Actual source code: matnest.c
1: #include <../src/mat/impls/nest/matnestimpl.h>
2: #include <../src/mat/impls/aij/seq/aij.h>
3: #include <../src/mat/impls/shell/shell.h>
4: #include <petscsf.h>
6: static PetscErrorCode MatSetUp_NestIS_Private(Mat, PetscInt, const IS[], PetscInt, const IS[]);
7: static PetscErrorCode MatCreateVecs_Nest(Mat, Vec *, Vec *);
8: static PetscErrorCode MatReset_Nest(Mat);
10: PETSC_INTERN PetscErrorCode MatConvert_Nest_IS(Mat, MatType, MatReuse, Mat *);
12: /* private functions */
13: static PetscErrorCode MatNestGetSizes_Private(Mat A, PetscInt *m, PetscInt *n, PetscInt *M, PetscInt *N)
14: {
15: Mat_Nest *bA = (Mat_Nest *)A->data;
16: PetscInt i, j;
18: PetscFunctionBegin;
19: *m = *n = *M = *N = 0;
20: for (i = 0; i < bA->nr; i++) { /* rows */
21: PetscInt sm, sM;
22: PetscCall(ISGetLocalSize(bA->isglobal.row[i], &sm));
23: PetscCall(ISGetSize(bA->isglobal.row[i], &sM));
24: *m += sm;
25: *M += sM;
26: }
27: for (j = 0; j < bA->nc; j++) { /* cols */
28: PetscInt sn, sN;
29: PetscCall(ISGetLocalSize(bA->isglobal.col[j], &sn));
30: PetscCall(ISGetSize(bA->isglobal.col[j], &sN));
31: *n += sn;
32: *N += sN;
33: }
34: PetscFunctionReturn(PETSC_SUCCESS);
35: }
37: /* operations */
38: static PetscErrorCode MatMult_Nest(Mat A, Vec x, Vec y)
39: {
40: Mat_Nest *bA = (Mat_Nest *)A->data;
41: Vec *bx = bA->right, *by = bA->left;
42: PetscInt i, j, nr = bA->nr, nc = bA->nc;
44: PetscFunctionBegin;
45: for (i = 0; i < nr; i++) PetscCall(VecGetSubVector(y, bA->isglobal.row[i], &by[i]));
46: for (i = 0; i < nc; i++) PetscCall(VecGetSubVector(x, bA->isglobal.col[i], &bx[i]));
47: for (i = 0; i < nr; i++) {
48: PetscCall(VecZeroEntries(by[i]));
49: for (j = 0; j < nc; j++) {
50: if (!bA->m[i][j]) continue;
51: /* y[i] <- y[i] + A[i][j] * x[j] */
52: PetscCall(MatMultAdd(bA->m[i][j], bx[j], by[i], by[i]));
53: }
54: }
55: for (i = 0; i < nr; i++) PetscCall(VecRestoreSubVector(y, bA->isglobal.row[i], &by[i]));
56: for (i = 0; i < nc; i++) PetscCall(VecRestoreSubVector(x, bA->isglobal.col[i], &bx[i]));
57: PetscFunctionReturn(PETSC_SUCCESS);
58: }
60: static PetscErrorCode MatMultAdd_Nest(Mat A, Vec x, Vec y, Vec z)
61: {
62: Mat_Nest *bA = (Mat_Nest *)A->data;
63: Vec *bx = bA->right, *bz = bA->left;
64: PetscInt i, j, nr = bA->nr, nc = bA->nc;
66: PetscFunctionBegin;
67: for (i = 0; i < nr; i++) PetscCall(VecGetSubVector(z, bA->isglobal.row[i], &bz[i]));
68: for (i = 0; i < nc; i++) PetscCall(VecGetSubVector(x, bA->isglobal.col[i], &bx[i]));
69: for (i = 0; i < nr; i++) {
70: if (y != z) {
71: Vec by;
72: PetscCall(VecGetSubVector(y, bA->isglobal.row[i], &by));
73: PetscCall(VecCopy(by, bz[i]));
74: PetscCall(VecRestoreSubVector(y, bA->isglobal.row[i], &by));
75: }
76: for (j = 0; j < nc; j++) {
77: if (!bA->m[i][j]) continue;
78: /* y[i] <- y[i] + A[i][j] * x[j] */
79: PetscCall(MatMultAdd(bA->m[i][j], bx[j], bz[i], bz[i]));
80: }
81: }
82: for (i = 0; i < nr; i++) PetscCall(VecRestoreSubVector(z, bA->isglobal.row[i], &bz[i]));
83: for (i = 0; i < nc; i++) PetscCall(VecRestoreSubVector(x, bA->isglobal.col[i], &bx[i]));
84: PetscFunctionReturn(PETSC_SUCCESS);
85: }
87: typedef struct {
88: Mat *workC; /* array of Mat with specific containers depending on the underlying MatMatMult implementation */
89: PetscScalar *tarray; /* buffer for storing all temporary products A[i][j] B[j] */
90: PetscInt *dm, *dn, k; /* displacements and number of submatrices */
91: } Nest_Dense;
93: static PetscErrorCode MatProductNumeric_Nest_Dense(Mat C)
94: {
95: Mat_Nest *bA;
96: Nest_Dense *contents;
97: Mat viewB, viewC, productB, workC;
98: const PetscScalar *barray;
99: PetscScalar *carray;
100: PetscInt i, j, M, N, nr, nc, ldb, ldc;
101: Mat A, B;
103: PetscFunctionBegin;
104: MatCheckProduct(C, 1);
105: A = C->product->A;
106: B = C->product->B;
107: PetscCall(MatGetSize(B, NULL, &N));
108: if (!N) {
109: PetscCall(MatAssemblyBegin(C, MAT_FINAL_ASSEMBLY));
110: PetscCall(MatAssemblyEnd(C, MAT_FINAL_ASSEMBLY));
111: PetscFunctionReturn(PETSC_SUCCESS);
112: }
113: contents = (Nest_Dense *)C->product->data;
114: PetscCheck(contents, PetscObjectComm((PetscObject)C), PETSC_ERR_PLIB, "Product data empty");
115: bA = (Mat_Nest *)A->data;
116: nr = bA->nr;
117: nc = bA->nc;
118: PetscCall(MatDenseGetLDA(B, &ldb));
119: PetscCall(MatDenseGetLDA(C, &ldc));
120: PetscCall(MatZeroEntries(C));
121: PetscCall(MatDenseGetArrayRead(B, &barray));
122: PetscCall(MatDenseGetArray(C, &carray));
123: for (i = 0; i < nr; i++) {
124: PetscCall(ISGetSize(bA->isglobal.row[i], &M));
125: PetscCall(MatCreateDense(PetscObjectComm((PetscObject)A), contents->dm[i + 1] - contents->dm[i], PETSC_DECIDE, M, N, PetscSafePointerPlusOffset(carray, contents->dm[i]), &viewC));
126: PetscCall(MatDenseSetLDA(viewC, ldc));
127: for (j = 0; j < nc; j++) {
128: if (!bA->m[i][j]) continue;
129: PetscCall(ISGetSize(bA->isglobal.col[j], &M));
130: PetscCall(MatCreateDense(PetscObjectComm((PetscObject)A), contents->dn[j + 1] - contents->dn[j], PETSC_DECIDE, M, N, PetscSafePointerPlusOffset((PetscScalar *)barray, contents->dn[j]), &viewB));
131: PetscCall(MatDenseSetLDA(viewB, ldb));
133: /* MatMatMultNumeric(bA->m[i][j],viewB,contents->workC[i*nc + j]); */
134: workC = contents->workC[i * nc + j];
135: productB = workC->product->B;
136: workC->product->B = viewB; /* use newly created dense matrix viewB */
137: PetscCall(MatProductNumeric(workC));
138: PetscCall(MatDestroy(&viewB));
139: workC->product->B = productB; /* resume original B */
141: /* C[i] <- workC + C[i] */
142: PetscCall(MatAXPY(viewC, 1.0, contents->workC[i * nc + j], SAME_NONZERO_PATTERN));
143: }
144: PetscCall(MatDestroy(&viewC));
145: }
146: PetscCall(MatDenseRestoreArray(C, &carray));
147: PetscCall(MatDenseRestoreArrayRead(B, &barray));
149: PetscCall(MatSetOption(C, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
150: PetscCall(MatAssemblyBegin(C, MAT_FINAL_ASSEMBLY));
151: PetscCall(MatAssemblyEnd(C, MAT_FINAL_ASSEMBLY));
152: PetscFunctionReturn(PETSC_SUCCESS);
153: }
155: static PetscErrorCode MatNest_DenseDestroy(void *ctx)
156: {
157: Nest_Dense *contents = (Nest_Dense *)ctx;
158: PetscInt i;
160: PetscFunctionBegin;
161: PetscCall(PetscFree(contents->tarray));
162: for (i = 0; i < contents->k; i++) PetscCall(MatDestroy(contents->workC + i));
163: PetscCall(PetscFree3(contents->dm, contents->dn, contents->workC));
164: PetscCall(PetscFree(contents));
165: PetscFunctionReturn(PETSC_SUCCESS);
166: }
168: static PetscErrorCode MatProductSymbolic_Nest_Dense(Mat C)
169: {
170: Mat_Nest *bA;
171: Mat viewB, workC;
172: const PetscScalar *barray;
173: PetscInt i, j, M, N, m, n, nr, nc, maxm = 0, ldb;
174: Nest_Dense *contents = NULL;
175: PetscBool cisdense;
176: Mat A, B;
177: PetscReal fill;
179: PetscFunctionBegin;
180: MatCheckProduct(C, 1);
181: PetscCheck(!C->product->data, PetscObjectComm((PetscObject)C), PETSC_ERR_PLIB, "Product data not empty");
182: A = C->product->A;
183: B = C->product->B;
184: fill = C->product->fill;
185: bA = (Mat_Nest *)A->data;
186: nr = bA->nr;
187: nc = bA->nc;
188: PetscCall(MatGetLocalSize(C, &m, &n));
189: PetscCall(MatGetSize(C, &M, &N));
190: if (m == PETSC_DECIDE || n == PETSC_DECIDE || M == PETSC_DECIDE || N == PETSC_DECIDE) {
191: PetscCall(MatGetLocalSize(B, NULL, &n));
192: PetscCall(MatGetSize(B, NULL, &N));
193: PetscCall(MatGetLocalSize(A, &m, NULL));
194: PetscCall(MatGetSize(A, &M, NULL));
195: PetscCall(MatSetSizes(C, m, n, M, N));
196: }
197: PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATMPIDENSE, MATSEQDENSECUDA, MATMPIDENSECUDA, ""));
198: if (!cisdense) PetscCall(MatSetType(C, ((PetscObject)B)->type_name));
199: PetscCall(MatSetUp(C));
200: if (!N) {
201: C->ops->productnumeric = MatProductNumeric_Nest_Dense;
202: PetscFunctionReturn(PETSC_SUCCESS);
203: }
205: PetscCall(PetscNew(&contents));
206: C->product->data = contents;
207: C->product->destroy = MatNest_DenseDestroy;
208: PetscCall(PetscCalloc3(nr + 1, &contents->dm, nc + 1, &contents->dn, nr * nc, &contents->workC));
209: contents->k = nr * nc;
210: for (i = 0; i < nr; i++) {
211: PetscCall(ISGetLocalSize(bA->isglobal.row[i], contents->dm + i + 1));
212: maxm = PetscMax(maxm, contents->dm[i + 1]);
213: contents->dm[i + 1] += contents->dm[i];
214: }
215: for (i = 0; i < nc; i++) {
216: PetscCall(ISGetLocalSize(bA->isglobal.col[i], contents->dn + i + 1));
217: contents->dn[i + 1] += contents->dn[i];
218: }
219: PetscCall(PetscMalloc1(maxm * N, &contents->tarray));
220: PetscCall(MatDenseGetLDA(B, &ldb));
221: PetscCall(MatGetSize(B, NULL, &N));
222: PetscCall(MatDenseGetArrayRead(B, &barray));
223: /* loops are permuted compared to MatMatMultNumeric so that viewB is created only once per column of A */
224: for (j = 0; j < nc; j++) {
225: PetscCall(ISGetSize(bA->isglobal.col[j], &M));
226: PetscCall(MatCreateDense(PetscObjectComm((PetscObject)A), contents->dn[j + 1] - contents->dn[j], PETSC_DECIDE, M, N, PetscSafePointerPlusOffset((PetscScalar *)barray, contents->dn[j]), &viewB));
227: PetscCall(MatDenseSetLDA(viewB, ldb));
228: for (i = 0; i < nr; i++) {
229: if (!bA->m[i][j]) continue;
230: /* MatMatMultSymbolic may attach a specific container (depending on MatType of bA->m[i][j]) to workC[i][j] */
232: PetscCall(MatProductCreate(bA->m[i][j], viewB, NULL, &contents->workC[i * nc + j]));
233: workC = contents->workC[i * nc + j];
234: PetscCall(MatProductSetType(workC, MATPRODUCT_AB));
235: PetscCall(MatProductSetAlgorithm(workC, "default"));
236: PetscCall(MatProductSetFill(workC, fill));
237: PetscCall(MatProductSetFromOptions(workC));
238: PetscCall(MatProductSymbolic(workC));
240: /* since tarray will be shared by all Mat */
241: PetscCall(MatSeqDenseSetPreallocation(workC, contents->tarray));
242: PetscCall(MatMPIDenseSetPreallocation(workC, contents->tarray));
