Actual source code: hypre.c
1: /*
2: Provides an interface to the LLNL package hypre
3: */
5: #include <petscpkg_version.h>
6: #include <petsc/private/pcimpl.h>
7: /* this include is needed ONLY to allow access to the private data inside the Mat object specific to hypre */
8: #include <petsc/private/matimpl.h>
9: #include <petsc/private/vecimpl.h>
10: #include <../src/vec/vec/impls/hypre/vhyp.h>
11: #include <../src/mat/impls/hypre/mhypre.h>
12: #include <../src/dm/impls/da/hypre/mhyp.h>
13: #include <_hypre_parcsr_ls.h>
14: #include <petscmathypre.h>
16: #if defined(PETSC_HAVE_HYPRE_DEVICE)
17: #include <petsc/private/deviceimpl.h>
18: #endif
20: static PetscBool cite = PETSC_FALSE;
21: static const char hypreCitation[] = "@manual{hypre-web-page,\n title = {{\\sl hypre}: High Performance Preconditioners},\n organization = {Lawrence Livermore National Laboratory},\n note = "
22: "{\\url{https://www.llnl.gov/casc/hypre}}\n}\n";
24: /*
25: Private context (data structure) for the preconditioner.
26: */
27: typedef struct {
28: HYPRE_Solver hsolver;
29: Mat hpmat; /* MatHYPRE */
31: HYPRE_Int (*destroy)(HYPRE_Solver);
32: HYPRE_Int (*solve)(HYPRE_Solver, HYPRE_ParCSRMatrix, HYPRE_ParVector, HYPRE_ParVector);
33: HYPRE_Int (*setup)(HYPRE_Solver, HYPRE_ParCSRMatrix, HYPRE_ParVector, HYPRE_ParVector);
35: MPI_Comm comm_hypre;
36: char *hypre_type;
38: /* options for Pilut and BoomerAMG*/
39: PetscInt maxiter;
40: PetscReal tol;
42: /* options for Pilut */
43: PetscInt factorrowsize;
45: /* options for ParaSails */
46: PetscInt nlevels;
47: PetscReal threshold;
48: PetscReal filter;
49: PetscReal loadbal;
50: PetscInt logging;
51: PetscInt ruse;
52: PetscInt symt;
54: /* options for BoomerAMG */
55: PetscBool printstatistics;
57: /* options for BoomerAMG */
58: PetscInt cycletype;
59: PetscInt maxlevels;
60: PetscReal strongthreshold;
61: PetscReal maxrowsum;
62: PetscInt gridsweeps[3];
63: PetscInt coarsentype;
64: PetscInt measuretype;
65: PetscInt smoothtype;
66: PetscInt smoothnumlevels;
67: PetscInt eu_level; /* Number of levels for ILU(k) in Euclid */
68: PetscReal eu_droptolerance; /* Drop tolerance for ILU(k) in Euclid */
69: PetscInt eu_bj; /* Defines use of Block Jacobi ILU in Euclid */
70: PetscInt relaxtype[3];
71: PetscReal relaxweight;
72: PetscReal outerrelaxweight;
73: PetscInt relaxorder;
74: PetscReal truncfactor;
75: PetscBool applyrichardson;
76: PetscInt pmax;
77: PetscInt interptype;
78: PetscInt maxc;
79: PetscInt minc;
80: #if PETSC_PKG_HYPRE_VERSION_GE(2, 23, 0)
81: char *spgemm_type; // this is a global hypre parameter but is closely associated with BoomerAMG
82: #endif
83: /* GPU */
84: PetscBool keeptranspose;
85: PetscInt rap2;
86: PetscInt mod_rap2;
88: /* AIR */
89: PetscInt Rtype;
90: PetscReal Rstrongthreshold;
91: PetscReal Rfilterthreshold;
92: PetscInt Adroptype;
93: PetscReal Adroptol;
95: PetscInt agg_nl;
96: PetscInt agg_interptype;
97: PetscInt agg_num_paths;
98: PetscBool nodal_relax;
99: PetscInt nodal_relax_levels;
101: PetscInt nodal_coarsening;
102: PetscInt nodal_coarsening_diag;
103: PetscInt vec_interp_variant;
104: PetscInt vec_interp_qmax;
105: PetscBool vec_interp_smooth;
106: PetscInt interp_refine;
