Actual source code: mkl_pardiso.c

  1: #include <../src/mat/impls/aij/seq/aij.h>
  2: #include <../src/mat/impls/sbaij/seq/sbaij.h>
  3: #include <../src/mat/impls/dense/seq/dense.h>

  5: #if defined(PETSC_HAVE_MKL_INTEL_ILP64)
  6:   #define MKL_ILP64
  7: #endif
  8: #include <mkl_pardiso.h>

 10: PETSC_EXTERN void PetscSetMKL_PARDISOThreads(int);

 12: /*
 13:  *  Possible mkl_pardiso phases that controls the execution of the solver.
 14:  *  For more information check mkl_pardiso manual.
 15:  */
 16: #define JOB_ANALYSIS                                                    11
 17: #define JOB_ANALYSIS_NUMERICAL_FACTORIZATION                            12
 18: #define JOB_ANALYSIS_NUMERICAL_FACTORIZATION_SOLVE_ITERATIVE_REFINEMENT 13
 19: #define JOB_NUMERICAL_FACTORIZATION                                     22
 20: #define JOB_NUMERICAL_FACTORIZATION_SOLVE_ITERATIVE_REFINEMENT          23
 21: #define JOB_SOLVE_ITERATIVE_REFINEMENT                                  33
 22: #define JOB_SOLVE_FORWARD_SUBSTITUTION                                  331
 23: #define JOB_SOLVE_DIAGONAL_SUBSTITUTION                                 332
 24: #define JOB_SOLVE_BACKWARD_SUBSTITUTION                                 333
 25: #define JOB_RELEASE_OF_LU_MEMORY                                        0
 26: #define JOB_RELEASE_OF_ALL_MEMORY                                       -1

 28: #define IPARM_SIZE 64

 30: #if defined(PETSC_USE_64BIT_INDICES)
 31:   #if defined(PETSC_HAVE_MKL_INTEL_ILP64)
 32:     #define INT_TYPE         long long int
 33:     #define MKL_PARDISO      pardiso
 34:     #define MKL_PARDISO_INIT pardisoinit
 35:   #else
 36:     /* this is the case where the MKL BLAS/LAPACK are 32-bit integers but the 64-bit integer version of
 37:      of PARDISO code is used; hence the need for the 64 below*/
 38:     #define INT_TYPE         long long int
 39:     #define MKL_PARDISO      pardiso_64
 40:     #define MKL_PARDISO_INIT pardiso_64init
 41: void pardiso_64init(void *pt, INT_TYPE *mtype, INT_TYPE iparm[])
 42: {
 43:   int iparm_copy[IPARM_SIZE], mtype_copy, i;

 45:   mtype_copy = *mtype;
 46:   pardisoinit(pt, &mtype_copy, iparm_copy);
 47:   for (i = 0; i < IPARM_SIZE; i++) iparm[i] = iparm_copy[i];
 48: }
 49:   #endif
 50: #else
 51:   #define INT_TYPE         int
 52:   #define MKL_PARDISO      pardiso
 53:   #define MKL_PARDISO_INIT pardisoinit
 54: #endif

 56: #define PetscCallPardiso(f) PetscStackCallExternalVoid("MKL_PARDISO", f);

 58: /*
 59:    Internal data structure.
 60:  */
 61: typedef struct {
 62:   /* Configuration vector*/
 63:   INT_TYPE iparm[IPARM_SIZE];

 65:   /*
 66:      Internal MKL PARDISO memory location.
 67:      After the first call to MKL PARDISO do not modify pt, as that could cause a serious memory leak.
 68:    */
 69:   void *pt[IPARM_SIZE];

 71:   /* Basic MKL PARDISO info */
 72:   INT_TYPE phase, maxfct, mnum, mtype, n, nrhs, msglvl, err;

 74:   /* Matrix structure*/
 75:   void     *a;
 76:   INT_TYPE *ia, *ja;

 78:   /* Number of non-zero elements*/
 79:   INT_TYPE nz;

 81:   /* Row permutaton vector*/
 82:   INT_TYPE *perm;

 84:   /* Define if matrix preserves sparse structure.*/
 85:   MatStructure matstruc;

 87:   PetscBool needsym;
 88:   PetscBool freeaij;

 90:   /* Schur complement */
 91:   PetscScalar *schur;
 92:   PetscInt     schur_size;
 93:   PetscInt    *schur_idxs;
 94:   PetscScalar *schur_work;
 95:   PetscBLASInt schur_work_size;
 96:   PetscBool    solve_interior;

 98:   /* True if MKL PARDISO function have been used. */
 99:   PetscBool CleanUp;

101:   /* Conversion to a format suitable for MKL */
102:   PetscErrorCode (*Convert)(Mat, PetscBool, MatReuse, PetscBool *, INT_TYPE *, INT_TYPE **, INT_TYPE **, PetscScalar **);
103: } Mat_MKL_PARDISO;

105: static PetscErrorCode MatMKLPardiso_Convert_seqsbaij(Mat A, PetscBool sym, MatReuse reuse, PetscBool *free, INT_TYPE *nnz, INT_TYPE **r, INT_TYPE **c, PetscScalar **v)
106: {
107:   Mat_SeqSBAIJ *aa = (Mat_SeqSBAIJ *)A->data;
108:   PetscInt      bs = A->rmap->bs, i;

110:   PetscFunctionBegin;
111:   PetscCheck(sym, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "This should not happen");
112:   *v = aa->a;
113:   if (bs == 1) { /* already in the correct format */
114:     /* though PetscInt and INT_TYPE are of the same size since they are defined differently the Intel compiler requires a cast */
115:     *r    = (INT_TYPE *)aa->i;
116:     *c    = (INT_TYPE *)aa->j;
117:     *nnz  = (INT_TYPE)aa->nz;
118:     *free = PETSC_FALSE;
119:   } else if (reuse == MAT_INITIAL_MATRIX) {
120:     PetscInt  m = A->rmap->n, nz = aa->nz;
121:     PetscInt *row, *col;
122:     PetscCall(PetscMalloc2(m + 1, &row, nz, &col));
123:     for (i = 0; i < m + 1; i++) row[i] = aa->i[i] + 1;
124:     for (i = 0; i < nz; i++) col[i] = aa->j[i] + 1;
125:     *r    = (INT_TYPE *)row;
126:     *c    = (INT_TYPE *)col;
127:     *nnz  = (INT_TYPE)nz;
128:     *free = PETSC_TRUE;
129:   }
130:   PetscFunctionReturn(PETSC_SUCCESS);
131: }

133: static PetscErrorCode MatMKLPardiso_Convert_seqbaij(Mat A, PetscBool sym, MatReuse reuse, PetscBool *free, INT_TYPE *nnz, INT_TYPE **r, INT_TYPE **c, PetscScalar **v)
134: {
135:   Mat_SeqBAIJ *aa = (Mat_SeqBAIJ *)A->data;
136:   PetscInt     bs = A->rmap->bs, i;

138:   PetscFunctionBegin;
139:   if (!sym) {
140:     *v = aa->a;
141:     if (bs == 1) { /* already in the correct format */
142:       /* though PetscInt and INT_TYPE are of the same size since they are defined differently the Intel compiler requires a cast */
143:       *r    = (INT_TYPE *)aa->i;
144:       *c    = (INT_TYPE *)aa->j;
145:       *nnz  = (INT_TYPE)aa->nz;
146:       *free = PETSC_FALSE;
147:       PetscFunctionReturn(PETSC_SUCCESS);
148:     } else if (reuse == MAT_INITIAL_MATRIX) {
149:       PetscInt  m = A->rmap->n, nz = aa->nz;
150:       PetscInt *row, *col;
151:       PetscCall(PetscMalloc2(m + 1, &row, nz, &col));
152:       for (i = 0; i < m + 1; i++) row[i] = aa->i[i] + 1;
153:       for (i = 0; i < nz; i++) col[i] = aa->j[i] + 1;
154:       *r   = (INT_TYPE *)row;
155:       *c   = (INT_TYPE *)col;
156:       *nnz = (INT_TYPE)nz;
157:     }
158:     *free = PETSC_TRUE;
159:   } else {
160:     SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "This should not happen");
161:   }
162:   PetscFunctionReturn(PETSC_SUCCESS);
163: }