243: }
244: PetscCall(MatDestroy(&viewB));
245: }
246: PetscCall(MatDenseRestoreArrayRead(B, &barray));
248: C->ops->productnumeric = MatProductNumeric_Nest_Dense;
249: PetscFunctionReturn(PETSC_SUCCESS);
250: }
252: static PetscErrorCode MatProductSetFromOptions_Nest_Dense(Mat C)
253: {
254: Mat_Product *product = C->product;
256: PetscFunctionBegin;
257: if (product->type == MATPRODUCT_AB) C->ops->productsymbolic = MatProductSymbolic_Nest_Dense;
258: PetscFunctionReturn(PETSC_SUCCESS);
259: }
261: static PetscErrorCode MatMultTransposeKernel_Nest(Mat A, Vec x, Vec y, PetscBool herm)
262: {
263: Mat_Nest *bA = (Mat_Nest *)A->data;
264: Vec *bx = bA->left, *by = bA->right;
265: PetscInt i, j, nr = bA->nr, nc = bA->nc;
267: PetscFunctionBegin;
268: for (i = 0; i < nr; i++) PetscCall(VecGetSubVector(x, bA->isglobal.row[i], &bx[i]));
269: for (i = 0; i < nc; i++) PetscCall(VecGetSubVector(y, bA->isglobal.col[i], &by[i]));
270: for (j = 0; j < nc; j++) {
271: PetscCall(VecZeroEntries(by[j]));
272: for (i = 0; i < nr; i++) {
273: if (!bA->m[i][j]) continue;
274: if (herm) PetscCall(MatMultHermitianTransposeAdd(bA->m[i][j], bx[i], by[j], by[j])); /* y[j] <- y[j] + (A[i][j])^H * x[i] */
275: else PetscCall(MatMultTransposeAdd(bA->m[i][j], bx[i], by[j], by[j])); /* y[j] <- y[j] + (A[i][j])^T * x[i] */
276: }
277: }
278: for (i = 0; i < nr; i++) PetscCall(VecRestoreSubVector(x, bA->isglobal.row[i], &bx[i]));
279: for (i = 0; i < nc; i++) PetscCall(VecRestoreSubVector(y, bA->isglobal.col[i], &by[i]));
280: PetscFunctionReturn(PETSC_SUCCESS);
281: }
283: static PetscErrorCode MatMultTranspose_Nest(Mat A, Vec x, Vec y)
284: {
285: PetscFunctionBegin;
286: PetscCall(MatMultTransposeKernel_Nest(A, x, y, PETSC_FALSE));
287: PetscFunctionReturn(PETSC_SUCCESS);
288: }
290: static PetscErrorCode MatMultHermitianTranspose_Nest(Mat A, Vec x, Vec y)
291: {
292: PetscFunctionBegin;
293: PetscCall(MatMultTransposeKernel_Nest(A, x, y, PETSC_TRUE));
294: PetscFunctionReturn(PETSC_SUCCESS);
295: }
297: static PetscErrorCode MatMultTransposeAddKernel_Nest(Mat A, Vec x, Vec y, Vec z, PetscBool herm)
298: {
299: Mat_Nest *bA = (Mat_Nest *)A->data;
300: Vec *bx = bA->left, *bz = bA->right;
301: PetscInt i, j, nr = bA->nr, nc = bA->nc;
303: PetscFunctionBegin;
304: for (i = 0; i < nr; i++) PetscCall(VecGetSubVector(x, bA->isglobal.row[i], &bx[i]));
305: for (i = 0; i < nc; i++) PetscCall(VecGetSubVector(z, bA->isglobal.col[i], &bz[i]));
306: for (j = 0; j < nc; j++) {
307: if (y != z) {
308: Vec by;
309: PetscCall(VecGetSubVector(y, bA->isglobal.col[j], &by));
310: PetscCall(VecCopy(by, bz[j]));
311: PetscCall(VecRestoreSubVector(y, bA->isglobal.col[j], &by));
312: }
313: for (i = 0; i < nr; i++) {
314: if (!bA->m[i][j]) continue;
315: if (herm) PetscCall(MatMultHermitianTransposeAdd(bA->m[i][j], bx[i], bz[j], bz[j])); /* z[j] <- y[j] + (A[i][j])^H * x[i] */
316: else PetscCall(MatMultTransposeAdd(bA->m[i][j], bx[i], bz[j], bz[j])); /* z[j] <- y[j] + (A[i][j])^T * x[i] */
317: }
318: }
319: for (i = 0; i < nr; i++) PetscCall(VecRestoreSubVector(x, bA->isglobal.row[i], &bx[i]));
320: for (i = 0; i < nc; i++) PetscCall(VecRestoreSubVector(z, bA->isglobal.col[i], &bz[i]));
321: PetscFunctionReturn(PETSC_SUCCESS);
322: }
324: static PetscErrorCode MatMultTransposeAdd_Nest(Mat A, Vec x, Vec y, Vec z)
325: {
326: PetscFunctionBegin;
327: PetscCall(MatMultTransposeAddKernel_Nest(A, x, y, z, PETSC_FALSE));
328: PetscFunctionReturn(PETSC_SUCCESS);
329: }
331: static PetscErrorCode MatMultHermitianTransposeAdd_Nest(Mat A, Vec x, Vec y, Vec z)
332: {
333: PetscFunctionBegin;
334: PetscCall(MatMultTransposeAddKernel_Nest(A, x, y, z, PETSC_TRUE));
335: PetscFunctionReturn(PETSC_SUCCESS);
336: }
338: static PetscErrorCode MatTranspose_Nest(Mat A, MatReuse reuse, Mat *B)
339: {
340: Mat_Nest *bA = (Mat_Nest *)A->data, *bC;
341: Mat C;
342: PetscInt i, j, nr = bA->nr, nc = bA->nc;
344: PetscFunctionBegin;
345: if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *B));
346: PetscCheck(reuse != MAT_INPLACE_MATRIX || nr == nc, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_SIZ, "Square nested matrix only for in-place");
348: if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_INPLACE_MATRIX) {
349: Mat *subs;
350: IS *is_row, *is_col;
352: PetscCall(PetscCalloc1(nr * nc, &subs));
353: PetscCall(PetscMalloc2(nr, &is_row, nc, &is_col));
354: PetscCall(MatNestGetISs(A, is_row, is_col));
355: if (reuse == MAT_INPLACE_MATRIX) {
356: for (i = 0; i < nr; i++) {
357: for (j = 0; j < nc; j++) subs[i + nr * j] = bA->m[i][j];
358: }
359: }
361: PetscCall(MatCreateNest(PetscObjectComm((PetscObject)A), nc, is_col, nr, is_row, subs, &C));
362: PetscCall(PetscFree(subs));
363: PetscCall(PetscFree2(is_row, is_col));
364: } else {
365: C = *B;
366: }
368: bC = (Mat_Nest *)C->data;
369: for (i = 0; i < nr; i++) {
370: for (j = 0; j < nc; j++) {
371: if (bA->m[i][j]) {
372: PetscCall(MatTranspose(bA->m[i][j], reuse, &bC->m[j][i]));
373: } else {
374: bC->m[j][i] = NULL;
375: }
376: }
377: }
379: if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_REUSE_MATRIX) {
380: *B = C;
381: } else {
382: PetscCall(MatHeaderMerge(A, &C));
383: }
384: PetscFunctionReturn(PETSC_SUCCESS);
385: }
387: static PetscErrorCode MatNestDestroyISList(PetscInt n, IS **list)
388: {
389: IS *lst = *list;
390: PetscInt i;
392: PetscFunctionBegin;
393: if (!lst) PetscFunctionReturn(PETSC_SUCCESS);
394: for (i = 0; i < n; i++)
395: if (lst[i]) PetscCall(ISDestroy(&lst[i]));
396: PetscCall(PetscFree(lst));
397: *list = NULL;
398: PetscFunctionReturn(PETSC_SUCCESS);
399: }
401: static PetscErrorCode MatReset_Nest(Mat A)
402: {
403: Mat_Nest *vs = (Mat_Nest *)A->data;
404: PetscInt i, j;
406: PetscFunctionBegin;
407: /* release the matrices and the place holders */
408: PetscCall(MatNestDestroyISList(vs->nr, &vs->isglobal.row));
409: PetscCall(MatNestDestroyISList(vs->nc, &vs->isglobal.col));
410: PetscCall(MatNestDestroyISList(vs->nr, &vs->islocal.row));
411: PetscCall(MatNestDestroyISList(vs->nc, &vs->islocal.col));
413: PetscCall(PetscFree(vs->row_len));
414: PetscCall(PetscFree(vs->col_len));
415: PetscCall(PetscFree(vs->nnzstate));
417: PetscCall(PetscFree2(vs->left, vs->right));
419: /* release the matrices and the place holders */
420: if (vs->m) {
421: for (i = 0; i < vs->nr; i++) {
422: for (j = 0; j < vs->nc; j++) PetscCall(MatDestroy(&vs->m[i][j]));
423: }
424: PetscCall(PetscFree(vs->m[0]));
425: PetscCall(PetscFree(vs->m));
426: }
428: /* restore defaults */
429: vs->nr = 0;
430: vs->nc = 0;
431: vs->splitassembly = PETSC_FALSE;
432: PetscFunctionReturn(PETSC_SUCCESS);
433: }
435: static PetscErrorCode MatDestroy_Nest(Mat A)
436: {
437: PetscFunctionBegin;
438: PetscCall(MatReset_Nest(A));
439: PetscCall(PetscFree(A->data));
440: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetSubMat_C", NULL));
441: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestSetSubMat_C", NULL));
442: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetSubMats_C", NULL));
443: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetSize_C", NULL));
444: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetISs_C", NULL));
445: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetLocalISs_C", NULL));
446: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestSetVecType_C", NULL));
447: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestSetSubMats_C", NULL));
448: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_mpiaij_C", NULL));
449: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_seqaij_C", NULL));
450: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_aij_C", NULL));
451: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_is_C", NULL));
452: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_mpidense_C", NULL));
453: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_seqdense_C", NULL));
454: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_nest_seqdense_C", NULL));
455: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_nest_mpidense_C", NULL));
456: PetscFunctionReturn(PETSC_SUCCESS);
457: }
459: static PetscErrorCode MatMissingDiagonal_Nest(Mat mat, PetscBool *missing, PetscInt *dd)
460: {
461: Mat_Nest *vs = (Mat_Nest *)mat->data;
462: PetscInt i;
464: PetscFunctionBegin;
465: if (dd) *dd = 0;
466: if (!vs->nr) {
467: *missing = PETSC_TRUE;
468: PetscFunctionReturn(PETSC_SUCCESS);
469: }
470: *missing = PETSC_FALSE;
471: for (i = 0; i < vs->nr && !(*missing); i++) {
472: *missing = PETSC_TRUE;
473: if (vs->m[i][i]) {
474: PetscCall(MatMissingDiagonal(vs->m[i][i], missing, NULL));
475: PetscCheck(!*missing || !dd, PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "First missing entry not yet implemented");
476: }
477: }
478: PetscFunctionReturn(PETSC_SUCCESS);
479: }
481: static PetscErrorCode MatAssemblyBegin_Nest(Mat A, MatAssemblyType type)
482: {
483: Mat_Nest *vs = (Mat_Nest *)A->data;
484: PetscInt i, j;
485: PetscBool nnzstate = PETSC_FALSE;
487: PetscFunctionBegin;
488: for (i = 0; i < vs->nr; i++) {
489: for (j = 0; j < vs->nc; j++) {
490: PetscObjectState subnnzstate = 0;
491: if (vs->m[i][j]) {
492: PetscCall(MatAssemblyBegin(vs->m[i][j], type));
493: if (!vs->splitassembly) {
494: /* Note: split assembly will fail if the same block appears more than once (even indirectly through a nested
495: * sub-block). This could be fixed by adding a flag to Mat so that there was a way to check if a Mat was
496: * already performing an assembly, but the result would by more complicated and appears to offer less
497: * potential for diagnostics and correctness checking. Split assembly should be fixed once there is an
498: * interface for libraries to make asynchronous progress in "user-defined non-blocking collectives".