108: /* NearNullSpace support */
109: VecHYPRE_IJVector *hmnull;
110: HYPRE_ParVector *phmnull;
111: PetscInt n_hmnull;
112: Vec hmnull_constant;
114: /* options for AS (Auxiliary Space preconditioners) */
115: PetscInt as_print;
116: PetscInt as_max_iter;
117: PetscReal as_tol;
118: PetscInt as_relax_type;
119: PetscInt as_relax_times;
120: PetscReal as_relax_weight;
121: PetscReal as_omega;
122: PetscInt as_amg_alpha_opts[5]; /* AMG coarsen type, agg_levels, relax_type, interp_type, Pmax for vector Poisson (AMS) or Curl problem (ADS) */
123: PetscReal as_amg_alpha_theta; /* AMG strength for vector Poisson (AMS) or Curl problem (ADS) */
124: PetscInt as_amg_beta_opts[5]; /* AMG coarsen type, agg_levels, relax_type, interp_type, Pmax for scalar Poisson (AMS) or vector Poisson (ADS) */
125: PetscReal as_amg_beta_theta; /* AMG strength for scalar Poisson (AMS) or vector Poisson (ADS) */
126: PetscInt ams_cycle_type;
127: PetscInt ads_cycle_type;
129: /* additional data */
130: Mat G; /* MatHYPRE */
131: Mat C; /* MatHYPRE */
132: Mat alpha_Poisson; /* MatHYPRE */
133: Mat beta_Poisson; /* MatHYPRE */
135: /* extra information for AMS */
136: PetscInt dim; /* geometrical dimension */
137: VecHYPRE_IJVector coords[3];
138: VecHYPRE_IJVector constants[3];
139: VecHYPRE_IJVector interior;
140: Mat RT_PiFull, RT_Pi[3];
141: Mat ND_PiFull, ND_Pi[3];
142: PetscBool ams_beta_is_zero;
143: PetscBool ams_beta_is_zero_part;
144: PetscInt ams_proj_freq;
145: } PC_HYPRE;
147: /*
148: Matrices with AIJ format are created IN PLACE with using (I,J,data) from BoomerAMG. Since the data format in hypre_ParCSRMatrix
149: is different from that used in PETSc, the original hypre_ParCSRMatrix can not be used any more after call this routine.
150: It is used in PCHMG. Other users should avoid using this function.
151: */
152: static PetscErrorCode PCGetCoarseOperators_BoomerAMG(PC pc, PetscInt *nlevels, Mat *operators[])
153: {
154: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
155: PetscBool same = PETSC_FALSE;
156: PetscInt num_levels, l;
157: Mat *mattmp;
158: hypre_ParCSRMatrix **A_array;
160: PetscFunctionBegin;
161: PetscCall(PetscStrcmp(jac->hypre_type, "boomeramg", &same));
162: PetscCheck(same, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_NOTSAMETYPE, "Hypre type is not BoomerAMG ");
163: num_levels = hypre_ParAMGDataNumLevels((hypre_ParAMGData *)jac->hsolver);
164: PetscCall(PetscMalloc1(num_levels, &mattmp));
165: A_array = hypre_ParAMGDataAArray((hypre_ParAMGData *)jac->hsolver);
166: for (l = 1; l < num_levels; l++) {
167: PetscCall(MatCreateFromParCSR(A_array[l], MATAIJ, PETSC_OWN_POINTER, &mattmp[num_levels - 1 - l]));
168: /* We want to own the data, and HYPRE can not touch this matrix any more */
169: A_array[l] = NULL;
170: }
171: *nlevels = num_levels;
172: *operators = mattmp;
173: PetscFunctionReturn(PETSC_SUCCESS);
174: }
176: /*
177: Matrices with AIJ format are created IN PLACE with using (I,J,data) from BoomerAMG. Since the data format in hypre_ParCSRMatrix
178: is different from that used in PETSc, the original hypre_ParCSRMatrix can not be used any more after call this routine.
179: It is used in PCHMG. Other users should avoid using this function.