165: static PetscErrorCode MatMKLPardiso_Convert_seqaij(Mat A, PetscBool sym, MatReuse reuse, PetscBool *free, INT_TYPE *nnz, INT_TYPE **r, INT_TYPE **c, PetscScalar **v)
166: {
167:   Mat_SeqAIJ  *aa = (Mat_SeqAIJ *)A->data;
168:   PetscScalar *aav;

170:   PetscFunctionBegin;
171:   PetscCall(MatSeqAIJGetArrayRead(A, (const PetscScalar **)&aav));
172:   if (!sym) { /* already in the correct format */
173:     *v    = aav;
174:     *r    = (INT_TYPE *)aa->i;
175:     *c    = (INT_TYPE *)aa->j;
176:     *nnz  = (INT_TYPE)aa->nz;
177:     *free = PETSC_FALSE;
178:   } else if (reuse == MAT_INITIAL_MATRIX) { /* need to get the triangular part */
179:     PetscScalar *vals, *vv;
180:     PetscInt    *row, *col, *jj;
181:     PetscInt     m = A->rmap->n, nz, i;

183:     nz = 0;
184:     for (i = 0; i < m; i++) nz += aa->i[i + 1] - aa->diag[i];
185:     PetscCall(PetscMalloc2(m + 1, &row, nz, &col));
186:     PetscCall(PetscMalloc1(nz, &vals));
187:     jj = col;
188:     vv = vals;

190:     row[0] = 0;
191:     for (i = 0; i < m; i++) {
192:       PetscInt    *aj = aa->j + aa->diag[i];
193:       PetscScalar *av = aav + aa->diag[i];
194:       PetscInt     rl = aa->i[i + 1] - aa->diag[i], j;

196:       for (j = 0; j < rl; j++) {
197:         *jj = *aj;
198:         jj++;
199:         aj++;
200:         *vv = *av;
201:         vv++;
202:         av++;
203:       }
204:       row[i + 1] = row[i] + rl;
205:     }
206:     *v    = vals;
207:     *r    = (INT_TYPE *)row;
208:     *c    = (INT_TYPE *)col;
209:     *nnz  = (INT_TYPE)nz;
210:     *free = PETSC_TRUE;
211:   } else {
212:     PetscScalar *vv;
213:     PetscInt     m = A->rmap->n, i;

215:     vv = *v;
216:     for (i = 0; i < m; i++) {
217:       PetscScalar *av = aav + aa->diag[i];
218:       PetscInt     rl = aa->i[i + 1] - aa->diag[i], j;
219:       for (j = 0; j < rl; j++) {
220:         *vv = *av;
221:         vv++;
222:         av++;
223:       }
224:     }
225:     *free = PETSC_TRUE;
226:   }
227:   PetscCall(MatSeqAIJRestoreArrayRead(A, (const PetscScalar **)&aav));
228:   PetscFunctionReturn(PETSC_SUCCESS);
229: }

231: static PetscErrorCode MatMKLPardisoSolveSchur_Private(Mat F, PetscScalar *B, PetscScalar *X)
232: {
233:   Mat_MKL_PARDISO     *mpardiso = (Mat_MKL_PARDISO *)F->data;
234:   Mat                  S, Xmat, Bmat;
235:   MatFactorSchurStatus schurstatus;

237:   PetscFunctionBegin;
238:   PetscCall(MatFactorGetSchurComplement(F, &S, &schurstatus));
239:   PetscCheck(X != B || schurstatus != MAT_FACTOR_SCHUR_INVERTED, PETSC_COMM_SELF, PETSC_ERR_SUP, "X and B cannot point to the same address");
240:   PetscCall(MatCreateSeqDense(PETSC_COMM_SELF, mpardiso->schur_size, mpardiso->nrhs, B, &Bmat));
241:   PetscCall(MatCreateSeqDense(PETSC_COMM_SELF, mpardiso->schur_size, mpardiso->nrhs, X, &Xmat));
242:   PetscCall(MatSetType(Bmat, ((PetscObject)S)->type_name));
243:   PetscCall(MatSetType(Xmat, ((PetscObject)S)->type_name));
244: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
245:   PetscCall(MatBindToCPU(Xmat, S->boundtocpu));
246:   PetscCall(MatBindToCPU(Bmat, S->boundtocpu));
247: #endif

249: #if defined(PETSC_USE_COMPLEX)
250:   PetscCheck(mpardiso->iparm[12 - 1] != 1, PetscObjectComm((PetscObject)F), PETSC_ERR_SUP, "Hermitian solve not implemented yet");
251: #endif

253:   switch (schurstatus) {
254:   case MAT_FACTOR_SCHUR_FACTORED:
255:     if (!mpardiso->iparm[12 - 1]) {
256:       PetscCall(MatMatSolve(S, Bmat, Xmat));
257:     } else { /* transpose solve */
258:       PetscCall(MatMatSolveTranspose(S, Bmat, Xmat));
259:     }
260:     break;
261:   case MAT_FACTOR_SCHUR_INVERTED:
262:     PetscCall(MatProductCreateWithMat(S, Bmat, NULL, Xmat));
263:     if (!mpardiso->iparm[12 - 1]) {
264:       PetscCall(MatProductSetType(Xmat, MATPRODUCT_AB));
265:     } else { /* transpose solve */
266:       PetscCall(MatProductSetType(Xmat, MATPRODUCT_AtB));
267:     }
268:     PetscCall(MatProductSetFromOptions(Xmat));
269:     PetscCall(MatProductSymbolic(Xmat));
270:     PetscCall(MatProductNumeric(Xmat));
271:     PetscCall(MatProductClear(Xmat));
272:     break;
273:   default:
274:     SETERRQ(PetscObjectComm((PetscObject)F), PETSC_ERR_SUP, "Unhandled MatFactorSchurStatus %d", (int)F->schur_status);
275:     break;
276:   }
277:   PetscCall(MatFactorRestoreSchurComplement(F, &S, schurstatus));
278:   PetscCall(MatDestroy(&Bmat));
279:   PetscCall(MatDestroy(&Xmat));
280:   PetscFunctionReturn(PETSC_SUCCESS);
281: }

283: static PetscErrorCode MatFactorSetSchurIS_MKL_PARDISO(Mat F, IS is)
284: {
285:   Mat_MKL_PARDISO   *mpardiso = (Mat_MKL_PARDISO *)F->data;
286:   const PetscScalar *arr;
287:   const PetscInt    *idxs;
288:   PetscInt           size, i;
289:   PetscMPIInt        csize;
290:   PetscBool          sorted;

292:   PetscFunctionBegin;
293:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)F), &csize));
294:   PetscCheck(csize <= 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "MKL PARDISO parallel Schur complements not yet supported from PETSc");
295:   PetscCall(ISSorted(is, &sorted));
296:   PetscCheck(sorted, PETSC_COMM_SELF, PETSC_ERR_SUP, "IS for MKL PARDISO Schur complements needs to be sorted");
297:   PetscCall(ISGetLocalSize(is, &size));
298:   PetscCall(PetscFree(mpardiso->schur_work));
299:   PetscCall(PetscBLASIntCast(PetscMax(mpardiso->n, 2 * size), &mpardiso->schur_work_size));
300:   PetscCall(PetscMalloc1(mpardiso->schur_work_size, &mpardiso->schur_work));
301:   PetscCall(MatDestroy(&F->schur));
302:   PetscCall(MatCreateSeqDense(PETSC_COMM_SELF, size, size, NULL, &F->schur));
303:   PetscCall(MatDenseGetArrayRead(F->schur, &arr));
304:   mpardiso->schur      = (PetscScalar *)arr;
305:   mpardiso->schur_size = size;
306:   PetscCall(MatDenseRestoreArrayRead(F->schur, &arr));
307:   if (mpardiso->mtype == 2) PetscCall(MatSetOption(F->schur, MAT_SPD, PETSC_TRUE));