499: */
500: PetscCall(MatAssemblyEnd(vs->m[i][j], type));
501: PetscCall(MatGetNonzeroState(vs->m[i][j], &subnnzstate));
502: }
503: }
504: nnzstate = (PetscBool)(nnzstate || vs->nnzstate[i * vs->nc + j] != subnnzstate);
505: vs->nnzstate[i * vs->nc + j] = subnnzstate;
506: }
507: }
508: if (nnzstate) A->nonzerostate++;
509: PetscFunctionReturn(PETSC_SUCCESS);
510: }
512: static PetscErrorCode MatAssemblyEnd_Nest(Mat A, MatAssemblyType type)
513: {
514: Mat_Nest *vs = (Mat_Nest *)A->data;
515: PetscInt i, j;
517: PetscFunctionBegin;
518: for (i = 0; i < vs->nr; i++) {
519: for (j = 0; j < vs->nc; j++) {
520: if (vs->m[i][j]) {
521: if (vs->splitassembly) PetscCall(MatAssemblyEnd(vs->m[i][j], type));
522: }
523: }
524: }
525: PetscFunctionReturn(PETSC_SUCCESS);
526: }
528: static PetscErrorCode MatNestFindNonzeroSubMatRow(Mat A, PetscInt row, Mat *B)
529: {
530: Mat_Nest *vs = (Mat_Nest *)A->data;
531: PetscInt j;
532: Mat sub;
534: PetscFunctionBegin;
535: sub = (row < vs->nc) ? vs->m[row][row] : (Mat)NULL; /* Prefer to find on the diagonal */
536: for (j = 0; !sub && j < vs->nc; j++) sub = vs->m[row][j];
537: if (sub) PetscCall(MatSetUp(sub)); /* Ensure that the sizes are available */
538: *B = sub;
539: PetscFunctionReturn(PETSC_SUCCESS);
540: }
542: static PetscErrorCode MatNestFindNonzeroSubMatCol(Mat A, PetscInt col, Mat *B)
543: {
544: Mat_Nest *vs = (Mat_Nest *)A->data;
545: PetscInt i;
546: Mat sub;
548: PetscFunctionBegin;
549: sub = (col < vs->nr) ? vs->m[col][col] : (Mat)NULL; /* Prefer to find on the diagonal */
550: for (i = 0; !sub && i < vs->nr; i++) sub = vs->m[i][col];
551: if (sub) PetscCall(MatSetUp(sub)); /* Ensure that the sizes are available */
552: *B = sub;
553: PetscFunctionReturn(PETSC_SUCCESS);
554: }
556: static PetscErrorCode MatNestFindISRange(Mat A, PetscInt n, const IS list[], IS is, PetscInt *begin, PetscInt *end)
557: {
558: PetscInt i, j, size, m;
559: PetscBool flg;
560: IS out, concatenate[2];
562: PetscFunctionBegin;
563: PetscAssertPointer(list, 3);
565: if (begin) {
566: PetscAssertPointer(begin, 5);
567: *begin = -1;
568: }
569: if (end) {
570: PetscAssertPointer(end, 6);
571: *end = -1;
572: }
573: for (i = 0; i < n; i++) {
574: if (!list[i]) continue;
575: PetscCall(ISEqualUnsorted(list[i], is, &flg));
576: if (flg) {
577: if (begin) *begin = i;
578: if (end) *end = i + 1;
579: PetscFunctionReturn(PETSC_SUCCESS);
580: }
581: }
582: PetscCall(ISGetSize(is, &size));
583: for (i = 0; i < n - 1; i++) {
584: if (!list[i]) continue;
585: m = 0;
586: PetscCall(ISConcatenate(PetscObjectComm((PetscObject)A), 2, list + i, &out));
587: PetscCall(ISGetSize(out, &m));
588: for (j = i + 2; j < n && m < size; j++) {
589: if (list[j]) {
590: concatenate[0] = out;
591: concatenate[1] = list[j];
592: PetscCall(ISConcatenate(PetscObjectComm((PetscObject)A), 2, concatenate, &out));
593: PetscCall(ISDestroy(concatenate));
594: PetscCall(ISGetSize(out, &m));
595: }
596: }
597: if (m == size) {
598: PetscCall(ISEqualUnsorted(out, is, &flg));
599: if (flg) {
600: if (begin) *begin = i;
601: if (end) *end = j;
602: PetscCall(ISDestroy(&out));
603: PetscFunctionReturn(PETSC_SUCCESS);
604: }
605: }
606: PetscCall(ISDestroy(&out));
607: }
608: PetscFunctionReturn(PETSC_SUCCESS);
609: }
611: static PetscErrorCode MatNestFillEmptyMat_Private(Mat A, PetscInt i, PetscInt j, Mat *B)
612: {
613: Mat_Nest *vs = (Mat_Nest *)A->data;
614: PetscInt lr, lc;
616: PetscFunctionBegin;
617: PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
618: PetscCall(ISGetLocalSize(vs->isglobal.row[i], &lr));
619: PetscCall(ISGetLocalSize(vs->isglobal.col[j], &lc));
620: PetscCall(MatSetSizes(*B, lr, lc, PETSC_DECIDE, PETSC_DECIDE));
621: PetscCall(MatSetType(*B, MATAIJ));
622: PetscCall(MatSeqAIJSetPreallocation(*B, 0, NULL));
623: PetscCall(MatMPIAIJSetPreallocation(*B, 0, NULL, 0, NULL));
624: PetscCall(MatSetUp(*B));
625: PetscCall(MatSetOption(*B, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
626: PetscCall(MatAssemblyBegin(*B, MAT_FINAL_ASSEMBLY));
627: PetscCall(MatAssemblyEnd(*B, MAT_FINAL_ASSEMBLY));
628: PetscFunctionReturn(PETSC_SUCCESS);
629: }
631: static PetscErrorCode MatNestGetBlock_Private(Mat A, PetscInt rbegin, PetscInt rend, PetscInt cbegin, PetscInt cend, Mat *B)
632: {
633: Mat_Nest *vs = (Mat_Nest *)A->data;
634: Mat *a;
635: PetscInt i, j, k, l, nr = rend - rbegin, nc = cend - cbegin;
636: char keyname[256];
637: PetscBool *b;
638: PetscBool flg;
640: PetscFunctionBegin;
641: *B = NULL;
642: PetscCall(PetscSNPrintf(keyname, sizeof(keyname), "NestBlock_%" PetscInt_FMT "-%" PetscInt_FMT "x%" PetscInt_FMT "-%" PetscInt_FMT, rbegin, rend, cbegin, cend));
643: PetscCall(PetscObjectQuery((PetscObject)A, keyname, (PetscObject *)B));
644: if (*B) PetscFunctionReturn(PETSC_SUCCESS);
646: PetscCall(PetscMalloc2(nr * nc, &a, nr * nc, &b));
647: for (i = 0; i < nr; i++) {
648: for (j = 0; j < nc; j++) {
649: a[i * nc + j] = vs->m[rbegin + i][cbegin + j];
650: b[i * nc + j] = PETSC_FALSE;
651: }
652: }
653: if (nc != vs->nc && nr != vs->nr) {
654: for (i = 0; i < nr; i++) {
655: for (j = 0; j < nc; j++) {
656: flg = PETSC_FALSE;
657: for (k = 0; (k < nr && !flg); k++) {
658: if (a[j + k * nc]) flg = PETSC_TRUE;
659: }
660: if (flg) {
661: flg = PETSC_FALSE;
662: for (l = 0; (l < nc && !flg); l++) {
663: if (a[i * nc + l]) flg = PETSC_TRUE;
664: }
665: }
666: if (!flg) {
667: b[i * nc + j] = PETSC_TRUE;
668: PetscCall(MatNestFillEmptyMat_Private(A, rbegin + i, cbegin + j, a + i * nc + j));
669: }
670: }
671: }
672: }
673: PetscCall(MatCreateNest(PetscObjectComm((PetscObject)A), nr, nr != vs->nr ? NULL : vs->isglobal.row, nc, nc != vs->nc ? NULL : vs->isglobal.col, a, B));
674: for (i = 0; i < nr; i++) {
675: for (j = 0; j < nc; j++) {
676: if (b[i * nc + j]) PetscCall(MatDestroy(a + i * nc + j));
677: }
678: }
679: PetscCall(PetscFree2(a, b));
680: (*B)->assembled = A->assembled;
681: PetscCall(PetscObjectCompose((PetscObject)A, keyname, (PetscObject)*B));
682: PetscCall(PetscObjectDereference((PetscObject)*B)); /* Leave the only remaining reference in the composition */
683: PetscFunctionReturn(PETSC_SUCCESS);
684: }
686: static PetscErrorCode MatNestFindSubMat(Mat A, struct MatNestISPair *is, IS isrow, IS iscol, Mat *B)
687: {
688: Mat_Nest *vs = (Mat_Nest *)A->data;
689: PetscInt rbegin, rend, cbegin, cend;
691: PetscFunctionBegin;
692: PetscCall(MatNestFindISRange(A, vs->nr, is->row, isrow, &rbegin, &rend));
693: PetscCall(MatNestFindISRange(A, vs->nc, is->col, iscol, &cbegin, &cend));
694: if (rend == rbegin + 1 && cend == cbegin + 1) {
695: if (!vs->m[rbegin][cbegin]) PetscCall(MatNestFillEmptyMat_Private(A, rbegin, cbegin, vs->m[rbegin] + cbegin));
696: *B = vs->m[rbegin][cbegin];
697: } else if (rbegin != -1 && cbegin != -1) {
698: PetscCall(MatNestGetBlock_Private(A, rbegin, rend, cbegin, cend, B));
699: } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_INCOMP, "Could not find index set");
700: PetscFunctionReturn(PETSC_SUCCESS);
701: }
703: /*
704: TODO: This does not actually returns a submatrix we can modify
705: */
706: static PetscErrorCode MatCreateSubMatrix_Nest(Mat A, IS isrow, IS iscol, MatReuse reuse, Mat *B)
707: {
708: Mat_Nest *vs = (Mat_Nest *)A->data;
709: Mat sub;
711: PetscFunctionBegin;
712: PetscCall(MatNestFindSubMat(A, &vs->isglobal, isrow, iscol, &sub));
713: switch (reuse) {
714: case MAT_INITIAL_MATRIX:
715: if (sub) PetscCall(PetscObjectReference((PetscObject)sub));
716: *B = sub;
717: break;
718: case MAT_REUSE_MATRIX:
719: PetscCheck(sub == *B, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Submatrix was not used before in this call");
720: break;
721: case MAT_IGNORE_MATRIX: /* Nothing to do */
722: break;
723: case MAT_INPLACE_MATRIX: /* Nothing to do */
724: SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "MAT_INPLACE_MATRIX is not supported yet");
725: }
726: PetscFunctionReturn(PETSC_SUCCESS);
727: }
729: static PetscErrorCode MatGetLocalSubMatrix_Nest(Mat A, IS isrow, IS iscol, Mat *B)
730: {
731: Mat_Nest *vs = (Mat_Nest *)A->data;
732: Mat sub;
734: PetscFunctionBegin;
735: PetscCall(MatNestFindSubMat(A, &vs->islocal, isrow, iscol, &sub));
736: /* We allow the submatrix to be NULL, perhaps it would be better for the user to return an empty matrix instead */
737: if (sub) PetscCall(PetscObjectReference((PetscObject)sub));
738: *B = sub;
739: PetscFunctionReturn(PETSC_SUCCESS);
740: }
742: static PetscErrorCode MatRestoreLocalSubMatrix_Nest(Mat A, IS isrow, IS iscol, Mat *B)
743: {
744: Mat_Nest *vs = (Mat_Nest *)A->data;
745: Mat sub;
747: PetscFunctionBegin;
748: PetscCall(MatNestFindSubMat(A, &vs->islocal, isrow, iscol, &sub));
749: PetscCheck(*B == sub, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Local submatrix has not been gotten");
750: if (sub) {
751: PetscCheck(((PetscObject)sub)->refct > 1, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Local submatrix has had reference count decremented too many times");
752: PetscCall(MatDestroy(B));
753: }
754: PetscFunctionReturn(PETSC_SUCCESS);
755: }
757: static PetscErrorCode MatGetDiagonal_Nest(Mat A, Vec v)
758: {
759: Mat_Nest *bA = (Mat_Nest *)A->data;
760: PetscInt i;
762: PetscFunctionBegin;
763: for (i = 0; i < bA->nr; i++) {
764: Vec bv;
765: PetscCall(VecGetSubVector(v, bA->isglobal.row[i], &bv));
766: if (bA->m[i][i]) {
767: PetscCall(MatGetDiagonal(bA->m[i][i], bv));
768: } else {
769: PetscCall(VecSet(bv, 0.0));
770: }
771: PetscCall(VecRestoreSubVector(v, bA->isglobal.row[i], &bv));
772: }
773: PetscFunctionReturn(PETSC_SUCCESS);
774: }
776: static PetscErrorCode MatDiagonalScale_Nest(Mat A, Vec l, Vec r)
777: {
778: Mat_Nest *bA = (Mat_Nest *)A->data;
779: Vec bl, *br;
780: PetscInt i, j;
782: PetscFunctionBegin;
783: PetscCall(PetscCalloc1(bA->nc, &br));
784: if (r) {
785: for (j = 0; j < bA->nc; j++) PetscCall(VecGetSubVector(r, bA->isglobal.col[j], &br[j]));
786: }
787: bl = NULL;
788: for (i = 0; i < bA->nr; i++) {
789: if (l) PetscCall(VecGetSubVector(l, bA->isglobal.row[i], &bl));
790: for (j = 0; j < bA->nc; j++) {
791: if (bA->m[i][j]) PetscCall(MatDiagonalScale(bA->m[i][j], bl, br[j]));
792: }
793: if (l) PetscCall(VecRestoreSubVector(l, bA->isglobal.row[i], &bl));
794: }
795: if (r) {
796: for (j = 0; j < bA->nc; j++) PetscCall(VecRestoreSubVector(r, bA->isglobal.col[j], &br[j]));
797: }
798: PetscCall(PetscFree(br));
799: PetscFunctionReturn(PETSC_SUCCESS);
800: }
802: static PetscErrorCode MatScale_Nest(Mat A, PetscScalar a)
803: {
804: Mat_Nest *bA = (Mat_Nest *)A->data;
805: PetscInt i, j;
807: PetscFunctionBegin;
808: for (i = 0; i < bA->nr; i++) {
809: for (j = 0; j < bA->nc; j++) {
810: if (bA->m[i][j]) PetscCall(MatScale(bA->m[i][j], a));
811: }
812: }
813: PetscFunctionReturn(PETSC_SUCCESS);
814: }
816: static PetscErrorCode MatShift_Nest(Mat A, PetscScalar a)
817: {
818: Mat_Nest *bA = (Mat_Nest *)A->data;
819: PetscInt i;
820: PetscBool nnzstate = PETSC_FALSE;
822: PetscFunctionBegin;
823: for (i = 0; i < bA->nr; i++) {
824: PetscObjectState subnnzstate = 0;
825: PetscCheck(bA->m[i][i], PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "No support for shifting an empty diagonal block, insert a matrix in block (%" PetscInt_FMT ",%" PetscInt_FMT ")", i, i);
826: PetscCall(MatShift(bA->m[i][i], a));
827: PetscCall(MatGetNonzeroState(bA->m[i][i], &subnnzstate));
828: nnzstate = (PetscBool)(nnzstate || bA->nnzstate[i * bA->nc + i] != subnnzstate);
829: bA->nnzstate[i * bA->nc + i] = subnnzstate;
830: }
831: if (nnzstate) A->nonzerostate++;
832: PetscFunctionReturn(PETSC_SUCCESS);
833: }
835: static PetscErrorCode MatDiagonalSet_Nest(Mat A, Vec D, InsertMode is)
836: {
837: Mat_Nest *bA = (Mat_Nest *)A->data;
838: PetscInt i;
839: PetscBool nnzstate = PETSC_FALSE;
841: PetscFunctionBegin;
842: for (i = 0; i < bA->nr; i++) {
843: PetscObjectState subnnzstate = 0;
844: Vec bv;
845: PetscCall(VecGetSubVector(D, bA->isglobal.row[i], &bv));
846: if (bA->m[i][i]) {
847: PetscCall(MatDiagonalSet(bA->m[i][i], bv, is));
848: PetscCall(MatGetNonzeroState(bA->m[i][i], &subnnzstate));
849: }
850: PetscCall(VecRestoreSubVector(D, bA->isglobal.row[i], &bv));
851: nnzstate = (PetscBool)(nnzstate || bA->nnzstate[i * bA->nc + i] != subnnzstate);
852: bA->nnzstate[i * bA->nc + i] = subnnzstate;
853: }
854: if (nnzstate) A->nonzerostate++;
855: PetscFunctionReturn(PETSC_SUCCESS);
856: }
858: static PetscErrorCode MatSetRandom_Nest(Mat A, PetscRandom rctx)
859: {
860: Mat_Nest *bA = (Mat_Nest *)A->data;
861: PetscInt i, j;
863: PetscFunctionBegin;