180: */
181: static PetscErrorCode PCGetInterpolations_BoomerAMG(PC pc, PetscInt *nlevels, Mat *interpolations[])
182: {
183: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
184: PetscBool same = PETSC_FALSE;
185: PetscInt num_levels, l;
186: Mat *mattmp;
187: hypre_ParCSRMatrix **P_array;
189: PetscFunctionBegin;
190: PetscCall(PetscStrcmp(jac->hypre_type, "boomeramg", &same));
191: PetscCheck(same, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_NOTSAMETYPE, "Hypre type is not BoomerAMG ");
192: num_levels = hypre_ParAMGDataNumLevels((hypre_ParAMGData *)jac->hsolver);
193: PetscCall(PetscMalloc1(num_levels, &mattmp));
194: P_array = hypre_ParAMGDataPArray((hypre_ParAMGData *)jac->hsolver);
195: for (l = 1; l < num_levels; l++) {
196: PetscCall(MatCreateFromParCSR(P_array[num_levels - 1 - l], MATAIJ, PETSC_OWN_POINTER, &mattmp[l - 1]));
197: /* We want to own the data, and HYPRE can not touch this matrix any more */
198: P_array[num_levels - 1 - l] = NULL;
199: }
200: *nlevels = num_levels;
201: *interpolations = mattmp;
202: PetscFunctionReturn(PETSC_SUCCESS);
203: }
205: /* Resets (frees) Hypre's representation of the near null space */
206: static PetscErrorCode PCHYPREResetNearNullSpace_Private(PC pc)
207: {
208: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
209: PetscInt i;
211: PetscFunctionBegin;
212: for (i = 0; i < jac->n_hmnull; i++) PetscCall(VecHYPRE_IJVectorDestroy(&jac->hmnull[i]));
213: PetscCall(PetscFree(jac->hmnull));
214: PetscCall(PetscFree(jac->phmnull));
215: PetscCall(VecDestroy(&jac->hmnull_constant));
216: jac->n_hmnull = 0;
217: PetscFunctionReturn(PETSC_SUCCESS);
218: }
220: static PetscErrorCode PCSetUp_HYPRE(PC pc)
221: {
222: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
223: Mat_HYPRE *hjac;
224: HYPRE_ParCSRMatrix hmat;
225: HYPRE_ParVector bv, xv;
226: PetscBool ishypre;
228: PetscFunctionBegin;
229: /* default type is boomerAMG */
230: if (!jac->hypre_type) PetscCall(PCHYPRESetType(pc, "boomeramg"));
232: /* get hypre matrix */
233: if (pc->flag == DIFFERENT_NONZERO_PATTERN) PetscCall(MatDestroy(&jac->hpmat));
234: PetscCall(PetscObjectTypeCompare((PetscObject)pc->pmat, MATHYPRE, &ishypre));
235: if (!ishypre) {
236: /* Temporary fix since we do not support MAT_REUSE_MATRIX with HYPRE device */
237: #if defined(PETSC_HAVE_HYPRE_DEVICE)
238: PetscBool iscuda, iship, iskokkos;
240: PetscCall(PetscObjectTypeCompareAny((PetscObject)pc->pmat, &iscuda, MATSEQAIJCUSPARSE, MATMPIAIJCUSPARSE, ""));
241: PetscCall(PetscObjectTypeCompareAny((PetscObject)pc->pmat, &iship, MATSEQAIJHIPSPARSE, MATMPIAIJHIPSPARSE, ""));
242: PetscCall(PetscObjectTypeCompareAny((PetscObject)pc->pmat, &iskokkos, MATSEQAIJKOKKOS, MATMPIAIJKOKKOS, ""));
243: if (iscuda || iship || iskokkos) PetscCall(MatDestroy(&jac->hpmat));
244: #endif
245: PetscCall(MatConvert(pc->pmat, MATHYPRE, jac->hpmat ? MAT_REUSE_MATRIX : MAT_INITIAL_MATRIX, &jac->hpmat));
246: } else {
247: PetscCall(PetscObjectReference((PetscObject)pc->pmat));
248: PetscCall(MatDestroy(&jac->hpmat));
249: jac->hpmat = pc->pmat;
250: }
252: /* allow debug */
253: PetscCall(MatViewFromOptions(jac->hpmat, NULL, "-pc_hypre_mat_view"));