309:   PetscCall(PetscFree(mpardiso->schur_idxs));
310:   PetscCall(PetscMalloc1(size, &mpardiso->schur_idxs));
311:   PetscCall(PetscArrayzero(mpardiso->perm, mpardiso->n));
312:   PetscCall(ISGetIndices(is, &idxs));
313:   PetscCall(PetscArraycpy(mpardiso->schur_idxs, idxs, size));
314:   for (i = 0; i < size; i++) mpardiso->perm[idxs[i]] = 1;
315:   PetscCall(ISRestoreIndices(is, &idxs));
316:   if (size) { /* turn on Schur switch if the set of indices is not empty */
317:     mpardiso->iparm[36 - 1] = 2;
318:   }
319:   PetscFunctionReturn(PETSC_SUCCESS);
320: }

322: static PetscErrorCode MatDestroy_MKL_PARDISO(Mat A)
323: {
324:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO *)A->data;

326:   PetscFunctionBegin;
327:   if (mat_mkl_pardiso->CleanUp) {
328:     mat_mkl_pardiso->phase = JOB_RELEASE_OF_ALL_MEMORY;

330:     PetscCallPardiso(MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, NULL, NULL, NULL, NULL, &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm,
331:                                  &mat_mkl_pardiso->msglvl, NULL, NULL, &mat_mkl_pardiso->err));
332:   }
333:   PetscCall(PetscFree(mat_mkl_pardiso->perm));
334:   PetscCall(PetscFree(mat_mkl_pardiso->schur_work));
335:   PetscCall(PetscFree(mat_mkl_pardiso->schur_idxs));
336:   if (mat_mkl_pardiso->freeaij) {
337:     PetscCall(PetscFree2(mat_mkl_pardiso->ia, mat_mkl_pardiso->ja));
338:     if (mat_mkl_pardiso->iparm[34] == 1) PetscCall(PetscFree(mat_mkl_pardiso->a));
339:   }
340:   PetscCall(PetscFree(A->data));

342:   /* clear composed functions */
343:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatFactorGetSolverType_C", NULL));
344:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatFactorSetSchurIS_C", NULL));
345:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatMkl_PardisoSetCntl_C", NULL));
346:   PetscFunctionReturn(PETSC_SUCCESS);
347: }

349: static PetscErrorCode MatMKLPardisoScatterSchur_Private(Mat_MKL_PARDISO *mpardiso, PetscScalar *whole, PetscScalar *schur, PetscBool reduce)
350: {
351:   PetscFunctionBegin;
352:   if (reduce) { /* data given for the whole matrix */
353:     PetscInt i, m = 0, p = 0;
354:     for (i = 0; i < mpardiso->nrhs; i++) {
355:       PetscInt j;
356:       for (j = 0; j < mpardiso->schur_size; j++) schur[p + j] = whole[m + mpardiso->schur_idxs[j]];
357:       m += mpardiso->n;
358:       p += mpardiso->schur_size;
359:     }
360:   } else { /* from Schur to whole */
361:     PetscInt i, m = 0, p = 0;
362:     for (i = 0; i < mpardiso->nrhs; i++) {
363:       PetscInt j;
364:       for (j = 0; j < mpardiso->schur_size; j++) whole[m + mpardiso->schur_idxs[j]] = schur[p + j];
365:       m += mpardiso->n;
366:       p += mpardiso->schur_size;
367:     }
368:   }
369:   PetscFunctionReturn(PETSC_SUCCESS);
370: }

372: static PetscErrorCode MatSolve_MKL_PARDISO(Mat A, Vec b, Vec x)
373: {
374:   Mat_MKL_PARDISO   *mat_mkl_pardiso = (Mat_MKL_PARDISO *)A->data;
375:   PetscScalar       *xarray;
376:   const PetscScalar *barray;

378:   PetscFunctionBegin;
379:   mat_mkl_pardiso->nrhs = 1;
380:   PetscCall(VecGetArrayWrite(x, &xarray));
381:   PetscCall(VecGetArrayRead(b, &barray));

383:   if (!mat_mkl_pardiso->schur) mat_mkl_pardiso->phase = JOB_SOLVE_ITERATIVE_REFINEMENT;
384:   else mat_mkl_pardiso->phase = JOB_SOLVE_FORWARD_SUBSTITUTION;

386:   if (barray == xarray) { /* if the two vectors share the same memory */
387:     PetscScalar *work;
388:     if (!mat_mkl_pardiso->schur_work) {
389:       PetscCall(PetscMalloc1(mat_mkl_pardiso->n, &work));
390:     } else {
391:       work = mat_mkl_pardiso->schur_work;
392:     }
393:     mat_mkl_pardiso->iparm[6 - 1] = 1;
394:     PetscCallPardiso(MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, mat_mkl_pardiso->a, mat_mkl_pardiso->ia, mat_mkl_pardiso->ja, NULL,
395:                                  &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, (void *)xarray, (void *)work, &mat_mkl_pardiso->err));
396:     if (!mat_mkl_pardiso->schur_work) PetscCall(PetscFree(work));
397:   } else {
398:     mat_mkl_pardiso->iparm[6 - 1] = 0;
399:     PetscCallPardiso(MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, mat_mkl_pardiso->a, mat_mkl_pardiso->ia, mat_mkl_pardiso->ja,
400:                                  mat_mkl_pardiso->perm, &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, (void *)barray, (void *)xarray, &mat_mkl_pardiso->err));
401:   }
402:   PetscCall(VecRestoreArrayRead(b, &barray));

404:   PetscCheck(mat_mkl_pardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL PARDISO: err=%" PetscInt_FMT ". Please check manual", (PetscInt)mat_mkl_pardiso->err);

406:   if (mat_mkl_pardiso->schur) { /* solve Schur complement and expand solution */
407:     if (!mat_mkl_pardiso->solve_interior) {
408:       PetscInt shift = mat_mkl_pardiso->schur_size;

410:       PetscCall(MatFactorFactorizeSchurComplement(A));
411:       /* if inverted, uses BLAS *MM subroutines, otherwise LAPACK *TRS */
412:       if (A->schur_status != MAT_FACTOR_SCHUR_INVERTED) shift = 0;

414:       /* solve Schur complement */
415:       PetscCall(MatMKLPardisoScatterSchur_Private(mat_mkl_pardiso, xarray, mat_mkl_pardiso->schur_work, PETSC_TRUE));
416:       PetscCall(MatMKLPardisoSolveSchur_Private(A, mat_mkl_pardiso->schur_work, mat_mkl_pardiso->schur_work + shift));
417:       PetscCall(MatMKLPardisoScatterSchur_Private(mat_mkl_pardiso, xarray, mat_mkl_pardiso->schur_work + shift, PETSC_FALSE));
418:     } else { /* if we are solving for the interior problem, any value in barray[schur] forward-substituted to xarray[schur] will be neglected */
419:       PetscInt i;
420:       for (i = 0; i < mat_mkl_pardiso->schur_size; i++) xarray[mat_mkl_pardiso->schur_idxs[i]] = 0.;
421:     }

423:     /* expansion phase */
424:     mat_mkl_pardiso->iparm[6 - 1] = 1;
425:     mat_mkl_pardiso->phase        = JOB_SOLVE_BACKWARD_SUBSTITUTION;
426:     PetscCallPardiso(MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, mat_mkl_pardiso->a, mat_mkl_pardiso->ia, mat_mkl_pardiso->ja,
427:                                  mat_mkl_pardiso->perm, &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, (void *)xarray, (void *)mat_mkl_pardiso->schur_work, /* according to the specs, the solution vector is always used */
428:                                  &mat_mkl_pardiso->err));
429:     PetscCheck(mat_mkl_pardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL PARDISO: err=%" PetscInt_FMT ". Please check manual", (PetscInt)mat_mkl_pardiso->err);
430:     mat_mkl_pardiso->iparm[6 - 1] = 0;
431:   }
432:   PetscCall(VecRestoreArrayWrite(x, &xarray));
433:   mat_mkl_pardiso->CleanUp = PETSC_TRUE;
434:   PetscFunctionReturn(PETSC_SUCCESS);
435: }

437: static PetscErrorCode MatForwardSolve_MKL_PARDISO(Mat A, Vec b, Vec x)
438: {
439:   Mat_MKL_PARDISO   *mat_mkl_pardiso = (Mat_MKL_PARDISO *)A->data;
440:   PetscScalar       *xarray;
441:   const PetscScalar *barray;

