_CAUCHY:
652:       case SNES_TR_FALLBACK_DOGLEG:
653:         if (fallback == SNES_TR_FALLBACK_CAUCHY || gTBg <= 0.0) {
654:           PetscCall(VecCopy(Yc, Y));
655:           PetscCall(PetscInfo(snes, "CP evaluated. delta: %g, ynorm: %g, ycnorm: %g, gTBg: %g\n", (double)delta, (double)ynorm, (double)ycnorm, (double)gTBg));
656:         } else { /* take linear combination of Cauchy and Newton direction and step */
657:           auk = gfnorm * gfnorm / gTBg;
658:           if (gfnorm_k * auk >= delta) { /* first leg: Cauchy point outside of trust region */
659:             PetscCall(VecAXPBY(Y, delta / gfnorm_k, 0.0, GradF));
660:             PetscCall(PetscInfo(snes, "CP evaluated (outside region). delta: %g, ynorm: %g, ycnorm: %g\n", (double)delta, (double)ynorm, (double)ycnorm));
661:           } else { /* second leg */
662:             PetscReal c0, c1, c2, tau = 0.0, tpos, tneg;
663:             PetscBool noroots;

665:             /* Find solutions of (Eq. 4.16 in Nocedal and Wright)
666:                  ||p_U + lambda * (p_B - p_U)||^2 - delta^2 = 0,
667:                where p_U  the Cauchy direction, p_B the Newton direction */
668:             PetscCall(VecAXPBY(YU, auk, 0.0, GradF));
669:             PetscCall(VecAXPY(Y, -1.0, YU));
670:             PetscCall(VecNorm(Y, NORM_2, &c0));
671:             PetscCall(VecDotRealPart(YU, Y, &c1));
672:             c0 = PetscSqr(c0);
673:             c2 = PetscSqr(ycnorm) - PetscSqr(delta);
674:             PetscQuadraticRoots(c0, 2 * c1, c2, &tneg, &tpos);

676:             /* In principle the DL strategy as a unique solution in [0,1]
677:                here we check that for some reason we numerically failed
678:                to compute it. In that case, we use the Cauchy point */
679:             noroots = PetscIsInfOrNanReal(tneg);
680:             if (!noroots) {
681:               if (tpos > 1) {
682:                 if (tneg >= 0 && tneg <= 1) {
683:                   tau = tneg;
684:                 } else noroots = PETSC_TRUE;
685:               } else if (tpos >= 0) {
686:                 tau = tpos;
687:               } else noroots = PETSC_TRUE;
688:             }
689:             if (noroots) { /* No roots, select Cauchy point */
690:               PetscCall(VecCopy(Yc, Y));
691:             } else {
692:               PetscCall(VecAXPBY(Y, 1.0, tau, YU));
693:             }
694:             PetscCall(PetscInfo(snes, "%s evaluated. roots: (%g, %g), tau %g, ynorm: %g, ycnorm: %g, gTBg: %g\n", noroots ? "CP" : "DL", (double)tneg, (double)tpos, (double)tau, (double)ynorm, (double)ycnorm, (double)gTBg));
695:           }
696:         }
697:         break;
698:       default:
699:         SETERRQ(PetscObjectComm((PetscObject)snes), PETSC_ERR_SUP, "Unknown fallback mode");
700:         break;
701:       }
702:     }

704:     /* compute the quadratic model difference */
705:     PetscCall(SNESNewtonTRQuadraticDelta(snes, J, has_objective, Y, GradF, W, &yTHy, &gTy, &deltaqm));

707:     /* Compute new objective function */
708:     PetscCall(SNESNewtonTRObjective(snes, has_objective, X, Y, W, G, &gnorm, &fkp1));
709:     if (PetscIsInfOrNanReal(fkp1)) rho = neP->eta1;
710:     else {
711:       if (deltaqm > 0.0) rho = (fk - fkp1) / deltaqm; /* actual improvement over predicted improvement */
712:       else rho = neP->eta1;                           /*  no reduction in quadratic model, step must be rejected */
713:     }

715:     PetscCall(VecNorm(Y, neP->norm, &ynorm));
716:     PetscCall(PetscInfo(snes, "rho=%g, delta=%g, fk=%g, fkp1=%g, deltaqm=%g, gTy=%g, yTHy=%g, ynormk=%g\n", (double)rho, (double)delta, (double)fk, (double)fkp1, (double)deltaqm, (double)gTy, (double)yTHy, (double)ynorm));