864: for (i = 0; i < bA->nr; i++) {
865: for (j = 0; j < bA->nc; j++) {
866: if (bA->m[i][j]) PetscCall(MatSetRandom(bA->m[i][j], rctx));
867: }
868: }
869: PetscFunctionReturn(PETSC_SUCCESS);
870: }
872: static PetscErrorCode MatCreateVecs_Nest(Mat A, Vec *right, Vec *left)
873: {
874: Mat_Nest *bA = (Mat_Nest *)A->data;
875: Vec *L, *R;
876: MPI_Comm comm;
877: PetscInt i, j;
879: PetscFunctionBegin;
880: PetscCall(PetscObjectGetComm((PetscObject)A, &comm));
881: if (right) {
882: /* allocate R */
883: PetscCall(PetscMalloc1(bA->nc, &R));
884: /* Create the right vectors */
885: for (j = 0; j < bA->nc; j++) {
886: for (i = 0; i < bA->nr; i++) {
887: if (bA->m[i][j]) {
888: PetscCall(MatCreateVecs(bA->m[i][j], &R[j], NULL));
889: break;
890: }
891: }
892: PetscCheck(i != bA->nr, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Mat(Nest) contains a null column.");
893: }
894: PetscCall(VecCreateNest(comm, bA->nc, bA->isglobal.col, R, right));
895: /* hand back control to the nest vector */
896: for (j = 0; j < bA->nc; j++) PetscCall(VecDestroy(&R[j]));
897: PetscCall(PetscFree(R));
898: }
900: if (left) {
901: /* allocate L */
902: PetscCall(PetscMalloc1(bA->nr, &L));
903: /* Create the left vectors */
904: for (i = 0; i < bA->nr; i++) {
905: for (j = 0; j < bA->nc; j++) {
906: if (bA->m[i][j]) {
907: PetscCall(MatCreateVecs(bA->m[i][j], NULL, &L[i]));
908: break;
909: }
910: }
911: PetscCheck(j != bA->nc, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Mat(Nest) contains a null row.");
912: }
914: PetscCall(VecCreateNest(comm, bA->nr, bA->isglobal.row, L, left));
915: for (i = 0; i < bA->nr; i++) PetscCall(VecDestroy(&L[i]));
917: PetscCall(PetscFree(L));
918: }
919: PetscFunctionReturn(PETSC_SUCCESS);
920: }
922: static PetscErrorCode MatView_Nest(Mat A, PetscViewer viewer)
923: {
924: Mat_Nest *bA = (Mat_Nest *)A->data;
925: PetscBool isascii, viewSub = PETSC_FALSE;
926: PetscInt i, j;
928: PetscFunctionBegin;
929: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
930: if (isascii) {
931: PetscCall(PetscOptionsGetBool(((PetscObject)A)->options, ((PetscObject)A)->prefix, "-mat_view_nest_sub", &viewSub, NULL));
932: PetscCall(PetscViewerASCIIPrintf(viewer, "Matrix object:\n"));
933: PetscCall(PetscViewerASCIIPushTab(viewer));
934: PetscCall(PetscViewerASCIIPrintf(viewer, "type=nest, rows=%" PetscInt_FMT ", cols=%" PetscInt_FMT "\n", bA->nr, bA->nc));
936: PetscCall(PetscViewerASCIIPrintf(viewer, "MatNest structure:\n"));
937: for (i = 0; i < bA->nr; i++) {
938: for (j = 0; j < bA->nc; j++) {
939: MatType type;
940: char name[256] = "", prefix[256] = "";
941: PetscInt NR, NC;
942: PetscBool isNest = PETSC_FALSE;
944: if (!bA->m[i][j]) {
945: PetscCall(PetscViewerASCIIPrintf(viewer, "(%" PetscInt_FMT ",%" PetscInt_FMT ") : NULL\n", i, j));
946: continue;
947: }
948: PetscCall(MatGetSize(bA->m[i][j], &NR, &NC));
949: PetscCall(MatGetType(bA->m[i][j], &type));
950: if (((PetscObject)bA->m[i][j])->name) PetscCall(PetscSNPrintf(name, sizeof(name), "name=\"%s\", ", ((PetscObject)bA->m[i][j])->name));
951: if (((PetscObject)bA->m[i][j])->prefix) PetscCall(PetscSNPrintf(prefix, sizeof(prefix), "prefix=\"%s\", ", ((PetscObject)bA->m[i][j])->prefix));
952: PetscCall(PetscObjectTypeCompare((PetscObject)bA->m[i][j], MATNEST, &isNest));
954: PetscCall(PetscViewerASCIIPrintf(viewer, "(%" PetscInt_FMT ",%" PetscInt_FMT ") : %s%stype=%s, rows=%" PetscInt_FMT ", cols=%" PetscInt_FMT "\n", i, j, name, prefix, type, NR, NC));
956: if (isNest || viewSub) {
957: PetscCall(PetscViewerASCIIPushTab(viewer)); /* push1 */
958: PetscCall(MatView(bA->m[i][j], viewer));
959: PetscCall(PetscViewerASCIIPopTab(viewer)); /* pop1 */
960: }
961: }
962: }
963: PetscCall(PetscViewerASCIIPopTab(viewer)); /* pop0 */
964: }
965: PetscFunctionReturn(PETSC_SUCCESS);
966: }
968: static PetscErrorCode MatZeroEntries_Nest(Mat A)
969: {
970: Mat_Nest *bA = (Mat_Nest *)A->data;
971: PetscInt i, j;
973: PetscFunctionBegin;
974: for (i = 0; i < bA->nr; i++) {
975: for (j = 0; j < bA->nc; j++) {
976: if (!bA->m[i][j]) continue;
977: PetscCall(MatZeroEntries(bA->m[i][j]));
978: }
979: }
980: PetscFunctionReturn(PETSC_SUCCESS);
981: }
983: static PetscErrorCode MatCopy_Nest(Mat A, Mat B, MatStructure str)
984: {
985: Mat_Nest *bA = (Mat_Nest *)A->data, *bB = (Mat_Nest *)B->data;
986: PetscInt i, j, nr = bA->nr, nc = bA->nc;
987: PetscBool nnzstate = PETSC_FALSE;
989: PetscFunctionBegin;
990: PetscCheck(nr == bB->nr && nc == bB->nc, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_INCOMP, "Cannot copy a Mat_Nest of block size (%" PetscInt_FMT ",%" PetscInt_FMT ") to a Mat_Nest of block size (%" PetscInt_FMT ",%" PetscInt_FMT ")", bB->nr, bB->nc, nr, nc);
991: for (i = 0; i < nr; i++) {
992: for (j = 0; j < nc; j++) {
993: PetscObjectState subnnzstate = 0;
994: if (bA->m[i][j] && bB->m[i][j]) {
995: PetscCall(MatCopy(bA->m[i][j], bB->m[i][j], str));
996: } else PetscCheck(!bA->m[i][j] && !bB->m[i][j], PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_INCOMP, "Matrix block does not exist at %" PetscInt_FMT ",%" PetscInt_FMT, i, j);
997: PetscCall(MatGetNonzeroState(bB->m[i][j], &subnnzstate));
998: nnzstate = (PetscBool)(nnzstate || bB->nnzstate[i * nc + j] != subnnzstate);
999: bB->nnzstate[i * nc + j] = subnnzstate;
1000: }
1001: }
1002: if (nnzstate) B->nonzerostate++;
1003: PetscFunctionReturn(PETSC_SUCCESS);
1004: }
1006: static PetscErrorCode MatAXPY_Nest(Mat Y, PetscScalar a, Mat X, MatStructure str)
1007: {
1008: Mat_Nest *bY = (Mat_Nest *)Y->data, *bX = (Mat_Nest *)X->data;
1009: PetscInt i, j, nr = bY->nr, nc = bY->nc;
1010: PetscBool nnzstate = PETSC_FALSE;
1012: PetscFunctionBegin;
1013: PetscCheck(nr == bX->nr && nc == bX->nc, PetscObjectComm((PetscObject)Y), PETSC_ERR_ARG_INCOMP, "Cannot AXPY a MatNest of block size (%" PetscInt_FMT ",%" PetscInt_FMT ") with a MatNest of block size (%" PetscInt_FMT ",%" PetscInt_FMT ")", bX->nr, bX->nc, nr, nc);
1014: for (i = 0; i < nr; i++) {
1015: for (j = 0; j < nc; j++) {
1016: PetscObjectState subnnzstate = 0;
1017: if (bY->m[i][j] && bX->m[i][j]) {
1018: PetscCall(MatAXPY(bY->m[i][j], a, bX->m[i][j], str));
1019: } else if (bX->m[i][j]) {
1020: Mat M;
1022: PetscCheck(str == DIFFERENT_NONZERO_PATTERN || str == UNKNOWN_NONZERO_PATTERN, PetscObjectComm((PetscObject)Y), PETSC_ERR_ARG_INCOMP, "Matrix block does not exist at %" PetscInt_FMT ",%" PetscInt_FMT ". Use DIFFERENT_NONZERO_PATTERN or UNKNOWN_NONZERO_PATTERN", i, j);
1023: PetscCall(MatDuplicate(bX->m[i][j], MAT_COPY_VALUES, &M));
1024: PetscCall(MatNestSetSubMat(Y, i, j, M));
1025: PetscCall(MatDestroy(&M));
1026: }
1027: if (bY->m[i][j]) PetscCall(MatGetNonzeroState(bY->m[i][j], &subnnzstate));
1028: nnzstate = (PetscBool)(nnzstate || bY->nnzstate[i * nc + j] != subnnzstate);
1029: bY->nnzstate[i * nc + j] = subnnzstate;
1030: }
1031: }
1032: if (nnzstate) Y->nonzerostate++;
1033: PetscFunctionReturn(PETSC_SUCCESS);
1034: }
1036: static PetscErrorCode MatDuplicate_Nest(Mat A, MatDuplicateOption op, Mat *B)
1037: {
1038: Mat_Nest *bA = (Mat_Nest *)A->data;
1039: Mat *b;
1040: PetscInt i, j, nr = bA->nr, nc = bA->nc;
1042: PetscFunctionBegin;
1043: PetscCall(PetscMalloc1(nr * nc, &b));
1044: for (i = 0; i < nr; i++) {
1045: for (j = 0; j < nc; j++) {
1046: if (bA->m[i][j]) {
1047: PetscCall(MatDuplicate(bA->m[i][j], op, &b[i * nc + j]));
1048: } else {
1049: b[i * nc + j] = NULL;
1050: }
1051: }
1052: }
1053: PetscCall(MatCreateNest(PetscObjectComm((PetscObject)A), nr, bA->isglobal.row, nc, bA->isglobal.col, b, B));
1054: /* Give the new MatNest exclusive ownership */
1055: for (i = 0; i < nr * nc; i++) PetscCall(MatDestroy(&b[i]));
1056: PetscCall(PetscFree(b));
1058: PetscCall(MatAssemblyBegin(*B, MAT_FINAL_ASSEMBLY));
1059: PetscCall(MatAssemblyEnd(*B, MAT_FINAL_ASSEMBLY));
1060: PetscFunctionReturn(PETSC_SUCCESS);
1061: }
1063: /* nest api */
1064: static PetscErrorCode MatNestGetSubMat_Nest(Mat A, PetscInt idxm, PetscInt jdxm, Mat *mat)
1065: {
1066: Mat_Nest *bA = (Mat_Nest *)A->data;
1068: PetscFunctionBegin;
1069: PetscCheck(idxm < bA->nr, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, idxm, bA->nr - 1);
1070: PetscCheck(jdxm < bA->nc, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Col too large: row %" PetscInt_FMT " max %" PetscInt_FMT, jdxm, bA->nc - 1);
1071: *mat = bA->m[idxm][jdxm];
1072: PetscFunctionReturn(PETSC_SUCCESS);
1073: }
1075: /*@
1076: MatNestGetSubMat - Returns a single, sub-matrix from a `MATNEST`
1078: Not Collective
1080: Input Parameters:
1081: + A - `MATNEST` matrix
1082: . idxm - index of the matrix within the nest matrix
1083: - jdxm - index of the matrix within the nest matrix
1085: Output Parameter:
1086: . sub - matrix at index `idxm`, `jdxm` within the nest matrix
1088: Level: developer
1090: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatNestGetSize()`, `MatNestGetSubMats()`, `MatCreateNest()`, `MatNestSetSubMat()`,
1091: `MatNestGetLocalISs()`, `MatNestGetISs()`
1092: @*/
1093: PetscErrorCode MatNestGetSubMat(Mat A, PetscInt idxm, PetscInt jdxm, Mat *sub)
1094: {
1095: PetscFunctionBegin;
1099: PetscAssertPointer(sub, 4);
1100: PetscUseMethod(A, "MatNestGetSubMat_C", (Mat, PetscInt, PetscInt, Mat *), (A, idxm, jdxm, sub));
1101: PetscFunctionReturn(PETSC_SUCCESS);
1102: }
1104: static PetscErrorCode MatNestSetSubMat_Nest(Mat A, PetscInt idxm, PetscInt jdxm, Mat mat)
1105: {
1106: Mat_Nest *bA = (Mat_Nest *)A->data;
1107: PetscInt m, n, M, N, mi, ni, Mi, Ni;
1109: PetscFunctionBegin;
1110: PetscCheck(idxm < bA->nr, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, idxm, bA->nr - 1);
1111: PetscCheck(jdxm < bA->nc, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Col too large: row %" PetscInt_FMT " max %" PetscInt_FMT, jdxm, bA->nc - 1);
1112: if (mat) {
1113: PetscCall(MatGetLocalSize(mat, &m, &n));
1114: PetscCall(MatGetSize(mat, &M, &N));
1115: PetscCall(ISGetLocalSize(bA->isglobal.row[idxm], &mi));
1116: PetscCall(ISGetSize(bA->isglobal.row[idxm], &Mi));
1117: PetscCall(ISGetLocalSize(bA->isglobal.col[jdxm], &ni));
1118: PetscCall(ISGetSize(bA->isglobal.col[jdxm], &Ni));
1119: PetscCheck(M == Mi && N == Ni, PetscObjectComm((PetscObject)mat), PETSC_ERR_ARG_INCOMP, "Submatrix dimension (%" PetscInt_FMT ",%" PetscInt_FMT ") incompatible with nest block (%" PetscInt_FMT ",%" PetscInt_FMT ")", M, N, Mi, Ni);
1120: PetscCheck(m == mi && n == ni, PetscObjectComm((PetscObject)mat), PETSC_ERR_ARG_INCOMP, "Submatrix local dimension (%" PetscInt_FMT ",%" PetscInt_FMT ") incompatible with nest block (%" PetscInt_FMT ",%" PetscInt_FMT ")", m, n, mi, ni);
1121: }
1123: /* do not increase object state */
1124: if (mat == bA->m[idxm][jdxm]) PetscFunctionReturn(PETSC_SUCCESS);
1126: PetscCall(PetscObjectReference((PetscObject)mat));
1127: PetscCall(MatDestroy(&bA->m[idxm][jdxm]));
1128: bA->m[idxm][jdxm] = mat;
1129: PetscCall(PetscObjectStateIncrease((PetscObject)A));
1130: if (mat) PetscCall(MatGetNonzeroState(mat, &bA->nnzstate[idxm * bA->nc + jdxm]));
1131: else bA->nnzstate[idxm * bA->nc + jdxm] = 0;
1132: A->nonzerostate++;
1133: PetscFunctionReturn(PETSC_SUCCESS);
1134: }
1136: /*@
1137: MatNestSetSubMat - Set a single submatrix in the `MATNEST`
1139: Logically Collective
1141: Input Parameters:
1142: + A - `MATNEST` matrix
1143: . idxm - index of the matrix within the nest matrix
1144: . jdxm - index of the matrix within the nest matrix
1145: - sub - matrix at index `idxm`, `jdxm` within the nest matrix
1147: Level: developer
1149: Notes:
1150: The new submatrix must have the same size and communicator as that block of the nest.
1152: This increments the reference count of the submatrix.
1154: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatNestSetSubMats()`, `MatNestGetSubMats()`, `MatNestGetLocalISs()`, `MatCreateNest()`,
1155: `MatNestGetSubMat()`, `MatNestGetISs()`, `MatNestGetSize()`
1156: @*/
1157: PetscErrorCode MatNestSetSubMat(Mat A, PetscInt idxm, PetscInt jdxm, Mat sub)
1158: {
1159: PetscFunctionBegin;
1164: PetscTryMethod(A, "MatNestSetSubMat_C", (Mat, PetscInt, PetscInt, Mat), (A, idxm, jdxm, sub));
1165: PetscFunctionReturn(PETSC_SUCCESS);
1166: }
1168: static PetscErrorCode MatNestGetSubMats_Nest(Mat A, PetscInt *M, PetscInt *N, Mat ***mat)
1169: {
1170: Mat_Nest *bA = (Mat_Nest *)A->data;
1172: PetscFunctionBegin;
1173: if (M) *M = bA->nr;
1174: if (N) *N = bA->nc;
1175: if (mat) *mat = bA->m;
1176: PetscFunctionReturn(PETSC_SUCCESS);
1177: }
1179: /*@C
1180: MatNestGetSubMats - Returns the entire two dimensional array of matrices defining a `MATNEST` matrix.