443:   PetscFunctionBegin;
444:   PetscCheck(!mat_mkl_pardiso->schur, PETSC_COMM_SELF, PETSC_ERR_SUP, "Forward substitution not supported with Schur complement");

446:   mat_mkl_pardiso->nrhs = 1;
447:   PetscCall(VecGetArrayWrite(x, &xarray));
448:   PetscCall(VecGetArrayRead(b, &barray));

450:   mat_mkl_pardiso->phase = JOB_SOLVE_FORWARD_SUBSTITUTION;

452:   PetscCallPardiso(MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, mat_mkl_pardiso->a, mat_mkl_pardiso->ia, mat_mkl_pardiso->ja, mat_mkl_pardiso->perm,
453:                                &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, (void *)barray, (void *)xarray, &mat_mkl_pardiso->err));
454:   PetscCheck(mat_mkl_pardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL PARDISO: err=%" PetscInt_FMT ". Please check manual", (PetscInt)mat_mkl_pardiso->err);

456:   PetscCall(VecRestoreArrayRead(b, &barray));
457:   PetscCall(VecRestoreArrayWrite(x, &xarray));
458:   mat_mkl_pardiso->CleanUp = PETSC_TRUE;
459:   PetscFunctionReturn(PETSC_SUCCESS);
460: }

462: static PetscErrorCode MatBackwardSolve_MKL_PARDISO(Mat A, Vec b, Vec x)
463: {
464:   Mat_MKL_PARDISO   *mat_mkl_pardiso = (Mat_MKL_PARDISO *)A->data;
465:   PetscScalar       *xarray;
466:   const PetscScalar *barray;

468:   PetscFunctionBegin;
469:   PetscCheck(!mat_mkl_pardiso->schur, PETSC_COMM_SELF, PETSC_ERR_SUP, "Backward substitution not supported with Schur complement");

471:   mat_mkl_pardiso->nrhs = 1;
472:   PetscCall(VecGetArrayWrite(x, &xarray));
473:   PetscCall(VecGetArrayRead(b, &barray));

475:   mat_mkl_pardiso->phase = JOB_SOLVE_BACKWARD_SUBSTITUTION;

477:   PetscCallPardiso(MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, mat_mkl_pardiso->a, mat_mkl_pardiso->ia, mat_mkl_pardiso->ja, mat_mkl_pardiso->perm,
478:                                &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, (void *)barray, (void *)xarray, &mat_mkl_pardiso->err));
479:   PetscCheck(mat_mkl_pardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL PARDISO: err=%" PetscInt_FMT ". Please check manual", (PetscInt)mat_mkl_pardiso->err);

481:   PetscCall(VecRestoreArrayRead(b, &barray));
482:   PetscCall(VecRestoreArrayWrite(x, &xarray));
483:   mat_mkl_pardiso->CleanUp = PETSC_TRUE;
484:   PetscFunctionReturn(PETSC_SUCCESS);
485: }

487: static PetscErrorCode MatSolveTranspose_MKL_PARDISO(Mat A, Vec b, Vec x)
488: {
489:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO *)A->data;
490:   PetscInt         oiparm12;

492:   PetscFunctionBegin;
493:   oiparm12                       = mat_mkl_pardiso->iparm[12 - 1];
494:   mat_mkl_pardiso->iparm[12 - 1] = 2;
495:   PetscCall(MatSolve_MKL_PARDISO(A, b, x));
496:   mat_mkl_pardiso->iparm[12 - 1] = oiparm12;
497:   PetscFunctionReturn(PETSC_SUCCESS);
498: }

500: static PetscErrorCode MatMatSolve_MKL_PARDISO(Mat A, Mat B, Mat X)
501: {
502:   Mat_MKL_PARDISO   *mat_mkl_pardiso = (Mat_MKL_PARDISO *)A->data;
503:   const PetscScalar *barray;
504:   PetscScalar       *xarray;
505:   PetscBool          flg;

507:   PetscFunctionBegin;
508:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)B, MATSEQDENSE, &flg));
509:   PetscCheck(flg, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Matrix B must be MATSEQDENSE matrix");
510:   if (X != B) {
511:     PetscCall(PetscObjectBaseTypeCompare((PetscObject)X, MATSEQDENSE, &flg));
512:     PetscCheck(flg, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Matrix X must be MATSEQDENSE matrix");
513:   }

515:   PetscCall(MatGetSize(B, NULL, (PetscInt *)&mat_mkl_pardiso->nrhs));

517:   if (mat_mkl_pardiso->nrhs > 0) {
518:     PetscCall(MatDenseGetArrayRead(B, &barray));
519:     PetscCall(MatDenseGetArrayWrite(X, &xarray));

521:     PetscCheck(barray != xarray, PETSC_COMM_SELF, PETSC_ERR_SUP, "B and X cannot share the same memory location");
522:     if (!mat_mkl_pardiso->schur) mat_mkl_pardiso->phase = JOB_SOLVE_ITERATIVE_REFINEMENT;
523:     else mat_mkl_pardiso->phase = JOB_SOLVE_FORWARD_SUBSTITUTION;

525:     PetscCallPardiso(MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, mat_mkl_pardiso->a, mat_mkl_pardiso->ia, mat_mkl_pardiso->ja,
526:                                  mat_mkl_pardiso->perm, &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, (void *)barray, (void *)xarray, &mat_mkl_pardiso->err));
527:     PetscCheck(mat_mkl_pardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL PARDISO: err=%" PetscInt_FMT ". Please check manual", (PetscInt)mat_mkl_pardiso->err);

529:     PetscCall(MatDenseRestoreArrayRead(B, &barray));
530:     if (mat_mkl_pardiso->schur) { /* solve Schur complement and expand solution */
531:       PetscScalar *o_schur_work = NULL;

533:       /* solve Schur complement */
534:       if (!mat_mkl_pardiso->solve_interior) {
535:         PetscInt shift = mat_mkl_pardiso->schur_size * mat_mkl_pardiso->nrhs, scale;
536:         PetscInt mem   = mat_mkl_pardiso->n * mat_mkl_pardiso->nrhs;

538:         PetscCall(MatFactorFactorizeSchurComplement(A));
539:         /* allocate extra memory if it is needed */
540:         scale = 1;
541:         if (A->schur_status == MAT_FACTOR_SCHUR_INVERTED) scale = 2;
542:         mem *= scale;
543:         if (mem > mat_mkl_pardiso->schur_work_size) {
544:           o_schur_work = mat_mkl_pardiso->schur_work;
545:           PetscCall(PetscMalloc1(mem, &mat_mkl_pardiso->schur_work));
546:         }
547:         /* if inverted, uses BLAS *MM subroutines, otherwise LAPACK *TRS */
548:         if (A->schur_status != MAT_FACTOR_SCHUR_INVERTED) shift = 0;
549:         PetscCall(MatMKLPardisoScatterSchur_Private(mat_mkl_pardiso, xarray, mat_mkl_pardiso->schur_work, PETSC_TRUE));
550:         PetscCall(MatMKLPardisoSolveSchur_Private(A, mat_mkl_pardiso->schur_work, mat_mkl_pardiso->schur_work + shift));
551:         PetscCall(MatMKLPardisoScatterSchur_Private(mat_mkl_pardiso, xarray, mat_mkl_pardiso->schur_work + shift, PETSC_FALSE));
552:       } else { /* if we are solving for the interior problem, any value in barray[schur,n] forward-substituted to xarray[schur,n] will be neglected */
553:         PetscInt i, n, m = 0;
554:         for (n = 0; n < mat_mkl_pardiso->nrhs; n++) {
555:           for (i = 0; i < mat_mkl_pardiso->schur_size; i++) xarray[mat_mkl_pardiso->schur_idxs[i] + m] = 0.;
556:           m += mat_mkl_pardiso->n;
557:         }
558:       }