718:     /* update the size of the trust region */
719:     if (rho < neP->eta2) delta *= neP->t1;                     /* shrink the region */
720:     else if (rho > neP->eta3 && on_boundary) delta *= neP->t2; /* expand the region */
721:     delta = PetscMin(delta, deltaM);                           /* but not greater than deltaM */

723:     /* log 2-norm of update for moniroting routines */
724:     PetscCall(VecNorm(Y, NORM_2, &ynorm));

726:     /* decide on new step */
727:     neP->delta = delta;
728:     if (rho > neP->eta1) {
729:       rho_satisfied = PETSC_TRUE;
730:     } else {
731:       rho_satisfied = PETSC_FALSE;
732:       PetscCall(PetscInfo(snes, "Trying again in smaller region\n"));
733:       /* check to see if progress is hopeless */
734:       PetscCall(SNESTR_Converged_Private(snes, snes->iter, xnorm, ynorm, fnorm, &snes->reason, snes->cnvP));
735:       if (!snes->reason) PetscCall(SNESConverged(snes, snes->iter, xnorm, ynorm, fnorm));
736:       if (snes->reason == SNES_CONVERGED_SNORM_RELATIVE) snes->reason = SNES_DIVERGED_TR_DELTA;
737:       snes->numFailures++;
738:       /* We're not progressing, so return with the current iterate */
739:       if (snes->reason) break;
740:     }
741:     if (rho_satisfied) {
742:       /* Update function values */
743:       already_done = PETSC_FALSE;
744:       fnorm        = gnorm;
745:       fk           = fkp1;

747:       /* New residual and linearization point */
748:       PetscCall(VecCopy(G, F));
749:       PetscCall(VecCopy(W, X));

751:       /* Monitor convergence */
752:       PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
753:       snes->iter++;
754:       snes->norm  = fnorm;
755:       snes->xnorm = xnorm;
756:       snes->ynorm = ynorm;
757:       PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
758:       PetscCall(SNESLogConvergenceHistory(snes, snes->norm, lits));

760:       /* Test for convergence, xnorm = || X || */
761:       PetscCall(VecNorm(X, NORM_2, &xnorm));
762:       PetscCall(SNESConverged(snes, snes->iter, xnorm, ynorm, fnorm));
763:       PetscCall(SNESMonitor(snes, snes->iter, snes->norm));
764:       if (snes->reason) break;
765:     }
766:   }

768:   if (clear_converged_test) {
769:     PetscCall(KSPGetAndClearConvergenceTest(snes->ksp, &ctx->convtest, &ctx->convctx, &ctx->convdestroy));
770:     PetscCall(PetscFree(ctx));
771:     PetscCall(KSPSetConvergenceTest(snes->ksp, convtest, convctx, convdestroy));
772:   }
773:   PetscFunctionReturn(PETSC_SUCCESS);
774: }

776: static PetscErrorCode SNESSetUp_NEWTONTR(SNES snes)
777: {
778:   PetscFunctionBegin;
779:   PetscCall(SNESSetWorkVecs(snes, 5));
780:   PetscCall(SNESSetUpMatrices(snes));
781:   PetscFunctionReturn(PETSC_SUCCESS);
782: }

784: static PetscErrorCode SNESReset_NEWTONTR(SNES snes)
785: {
786:   SNES_NEWTONTR *tr = (SNES_NEWTONTR *)snes->data;

788:   PetscFunctionBegin;
789:   PetscCall(MatDestroy(&tr->qnB));
790:   PetscCall(MatDestroy(&tr->qnB_pre));
791:   PetscFunctionReturn(PETSC_SUCCESS);
792: }

794: static PetscErrorCode SNESDestroy_NEWTONTR(SNES snes)
795: {
796:   PetscFunctionBegin;
797:   PetscCall(SNESReset_NEWTONTR(snes));
798:   PetscCall(PetscFree(snes->data));
799:   PetscFunctionReturn(PETSC_SUCCESS);
800: }

