Actual source code: ex2.c
1: static char help[] = "Test file for the PCFactorSetShiftType()\n";
2: /*
3: * Test file for the PCFactorSetShiftType() routine or -pc_factor_shift_type POSITIVE_DEFINITE option.
4: * The test matrix is the example from Kershaw's paper [J.Comp.Phys 1978]
5: * of a positive definite matrix for which ILU(0) will give a negative pivot.
6: * This means that the CG method will break down; the Manteuffel shift
7: * [Math. Comp. 1980] repairs this.
8: *
9: * Run the executable twice:
10: * 1/ without options: the iterative method diverges because of an
11: * indefinite preconditioner
12: * 2/ with -pc_factor_shift_positive_definite option (or comment in the PCFactorSetShiftType() line below):
13: * the method will now successfully converge.
14: */
16: #include <petscksp.h>
18: int main(int argc, char **argv)
19: {
20: KSP ksp;
21: PC pc;
22: Mat A, M;
23: Vec X, B, D;
24: MPI_Comm comm;
25: PetscScalar v;
26: KSPConvergedReason reason;
27: PetscInt i, j, its;
29: PetscFunctionBegin;
30: PetscFunctionBeginUser;
31: PetscCall(PetscInitialize(&argc, &argv, 0, help));
32: comm = MPI_COMM_SELF;
34: /*
35: * Construct the Kershaw matrix
36: * and a suitable rhs / initial guess
37: */
38: PetscCall(MatCreateSeqAIJ(comm, 4, 4, 4, 0, &A));
39: PetscCall(VecCreateSeq(comm, 4, &B));
40: PetscCall(VecDuplicate(B, &X));
41: for (i = 0; i < 4; i++) {
42: v = 3;
43: PetscCall(MatSetValues(A, 1, &i, 1, &i, &v, INSERT_VALUES));
44: v = 1;
45: PetscCall(VecSetValues(B, 1, &i, &v, INSERT_VALUES));
46: PetscCall(VecSetValues(X, 1, &i, &v, INSERT_VALUES));
47: }
49: i = 0;
50: v = 0;
51: PetscCall(VecSetValues(X, 1, &i, &v, INSERT_VALUES));
53: for (i = 0; i < 3; i++) {
54: v = -2;
55: j = i + 1;
56: PetscCall(MatSetValues(A, 1, &i, 1, &j, &v, INSERT_VALUES));
57: PetscCall(MatSetValues(A, 1, &j, 1, &i, &v, INSERT_VALUES));
58: }
59: i = 0;
60: j = 3;
61: v = 2;
63: PetscCall(MatSetValues(A, 1, &i, 1, &j, &v, INSERT_VALUES));
64: PetscCall(MatSetValues(A, 1, &j, 1, &i, &v, INSERT_VALUES));
65: PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
66: PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
67: PetscCall(VecAssemblyBegin(B));
68: PetscCall(VecAssemblyEnd(B));
69: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\nThe Kershaw matrix:\n\n"));
70: PetscCall(MatView(A, PETSC_VIEWER_STDOUT_WORLD));
72: /*
73: * A Conjugate Gradient method
74: * with ILU(0) preconditioning
75: */
76: PetscCall(KSPCreate(comm, &ksp));
77: PetscCall(KSPSetOperators(ksp, A, A));
79: PetscCall(KSPSetType(ksp, KSPCG));
80: PetscCall(KSPSetInitialGuessNonzero(ksp, PETSC_TRUE));
82: /*
83: * ILU preconditioner;
84: * The iterative method will break down unless you comment in the SetShift
85: * line below, or use the -pc_factor_shift_positive_definite option.
86: * Run the code twice: once as given to see the negative pivot and the
87: * divergence behaviour, then comment in the Shift line, or add the
88: * command line option, and see that the pivots are all positive and
89: * the method converges.
90: */
91: PetscCall(KSPGetPC(ksp, &pc));
92: PetscCall(PCSetType(pc, PCICC));
93: /* PetscCall(PCFactorSetShiftType(prec,MAT_SHIFT_POSITIVE_DEFINITE)); */
95: PetscCall(KSPSetFromOptions(ksp));
96: PetscCall(KSPSetUp(ksp));
98: /*
99: * Now that the factorisation is done, show the pivots;
100: * note that the last one is negative. This in itself is not an error,
101: * but it will make the iterative method diverge.
102: */
103: PetscCall(PCFactorGetMatrix(pc, &M));
104: PetscCall(VecDuplicate(B, &D));
105: PetscCall(MatGetDiagonal(M, D));
106: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\nPivots:\n\n"));
107: PetscCall(VecView(D, 0));
109: /*
110: * Solve the system;
111: * without the shift this will diverge with
112: * an indefinite preconditioner
113: */
114: PetscCall(KSPSolve(ksp, B, X));
115: PetscCall(KSPGetConvergedReason(ksp, &reason));
116: if (reason == KSP_DIVERGED_INDEFINITE_PC) {
117: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\nDivergence because of indefinite preconditioner;\n"));
118: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Run the executable again but with -pc_factor_shift_positive_definite option.\n"));
119: } else if (reason < 0) {
120: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\nOther kind of divergence: this should not happen.\n"));
121: } else {
122: PetscCall(KSPGetIterationNumber(ksp, &its));
123: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\nConvergence in %d iterations.\n", (int)its));
124: }
125: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n"));
127: PetscCall(KSPDestroy(&ksp));
128: PetscCall(MatDestroy(&A));
129: PetscCall(VecDestroy(&B));
130: PetscCall(VecDestroy(&X));
131: PetscCall(VecDestroy(&D));
132: PetscCall(PetscFinalize());
133: return 0;
134: }
136: /*TEST
138: test:
139: filter: sed -e "s/in 5 iterations/in 4 iterations/g"
141: TEST*/