560:       /* expansion phase */
561:       mat_mkl_pardiso->iparm[6 - 1] = 1;
562:       mat_mkl_pardiso->phase        = JOB_SOLVE_BACKWARD_SUBSTITUTION;
563:       PetscCallPardiso(MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, mat_mkl_pardiso->a, mat_mkl_pardiso->ia, mat_mkl_pardiso->ja,
564:                                    mat_mkl_pardiso->perm, &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, (void *)xarray, (void *)mat_mkl_pardiso->schur_work, /* according to the specs, the solution vector is always used */
565:                                    &mat_mkl_pardiso->err));
566:       if (o_schur_work) { /* restore original Schur_work (minimal size) */
567:         PetscCall(PetscFree(mat_mkl_pardiso->schur_work));
568:         mat_mkl_pardiso->schur_work = o_schur_work;
569:       }
570:       PetscCheck(mat_mkl_pardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL PARDISO: err=%" PetscInt_FMT ". Please check manual", (PetscInt)mat_mkl_pardiso->err);
571:       mat_mkl_pardiso->iparm[6 - 1] = 0;
572:     }
573:     PetscCall(MatDenseRestoreArrayWrite(X, &xarray));
574:   }
575:   mat_mkl_pardiso->CleanUp = PETSC_TRUE;
576:   PetscFunctionReturn(PETSC_SUCCESS);
577: }

579: static PetscErrorCode MatFactorNumeric_MKL_PARDISO(Mat F, Mat A, const MatFactorInfo *info)
580: {
581:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO *)F->data;

583:   PetscFunctionBegin;
584:   mat_mkl_pardiso->matstruc = SAME_NONZERO_PATTERN;
585:   PetscCall((*mat_mkl_pardiso->Convert)(A, mat_mkl_pardiso->needsym, MAT_REUSE_MATRIX, &mat_mkl_pardiso->freeaij, &mat_mkl_pardiso->nz, &mat_mkl_pardiso->ia, &mat_mkl_pardiso->ja, (PetscScalar **)&mat_mkl_pardiso->a));

587:   mat_mkl_pardiso->phase = JOB_NUMERICAL_FACTORIZATION;
588:   PetscCallPardiso(MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, mat_mkl_pardiso->a, mat_mkl_pardiso->ia, mat_mkl_pardiso->ja, mat_mkl_pardiso->perm,
589:                                &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, NULL, (void *)mat_mkl_pardiso->schur, &mat_mkl_pardiso->err));
590:   PetscCheck(mat_mkl_pardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL PARDISO: err=%" PetscInt_FMT ". Please check manual", (PetscInt)mat_mkl_pardiso->err);

592:   /* report flops */
593:   if (mat_mkl_pardiso->iparm[18] > 0) PetscCall(PetscLogFlops(PetscPowRealInt(10., 6) * mat_mkl_pardiso->iparm[18]));

595:   if (F->schur) { /* schur output from pardiso is in row major format */
596: #if defined(PETSC_HAVE_CUDA)
597:     F->schur->offloadmask = PETSC_OFFLOAD_CPU;
598: #endif
599:     PetscCall(MatFactorRestoreSchurComplement(F, NULL, MAT_FACTOR_SCHUR_UNFACTORED));
600:     PetscCall(MatTranspose(F->schur, MAT_INPLACE_MATRIX, &F->schur));
601:   }
602:   mat_mkl_pardiso->matstruc = SAME_NONZERO_PATTERN;
603:   mat_mkl_pardiso->CleanUp  = PETSC_TRUE;
604:   PetscFunctionReturn(PETSC_SUCCESS);
605: }

607: static PetscErrorCode MatSetFromOptions_MKL_PARDISO(Mat F, Mat A)
608: {
609:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO *)F->data;
610:   PetscInt         icntl, bs, threads = 1;
611:   PetscBool        flg;

613:   PetscFunctionBegin;
614:   PetscOptionsBegin(PetscObjectComm((PetscObject)F), ((PetscObject)F)->prefix, "MKL_PARDISO Options", "Mat");

616:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_65", "Suggested number of threads to use within MKL PARDISO", "None", threads, &threads, &flg));
617:   if (flg) PetscSetMKL_PARDISOThreads((int)threads);

619:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_66", "Maximum number of factors with identical sparsity structure that must be kept in memory at the same time", "None", mat_mkl_pardiso->maxfct, &icntl, &flg));
620:   if (flg) mat_mkl_pardiso->maxfct = icntl;

622:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_67", "Indicates the actual matrix for the solution phase", "None", mat_mkl_pardiso->mnum, &icntl, &flg));
623:   if (flg) mat_mkl_pardiso->mnum = icntl;

625:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_68", "Message level information", "None", mat_mkl_pardiso->msglvl, &icntl, &flg));
626:   if (flg) mat_mkl_pardiso->msglvl = icntl;

628:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_69", "Defines the matrix type", "None", mat_mkl_pardiso->mtype, &icntl, &flg));
629:   if (flg) {
630:     void *pt[IPARM_SIZE];
631:     mat_mkl_pardiso->mtype = icntl;
632:     icntl                  = mat_mkl_pardiso->iparm[34];
633:     bs                     = mat_mkl_pardiso->iparm[36];
634:     MKL_PARDISO_INIT(pt, &mat_mkl_pardiso->mtype, mat_mkl_pardiso->iparm);
635: #if defined(PETSC_USE_REAL_SINGLE)
636:     mat_mkl_pardiso->iparm[27] = 1;
637: #else
638:     mat_mkl_pardiso->iparm[27] = 0;
639: #endif
640:     mat_mkl_pardiso->iparm[34] = icntl;
641:     mat_mkl_pardiso->iparm[36] = bs;
642:   }

644:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_1", "Use default values (if 0)", "None", mat_mkl_pardiso->iparm[0], &icntl, &flg));
645:   if (flg) mat_mkl_pardiso->iparm[0] = icntl;

647:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_2", "Fill-in reducing ordering for the input matrix", "None", mat_mkl_pardiso->iparm[1], &icntl, &flg));
648:   if (flg) mat_mkl_pardiso->iparm[1] = icntl;

650:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_4", "Preconditioned CGS/CG", "None", mat_mkl_pardiso->iparm[3], &icntl, &flg));
651:   if (flg) mat_mkl_pardiso->iparm[3] = icntl;

653:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_5", "User permutation", "None", mat_mkl_pardiso->iparm[4], &icntl, &flg));
654:   if (flg) mat_mkl_pardiso->iparm[4] = icntl;

656:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_6", "Write solution on x", "None", mat_mkl_pardiso->iparm[5], &icntl, &flg));
657:   if (flg) mat_mkl_pardiso->iparm[5] = icntl;

659:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_8", "Iterative refinement step", "None", mat_mkl_pardiso->iparm[7], &icntl, &flg));
660:   if (flg) mat_mkl_pardiso->iparm[7] = icntl;

662:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_10", "Pivoting perturbation", "None", mat_mkl_pardiso->iparm[9], &icntl, &flg));
663:   if (flg) mat_mkl_pardiso->iparm[9] = icntl;

665:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_11", "Scaling vectors", "None", mat_mkl_pardiso->iparm[10], &icntl, &flg));
666:   if (flg) mat_mkl_pardiso->iparm[10] = icntl;

668:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_12", "Solve with transposed or conjugate transposed matrix A", "None", mat_mkl_pardiso->iparm[11], &icntl, &flg));
669:   if (flg) mat_mkl_pardiso->iparm[11] = icntl;

671:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_13", "Improved accuracy using (non-) symmetric weighted matching", "None", mat_mkl_pardiso->iparm[12], &icntl, &flg));
672:   if (flg) mat_mkl_pardiso->iparm[12] = icntl;

674:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_18", "Numbers of non-zero elements", "None", mat_mkl_pardiso->iparm[17], &icntl, &flg));
675:   if (flg) mat_mkl_pardiso->iparm[17] = icntl;

677:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_19", "Report number of floating point operations (0 to disable)", "None", mat_mkl_pardiso->iparm[18], &icntl, &flg));
678:   if (flg) mat_mkl_pardiso->iparm[18] = icntl;

680:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_21", "Pivoting for symmetric indefinite matrices", "None", mat_mkl_pardiso->iparm[20], &icntl, &flg));
681:   if (flg) mat_mkl_pardiso->iparm[20] = icntl;

683:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_24", "Parallel factorization control", "None", mat_mkl_pardiso->iparm[23], &icntl, &flg));
684:   if (flg) mat_mkl_pardiso->iparm[23] = icntl;

686:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_25", "Parallel forward/backward solve control", "None", mat_mkl_pardiso->iparm[24], &icntl, &flg));
687:   if (flg) mat_mkl_pardiso->iparm[24] = icntl;

689:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_27", "Matrix checker", "None", mat_mkl_pardiso->iparm[26], &icntl, &flg));
690:   if (flg) mat_mkl_pardiso->iparm[26] = icntl;

692:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_31", "Partial solve and computing selected components of the solution vectors", "None", mat_mkl_pardiso->iparm[30], &icntl, &flg));
693:   if (flg) mat_mkl_pardiso->iparm[30] = icntl;

695:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_34", "Optimal number of threads for conditional numerical reproducibility (CNR) mode", "None", mat_mkl_pardiso->iparm[33], &icntl, &flg));
696:   if (flg) mat_mkl_pardiso->iparm[33] = icntl;

698:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_60", "Intel MKL PARDISO mode", "None", mat_mkl_pardiso->iparm[59], &icntl, &flg));
699:   if (flg) mat_mkl_pardiso->iparm[59] = icntl;
700:   PetscOptionsEnd();
701:   PetscFunctionReturn(PETSC_SUCCESS);
702: }

704: static PetscErrorCode MatFactorMKL_PARDISOInitialize_Private(Mat A, MatFactorType ftype, Mat_MKL_PARDISO *mat_mkl_pardiso)
705: {
706:   PetscInt  i, bs;
707:   PetscBool match;

709:   PetscFunctionBegin;
710:   for (i = 0; i < IPARM_SIZE; i++) mat_mkl_pardiso->iparm[i] = 0;
711:   for (i = 0; i < IPARM_SIZE; i++) mat_mkl_pardiso->pt[i] = 0;
712: #if defined(PETSC_USE_REAL_SINGLE)
713:   mat_mkl_pardiso->iparm[27] = 1;
714: #else
715:   mat_mkl_pardiso->iparm[27] = 0;
716: #endif
717:   /* Default options for both sym and unsym */
718:   mat_mkl_pardiso->iparm[0]  = 1;  /* Solver default parameters overridden with provided by iparm */
719:   mat_mkl_pardiso->iparm[1]  = 2;  /* Metis reordering */
720:   mat_mkl_pardiso->iparm[5]  = 0;  /* Write solution into x */
721:   mat_mkl_pardiso->iparm[7]  = 0;  /* Max number of iterative refinement steps */
722:   mat_mkl_pardiso->iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */
723:   mat_mkl_pardiso->iparm[18] = -1; /* Output: Mflops for LU factorization */
724: #if 0
725:   mat_mkl_pardiso->iparm[23] =  1; /* Parallel factorization control*/
726: #endif
727:   PetscCall(PetscObjectTypeCompareAny((PetscObject)A, &match, MATSEQBAIJ, MATSEQSBAIJ, ""));
728:   PetscCall(MatGetBlockSize(A, &bs));
729:   if (!match || bs == 1) {
730:     mat_mkl_pardiso->iparm[34] = 1; /* Cluster Sparse Solver use C-style indexing for ia and ja arrays */
731:     mat_mkl_pardiso->n         = A->rmap->N;
732:   } else {
733:     mat_mkl_pardiso->iparm[34] = 0; /* Cluster Sparse Solver use Fortran-style indexing for ia and ja arrays */
734:     mat_mkl_pardiso->iparm[36] = bs;
735:     mat_mkl_pardiso->n         = A->rmap->N / bs;
736:   }
737:   mat_mkl_pardiso->iparm[39] = 0; /* Input: matrix/rhs/solution stored on rank-0 */

739:   mat_mkl_pardiso->CleanUp = PETSC_FALSE;
740:   mat_mkl_pardiso->maxfct  = 1; /* Maximum number of numerical factorizations. */
741:   mat_mkl_pardiso->mnum    = 1; /* Which factorization to use. */
742:   mat_mkl_pardiso->msglvl  = 0; /* 0: do not print 1: Print statistical information in file */
743:   mat_mkl_pardiso->phase   = -1;
744:   mat_mkl_pardiso->err     = 0;

746:   mat_mkl_pardiso->nrhs  = 1;
747:   mat_mkl_pardiso->err   = 0;
748:   mat_mkl_pardiso->phase = -1;

750:   if (ftype == MAT_FACTOR_LU) {
751:     mat_mkl_pardiso->iparm[9]  = 13; /* Perturb the pivot elements with 1E-13 */
752:     mat_mkl_pardiso->iparm[10] = 1;  /* Use nonsymmetric permutation and scaling MPS */
753:     mat_mkl_pardiso->iparm[12] = 1;  /* Switch on Maximum Weighted Matching algorithm (default for non-symmetric) */
754:   } else {
755:     mat_mkl_pardiso->iparm[9]  = 8; /* Perturb the pivot elements with 1E-8 */
756:     mat_mkl_pardiso->iparm[10] = 0; /* Use nonsymmetric permutation and scaling MPS */
757:     mat_mkl_pardiso->iparm[12] = 1; /* Switch on Maximum Weighted Matching algorithm (default for non-symmetric) */
758: #if defined(PETSC_USE_DEBUG)
759:     mat_mkl_pardiso->iparm[26] = 1; /* Matrix checker */
760: #endif
761:   }
762:   PetscCall(PetscCalloc1(A->rmap->N * sizeof(INT_TYPE), &mat_mkl_pardiso->perm));
763:   mat_mkl_pardiso->schur_size = 0;
764:   PetscFunctionReturn(PETSC_SUCCESS);
765: }

767: static PetscErrorCode MatFactorSymbolic_AIJMKL_PARDISO_Private(Mat F, Mat A, const MatFactorInfo *info)
768: {
769:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO *)F->data;

771:   PetscFunctionBegin;
772:   mat_mkl_pardiso->matstruc = DIFFERENT_NONZERO_PATTERN;
773:   PetscCall(MatSetFromOptions_MKL_PARDISO(F, A));
774:   /* throw away any previously computed structure */
775:   if (mat_mkl_pardiso->freeaij) {
776:     PetscCall(PetscFree2(mat_mkl_pardiso->ia, mat_mkl_pardiso->ja));
777:     if (mat_mkl_pardiso->iparm[34] == 1) PetscCall(PetscFree(mat_mkl_pardiso->a));
778:   }
779:   PetscCall((*mat_mkl_pardiso->Convert)(A, mat_mkl_pardiso->needsym, MAT_INITIAL_MATRIX, &mat_mkl_pardiso->freeaij, &mat_mkl_pardiso->nz, &mat_mkl_pardiso->ia, &mat_mkl_pardiso->ja, (PetscScalar **)&mat_mkl_pardiso->a));
780:   if (mat_mkl_pardiso->iparm[34] == 1) mat_mkl_pardiso->n = A->rmap->N;
781:   else mat_mkl_pardiso->n = A->rmap->N / A->rmap->bs;

783:   mat_mkl_pardiso->phase = JOB_ANALYSIS;

785:   /* reset flops counting if requested */
786:   if (mat_mkl_pardiso->iparm[18]) mat_mkl_pardiso->iparm[18] = -1;

788:   PetscCallPardiso(MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, mat_mkl_pardiso->a, mat_mkl_pardiso->ia, mat_mkl_pardiso->ja, mat_mkl_pardiso->perm,
789:                                &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, NULL, NULL, &mat_mkl_pardiso->err));
790:   PetscCheck(mat_mkl_pardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL PARDISO: err=%" PetscInt_FMT ". Please check manual", (PetscInt)mat_mkl_pardiso->err);

792:   mat_mkl_pardiso->CleanUp = PETSC_TRUE;

794:   if (F->factortype == MAT_FACTOR_LU) F->ops->lufactornumeric = MatFactorNumeric_MKL_PARDISO;
795:   else F->ops->choleskyfactornumeric = MatFactorNumeric_MKL_PARDISO;

797:   F->ops->solve          = MatSolve_MKL_PARDISO;
798:   F->ops->solvetranspose = MatSolveTranspose_MKL_PARDISO;
799:   F->ops->matsolve       = MatMatSolve_MKL_PARDISO;
800:   if (F->factortype == MAT_FACTOR_LU || (!PetscDefined(USE_COMPLEX) && F->factortype == MAT_FACTOR_CHOLESKY && A->spd == PETSC_BOOL3_TRUE)) {
801:     F->ops->backwardsolve = MatBackwardSolve_MKL_PARDISO;
802:     F->ops->forwardsolve  = MatForwardSolve_MKL_PARDISO;
803:   }
804:   PetscFunctionReturn(PETSC_SUCCESS);
805: }