1182: Not Collective
1184: Input Parameter:
1185: . A - nest matrix
1187: Output Parameters:
1188: + M - number of submatrix rows in the nest matrix
1189: . N - number of submatrix columns in the nest matrix
1190: - mat - array of matrices
1192: Level: developer
1194: Note:
1195: The user should not free the array `mat`.
1197: Fortran Notes:
1198: This routine has a calling sequence `call MatNestGetSubMats(A, M, N, mat, ierr)`
1199: where the space allocated for the optional argument `mat` is assumed large enough (if provided).
1200: Matrices in `mat` are returned in row-major order, see `MatCreateNest()` for an example.
1202: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatNestGetSize()`, `MatNestGetSubMat()`, `MatNestGetLocalISs()`, `MatCreateNest()`,
1203: `MatNestSetSubMats()`, `MatNestGetISs()`, `MatNestSetSubMat()`
1204: @*/
1205: PetscErrorCode MatNestGetSubMats(Mat A, PetscInt *M, PetscInt *N, Mat ***mat)
1206: {
1207: PetscFunctionBegin;
1209: PetscUseMethod(A, "MatNestGetSubMats_C", (Mat, PetscInt *, PetscInt *, Mat ***), (A, M, N, mat));
1210: PetscFunctionReturn(PETSC_SUCCESS);
1211: }
1213: static PetscErrorCode MatNestGetSize_Nest(Mat A, PetscInt *M, PetscInt *N)
1214: {
1215: Mat_Nest *bA = (Mat_Nest *)A->data;
1217: PetscFunctionBegin;
1218: if (M) *M = bA->nr;
1219: if (N) *N = bA->nc;
1220: PetscFunctionReturn(PETSC_SUCCESS);
1221: }
1223: /*@
1224: MatNestGetSize - Returns the size of the `MATNEST` matrix.
1226: Not Collective
1228: Input Parameter:
1229: . A - `MATNEST` matrix
1231: Output Parameters:
1232: + M - number of rows in the nested mat
1233: - N - number of cols in the nested mat
1235: Level: developer
1237: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatNestGetSubMat()`, `MatNestGetSubMats()`, `MatCreateNest()`, `MatNestGetLocalISs()`,
1238: `MatNestGetISs()`
1239: @*/
1240: PetscErrorCode MatNestGetSize(Mat A, PetscInt *M, PetscInt *N)
1241: {
1242: PetscFunctionBegin;
1244: PetscUseMethod(A, "MatNestGetSize_C", (Mat, PetscInt *, PetscInt *), (A, M, N));
1245: PetscFunctionReturn(PETSC_SUCCESS);
1246: }
1248: static PetscErrorCode MatNestGetISs_Nest(Mat A, IS rows[], IS cols[])
1249: {
1250: Mat_Nest *vs = (Mat_Nest *)A->data;
1251: PetscInt i;
1253: PetscFunctionBegin;
1254: if (rows)
1255: for (i = 0; i < vs->nr; i++) rows[i] = vs->isglobal.row[i];
1256: if (cols)
1257: for (i = 0; i < vs->nc; i++) cols[i] = vs->isglobal.col[i];
1258: PetscFunctionReturn(PETSC_SUCCESS);
1259: }
1261: /*@C
1262: MatNestGetISs - Returns the index sets partitioning the row and column spaces of a `MATNEST`
1264: Not Collective
1266: Input Parameter:
1267: . A - `MATNEST` matrix
1269: Output Parameters:
1270: + rows - array of row index sets (pass `NULL` to ignore)
1271: - cols - array of column index sets (pass `NULL` to ignore)
1273: Level: advanced
1275: Note:
1276: The user must have allocated arrays of the correct size. The reference count is not increased on the returned `IS`s.
1278: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatNestGetSubMat()`, `MatNestGetSubMats()`, `MatNestGetSize()`, `MatNestGetLocalISs()`,
1279: `MatCreateNest()`, `MatNestSetSubMats()`
1280: @*/
1281: PetscErrorCode MatNestGetISs(Mat A, IS rows[], IS cols[])
1282: {
1283: PetscFunctionBegin;
1285: PetscUseMethod(A, "MatNestGetISs_C", (Mat, IS[], IS[]), (A, rows, cols));
1286: PetscFunctionReturn(PETSC_SUCCESS);
1287: }
1289: static PetscErrorCode MatNestGetLocalISs_Nest(Mat A, IS rows[], IS cols[])
1290: {
1291: Mat_Nest *vs = (Mat_Nest *)A->data;
1292: PetscInt i;
1294: PetscFunctionBegin;
1295: if (rows)
1296: for (i = 0; i < vs->nr; i++) rows[i] = vs->islocal.row[i];
1297: if (cols)
1298: for (i = 0; i < vs->nc; i++) cols[i] = vs->islocal.col[i];
1299: PetscFunctionReturn(PETSC_SUCCESS);
1300: }
1302: /*@C
1303: MatNestGetLocalISs - Returns the index sets partitioning the row and column spaces of a `MATNEST`
1305: Not Collective
1307: Input Parameter:
1308: . A - `MATNEST` matrix
1310: Output Parameters:
1311: + rows - array of row index sets (pass `NULL` to ignore)
1312: - cols - array of column index sets (pass `NULL` to ignore)
1314: Level: advanced
1316: Note:
1317: The user must have allocated arrays of the correct size. The reference count is not increased on the returned `IS`s.
1319: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatNestGetSubMat()`, `MatNestGetSubMats()`, `MatNestGetSize()`, `MatNestGetISs()`, `MatCreateNest()`,
1320: `MatNestSetSubMats()`, `MatNestSetSubMat()`
1321: @*/
1322: PetscErrorCode MatNestGetLocalISs(Mat A, IS rows[], IS cols[])
1323: {
1324: PetscFunctionBegin;
1326: PetscUseMethod(A, "MatNestGetLocalISs_C", (Mat, IS[], IS[]), (A, rows, cols));
1327: PetscFunctionReturn(PETSC_SUCCESS);
1328: }
1330: static PetscErrorCode MatNestSetVecType_Nest(Mat A, VecType vtype)
1331: {
1332: PetscBool flg;
1334: PetscFunctionBegin;
1335: PetscCall(PetscStrcmp(vtype, VECNEST, &flg));
1336: /* In reality, this only distinguishes VECNEST and "other" */
1337: if (flg) A->ops->getvecs = MatCreateVecs_Nest;
1338: else A->ops->getvecs = (PetscErrorCode(*)(Mat, Vec *, Vec *))0;
1339: PetscFunctionReturn(PETSC_SUCCESS);
1340: }
1342: /*@C
1343: MatNestSetVecType - Sets the type of `Vec` returned by `MatCreateVecs()`
1345: Not Collective
1347: Input Parameters:
1348: + A - `MATNEST` matrix
1349: - vtype - `VecType` to use for creating vectors
1351: Level: developer
1353: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatCreateVecs()`, `MatCreateNest()`, `VecType`
1354: @*/
1355: PetscErrorCode MatNestSetVecType(Mat A, VecType vtype)
1356: {
1357: PetscFunctionBegin;
1359: PetscTryMethod(A, "MatNestSetVecType_C", (Mat, VecType), (A, vtype));
1360: PetscFunctionReturn(PETSC_SUCCESS);
1361: }
1363: static PetscErrorCode MatNestSetSubMats_Nest(Mat A, PetscInt nr, const IS is_row[], PetscInt nc, const IS is_col[], const Mat a[])
1364: {
1365: Mat_Nest *s = (Mat_Nest *)A->data;
1366: PetscInt i, j, m, n, M, N;
1367: PetscBool cong, isstd, sametype = PETSC_FALSE;
1368: VecType vtype, type;
1370: PetscFunctionBegin;
1371: PetscCall(MatReset_Nest(A));
1373: s->nr = nr;
1374: s->nc = nc;
1376: /* Create space for submatrices */
1377: PetscCall(PetscMalloc1(nr, &s->m));
1378: PetscCall(PetscMalloc1(nr * nc, &s->m[0]));
1379: for (i = 0; i < nr; i++) {
1380: s->m[i] = s->m[0] + i * nc;
1381: for (j = 0; j < nc; j++) {
1382: s->m[i][j] = a ? a[i * nc + j] : NULL;
1383: PetscCall(PetscObjectReference((PetscObject)s->m[i][j]));
1384: }
1385: }
1386: PetscCall(MatGetVecType(A, &vtype));
1387: PetscCall(PetscStrcmp(vtype, VECSTANDARD, &isstd));
1388: if (isstd) {
1389: /* check if all blocks have the same vectype */
1390: vtype = NULL;
1391: for (i = 0; i < nr; i++) {
1392: for (j = 0; j < nc; j++) {
1393: if (s->m[i][j]) {
1394: if (!vtype) { /* first visited block */
1395: PetscCall(MatGetVecType(s->m[i][j], &vtype));
1396: sametype = PETSC_TRUE;
1397: } else if (sametype) {
1398: PetscCall(MatGetVecType(s->m[i][j], &type));
1399: PetscCall(PetscStrcmp(vtype, type, &sametype));
1400: }
1401: }
1402: }
1403: }
1404: if (sametype) { /* propagate vectype */
1405: PetscCall(MatSetVecType(A, vtype));
1406: }
1407: }
1409: PetscCall(MatSetUp_NestIS_Private(A, nr, is_row, nc, is_col));
1411: PetscCall(PetscMalloc1(nr, &s->row_len));
1412: PetscCall(PetscMalloc1(nc, &s->col_len));
1413: for (i = 0; i < nr; i++) s->row_len[i] = -1;
1414: for (j = 0; j < nc; j++) s->col_len[j] = -1;
1416: PetscCall(PetscCalloc1(nr * nc, &s->nnzstate));
1417: for (i = 0; i < nr; i++) {
1418: for (j = 0; j < nc; j++) {
1419: if (s->m[i][j]) PetscCall(MatGetNonzeroState(s->m[i][j], &s->nnzstate[i * nc + j]));
1420: }
1421: }
1423: PetscCall(MatNestGetSizes_Private(A, &m, &n, &M, &N));
1425: PetscCall(PetscLayoutSetSize(A->rmap, M));
1426: PetscCall(PetscLayoutSetLocalSize(A->rmap, m));
1427: PetscCall(PetscLayoutSetSize(A->cmap, N));
1428: PetscCall(PetscLayoutSetLocalSize(A->cmap, n));
1430: PetscCall(PetscLayoutSetUp(A->rmap));
1431: PetscCall(PetscLayoutSetUp(A->cmap));
1433: /* disable operations that are not supported for non-square matrices,
1434: or matrices for which is_row != is_col */
1435: PetscCall(MatHasCongruentLayouts(A, &cong));
1436: if (cong && nr != nc) cong = PETSC_FALSE;
1437: if (cong) {
1438: for (i = 0; cong && i < nr; i++) PetscCall(ISEqualUnsorted(s->isglobal.row[i], s->isglobal.col[i], &cong));
1439: }
1440: if (!cong) {
1441: A->ops->missingdiagonal = NULL;
1442: A->ops->getdiagonal = NULL;
1443: A->ops->shift = NULL;
1444: A->ops->diagonalset = NULL;
1445: }
1447: PetscCall(PetscCalloc2(nr, &s->left, nc, &s->right));
1448: PetscCall(PetscObjectStateIncrease((PetscObject)A));
1449: A->nonzerostate++;
1450: PetscFunctionReturn(PETSC_SUCCESS);
1451: }
1453: /*@
1454: MatNestSetSubMats - Sets the nested submatrices in a `MATNEST`
1456: Collective
1458: Input Parameters:
1459: + A - `MATNEST` matrix
1460: . nr - number of nested row blocks
1461: . is_row - index sets for each nested row block, or `NULL` to make contiguous
1462: . nc - number of nested column blocks
1463: . is_col - index sets for each nested column block, or `NULL` to make contiguous
1464: - a - array of nr*nc submatrices, or `NULL`
1466: Level: advanced
1468: Notes:
1469: This always resets any block matrix information previously set.
1470: Pass `NULL` in the corresponding entry of `a` for an empty block.
1472: In both C and Fortran, `a` must be a row-major order array containing the matrices. See
1473: `MatCreateNest()` for an example.
1475: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatCreateNest()`, `MatNestSetSubMat()`, `MatNestGetSubMat()`, `MatNestGetSubMats()`
1476: @*/
1477: PetscErrorCode MatNestSetSubMats(Mat A, PetscInt nr, const IS is_row[], PetscInt nc, const IS is_col[], const Mat a[])
1478: {
1479: PetscFunctionBegin;
1482: PetscCheck(nr >= 0, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Number of rows cannot be negative");
1483: if (nr && is_row) {
1484: PetscAssertPointer(is_row, 3);
1486: }
1488: PetscCheck(nc >= 0, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Number of columns cannot be negative");
1489: if (nc && is_col) {
1490: PetscAssertPointer(is_col, 5);
1492: }
1493: PetscTryMethod(A, "MatNestSetSubMats_C", (Mat, PetscInt, const IS[], PetscInt, const IS[], const Mat[]), (A, nr, is_row, nc, is_col, a));
1494: PetscFunctionReturn(PETSC_SUCCESS);
1495: }
1497: static PetscErrorCode MatNestCreateAggregateL2G_Private(Mat A, PetscInt n, const IS islocal[], const IS isglobal[], PetscBool colflg, ISLocalToGlobalMapping *ltog)
1498: {
1499: PetscBool flg;
1500: PetscInt i, j, m, mi, *ix;
1502: PetscFunctionBegin;
1503: *ltog = NULL;
1504: for (i = 0, m = 0, flg = PETSC_FALSE; i < n; i++) {
1505: if (islocal[i]) {
1506: PetscCall(ISGetLocalSize(islocal[i], &mi));
1507: flg = PETSC_TRUE; /* We found a non-trivial entry */
1508: } else {
1509: PetscCall(ISGetLocalSize(isglobal[i], &mi));
1510: }
1511: m += mi;
1512: }
1513: if (!flg) PetscFunctionReturn(PETSC_SUCCESS);
1515: PetscCall(PetscMalloc1(m, &ix));
1516: for (i = 0, m = 0; i < n; i++) {
1517: ISLocalToGlobalMapping smap = NULL;
1518: Mat sub = NULL;
1519: PetscSF sf;
1520: PetscLayout map;
1521: const PetscInt *ix2;
1523: if (!colflg) {
1524: PetscCall(MatNestFindNonzeroSubMatRow(A, i, &sub));
1525: } else {
1526: PetscCall(MatNestFindNonzeroSubMatCol(A, i, &sub));
1527: }
1528: if (sub) {
1529: if (!colflg) {
1530: PetscCall(MatGetLocalToGlobalMapping(sub, &smap, NULL));
1531: } else {
1532: PetscCall(MatGetLocalToGlobalMapping(sub, NULL, &smap));
1533: }
1534: }
1535: /*
1536: Now we need to extract the monolithic global indices that correspond to the given split global indices.