802: static PetscErrorCode SNESSetFromOptions_NEWTONTR(SNES snes, PetscOptionItems *PetscOptionsObject)
803: {
804:   SNES_NEWTONTR           *ctx = (SNES_NEWTONTR *)snes->data;
805:   SNESNewtonTRQNType       qn;
806:   SNESNewtonTRFallbackType fallback;
807:   NormType                 norm;
808:   PetscReal                deltatol;
809:   PetscBool                flg;

811:   PetscFunctionBegin;
812:   PetscOptionsHeadBegin(PetscOptionsObject, "SNES trust region options for nonlinear equations");
813:   PetscCall(PetscOptionsReal("-snes_tr_eta1", "eta1", "None", ctx->eta1, &ctx->eta1, NULL));
814:   PetscCall(PetscOptionsReal("-snes_tr_eta2", "eta2", "None", ctx->eta2, &ctx->eta2, NULL));
815:   PetscCall(PetscOptionsReal("-snes_tr_eta3", "eta3", "None", ctx->eta3, &ctx->eta3, NULL));
816:   PetscCall(PetscOptionsReal("-snes_tr_t1", "t1", "None", ctx->t1, &ctx->t1, NULL));
817:   PetscCall(PetscOptionsReal("-snes_tr_t2", "t2", "None", ctx->t2, &ctx->t2, NULL));
818:   PetscCall(PetscOptionsReal("-snes_tr_deltaM", "deltaM", "None", ctx->deltaM, &ctx->deltaM, NULL));
819:   PetscCall(PetscOptionsReal("-snes_tr_delta0", "delta0", "None", ctx->delta0, &ctx->delta0, NULL));
820:   PetscCall(PetscOptionsReal("-snes_tr_kmdc", "sufficient decrease parameter", "None", ctx->kmdc, &ctx->kmdc, NULL));

822:   deltatol = snes->deltatol;
823:   PetscCall(PetscOptionsReal("-snes_tr_tol", "Trust region tolerance", "SNESSetTrustRegionTolerance", deltatol, &deltatol, &flg));
824:   if (flg) PetscCall(SNESSetTrustRegionTolerance(snes, deltatol));

826:   fallback = ctx->fallback;
827:   PetscCall(PetscOptionsEnum("-snes_tr_fallback_type", "Type of fallback if subproblem solution is outside of the trust region", "SNESNewtonTRSetFallbackType", SNESNewtonTRFallbackTypes, (PetscEnum)fallback, (PetscEnum *)&fallback, &flg));
828:   if (flg) PetscCall(SNESNewtonTRSetFallbackType(snes, fallback));

830:   qn = ctx->qn;
831:   PetscCall(PetscOptionsEnum("-snes_tr_qn", "Use Quasi-Newton approximations for the model", "SNESNewtonTRSetQNType", SNESNewtonTRQNTypes, (PetscEnum)qn, (PetscEnum *)&qn, &flg));
832:   if (flg) PetscCall(SNESNewtonTRSetQNType(snes, qn));

834:   norm = ctx->norm;
835:   PetscCall(PetscOptionsEnum("-snes_tr_norm_type", "Type of norm for trust region bounds", "SNESNewtonTRSetNormType", NormTypes, (PetscEnum)norm, (PetscEnum *)&norm, &flg));
836:   if (flg) PetscCall(SNESNewtonTRSetNormType(snes, norm));

838:   PetscOptionsHeadEnd();
839:   PetscFunctionReturn(PETSC_SUCCESS);
840: }

842: static PetscErrorCode SNESView_NEWTONTR(SNES snes, PetscViewer viewer)
843: {
844:   SNES_NEWTONTR *tr = (SNES_NEWTONTR *)snes->data;
845:   PetscBool      iascii;

847:   PetscFunctionBegin;
848:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
849:   if (iascii) {
850:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Trust region tolerance %g\n", (double)snes->deltatol));
851:     PetscCall(PetscViewerASCIIPrintf(viewer, "  eta1=%g, eta2=%g, eta3=%g\n", (double)tr->eta1, (double)tr->eta2, (double)tr->eta3));
852:     PetscCall(PetscViewerASCIIPrintf(viewer, "  delta0=%g, t1=%g, t2=%g, deltaM=%g\n", (double)tr->delta0, (double)tr->t1, (double)tr->t2, (double)tr->deltaM));
853:     PetscCall(PetscViewerASCIIPrintf(viewer, "  kmdc=%g\n", (double)tr->kmdc));
854:     PetscCall(PetscViewerASCIIPrintf(viewer, "  fallback=%s\n", SNESNewtonTRFallbackTypes[tr->fallback]));
855:     if (tr->qn) PetscCall(PetscViewerASCIIPrintf(viewer, "  qn=%s\n", SNESNewtonTRQNTypes[tr->qn]));
856:     if (tr->norm != NORM_2) PetscCall(PetscViewerASCIIPrintf(viewer, "  norm=%s\n", NormTypes[tr->norm]));
857:   }
858:   PetscFunctionReturn(PETSC_SUCCESS);
859: }