807: static PetscErrorCode MatLUFactorSymbolic_AIJMKL_PARDISO(Mat F, Mat A, IS r, IS c, const MatFactorInfo *info)
808: {
809:   PetscFunctionBegin;
810:   PetscCall(MatFactorSymbolic_AIJMKL_PARDISO_Private(F, A, info));
811:   PetscFunctionReturn(PETSC_SUCCESS);
812: }

814: #if !defined(PETSC_USE_COMPLEX)
815: static PetscErrorCode MatGetInertia_MKL_PARDISO(Mat F, PetscInt *nneg, PetscInt *nzero, PetscInt *npos)
816: {
817:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO *)F->data;

819:   PetscFunctionBegin;
820:   if (nneg) *nneg = mat_mkl_pardiso->iparm[22];
821:   if (npos) *npos = mat_mkl_pardiso->iparm[21];
822:   if (nzero) *nzero = F->rmap->N - (mat_mkl_pardiso->iparm[22] + mat_mkl_pardiso->iparm[21]);
823:   PetscFunctionReturn(PETSC_SUCCESS);
824: }
825: #endif

827: static PetscErrorCode MatCholeskyFactorSymbolic_AIJMKL_PARDISO(Mat F, Mat A, IS r, const MatFactorInfo *info)
828: {
829:   PetscFunctionBegin;
830:   PetscCall(MatFactorSymbolic_AIJMKL_PARDISO_Private(F, A, info));
831:   F->ops->getinertia = NULL;
832: #if !defined(PETSC_USE_COMPLEX)
833:   F->ops->getinertia = MatGetInertia_MKL_PARDISO;
834: #endif
835:   PetscFunctionReturn(PETSC_SUCCESS);
836: }

838: static PetscErrorCode MatView_MKL_PARDISO(Mat A, PetscViewer viewer)
839: {
840:   PetscBool         iascii;
841:   PetscViewerFormat format;
842:   Mat_MKL_PARDISO  *mat_mkl_pardiso = (Mat_MKL_PARDISO *)A->data;
843:   PetscInt          i;

845:   PetscFunctionBegin;
846:   if (A->ops->solve != MatSolve_MKL_PARDISO) PetscFunctionReturn(PETSC_SUCCESS);

848:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
849:   if (iascii) {
850:     PetscCall(PetscViewerGetFormat(viewer, &format));
851:     if (format == PETSC_VIEWER_ASCII_INFO) {
852:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO run parameters:\n"));
853:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO phase:             %" PetscInt_FMT "\n", (PetscInt)mat_mkl_pardiso->phase));
854:       for (i = 1; i <= 64; i++) PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO iparm[%" PetscInt_FMT "]:     %" PetscInt_FMT "\n", i, (PetscInt)mat_mkl_pardiso->iparm[i - 1]));
855:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO maxfct:     %" PetscInt_FMT "\n", (PetscInt)mat_mkl_pardiso->maxfct));
856:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO mnum:     %" PetscInt_FMT "\n", (PetscInt)mat_mkl_pardiso->mnum));
857:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO mtype:     %" PetscInt_FMT "\n", (PetscInt)mat_mkl_pardiso->mtype));
858:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO n:     %" PetscInt_FMT "\n", (PetscInt)mat_mkl_pardiso->n));
859:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO nrhs:     %" PetscInt_FMT "\n", (PetscInt)mat_mkl_pardiso->nrhs));
860:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO msglvl:     %" PetscInt_FMT "\n", (PetscInt)mat_mkl_pardiso->msglvl));
861:     }
862:   }
863:   PetscFunctionReturn(PETSC_SUCCESS);
864: }

866: static PetscErrorCode MatGetInfo_MKL_PARDISO(Mat A, MatInfoType flag, MatInfo *info)
867: {
868:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO *)A->data;

870:   PetscFunctionBegin;
871:   info->block_size        = 1.0;
872:   info->nz_used           = mat_mkl_pardiso->iparm[17];
873:   info->nz_allocated      = mat_mkl_pardiso->iparm[17];
874:   info->nz_unneeded       = 0.0;
875:   info->assemblies        = 0.0;
876:   info->mallocs           = 0.0;
877:   info->memory            = 0.0;
878:   info->fill_ratio_given  = 0;
879:   info->fill_ratio_needed = 0;
880:   info->factor_mallocs    = 0;
881:   PetscFunctionReturn(PETSC_SUCCESS);
882: }

884: static PetscErrorCode MatMkl_PardisoSetCntl_MKL_PARDISO(Mat F, PetscInt icntl, PetscInt ival)
885: {
886:   PetscInt         backup, bs;
887:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO *)F->data;

889:   PetscFunctionBegin;
890:   if (icntl <= 64) {
891:     mat_mkl_pardiso->iparm[icntl - 1] = ival;
892:   } else {
893:     if (icntl == 65) PetscSetMKL_PARDISOThreads(ival);
894:     else if (icntl == 66) mat_mkl_pardiso->maxfct = ival;
895:     else if (icntl == 67) mat_mkl_pardiso->mnum = ival;
896:     else if (icntl == 68) mat_mkl_pardiso->msglvl = ival;
897:     else if (icntl == 69) {
898:       void *pt[IPARM_SIZE];
899:       backup                 = mat_mkl_pardiso->iparm[34];
900:       bs                     = mat_mkl_pardiso->iparm[36];
901:       mat_mkl_pardiso->mtype = ival;
902:       MKL_PARDISO_INIT(pt, &mat_mkl_pardiso->mtype, mat_mkl_pardiso->iparm);
903: #if defined(PETSC_USE_REAL_SINGLE)
904:       mat_mkl_pardiso->iparm[27] = 1;
905: #else
906:       mat_mkl_pardiso->iparm[27] = 0;
907: #endif
908:       mat_mkl_pardiso->iparm[34] = backup;
909:       mat_mkl_pardiso->iparm[36] = bs;
910:     } else if (icntl == 70) mat_mkl_pardiso->solve_interior = (PetscBool) !!ival;
911:   }
912:   PetscFunctionReturn(PETSC_SUCCESS);
913: }

915: /*@
916:   MatMkl_PardisoSetCntl - Set MKL PARDISO <https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-2/onemkl-pardiso-parallel-direct-sparse-solver-iface.html> parameters

918:   Logically Collective

920:   Input Parameters:
921: + F     - the factored matrix obtained by calling `MatGetFactor()`
922: . icntl - index of MKL PARDISO parameter
923: - ival  - value of MKL PARDISO parameter

925:   Options Database Key:
926: . -mat_mkl_pardiso_<icntl> <ival> - change the option numbered icntl to the value ival

928:   Level: beginner

930: .seealso: [](ch_matrices), `Mat`, `MATSOLVERMKL_PARDISO`, `MatGetFactor()`
931: @*/
932: PetscErrorCode MatMkl_PardisoSetCntl(Mat F, PetscInt icntl, PetscInt ival)
933: {
934:   PetscFunctionBegin;
935:   PetscTryMethod(F, "MatMkl_PardisoSetCntl_C", (Mat, PetscInt, PetscInt), (F, icntl, ival));
936:   PetscFunctionReturn(PETSC_SUCCESS);
937: }

939: /*MC
940:   MATSOLVERMKL_PARDISO -  A matrix type providing direct solvers, LU, for
941:   `MATSEQAIJ` matrices via the external package MKL PARDISO
942:   <https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-0/onemkl-pardiso-parallel-direct-sparse-solver-iface.html>.

