Actual source code: getcolv.c
1: #include <petsc/private/matimpl.h>
3: /*@
4: MatGetColumnVector - Gets the values from a given column of a matrix.
6: Not Collective
8: Input Parameters:
9: + A - the matrix
10: . yy - the vector
11: - col - the column requested (in global numbering)
13: Level: advanced
15: Notes:
16: If a `MatType` does not implement the operation, each processor for which this is called
17: gets the values for its rows using `MatGetRow()`.
19: The vector must have the same parallel row layout as the matrix.
21: Contributed by: Denis Vanderstraeten
23: .seealso: [](ch_matrices), `Mat`, `MatGetRow()`, `MatGetDiagonal()`, `MatMult()`
24: @*/
25: PetscErrorCode MatGetColumnVector(Mat A, Vec yy, PetscInt col)
26: {
27: PetscScalar *y;
28: const PetscScalar *v;
29: PetscInt i, j, nz, N, Rs, Re, rs, re;
30: const PetscInt *idx;
32: PetscFunctionBegin;
36: PetscCheck(col >= 0, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Requested negative column: %" PetscInt_FMT, col);
37: PetscCall(MatGetSize(A, NULL, &N));
38: PetscCheck(col < N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Requested column %" PetscInt_FMT " larger than number columns in matrix %" PetscInt_FMT, col, N);
39: PetscCall(MatGetOwnershipRange(A, &Rs, &Re));
40: PetscCall(VecGetOwnershipRange(yy, &rs, &re));
41: PetscCheck(Rs == rs && Re == re, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Matrix %" PetscInt_FMT " %" PetscInt_FMT " does not have same ownership range (size) as vector %" PetscInt_FMT " %" PetscInt_FMT, Rs, Re, rs, re);
43: if (A->ops->getcolumnvector) PetscUseTypeMethod(A, getcolumnvector, yy, col);
44: else {
45: PetscCall(VecSet(yy, 0.0));
46: PetscCall(VecGetArray(yy, &y));
47: /* TODO for general matrices */
48: for (i = Rs; i < Re; i++) {
49: PetscCall(MatGetRow(A, i, &nz, &idx, &v));
50: if (nz && idx[0] <= col) {
51: /*
52: Should use faster search here
53: */
54: for (j = 0; j < nz; j++) {
55: if (idx[j] >= col) {
56: if (idx[j] == col) y[i - rs] = v[j];
57: break;
58: }
59: }
60: }
61: PetscCall(MatRestoreRow(A, i, &nz, &idx, &v));
62: }
63: PetscCall(VecRestoreArray(yy, &y));
64: }
65: PetscFunctionReturn(PETSC_SUCCESS);
66: }
68: /*@
69: MatGetColumnNorms - Gets the norms of each column of a sparse or dense matrix.
71: Input Parameters:
72: + A - the matrix
73: - type - `NORM_2`, `NORM_1` or `NORM_INFINITY`
75: Output Parameter:
76: . norms - an array as large as the TOTAL number of columns in the matrix
78: Level: intermediate
80: Note:
81: Each process has ALL the column norms after the call. Because of the way this is computed each process gets all the values,
82: if each process wants only some of the values it should extract the ones it wants from the array.
84: .seealso: [](ch_matrices), `Mat`, `NormType`, `MatNorm()`
85: @*/
86: PetscErrorCode MatGetColumnNorms(Mat A, NormType type, PetscReal norms[])
87: {
88: /* NOTE: MatGetColumnNorms() could simply be a macro that calls MatGetColumnReductions().
89: * I've kept this as a function because it allows slightly more in the way of error checking,
90: * erroring out if MatGetColumnNorms() is not called with a valid NormType. */
92: PetscFunctionBegin;
93: if (type == NORM_2 || type == NORM_1 || type == NORM_FROBENIUS || type == NORM_INFINITY || type == NORM_1_AND_2) {
94: PetscCall(MatGetColumnReductions(A, type, norms));
95: } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Unknown NormType");
96: PetscFunctionReturn(PETSC_SUCCESS);
97: }
99: /*@
100: MatGetColumnSumsRealPart - Gets the sums of the real part of each column of a sparse or dense matrix.
102: Input Parameter:
103: . A - the matrix
105: Output Parameter:
106: . sums - an array as large as the TOTAL number of columns in the matrix
108: Level: intermediate
110: Note:
111: Each process has ALL the column sums after the call. Because of the way this is computed each process gets all the values,
112: if each process wants only some of the values it should extract the ones it wants from the array.