1537: In many/most cases, we only want MatGetLocalSubMatrix() to work, in which case we only need to know the size of the local spaces.
1538: */
1539: PetscCall(ISGetIndices(isglobal[i], &ix2));
1540: if (islocal[i]) {
1541: PetscInt *ilocal, *iremote;
1542: PetscInt mil, nleaves;
1544: PetscCall(ISGetLocalSize(islocal[i], &mi));
1545: PetscCheck(smap, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "Missing local to global map");
1546: for (j = 0; j < mi; j++) ix[m + j] = j;
1547: PetscCall(ISLocalToGlobalMappingApply(smap, mi, ix + m, ix + m));
1549: /* PetscSFSetGraphLayout does not like negative indices */
1550: PetscCall(PetscMalloc2(mi, &ilocal, mi, &iremote));
1551: for (j = 0, nleaves = 0; j < mi; j++) {
1552: if (ix[m + j] < 0) continue;
1553: ilocal[nleaves] = j;
1554: iremote[nleaves] = ix[m + j];
1555: nleaves++;
1556: }
1557: PetscCall(ISGetLocalSize(isglobal[i], &mil));
1558: PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)A), &sf));
1559: PetscCall(PetscLayoutCreate(PetscObjectComm((PetscObject)A), &map));
1560: PetscCall(PetscLayoutSetLocalSize(map, mil));
1561: PetscCall(PetscLayoutSetUp(map));
1562: PetscCall(PetscSFSetGraphLayout(sf, map, nleaves, ilocal, PETSC_USE_POINTER, iremote));
1563: PetscCall(PetscLayoutDestroy(&map));
1564: PetscCall(PetscSFBcastBegin(sf, MPIU_INT, ix2, ix + m, MPI_REPLACE));
1565: PetscCall(PetscSFBcastEnd(sf, MPIU_INT, ix2, ix + m, MPI_REPLACE));
1566: PetscCall(PetscSFDestroy(&sf));
1567: PetscCall(PetscFree2(ilocal, iremote));
1568: } else {
1569: PetscCall(ISGetLocalSize(isglobal[i], &mi));
1570: for (j = 0; j < mi; j++) ix[m + j] = ix2[i];
1571: }
1572: PetscCall(ISRestoreIndices(isglobal[i], &ix2));
1573: m += mi;
1574: }
1575: PetscCall(ISLocalToGlobalMappingCreate(PetscObjectComm((PetscObject)A), 1, m, ix, PETSC_OWN_POINTER, ltog));
1576: PetscFunctionReturn(PETSC_SUCCESS);
1577: }
1579: /* If an IS was provided, there is nothing Nest needs to do, otherwise Nest will build a strided IS */
1580: /*
1581: nprocessors = NP
1582: Nest x^T = ((g_0,g_1,...g_nprocs-1), (h_0,h_1,...h_NP-1))
1583: proc 0: => (g_0,h_0,)
1584: proc 1: => (g_1,h_1,)
1585: ...
1586: proc nprocs-1: => (g_NP-1,h_NP-1,)
1588: proc 0: proc 1: proc nprocs-1:
1589: is[0] = (0,1,2,...,nlocal(g_0)-1) (0,1,...,nlocal(g_1)-1) (0,1,...,nlocal(g_NP-1))
1591: proc 0:
1592: is[1] = (nlocal(g_0),nlocal(g_0)+1,...,nlocal(g_0)+nlocal(h_0)-1)
1593: proc 1:
1594: is[1] = (nlocal(g_1),nlocal(g_1)+1,...,nlocal(g_1)+nlocal(h_1)-1)
1596: proc NP-1:
1597: is[1] = (nlocal(g_NP-1),nlocal(g_NP-1)+1,...,nlocal(g_NP-1)+nlocal(h_NP-1)-1)
1598: */
1599: static PetscErrorCode MatSetUp_NestIS_Private(Mat A, PetscInt nr, const IS is_row[], PetscInt nc, const IS is_col[])
1600: {
1601: Mat_Nest *vs = (Mat_Nest *)A->data;
1602: PetscInt i, j, offset, n, nsum, bs;
1603: Mat sub = NULL;
1605: PetscFunctionBegin;
1606: PetscCall(PetscMalloc1(nr, &vs->isglobal.row));
1607: PetscCall(PetscMalloc1(nc, &vs->isglobal.col));
1608: if (is_row) { /* valid IS is passed in */
1609: /* refs on is[] are incremented */
1610: for (i = 0; i < vs->nr; i++) {
1611: PetscCall(PetscObjectReference((PetscObject)is_row[i]));
1613: vs->isglobal.row[i] = is_row[i];
1614: }
1615: } else { /* Create the ISs by inspecting sizes of a submatrix in each row */
1616: nsum = 0;
1617: for (i = 0; i < vs->nr; i++) { /* Add up the local sizes to compute the aggregate offset */
1618: PetscCall(MatNestFindNonzeroSubMatRow(A, i, &sub));
1619: PetscCheck(sub, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "No nonzero submatrix in row %" PetscInt_FMT, i);
1620: PetscCall(MatGetLocalSize(sub, &n, NULL));
1621: PetscCheck(n >= 0, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Sizes have not yet been set for submatrix");
1622: nsum += n;
1623: }
1624: PetscCallMPI(MPI_Scan(&nsum, &offset, 1, MPIU_INT, MPI_SUM, PetscObjectComm((PetscObject)A)));
1625: offset -= nsum;
1626: for (i = 0; i < vs->nr; i++) {
1627: PetscCall(MatNestFindNonzeroSubMatRow(A, i, &sub));
1628: PetscCall(MatGetLocalSize(sub, &n, NULL));
1629: PetscCall(MatGetBlockSizes(sub, &bs, NULL));
1630: PetscCall(ISCreateStride(PetscObjectComm((PetscObject)sub), n, offset, 1, &vs->isglobal.row[i]));
1631: PetscCall(ISSetBlockSize(vs->isglobal.row[i], bs));
1632: offset += n;
1633: }
1634: }
1636: if (is_col) { /* valid IS is passed in */
1637: /* refs on is[] are incremented */
1638: for (j = 0; j < vs->nc; j++) {
1639: PetscCall(PetscObjectReference((PetscObject)is_col[j]));
1641: vs->isglobal.col[j] = is_col[j];
1642: }
1643: } else { /* Create the ISs by inspecting sizes of a submatrix in each column */
1644: offset = A->cmap->rstart;
1645: nsum = 0;
1646: for (j = 0; j < vs->nc; j++) {
1647: PetscCall(MatNestFindNonzeroSubMatCol(A, j, &sub));
1648: PetscCheck(sub, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "No nonzero submatrix in column %" PetscInt_FMT, i);
1649: PetscCall(MatGetLocalSize(sub, NULL, &n));
1650: PetscCheck(n >= 0, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Sizes have not yet been set for submatrix");
1651: nsum += n;
1652: }
1653: PetscCallMPI(MPI_Scan(&nsum, &offset, 1, MPIU_INT, MPI_SUM, PetscObjectComm((PetscObject)A)));
1654: offset -= nsum;
1655: for (j = 0; j < vs->nc; j++) {
1656: PetscCall(MatNestFindNonzeroSubMatCol(A, j, &sub));
1657: PetscCall(MatGetLocalSize(sub, NULL, &n));
1658: PetscCall(MatGetBlockSizes(sub, NULL, &bs));
1659: PetscCall(ISCreateStride(PetscObjectComm((PetscObject)sub), n, offset, 1, &vs->isglobal.col[j]));
1660: PetscCall(ISSetBlockSize(vs->isglobal.col[j], bs));
1661: offset += n;
1662: }
1663: }
1665: /* Set up the local ISs */
1666: PetscCall(PetscMalloc1(vs->nr, &vs->islocal.row));
1667: PetscCall(PetscMalloc1(vs->nc, &vs->islocal.col));
1668: for (i = 0, offset = 0; i < vs->nr; i++) {
1669: IS isloc;
1670: ISLocalToGlobalMapping rmap = NULL;
1671: PetscInt nlocal, bs;
1672: PetscCall(MatNestFindNonzeroSubMatRow(A, i, &sub));
1673: if (sub) PetscCall(MatGetLocalToGlobalMapping(sub, &rmap, NULL));
1674: if (rmap) {
1675: PetscCall(MatGetBlockSizes(sub, &bs, NULL));
1676: PetscCall(ISLocalToGlobalMappingGetSize(rmap, &nlocal));
1677: PetscCall(ISCreateStride(PETSC_COMM_SELF, nlocal, offset, 1, &isloc));
1678: PetscCall(ISSetBlockSize(isloc, bs));
1679: } else {
1680: nlocal = 0;
1681: isloc = NULL;
1682: }
1683: vs->islocal.row[i] = isloc;
1684: offset += nlocal;
1685: }
1686: for (i = 0, offset = 0; i < vs->nc; i++) {
1687: IS isloc;
1688: ISLocalToGlobalMapping cmap = NULL;
1689: PetscInt nlocal, bs;
1690: PetscCall(MatNestFindNonzeroSubMatCol(A, i, &sub));
1691: if (sub) PetscCall(MatGetLocalToGlobalMapping(sub, NULL, &cmap));
1692: if (cmap) {
1693: PetscCall(MatGetBlockSizes(sub, NULL, &bs));
1694: PetscCall(ISLocalToGlobalMappingGetSize(cmap, &nlocal));
1695: PetscCall(ISCreateStride(PETSC_COMM_SELF, nlocal, offset, 1, &isloc));
1696: PetscCall(ISSetBlockSize(isloc, bs));
1697: } else {
1698: nlocal = 0;
1699: isloc = NULL;
1700: }
1701: vs->islocal.col[i] = isloc;
1702: offset += nlocal;
1703: }
1705: /* Set up the aggregate ISLocalToGlobalMapping */
1706: {
1707: ISLocalToGlobalMapping rmap, cmap;
1708: PetscCall(MatNestCreateAggregateL2G_Private(A, vs->nr, vs->islocal.row, vs->isglobal.row, PETSC_FALSE, &rmap));
1709: PetscCall(MatNestCreateAggregateL2G_Private(A, vs->nc, vs->islocal.col, vs->isglobal.col, PETSC_TRUE, &cmap));
1710: if (rmap && cmap) PetscCall(MatSetLocalToGlobalMapping(A, rmap, cmap));
1711: PetscCall(ISLocalToGlobalMappingDestroy(&rmap));
1712: PetscCall(ISLocalToGlobalMappingDestroy(&cmap));
1713: }
1715: if (PetscDefined(USE_DEBUG)) {
1716: for (i = 0; i < vs->nr; i++) {
1717: for (j = 0; j < vs->nc; j++) {
1718: PetscInt m, n, M, N, mi, ni, Mi, Ni;
1719: Mat B = vs->m[i][j];
1720: if (!B) continue;
1721: PetscCall(MatGetSize(B, &M, &N));
1722: PetscCall(MatGetLocalSize(B, &m, &n));
1723: PetscCall(ISGetSize(vs->isglobal.row[i], &Mi));
1724: PetscCall(ISGetSize(vs->isglobal.col[j], &Ni));
1725: PetscCall(ISGetLocalSize(vs->isglobal.row[i], &mi));
1726: PetscCall(ISGetLocalSize(vs->isglobal.col[j], &ni));
1727: PetscCheck(M == Mi && N == Ni, PetscObjectComm((PetscObject)sub), PETSC_ERR_ARG_INCOMP, "Global sizes (%" PetscInt_FMT ",%" PetscInt_FMT ") of nested submatrix (%" PetscInt_FMT ",%" PetscInt_FMT ") do not agree with space defined by index sets (%" PetscInt_FMT ",%" PetscInt_FMT ")", M, N, i, j, Mi, Ni);
1728: PetscCheck(m == mi && n == ni, PetscObjectComm((PetscObject)sub), PETSC_ERR_ARG_INCOMP, "Local sizes (%" PetscInt_FMT ",%" PetscInt_FMT ") of nested submatrix (%" PetscInt_FMT ",%" PetscInt_FMT ") do not agree with space defined by index sets (%" PetscInt_FMT ",%" PetscInt_FMT ")", m, n, i, j, mi, ni);
1729: }
1730: }
1731: }
1733: /* Set A->assembled if all non-null blocks are currently assembled */
1734: for (i = 0; i < vs->nr; i++) {
1735: for (j = 0; j < vs->nc; j++) {
1736: if (vs->m[i][j] && !vs->m[i][j]->assembled) PetscFunctionReturn(PETSC_SUCCESS);
1737: }
1738: }
1739: A->assembled = PETSC_TRUE;
1740: PetscFunctionReturn(PETSC_SUCCESS);
1741: }
1743: /*@C
1744: MatCreateNest - Creates a new `MATNEST` matrix containing several nested submatrices, each stored separately
1746: Collective
1748: Input Parameters:
1749: + comm - Communicator for the new `MATNEST`
1750: . nr - number of nested row blocks
1751: . is_row - index sets for each nested row block, or `NULL` to make contiguous
1752: . nc - number of nested column blocks
1753: . is_col - index sets for each nested column block, or `NULL` to make contiguous
1754: - a - array of nr*nc submatrices, empty submatrices can be passed using `NULL`
1756: Output Parameter:
1757: . B - new matrix
1759: Note:
1760: In both C and Fortran, `a` must be a row-major order array holding references to the matrices.
1761: For instance, to represent the matrix
1762: $\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22}\end{bmatrix}$
1763: one should use `Mat a[4]={A11,A12,A21,A22}`.