254: hjac = (Mat_HYPRE *)jac->hpmat->data;
256: /* special case for BoomerAMG */
257: if (jac->setup == HYPRE_BoomerAMGSetup) {
258: MatNullSpace mnull;
259: PetscBool has_const;
260: PetscInt bs, nvec, i;
261: const Vec *vecs;
263: PetscCall(MatGetBlockSize(pc->pmat, &bs));
264: if (bs > 1) PetscCallExternal(HYPRE_BoomerAMGSetNumFunctions, jac->hsolver, bs);
265: PetscCall(MatGetNearNullSpace(pc->mat, &mnull));
266: if (mnull) {
267: PetscCall(PCHYPREResetNearNullSpace_Private(pc));
268: PetscCall(MatNullSpaceGetVecs(mnull, &has_const, &nvec, &vecs));
269: PetscCall(PetscMalloc1(nvec + 1, &jac->hmnull));
270: PetscCall(PetscMalloc1(nvec + 1, &jac->phmnull));
271: for (i = 0; i < nvec; i++) {
272: PetscCall(VecHYPRE_IJVectorCreate(vecs[i]->map, &jac->hmnull[i]));
273: PetscCall(VecHYPRE_IJVectorCopy(vecs[i], jac->hmnull[i]));
274: PetscCallExternal(HYPRE_IJVectorGetObject, jac->hmnull[i]->ij, (void **)&jac->phmnull[i]);
275: }
276: if (has_const) {
277: PetscCall(MatCreateVecs(pc->pmat, &jac->hmnull_constant, NULL));
278: PetscCall(VecSet(jac->hmnull_constant, 1));
279: PetscCall(VecNormalize(jac->hmnull_constant, NULL));
280: PetscCall(VecHYPRE_IJVectorCreate(jac->hmnull_constant->map, &jac->hmnull[nvec]));
281: PetscCall(VecHYPRE_IJVectorCopy(jac->hmnull_constant, jac->hmnull[nvec]));
282: PetscCallExternal(HYPRE_IJVectorGetObject, jac->hmnull[nvec]->ij, (void **)&jac->phmnull[nvec]);
283: nvec++;
284: }
285: PetscCallExternal(HYPRE_BoomerAMGSetInterpVectors, jac->hsolver, nvec, jac->phmnull);
286: jac->n_hmnull = nvec;
287: }
288: }
290: /* special case for AMS */
291: if (jac->setup == HYPRE_AMSSetup) {
292: Mat_HYPRE *hm;
293: HYPRE_ParCSRMatrix parcsr;
294: if (!jac->coords[0] && !jac->constants[0] && !(jac->ND_PiFull || (jac->ND_Pi[0] && jac->ND_Pi[1]))) {
295: SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_USER, "HYPRE AMS preconditioner needs either the coordinate vectors via PCSetCoordinates() or the edge constant vectors via PCHYPRESetEdgeConstantVectors() or the interpolation matrix via PCHYPRESetInterpolations()");
296: }
297: if (jac->dim) PetscCallExternal(HYPRE_AMSSetDimension, jac->hsolver, jac->dim);
298: if (jac->constants[0]) {
299: HYPRE_ParVector ozz, zoz, zzo = NULL;
300: PetscCallExternal(HYPRE_IJVectorGetObject, jac->constants[0]->ij, (void **)(&ozz));
301: PetscCallExternal(HYPRE_IJVectorGetObject, jac->constants[1]->ij, (void **)(&zoz));
302: if (jac->constants[2]) PetscCallExternal(HYPRE_IJVectorGetObject, jac->constants[2]->ij, (void **)(&zzo));
303: PetscCallExternal(HYPRE_AMSSetEdgeConstantVectors, jac->hsolver, ozz, zoz, zzo);
304: }
305: if (jac->coords[0]) {
306: HYPRE_ParVector coords[3];
307: coords[0] = NULL;
308: coords[1] = NULL;
309: coords[2] = NULL;
310: if (jac->coords[0]) PetscCallExternal(HYPRE_IJVectorGetObject, jac->coords[0]->ij, (void **)(&coords[0]));
311: if (jac->coords[1]) PetscCallExternal(HYPRE_IJVectorGetObject, jac->coords[1]->ij, (void **)(&coords[1]));
312: if (jac->coords[2]) PetscCallExternal(HYPRE_IJVectorGetObject, jac->coords[2]->ij, (void **)(&coords[2]));