114: .seealso: [](ch_matrices), `Mat`, `MatGetColumnSumsImaginaryPart()`, `VecSum()`, `MatGetColumnMeans()`, `MatGetColumnNorms()`, `MatGetColumnReductions()`
115: @*/
116: PetscErrorCode MatGetColumnSumsRealPart(Mat A, PetscReal sums[])
117: {
118: PetscFunctionBegin;
119: PetscCall(MatGetColumnReductions(A, REDUCTION_SUM_REALPART, sums));
120: PetscFunctionReturn(PETSC_SUCCESS);
121: }
123: /*@
124: MatGetColumnSumsImaginaryPart - Gets the sums of the imaginary part of each column of a sparse or dense matrix.
126: Input Parameter:
127: . A - the matrix
129: Output Parameter:
130: . sums - an array as large as the TOTAL number of columns in the matrix
132: Level: intermediate
134: Note:
135: Each process has ALL the column sums after the call. Because of the way this is computed each process gets all the values,
136: if each process wants only some of the values it should extract the ones it wants from the array.
138: .seealso: [](ch_matrices), `Mat`, `MatGetColumnSumsRealPart()`, `VecSum()`, `MatGetColumnMeans()`, `MatGetColumnNorms()`, `MatGetColumnReductions()`
139: @*/
140: PetscErrorCode MatGetColumnSumsImaginaryPart(Mat A, PetscReal sums[])
141: {
142: PetscFunctionBegin;
143: PetscCall(MatGetColumnReductions(A, REDUCTION_SUM_IMAGINARYPART, sums));
144: PetscFunctionReturn(PETSC_SUCCESS);
145: }
147: /*@
148: MatGetColumnSums - Gets the sums of each column of a sparse or dense matrix.
150: Input Parameter:
151: . A - the matrix
153: Output Parameter:
154: . sums - an array as large as the TOTAL number of columns in the matrix
156: Level: intermediate
158: Note:
159: Each process has ALL the column sums after the call. Because of the way this is computed each process gets all the values,
160: if each process wants only some of the values it should extract the ones it wants from the array.
162: .seealso: [](ch_matrices), `Mat`, `VecSum()`, `MatGetColumnMeans()`, `MatGetColumnNorms()`, `MatGetColumnReductions()`
163: @*/
164: PetscErrorCode MatGetColumnSums(Mat A, PetscScalar sums[])
165: {
166: #if defined(PETSC_USE_COMPLEX)
167: PetscInt i, n;
168: PetscReal *work;
169: #endif
171: PetscFunctionBegin;
172: #if !defined(PETSC_USE_COMPLEX)
173: PetscCall(MatGetColumnSumsRealPart(A, sums));
174: #else
175: PetscCall(MatGetSize(A, NULL, &n));
176: PetscCall(PetscArrayzero(sums, n));
177: PetscCall(PetscCalloc1(n, &work));
178: PetscCall(MatGetColumnSumsRealPart(A, work));
179: for (i = 0; i < n; i++) sums[i] = work[i];
180: PetscCall(MatGetColumnSumsImaginaryPart(A, work));
181: for (i = 0; i < n; i++) sums[i] += work[i] * PETSC_i;
182: PetscCall(PetscFree(work));
183: #endif
184: PetscFunctionReturn(PETSC_SUCCESS);
185: }
187: /*@
188: MatGetColumnMeansRealPart - Gets the arithmetic means of the real part of each column of a sparse or dense matrix.
190: Input Parameter:
191: . A - the matrix
193: Output Parameter:
194: . means - an array as large as the TOTAL number of columns in the matrix
196: Level: intermediate
198: Note:
199: Each process has ALL the column means after the call. Because of the way this is computed each process gets all the values,
200: if each process wants only some of the values it should extract the ones it wants from the array.
202: .seealso: [](ch_matrices), `Mat`, `MatGetColumnMeansImaginaryPart()`, `VecSum()`, `MatGetColumnSums()`, `MatGetColumnNorms()`, `MatGetColumnReductions()`
203: @*/
204: PetscErrorCode MatGetColumnMeansRealPart(Mat A, PetscReal means[])
205: {
206: PetscFunctionBegin;
207: PetscCall(MatGetColumnReductions(A, REDUCTION_MEAN_REALPART, means));
208: PetscFunctionReturn(PETSC_SUCCESS);
209: }
211: /*@
212: MatGetColumnMeansImaginaryPart - Gets the arithmetic means of the imaginary part of each column of a sparse or dense matrix.