861: /*MC
862:    SNESNEWTONTR - Newton based nonlinear solver that uses trust-region dogleg method with Cauchy direction {cite}`nocedal2006numerical`

864:    Options Database Keys:
865: +  -snes_tr_tol <tol>                            - trust region tolerance
866: .  -snes_tr_eta1 <eta1>                          - trust region parameter eta1 <= eta2, rho > eta1 breaks out of the inner iteration (default: eta1=0.001)
867: .  -snes_tr_eta2 <eta2>                          - trust region parameter, rho <= eta2 shrinks the trust region (default: eta2=0.25)
868: .  -snes_tr_eta3 <eta3>                          - trust region parameter eta3 > eta2, rho >= eta3 expands the trust region (default: eta3=0.75)
869: .  -snes_tr_t1 <t1>                              - trust region parameter, shrinking factor of trust region (default: 0.25)
870: .  -snes_tr_t2 <t2>                              - trust region parameter, expanding factor of trust region (default: 2.0)
871: .  -snes_tr_deltaM <deltaM>                      - trust region parameter, max size of trust region (default: MAX_REAL)
872: .  -snes_tr_delta0 <delta0>                      - trust region parameter, initial size of trust region (default: 0.2)
873: -  -snes_tr_fallback_type <newton,cauchy,dogleg> - Solution strategy to test reduction when step is outside of trust region. Can use scaled Newton direction, Cauchy point (Steepest Descent direction) or dogleg method.

875:    Level: beginner

877: .seealso: [](ch_snes), `SNESCreate()`, `SNES`, `SNESSetType()`, `SNESNEWTONLS`, `SNESSetTrustRegionTolerance()`,
878:           `SNESNewtonTRPreCheck()`, `SNESNewtonTRGetPreCheck()`, `SNESNewtonTRSetPostCheck()`, `SNESNewtonTRGetPostCheck()`,
879:           `SNESNewtonTRSetPreCheck()`, `SNESNewtonTRSetFallbackType()`, `SNESNewtonTRSetQNType()`
880: M*/
881: PETSC_EXTERN PetscErrorCode SNESCreate_NEWTONTR(SNES snes)
882: {
883:   SNES_NEWTONTR *neP;

885:   PetscFunctionBegin;
886:   snes->ops->setup          = SNESSetUp_NEWTONTR;
887:   snes->ops->solve          = SNESSolve_NEWTONTR;
888:   snes->ops->reset          = SNESReset_NEWTONTR;
889:   snes->ops->destroy        = SNESDestroy_NEWTONTR;
890:   snes->ops->setfromoptions = SNESSetFromOptions_NEWTONTR;
891:   snes->ops->view           = SNESView_NEWTONTR;

893:   snes->stol    = 0.0;
894:   snes->usesksp = PETSC_TRUE;
895:   snes->npcside = PC_RIGHT;
896:   snes->usesnpc = PETSC_TRUE;

898:   snes->alwayscomputesfinalresidual = PETSC_TRUE;

900:   PetscCall(PetscNew(&neP));
901:   snes->data    = (void *)neP;
902:   neP->delta    = 0.0;
903:   neP->delta0   = 0.2;
904:   neP->eta1     = 0.001;
905:   neP->eta2     = 0.25;
906:   neP->eta3     = 0.75;
907:   neP->t1       = 0.25;
908:   neP->t2       = 2.0;
909:   neP->deltaM   = 1.e10;
910:   neP->norm     = NORM_2;
911:   neP->fallback = SNES_TR_FALLBACK_NEWTON;
912:   neP->kmdc     = 0.0; /* by default do not use sufficient decrease */
913:   PetscFunctionReturn(PETSC_SUCCESS);
914: }