313: PetscCallExternal(HYPRE_AMSSetCoordinateVectors, jac->hsolver, coords[0], coords[1], coords[2]);
314: }
315: PetscCheck(jac->G, PetscObjectComm((PetscObject)pc), PETSC_ERR_USER, "HYPRE AMS preconditioner needs the discrete gradient operator via PCHYPRESetDiscreteGradient");
316: hm = (Mat_HYPRE *)jac->G->data;
317: PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&parcsr));
318: PetscCallExternal(HYPRE_AMSSetDiscreteGradient, jac->hsolver, parcsr);
319: if (jac->alpha_Poisson) {
320: hm = (Mat_HYPRE *)jac->alpha_Poisson->data;
321: PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&parcsr));
322: PetscCallExternal(HYPRE_AMSSetAlphaPoissonMatrix, jac->hsolver, parcsr);
323: }
324: if (jac->ams_beta_is_zero) {
325: PetscCallExternal(HYPRE_AMSSetBetaPoissonMatrix, jac->hsolver, NULL);
326: } else if (jac->beta_Poisson) {
327: hm = (Mat_HYPRE *)jac->beta_Poisson->data;
328: PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&parcsr));
329: PetscCallExternal(HYPRE_AMSSetBetaPoissonMatrix, jac->hsolver, parcsr);
330: } else if (jac->ams_beta_is_zero_part) {
331: if (jac->interior) {
332: HYPRE_ParVector interior = NULL;
333: PetscCallExternal(HYPRE_IJVectorGetObject, jac->interior->ij, (void **)(&interior));
334: PetscCallExternal(HYPRE_AMSSetInteriorNodes, jac->hsolver, interior);
335: } else {
336: jac->ams_beta_is_zero_part = PETSC_FALSE;
337: }
338: }
339: if (jac->ND_PiFull || (jac->ND_Pi[0] && jac->ND_Pi[1])) {
340: PetscInt i;
341: HYPRE_ParCSRMatrix nd_parcsrfull, nd_parcsr[3];
342: if (jac->ND_PiFull) {
343: hm = (Mat_HYPRE *)jac->ND_PiFull->data;
344: PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&nd_parcsrfull));
345: } else {
346: nd_parcsrfull = NULL;
347: }
348: for (i = 0; i < 3; ++i) {
349: if (jac->ND_Pi[i]) {
350: hm = (Mat_HYPRE *)jac->ND_Pi[i]->data;
351: PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&nd_parcsr[i]));
352: } else {
353: nd_parcsr[i] = NULL;
354: }
355: }
356: PetscCallExternal(HYPRE_AMSSetInterpolations, jac->hsolver, nd_parcsrfull, nd_parcsr[0], nd_parcsr[1], nd_parcsr[2]);
357: }
358: }
359: /* special case for ADS */
360: if (jac->setup == HYPRE_ADSSetup) {
361: Mat_HYPRE *hm;
362: HYPRE_ParCSRMatrix parcsr;
363: if (!jac->coords[0] && !((jac->RT_PiFull || (jac->RT_Pi[0] && jac->RT_Pi[1])) && (jac->ND_PiFull || (jac->ND_Pi[0] && jac->ND_Pi[1])))) {
364: SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_USER, "HYPRE ADS preconditioner needs either the coordinate vectors via PCSetCoordinates() or the interpolation matrices via PCHYPRESetInterpolations");
365: } else PetscCheck(jac->coords[1] && jac->coords[2], PetscObjectComm((PetscObject)pc), PETSC_ERR_USER, "HYPRE ADS preconditioner has been designed for three dimensional problems! For two dimensional problems, use HYPRE AMS instead");
366: PetscCheck(jac->G, PetscObjectComm((PetscObject)pc), PETSC_ERR_USER, "HYPRE ADS preconditioner needs the discrete gradient operator via PCHYPRESetDiscreteGradient");
367: PetscCheck(jac->C, PetscObjectComm((PetscObject)pc), PETSC_ERR_USER, "HYPRE ADS preconditioner needs the discrete curl operator via PCHYPRESetDiscreteGradient");