214: Input Parameter:
215: . A - the matrix
217: Output Parameter:
218: . means - an array as large as the TOTAL number of columns in the matrix
220: Level: intermediate
222: Note:
223: Each process has ALL the column means after the call. Because of the way this is computed each process gets all the values,
224: if each process wants only some of the values it should extract the ones it wants from the array.
226: .seealso: [](ch_matrices), `Mat`, `MatGetColumnMeansRealPart()`, `VecSum()`, `MatGetColumnSums()`, `MatGetColumnNorms()`, `MatGetColumnReductions()`
227: @*/
228: PetscErrorCode MatGetColumnMeansImaginaryPart(Mat A, PetscReal means[])
229: {
230: PetscFunctionBegin;
231: PetscCall(MatGetColumnReductions(A, REDUCTION_MEAN_IMAGINARYPART, means));
232: PetscFunctionReturn(PETSC_SUCCESS);
233: }
235: /*@
236: MatGetColumnMeans - Gets the arithmetic means of each column of a sparse or dense matrix.
238: Input Parameter:
239: . A - the matrix
241: Output Parameter:
242: . means - an array as large as the TOTAL number of columns in the matrix
244: Level: intermediate
246: Note:
247: Each process has ALL the column means after the call. Because of the way this is computed each process gets all the values,
248: if each process wants only some of the values it should extract the ones it wants from the array.
250: .seealso: [](ch_matrices), `Mat`, `VecSum()`, `MatGetColumnSums()`, `MatGetColumnNorms()`, `MatGetColumnReductions()`
251: @*/
252: PetscErrorCode MatGetColumnMeans(Mat A, PetscScalar means[])
253: {
254: #if defined(PETSC_USE_COMPLEX)
255: PetscInt i, n;
256: PetscReal *work;
257: #endif
259: PetscFunctionBegin;
260: #if !defined(PETSC_USE_COMPLEX)
261: PetscCall(MatGetColumnMeansRealPart(A, means));
262: #else
263: PetscCall(MatGetSize(A, NULL, &n));
264: PetscCall(PetscArrayzero(means, n));
265: PetscCall(PetscCalloc1(n, &work));
266: PetscCall(MatGetColumnMeansRealPart(A, work));
267: for (i = 0; i < n; i++) means[i] = work[i];
268: PetscCall(MatGetColumnMeansImaginaryPart(A, work));
269: for (i = 0; i < n; i++) means[i] += work[i] * PETSC_i;
270: PetscCall(PetscFree(work));
271: #endif
272: PetscFunctionReturn(PETSC_SUCCESS);
273: }
275: /*@
276: MatGetColumnReductions - Gets the reductions of each column of a sparse or dense matrix.
278: Input Parameters:
279: + A - the matrix
280: - type - A constant defined in `NormType` or `ReductionType`: `NORM_2`, `NORM_1`, `NORM_INFINITY`, `REDUCTION_SUM_REALPART`,
281: `REDUCTION_SUM_IMAGINARYPART`, `REDUCTION_MEAN_REALPART`, `REDUCTION_MEAN_IMAGINARYPART`
283: Output Parameter:
284: . reductions - an array as large as the TOTAL number of columns in the matrix
286: Level: developer
288: Note:
289: Each process has ALL the column reductions after the call. Because of the way this is computed each process gets all the values,
290: if each process wants only some of the values it should extract the ones it wants from the array.
292: Developer Notes:
293: This routine is primarily intended as a back-end.
294: `MatGetColumnNorms()`, `MatGetColumnSums()`, and `MatGetColumnMeans()` are implemented using this routine.
296: .seealso: [](ch_matrices), `Mat`, `ReductionType`, `NormType`, `MatGetColumnNorms()`, `MatGetColumnSums()`, `MatGetColumnMeans()`
297: @*/
298: PetscErrorCode MatGetColumnReductions(Mat A, PetscInt type, PetscReal reductions[])
299: {
300: PetscFunctionBegin;
302: PetscUseTypeMethod(A, getcolumnreductions, type, reductions);
303: PetscFunctionReturn(PETSC_SUCCESS);
304: }