1765: Level: advanced
1767: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatCreate()`, `VecCreateNest()`, `DMCreateMatrix()`, `MatNestSetSubMat()`,
1768: `MatNestGetSubMat()`, `MatNestGetLocalISs()`, `MatNestGetSize()`,
1769: `MatNestGetISs()`, `MatNestSetSubMats()`, `MatNestGetSubMats()`
1770: @*/
1771: PetscErrorCode MatCreateNest(MPI_Comm comm, PetscInt nr, const IS is_row[], PetscInt nc, const IS is_col[], const Mat a[], Mat *B)
1772: {
1773: PetscFunctionBegin;
1774: PetscCall(MatCreate(comm, B));
1775: PetscCall(MatSetType(*B, MATNEST));
1776: (*B)->preallocated = PETSC_TRUE;
1777: PetscCall(MatNestSetSubMats(*B, nr, is_row, nc, is_col, a));
1778: PetscFunctionReturn(PETSC_SUCCESS);
1779: }
1781: static PetscErrorCode MatConvert_Nest_SeqAIJ_fast(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
1782: {
1783: Mat_Nest *nest = (Mat_Nest *)A->data;
1784: Mat *trans;
1785: PetscScalar **avv;
1786: PetscScalar *vv;
1787: PetscInt **aii, **ajj;
1788: PetscInt *ii, *jj, *ci;
1789: PetscInt nr, nc, nnz, i, j;
1790: PetscBool done;
1792: PetscFunctionBegin;
1793: PetscCall(MatGetSize(A, &nr, &nc));
1794: if (reuse == MAT_REUSE_MATRIX) {
1795: PetscInt rnr;
1797: PetscCall(MatGetRowIJ(*newmat, 0, PETSC_FALSE, PETSC_FALSE, &rnr, (const PetscInt **)&ii, (const PetscInt **)&jj, &done));
1798: PetscCheck(done, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "MatGetRowIJ");
1799: PetscCheck(rnr == nr, PetscObjectComm((PetscObject)A), PETSC_ERR_USER, "Cannot reuse matrix, wrong number of rows");
1800: PetscCall(MatSeqAIJGetArray(*newmat, &vv));
1801: }
1802: /* extract CSR for nested SeqAIJ matrices */
1803: nnz = 0;
1804: PetscCall(PetscCalloc4(nest->nr * nest->nc, &aii, nest->nr * nest->nc, &ajj, nest->nr * nest->nc, &avv, nest->nr * nest->nc, &trans));
1805: for (i = 0; i < nest->nr; ++i) {
1806: for (j = 0; j < nest->nc; ++j) {
1807: Mat B = nest->m[i][j];
1808: if (B) {
1809: PetscScalar *naa;
1810: PetscInt *nii, *njj, nnr;
1811: PetscBool istrans;
1813: PetscCall(PetscObjectTypeCompare((PetscObject)B, MATTRANSPOSEVIRTUAL, &istrans));
1814: if (istrans) {
1815: Mat Bt;
1817: PetscCall(MatTransposeGetMat(B, &Bt));
1818: PetscCall(MatTranspose(Bt, MAT_INITIAL_MATRIX, &trans[i * nest->nc + j]));
1819: B = trans[i * nest->nc + j];
1820: } else {
1821: PetscCall(PetscObjectTypeCompare((PetscObject)B, MATHERMITIANTRANSPOSEVIRTUAL, &istrans));
1822: if (istrans) {
1823: Mat Bt;
1825: PetscCall(MatHermitianTransposeGetMat(B, &Bt));
1826: PetscCall(MatHermitianTranspose(Bt, MAT_INITIAL_MATRIX, &trans[i * nest->nc + j]));
1827: B = trans[i * nest->nc + j];
1828: }
1829: }
1830: PetscCall(MatGetRowIJ(B, 0, PETSC_FALSE, PETSC_FALSE, &nnr, (const PetscInt **)&nii, (const PetscInt **)&njj, &done));
1831: PetscCheck(done, PetscObjectComm((PetscObject)B), PETSC_ERR_PLIB, "MatGetRowIJ");
1832: PetscCall(MatSeqAIJGetArray(B, &naa));
1833: nnz += nii[nnr];
1835: aii[i * nest->nc + j] = nii;
1836: ajj[i * nest->nc + j] = njj;
1837: avv[i * nest->nc + j] = naa;
1838: }
1839: }
1840: }
1841: if (reuse != MAT_REUSE_MATRIX) {
1842: PetscCall(PetscMalloc1(nr + 1, &ii));
1843: PetscCall(PetscMalloc1(nnz, &jj));
1844: PetscCall(PetscMalloc1(nnz, &vv));
1845: } else {
1846: PetscCheck(nnz == ii[nr], PetscObjectComm((PetscObject)A), PETSC_ERR_USER, "Cannot reuse matrix, wrong number of nonzeros");
1847: }
1849: /* new row pointer */
1850: PetscCall(PetscArrayzero(ii, nr + 1));
1851: for (i = 0; i < nest->nr; ++i) {
1852: PetscInt ncr, rst;
1854: PetscCall(ISStrideGetInfo(nest->isglobal.row[i], &rst, NULL));
1855: PetscCall(ISGetLocalSize(nest->isglobal.row[i], &ncr));
1856: for (j = 0; j < nest->nc; ++j) {
1857: if (aii[i * nest->nc + j]) {
1858: PetscInt *nii = aii[i * nest->nc + j];
1859: PetscInt ir;
1861: for (ir = rst; ir < ncr + rst; ++ir) {
1862: ii[ir + 1] += nii[1] - nii[0];
1863: nii++;
1864: }
1865: }
1866: }
1867: }
1868: for (i = 0; i < nr; i++) ii[i + 1] += ii[i];
1870: /* construct CSR for the new matrix */
1871: PetscCall(PetscCalloc1(nr, &ci));
1872: for (i = 0; i < nest->nr; ++i) {
1873: PetscInt ncr, rst;
1875: PetscCall(ISStrideGetInfo(nest->isglobal.row[i], &rst, NULL));
1876: PetscCall(ISGetLocalSize(nest->isglobal.row[i], &ncr));
1877: for (j = 0; j < nest->nc; ++j) {
1878: if (aii[i * nest->nc + j]) {
1879: PetscScalar *nvv = avv[i * nest->nc + j], vscale = 1.0, vshift = 0.0;
1880: PetscInt *nii = aii[i * nest->nc + j];
1881: PetscInt *njj = ajj[i * nest->nc + j];
1882: PetscInt ir, cst;
1884: if (trans[i * nest->nc + j]) {
1885: vscale = ((Mat_Shell *)nest->m[i][j]->data)->vscale;
1886: vshift = ((Mat_Shell *)nest->m[i][j]->data)->vshift;
1887: }
1888: PetscCall(ISStrideGetInfo(nest->isglobal.col[j], &cst, NULL));
1889: for (ir = rst; ir < ncr + rst; ++ir) {
1890: PetscInt ij, rsize = nii[1] - nii[0], ist = ii[ir] + ci[ir];
1892: for (ij = 0; ij < rsize; ij++) {
1893: jj[ist + ij] = *njj + cst;
1894: vv[ist + ij] = vscale * *nvv;
1895: if (PetscUnlikely(vshift != 0.0 && *njj == ir - rst)) vv[ist + ij] += vshift;
1896: njj++;
1897: nvv++;
1898: }
1899: ci[ir] += rsize;
1900: nii++;
1901: }
1902: }
1903: }
1904: }
1905: PetscCall(PetscFree(ci));
1907: /* restore info */
1908: for (i = 0; i < nest->nr; ++i) {
1909: for (j = 0; j < nest->nc; ++j) {
1910: Mat B = nest->m[i][j];
1911: if (B) {
1912: PetscInt nnr = 0, k = i * nest->nc + j;
1914: B = (trans[k] ? trans[k] : B);
1915: PetscCall(MatRestoreRowIJ(B, 0, PETSC_FALSE, PETSC_FALSE, &nnr, (const PetscInt **)&aii[k], (const PetscInt **)&ajj[k], &done));
1916: PetscCheck(done, PetscObjectComm((PetscObject)B), PETSC_ERR_PLIB, "MatRestoreRowIJ");
1917: PetscCall(MatSeqAIJRestoreArray(B, &avv[k]));
1918: PetscCall(MatDestroy(&trans[k]));
1919: }
1920: }
1921: }
1922: PetscCall(PetscFree4(aii, ajj, avv, trans));
1924: /* finalize newmat */
1925: if (reuse == MAT_INITIAL_MATRIX) {
1926: PetscCall(MatCreateSeqAIJWithArrays(PetscObjectComm((PetscObject)A), nr, nc, ii, jj, vv, newmat));
1927: } else if (reuse == MAT_INPLACE_MATRIX) {
1928: Mat B;
1930: PetscCall(MatCreateSeqAIJWithArrays(PetscObjectComm((PetscObject)A), nr, nc, ii, jj, vv, &B));
1931: PetscCall(MatHeaderReplace(A, &B));
1932: }
1933: PetscCall(MatAssemblyBegin(*newmat, MAT_FINAL_ASSEMBLY));
1934: PetscCall(MatAssemblyEnd(*newmat, MAT_FINAL_ASSEMBLY));
1935: {
1936: Mat_SeqAIJ *a = (Mat_SeqAIJ *)((*newmat)->data);
1937: a->free_a = PETSC_TRUE;
1938: a->free_ij = PETSC_TRUE;
1939: }
1940: PetscFunctionReturn(PETSC_SUCCESS);
1941: }
1943: PETSC_INTERN PetscErrorCode MatAXPY_Dense_Nest(Mat Y, PetscScalar a, Mat X)
1944: {
1945: Mat_Nest *nest = (Mat_Nest *)X->data;
1946: PetscInt i, j, k, rstart;
1947: PetscBool flg;
1949: PetscFunctionBegin;
1950: /* Fill by row */
1951: for (j = 0; j < nest->nc; ++j) {
1952: /* Using global column indices and ISAllGather() is not scalable. */
1953: IS bNis;
1954: PetscInt bN;
1955: const PetscInt *bNindices;
1956: PetscCall(ISAllGather(nest->isglobal.col[j], &bNis));
1957: PetscCall(ISGetSize(bNis, &bN));
1958: PetscCall(ISGetIndices(bNis, &bNindices));
1959: for (i = 0; i < nest->nr; ++i) {
1960: Mat B = nest->m[i][j], D = NULL;
1961: PetscInt bm, br;
1962: const PetscInt *bmindices;
1963: if (!B) continue;
1964: PetscCall(PetscObjectTypeCompareAny((PetscObject)B, &flg, MATTRANSPOSEVIRTUAL, MATHERMITIANTRANSPOSEVIRTUAL, ""));
1965: if (flg) {
1966: PetscTryMethod(B, "MatTransposeGetMat_C", (Mat, Mat *), (B, &D));
1967: PetscTryMethod(B, "MatHermitianTransposeGetMat_C", (Mat, Mat *), (B, &D));
1968: PetscCall(MatConvert(B, ((PetscObject)D)->type_name, MAT_INITIAL_MATRIX, &D));
1969: B = D;
1970: }
1971: PetscCall(PetscObjectTypeCompareAny((PetscObject)B, &flg, MATSEQSBAIJ, MATMPISBAIJ, ""));
1972: if (flg) {
1973: if (D) PetscCall(MatConvert(D, MATBAIJ, MAT_INPLACE_MATRIX, &D));
1974: else PetscCall(MatConvert(B, MATBAIJ, MAT_INITIAL_MATRIX, &D));
1975: B = D;
1976: }
1977: PetscCall(ISGetLocalSize(nest->isglobal.row[i], &bm));
1978: PetscCall(ISGetIndices(nest->isglobal.row[i], &bmindices));
1979: PetscCall(MatGetOwnershipRange(B, &rstart, NULL));
1980: for (br = 0; br < bm; ++br) {
1981: PetscInt row = bmindices[br], brncols, *cols;
1982: const PetscInt *brcols;
1983: const PetscScalar *brcoldata;
1984: PetscScalar *vals = NULL;
1985: PetscCall(MatGetRow(B, br + rstart, &brncols, &brcols, &brcoldata));
1986: PetscCall(PetscMalloc1(brncols, &cols));
1987: for (k = 0; k < brncols; k++) cols[k] = bNindices[brcols[k]];
1988: /*
1989: Nest blocks are required to be nonoverlapping -- otherwise nest and monolithic index layouts wouldn't match.
1990: Thus, we could use INSERT_VALUES, but I prefer ADD_VALUES.