944:   Use `-pc_type lu` `-pc_factor_mat_solver_type mkl_pardiso` to use this direct solver

946:   Options Database Keys:
947: + -mat_mkl_pardiso_65 - Suggested number of threads to use within MKL PARDISO
948: . -mat_mkl_pardiso_66 - Maximum number of factors with identical sparsity structure that must be kept in memory at the same time
949: . -mat_mkl_pardiso_67 - Indicates the actual matrix for the solution phase
950: . -mat_mkl_pardiso_68 - Message level information, use 1 to get detailed information on the solver options
951: . -mat_mkl_pardiso_69 - Defines the matrix type. IMPORTANT: When you set this flag, iparm parameters are going to be set to the default ones for the matrix type
952: . -mat_mkl_pardiso_1  - Use default values
953: . -mat_mkl_pardiso_2  - Fill-in reducing ordering for the input matrix
954: . -mat_mkl_pardiso_4  - Preconditioned CGS/CG
955: . -mat_mkl_pardiso_5  - User permutation
956: . -mat_mkl_pardiso_6  - Write solution on x
957: . -mat_mkl_pardiso_8  - Iterative refinement step
958: . -mat_mkl_pardiso_10 - Pivoting perturbation
959: . -mat_mkl_pardiso_11 - Scaling vectors
960: . -mat_mkl_pardiso_12 - Solve with transposed or conjugate transposed matrix A
961: . -mat_mkl_pardiso_13 - Improved accuracy using (non-) symmetric weighted matching
962: . -mat_mkl_pardiso_18 - Numbers of non-zero elements
963: . -mat_mkl_pardiso_19 - Report number of floating point operations
964: . -mat_mkl_pardiso_21 - Pivoting for symmetric indefinite matrices
965: . -mat_mkl_pardiso_24 - Parallel factorization control
966: . -mat_mkl_pardiso_25 - Parallel forward/backward solve control
967: . -mat_mkl_pardiso_27 - Matrix checker
968: . -mat_mkl_pardiso_31 - Partial solve and computing selected components of the solution vectors
969: . -mat_mkl_pardiso_34 - Optimal number of threads for conditional numerical reproducibility (CNR) mode
970: - -mat_mkl_pardiso_60 - Intel MKL PARDISO mode

972:   Level: beginner

974:   Notes:
975:   Use `-mat_mkl_pardiso_68 1` to display the number of threads the solver is using. MKL does not provide a way to directly access this
976:   information.

978:   For more information on the options check the MKL PARDISO manual

980: .seealso: [](ch_matrices), `Mat`, `MATSEQAIJ`, `PCFactorSetMatSolverType()`, `MatSolverType`, `MatMkl_PardisoSetCntl()`, `MATSOLVERMKL_CPARDISO`
981: M*/
982: static PetscErrorCode MatFactorGetSolverType_mkl_pardiso(Mat A, MatSolverType *type)
983: {
984:   PetscFunctionBegin;
985:   *type = MATSOLVERMKL_PARDISO;
986:   PetscFunctionReturn(PETSC_SUCCESS);
987: }

989: PETSC_EXTERN PetscErrorCode MatGetFactor_aij_mkl_pardiso(Mat A, MatFactorType ftype, Mat *F)
990: {
991:   Mat              B;
992:   Mat_MKL_PARDISO *mat_mkl_pardiso;
993:   PetscBool        isSeqAIJ, isSeqBAIJ, isSeqSBAIJ;

995:   PetscFunctionBegin;
996:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATSEQAIJ, &isSeqAIJ));
997:   PetscCall(PetscObjectTypeCompare((PetscObject)A, MATSEQBAIJ, &isSeqBAIJ));
998:   PetscCall(PetscObjectTypeCompare((PetscObject)A, MATSEQSBAIJ, &isSeqSBAIJ));
999:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
1000:   PetscCall(MatSetSizes(B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
1001:   PetscCall(PetscStrallocpy("mkl_pardiso", &((PetscObject)B)->type_name));
1002:   PetscCall(MatSetUp(B));

1004:   PetscCall(PetscNew(&mat_mkl_pardiso));
1005:   B->data = mat_mkl_pardiso;

1007:   PetscCall(MatFactorMKL_PARDISOInitialize_Private(A, ftype, mat_mkl_pardiso));
1008:   if (ftype == MAT_FACTOR_LU) {
1009:     B->ops->lufactorsymbolic = MatLUFactorSymbolic_AIJMKL_PARDISO;
1010:     B->factortype            = MAT_FACTOR_LU;
1011:     mat_mkl_pardiso->needsym = PETSC_FALSE;
1012:     if (isSeqAIJ) mat_mkl_pardiso->Convert = MatMKLPardiso_Convert_seqaij;
1013:     else if (isSeqBAIJ) mat_mkl_pardiso->Convert = MatMKLPardiso_Convert_seqbaij;
1014:     else {
1015:       PetscCheck(!isSeqSBAIJ, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "No support for MKL PARDISO LU factor with SEQSBAIJ format! Use MAT_FACTOR_CHOLESKY instead");
1016:       SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "No support for MKL PARDISO LU with %s format", ((PetscObject)A)->type_name);
1017:     }
1018: #if defined(PETSC_USE_COMPLEX)
1019:     mat_mkl_pardiso->mtype = 13;
1020: #else
1021:     mat_mkl_pardiso->mtype = 11;
1022: #endif
1023:   } else {
1024:     B->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_AIJMKL_PARDISO;
1025:     B->factortype                  = MAT_FACTOR_CHOLESKY;
1026:     if (isSeqAIJ) mat_mkl_pardiso->Convert = MatMKLPardiso_Convert_seqaij;
1027:     else if (isSeqBAIJ) mat_mkl_pardiso->Convert = MatMKLPardiso_Convert_seqbaij;
1028:     else if (isSeqSBAIJ) mat_mkl_pardiso->Convert = MatMKLPardiso_Convert_seqsbaij;
1029:     else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "No support for PARDISO CHOLESKY with %s format", ((PetscObject)A)->type_name);

1031:     mat_mkl_pardiso->needsym = PETSC_TRUE;
1032: #if !defined(PETSC_USE_COMPLEX)
1033:     if (A->spd == PETSC_BOOL3_TRUE) mat_mkl_pardiso->mtype = 2;
1034:     else mat_mkl_pardiso->mtype = -2;
1035: #else
1036:     mat_mkl_pardiso->mtype = 6;
1037:     PetscCheck(A->hermitian != PETSC_BOOL3_TRUE, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "No support for MKL PARDISO CHOLESKY with Hermitian matrices! Use MAT_FACTOR_LU instead");
1038: #endif
1039:   }
1040:   B->ops->destroy = MatDestroy_MKL_PARDISO;
1041:   B->ops->view    = MatView_MKL_PARDISO;
1042:   B->ops->getinfo = MatGetInfo_MKL_PARDISO;
1043:   B->factortype   = ftype;
1044:   B->assembled    = PETSC_TRUE;

1046:   PetscCall(PetscFree(B->solvertype));
1047:   PetscCall(PetscStrallocpy(MATSOLVERMKL_PARDISO, &B->solvertype));

1049:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatFactorGetSolverType_C", MatFactorGetSolverType_mkl_pardiso));
1050:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatFactorSetSchurIS_C", MatFactorSetSchurIS_MKL_PARDISO));
1051:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMkl_PardisoSetCntl_C", MatMkl_PardisoSetCntl_MKL_PARDISO));

1053:   *F = B;
1054:   PetscFunctionReturn(PETSC_SUCCESS);
1055: }

1057: PETSC_EXTERN PetscErrorCode MatSolverTypeRegister_MKL_Pardiso(void)
1058: {
1059:   PetscFunctionBegin;
1060:   PetscCall(MatSolverTypeRegister(MATSOLVERMKL_PARDISO, MATSEQAIJ, MAT_FACTOR_LU, MatGetFactor_aij_mkl_pardiso));
1061:   PetscCall(MatSolverTypeRegister(MATSOLVERMKL_PARDISO, MATSEQAIJ, MAT_FACTOR_CHOLESKY, MatGetFactor_aij_mkl_pardiso));
1062:   PetscCall(MatSolverTypeRegister(MATSOLVERMKL_PARDISO, MATSEQBAIJ, MAT_FACTOR_LU, MatGetFactor_aij_mkl_pardiso));
1063:   PetscCall(MatSolverTypeRegister(MATSOLVERMKL_PARDISO, MATSEQSBAIJ, MAT_FACTOR_CHOLESKY, MatGetFactor_aij_mkl_pardiso));
1064:   PetscFunctionReturn(PETSC_SUCCESS);
1065: }