1991: */
1992: if (a != 1.0) {
1993: PetscCall(PetscMalloc1(brncols, &vals));
1994: for (k = 0; k < brncols; k++) vals[k] = a * brcoldata[k];
1995: PetscCall(MatSetValues(Y, 1, &row, brncols, cols, vals, ADD_VALUES));
1996: PetscCall(PetscFree(vals));
1997: } else {
1998: PetscCall(MatSetValues(Y, 1, &row, brncols, cols, brcoldata, ADD_VALUES));
1999: }
2000: PetscCall(MatRestoreRow(B, br + rstart, &brncols, &brcols, &brcoldata));
2001: PetscCall(PetscFree(cols));
2002: }
2003: if (D) PetscCall(MatDestroy(&D));
2004: PetscCall(ISRestoreIndices(nest->isglobal.row[i], &bmindices));
2005: }
2006: PetscCall(ISRestoreIndices(bNis, &bNindices));
2007: PetscCall(ISDestroy(&bNis));
2008: }
2009: PetscCall(MatAssemblyBegin(Y, MAT_FINAL_ASSEMBLY));
2010: PetscCall(MatAssemblyEnd(Y, MAT_FINAL_ASSEMBLY));
2011: PetscFunctionReturn(PETSC_SUCCESS);
2012: }
2014: static PetscErrorCode MatConvert_Nest_AIJ(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
2015: {
2016: Mat_Nest *nest = (Mat_Nest *)A->data;
2017: PetscInt m, n, M, N, i, j, k, *dnnz, *onnz = NULL, rstart, cstart, cend;
2018: PetscMPIInt size;
2019: Mat C;
2021: PetscFunctionBegin;
2022: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)A), &size));
2023: if (size == 1) { /* look for a special case with SeqAIJ matrices and strided-1, contiguous, blocks */
2024: PetscInt nf;
2025: PetscBool fast;
2027: PetscCall(PetscStrcmp(newtype, MATAIJ, &fast));
2028: if (!fast) PetscCall(PetscStrcmp(newtype, MATSEQAIJ, &fast));
2029: for (i = 0; i < nest->nr && fast; ++i) {
2030: for (j = 0; j < nest->nc && fast; ++j) {
2031: Mat B = nest->m[i][j];
2032: if (B) {
2033: PetscCall(PetscObjectTypeCompare((PetscObject)B, MATSEQAIJ, &fast));
2034: if (!fast) {
2035: PetscBool istrans;
2037: PetscCall(PetscObjectTypeCompare((PetscObject)B, MATTRANSPOSEVIRTUAL, &istrans));
2038: if (istrans) {
2039: Mat Bt;
2041: PetscCall(MatTransposeGetMat(B, &Bt));
2042: PetscCall(PetscObjectTypeCompare((PetscObject)Bt, MATSEQAIJ, &fast));
2043: } else {
2044: PetscCall(PetscObjectTypeCompare((PetscObject)B, MATHERMITIANTRANSPOSEVIRTUAL, &istrans));
2045: if (istrans) {
2046: Mat Bt;
2048: PetscCall(MatHermitianTransposeGetMat(B, &Bt));
2049: PetscCall(PetscObjectTypeCompare((PetscObject)Bt, MATSEQAIJ, &fast));
2050: }
2051: }
2052: if (fast) fast = (PetscBool)(!((Mat_Shell *)B->data)->zrows && !((Mat_Shell *)B->data)->zcols && !((Mat_Shell *)B->data)->axpy && !((Mat_Shell *)B->data)->left && !((Mat_Shell *)B->data)->right && !((Mat_Shell *)B->data)->dshift);
2053: }
2054: }
2055: }
2056: }
2057: for (i = 0, nf = 0; i < nest->nr && fast; ++i) {
2058: PetscCall(PetscObjectTypeCompare((PetscObject)nest->isglobal.row[i], ISSTRIDE, &fast));
2059: if (fast) {
2060: PetscInt f, s;
2062: PetscCall(ISStrideGetInfo(nest->isglobal.row[i], &f, &s));
2063: if (f != nf || s != 1) {
2064: fast = PETSC_FALSE;
2065: } else {
2066: PetscCall(ISGetSize(nest->isglobal.row[i], &f));
2067: nf += f;
2068: }
2069: }
2070: }
2071: for (i = 0, nf = 0; i < nest->nc && fast; ++i) {
2072: PetscCall(PetscObjectTypeCompare((PetscObject)nest->isglobal.col[i], ISSTRIDE, &fast));
2073: if (fast) {
2074: PetscInt f, s;
2076: PetscCall(ISStrideGetInfo(nest->isglobal.col[i], &f, &s));
2077: if (f != nf || s != 1) {
2078: fast = PETSC_FALSE;
2079: } else {
2080: PetscCall(ISGetSize(nest->isglobal.col[i], &f));
2081: nf += f;
2082: }
2083: }
2084: }
2085: if (fast) {
2086: PetscCall(MatConvert_Nest_SeqAIJ_fast(A, newtype, reuse, newmat));
2087: PetscFunctionReturn(PETSC_SUCCESS);
2088: }
2089: }
2090: PetscCall(MatGetSize(A, &M, &N));
2091: PetscCall(MatGetLocalSize(A, &m, &n));
2092: PetscCall(MatGetOwnershipRangeColumn(A, &cstart, &cend));
2093: if (reuse == MAT_REUSE_MATRIX) C = *newmat;
2094: else {
2095: PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &C));
2096: PetscCall(MatSetType(C, newtype));
2097: PetscCall(MatSetSizes(C, m, n, M, N));
2098: }
2099: PetscCall(PetscMalloc1(2 * m, &dnnz));
2100: if (m) {
2101: onnz = dnnz + m;
2102: for (k = 0; k < m; k++) {
2103: dnnz[k] = 0;
2104: onnz[k] = 0;
2105: }
2106: }
2107: for (j = 0; j < nest->nc; ++j) {
2108: IS bNis;
2109: PetscInt bN;
2110: const PetscInt *bNindices;
2111: PetscBool flg;
2112: /* Using global column indices and ISAllGather() is not scalable. */
2113: PetscCall(ISAllGather(nest->isglobal.col[j], &bNis));
2114: PetscCall(ISGetSize(bNis, &bN));
2115: PetscCall(ISGetIndices(bNis, &bNindices));
2116: for (i = 0; i < nest->nr; ++i) {
2117: PetscSF bmsf;
2118: PetscSFNode *iremote;
2119: Mat B = nest->m[i][j], D = NULL;
2120: PetscInt bm, *sub_dnnz, *sub_onnz, br;
2121: const PetscInt *bmindices;
2122: if (!B) continue;
2123: PetscCall(ISGetLocalSize(nest->isglobal.row[i], &bm));
2124: PetscCall(ISGetIndices(nest->isglobal.row[i], &bmindices));
2125: PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)A), &bmsf));
2126: PetscCall(PetscMalloc1(bm, &iremote));
2127: PetscCall(PetscMalloc1(bm, &sub_dnnz));
2128: PetscCall(PetscMalloc1(bm, &sub_onnz));
2129: for (k = 0; k < bm; ++k) {
2130: sub_dnnz[k] = 0;
2131: sub_onnz[k] = 0;
2132: }
2133: PetscCall(PetscObjectTypeCompareAny((PetscObject)B, &flg, MATTRANSPOSEVIRTUAL, MATHERMITIANTRANSPOSEVIRTUAL, ""));
2134: if (flg) {
2135: PetscTryMethod(B, "MatTransposeGetMat_C", (Mat, Mat *), (B, &D));
2136: PetscTryMethod(B, "MatHermitianTransposeGetMat_C", (Mat, Mat *), (B, &D));
2137: PetscCall(MatConvert(B, ((PetscObject)D)->type_name, MAT_INITIAL_MATRIX, &D));
2138: B = D;
2139: }
2140: PetscCall(PetscObjectTypeCompareAny((PetscObject)B, &flg, MATSEQSBAIJ, MATMPISBAIJ, ""));
2141: if (flg) {
2142: if (D) PetscCall(MatConvert(D, MATBAIJ, MAT_INPLACE_MATRIX, &D));
2143: else PetscCall(MatConvert(B, MATBAIJ, MAT_INITIAL_MATRIX, &D));
2144: B = D;
2145: }
2146: /*
2147: Locate the owners for all of the locally-owned global row indices for this row block.
2148: These determine the roots of PetscSF used to communicate preallocation data to row owners.
2149: The roots correspond to the dnnz and onnz entries; thus, there are two roots per row.
2150: */
2151: PetscCall(MatGetOwnershipRange(B, &rstart, NULL));
2152: for (br = 0; br < bm; ++br) {
2153: PetscInt row = bmindices[br], brncols, col;
2154: const PetscInt *brcols;
2155: PetscInt rowrel = 0; /* row's relative index on its owner rank */
2156: PetscMPIInt rowowner = 0;
2157: PetscCall(PetscLayoutFindOwnerIndex(A->rmap, row, &rowowner, &rowrel));
2158: /* how many roots */
2159: iremote[br].rank = rowowner;
2160: iremote[br].index = rowrel; /* edge from bmdnnz to dnnz */
2161: /* get nonzero pattern */
2162: PetscCall(MatGetRow(B, br + rstart, &brncols, &brcols, NULL));
2163: for (k = 0; k < brncols; k++) {
2164: col = bNindices[brcols[k]];
2165: if (col >= A->cmap->range[rowowner] && col < A->cmap->range[rowowner + 1]) {
2166: sub_dnnz[br]++;
2167: } else {
2168: sub_onnz[br]++;
2169: }
2170: }
2171: PetscCall(MatRestoreRow(B, br + rstart, &brncols, &brcols, NULL));
2172: }
2173: if (D) PetscCall(MatDestroy(&D));
2174: PetscCall(ISRestoreIndices(nest->isglobal.row[i], &bmindices));
2175: /* bsf will have to take care of disposing of bedges. */
2176: PetscCall(PetscSFSetGraph(bmsf, m, bm, NULL, PETSC_OWN_POINTER, iremote, PETSC_OWN_POINTER));
2177: PetscCall(PetscSFReduceBegin(bmsf, MPIU_INT, sub_dnnz, dnnz, MPI_SUM));
2178: PetscCall(PetscSFReduceEnd(bmsf, MPIU_INT, sub_dnnz, dnnz, MPI_SUM));
2179: PetscCall(PetscSFReduceBegin(bmsf, MPIU_INT, sub_onnz, onnz, MPI_SUM));
2180: PetscCall(PetscSFReduceEnd(bmsf, MPIU_INT, sub_onnz, onnz, MPI_SUM));
2181: PetscCall(PetscFree(sub_dnnz));
2182: PetscCall(PetscFree(sub_onnz));
2183: PetscCall(PetscSFDestroy(&bmsf));
2184: }
2185: PetscCall(ISRestoreIndices(bNis, &bNindices));
2186: PetscCall(ISDestroy(&bNis));
2187: }
2188: /* Resize preallocation if overestimated */
2189: for (i = 0; i < m; i++) {
2190: dnnz[i] = PetscMin(dnnz[i], A->cmap->n);
2191: onnz[i] = PetscMin(onnz[i], A->cmap->N - A->cmap->n);
2192: }
2193: PetscCall(MatSeqAIJSetPreallocation(C, 0, dnnz));
2194: PetscCall(MatMPIAIJSetPreallocation(C, 0, dnnz, 0, onnz));
2195: PetscCall(PetscFree(dnnz));
2196: PetscCall(MatAXPY_Dense_Nest(C, 1.0, A));
2197: if (reuse == MAT_INPLACE_MATRIX) {
2198: PetscCall(MatHeaderReplace(A, &C));
2199: } else *newmat = C;
2200: PetscFunctionReturn(PETSC_SUCCESS);
2201: }
2203: static PetscErrorCode MatConvert_Nest_Dense(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
2204: {
2205: Mat B;
2206: PetscInt m, n, M, N;
2208: PetscFunctionBegin;
2209: PetscCall(MatGetSize(A, &M, &N));
2210: PetscCall(MatGetLocalSize(A, &m, &n));
2211: if (reuse == MAT_REUSE_MATRIX) {
2212: B = *newmat;
2213: PetscCall(MatZeroEntries(B));
2214: } else {
2215: PetscCall(MatCreateDense(PetscObjectComm((PetscObject)A), m, PETSC_DECIDE, M, N, NULL, &B));
2216: }
2217: PetscCall(MatAXPY_Dense_Nest(B, 1.0, A));
2218: if (reuse == MAT_INPLACE_MATRIX) {
2219: PetscCall(MatHeaderReplace(A, &B));
2220: } else if (reuse == MAT_INITIAL_MATRIX) *newmat = B;
2221: PetscFunctionReturn(PETSC_SUCCESS);
2222: }
2224: static PetscErrorCode MatHasOperation_Nest(Mat mat, MatOperation op, PetscBool *has)
2225: {
2226: Mat_Nest *bA = (Mat_Nest *)mat->data;
2227: MatOperation opAdd;
2228: PetscInt i, j, nr = bA->nr, nc = bA->nc;
2229: PetscBool flg;
2231: PetscFunctionBegin;
2232: *has = PETSC_FALSE;
2233: if (op == MATOP_MULT || op == MATOP_MULT_ADD || op == MATOP_MULT_TRANSPOSE || op == MATOP_MULT_TRANSPOSE_ADD) {
2234: opAdd = (op == MATOP_MULT || op == MATOP_MULT_ADD ? MATOP_MULT_ADD : MATOP_MULT_TRANSPOSE_ADD);
2235: for (j = 0; j < nc; j++) {
2236: for (i = 0; i < nr; i++) {
2237: if (!bA->m[i][j]) continue;
2238: PetscCall(MatHasOperation(bA->m[i][j], opAdd, &flg));
2239: if (!flg) PetscFunctionReturn(PETSC_SUCCESS);
2240: }
2241: }
2242: }
2243: if (((void **)mat->ops)[op]) *has = PETSC_TRUE;
2244: PetscFunctionReturn(PETSC_SUCCESS);
2245: }
2247: /*MC
2248: MATNEST - "nest" - Matrix type consisting of nested submatrices, each stored separately.
2250: Level: intermediate
2252: Notes:
2253: This matrix type permits scalable use of `PCFIELDSPLIT` and avoids the large memory costs of extracting submatrices.
2254: It allows the use of symmetric and block formats for parts of multi-physics simulations.
2255: It is usually used with `DMCOMPOSITE` and `DMCreateMatrix()`
2257: Each of the submatrices lives on the same MPI communicator as the original nest matrix (though they can have zero
2258: rows/columns on some processes.) Thus this is not meant for cases where the submatrices live on far fewer processes
2259: than the nest matrix.
2261: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatCreate()`, `MatType`, `MatCreateNest()`, `MatNestSetSubMat()`, `MatNestGetSubMat()`,
2262: `VecCreateNest()`, `DMCreateMatrix()`, `DMCOMPOSITE`, `MatNestSetVecType()`, `MatNestGetLocalISs()`,
2263: `MatNestGetISs()`, `MatNestSetSubMats()`, `MatNestGetSubMats()`
2264: M*/
2265: PETSC_EXTERN PetscErrorCode MatCreate_Nest(Mat A)
2266: {
2267: Mat_Nest *s;
2269: PetscFunctionBegin;
2270: PetscCall(PetscNew(&s));
2271: A->data = (void *)s;
2273: s->nr = -1;
2274: s->nc = -1;
2275: s->m = NULL;
2276: s->splitassembly = PETSC_FALSE;
2278: PetscCall(PetscMemzero(A->ops, sizeof(*A->ops)));
2280: A->ops->mult = MatMult_Nest;
2281: A->ops->multadd = MatMultAdd_Nest;
2282: A->ops->multtranspose = MatMultTranspose_Nest;
2283: A->ops->multtransposeadd = MatMultTransposeAdd_Nest;
2284: A->ops->transpose = MatTranspose_Nest;
2285: A->ops->multhermitiantranspose = MatMultHermitianTranspose_Nest;
2286: A->ops->multhermitiantransposeadd = MatMultHermitianTransposeAdd_Nest;
2287: A->ops->assemblybegin = MatAssemblyBegin_Nest;
2288: A->ops->assemblyend = MatAssemblyEnd_Nest;
2289: A->ops->zeroentries = MatZeroEntries_Nest;
2290: A->ops->copy = MatCopy_Nest;
2291: A->ops->axpy = MatAXPY_Nest;
2292: A->ops->duplicate = MatDuplicate_Nest;
2293: A->ops->createsubmatrix = MatCreateSubMatrix_Nest;
2294: A->ops->destroy = MatDestroy_Nest;
2295: A->ops->view = MatView_Nest;
2296: A->ops->getvecs = NULL; /* Use VECNEST by calling MatNestSetVecType(A,VECNEST) */
2297: A->ops->getlocalsubmatrix = MatGetLocalSubMatrix_Nest;
2298: A->ops->restorelocalsubmatrix = MatRestoreLocalSubMatrix_Nest;
2299: A->ops->getdiagonal = MatGetDiagonal_Nest;
2300: A->ops->diagonalscale = MatDiagonalScale_Nest;
2301: A->ops->scale = MatScale_Nest;
2302: A->ops->shift = MatShift_Nest;
2303: A->ops->diagonalset = MatDiagonalSet_Nest;
2304: A->ops->setrandom = MatSetRandom_Nest;
2305: A->ops->hasoperation = MatHasOperation_Nest;
2306: A->ops->missingdiagonal = MatMissingDiagonal_Nest;
2308: A->spptr = NULL;
2309: A->assembled = PETSC_FALSE;
2311: /* expose Nest api's */
2312: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetSubMat_C", MatNestGetSubMat_Nest));
2313: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestSetSubMat_C", MatNestSetSubMat_Nest));
2314: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetSubMats_C", MatNestGetSubMats_Nest));
2315: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetSize_C", MatNestGetSize_Nest));
2316: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetISs_C", MatNestGetISs_Nest));
2317: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetLocalISs_C", MatNestGetLocalISs_Nest));
2318: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestSetVecType_C", MatNestSetVecType_Nest));
2319: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestSetSubMats_C", MatNestSetSubMats_Nest));
2320: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_mpiaij_C", MatConvert_Nest_AIJ));
2321: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_seqaij_C", MatConvert_Nest_AIJ));
2322: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_aij_C", MatConvert_Nest_AIJ));
2323: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_is_C", MatConvert_Nest_IS));
2324: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_mpidense_C", MatConvert_Nest_Dense));
2325: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_seqdense_C", MatConvert_Nest_Dense));
2326: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_nest_seqdense_C", MatProductSetFromOptions_Nest_Dense));
2327: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_nest_mpidense_C", MatProductSetFromOptions_Nest_Dense));
2329: PetscCall(PetscObjectChangeTypeName((PetscObject)A, MATNEST));
2330: PetscFunctionReturn(PETSC_SUCCESS);
2331: }