368: if (jac->coords[0]) {
369: HYPRE_ParVector coords[3];
370: coords[0] = NULL;
371: coords[1] = NULL;
372: coords[2] = NULL;
373: if (jac->coords[0]) PetscCallExternal(HYPRE_IJVectorGetObject, jac->coords[0]->ij, (void **)(&coords[0]));
374: if (jac->coords[1]) PetscCallExternal(HYPRE_IJVectorGetObject, jac->coords[1]->ij, (void **)(&coords[1]));
375: if (jac->coords[2]) PetscCallExternal(HYPRE_IJVectorGetObject, jac->coords[2]->ij, (void **)(&coords[2]));
376: PetscCallExternal(HYPRE_ADSSetCoordinateVectors, jac->hsolver, coords[0], coords[1], coords[2]);
377: }
378: hm = (Mat_HYPRE *)jac->G->data;
379: PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&parcsr));
380: PetscCallExternal(HYPRE_ADSSetDiscreteGradient, jac->hsolver, parcsr);
381: hm = (Mat_HYPRE *)jac->C->data;
382: PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&parcsr));
383: PetscCallExternal(HYPRE_ADSSetDiscreteCurl, jac->hsolver, parcsr);
384: if ((jac->RT_PiFull || (jac->RT_Pi[0] && jac->RT_Pi[1])) && (jac->ND_PiFull || (jac->ND_Pi[0] && jac->ND_Pi[1]))) {
385: PetscInt i;
386: HYPRE_ParCSRMatrix rt_parcsrfull, rt_parcsr[3];
387: HYPRE_ParCSRMatrix nd_parcsrfull, nd_parcsr[3];
388: if (jac->RT_PiFull) {
389: hm = (Mat_HYPRE *)jac->RT_PiFull->data;
390: PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&rt_parcsrfull));
391: } else {
392: rt_parcsrfull = NULL;
393: }
394: for (i = 0; i < 3; ++i) {
395: if (jac->RT_Pi[i]) {
396: hm = (Mat_HYPRE *)jac->RT_Pi[i]->data;
397: PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&rt_parcsr[i]));
398: } else {
399: rt_parcsr[i] = NULL;
400: }
401: }
402: if (jac->ND_PiFull) {
403: hm = (Mat_HYPRE *)jac->ND_PiFull->data;
404: PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&nd_parcsrfull));
405: } else {
406: nd_parcsrfull = NULL;
407: }
408: for (i = 0; i < 3; ++i) {
409: if (jac->ND_Pi[i]) {
410: hm = (Mat_HYPRE *)jac->ND_Pi[i]->data;
411: PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&nd_parcsr[i]));
412: } else {
413: nd_parcsr[i] = NULL;
414: }
415: }
416: PetscCallExternal(HYPRE_ADSSetInterpolations, jac->hsolver, rt_parcsrfull, rt_parcsr[0], rt_parcsr[1], rt_parcsr[2], nd_parcsrfull, nd_parcsr[0], nd_parcsr[1], nd_parcsr[2]);
417: }
418: }
419: PetscCallExternal(HYPRE_IJMatrixGetObject, hjac->ij, (void **)&hmat);
420: PetscCallExternal(HYPRE_IJVectorGetObject, hjac->b->ij, (void **)&bv);
421: PetscCallExternal(HYPRE_IJVectorGetObject, hjac->x->ij, (void **)&xv);
422: PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
423: PetscCallExternal(jac->setup, jac->hsolver, hmat, bv, xv);
424: PetscCall(PetscFPTrapPop());
425: PetscFunctionReturn(PETSC_SUCCESS);
426: }
428: static PetscErrorCode PCApply_HYPRE(PC pc, Vec b, Vec x)
429: {
430: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
431: Mat_HYPRE *hjac = (Mat_HYPRE *)jac->hpmat->data;
432: HYPRE_ParCSRMatrix hmat;
433: HYPRE_ParVector jbv, jxv;
435: PetscFunctionBegin;
436: PetscCall(PetscCitationsRegister(hypreCitation, &cite));
437: if (!jac->applyrichardson) PetscCall(VecSet(x, 0.0));
438: PetscCall(VecHYPRE_IJVectorPushVecRead(hjac->b, b));
439: if (jac->applyrichardson) PetscCall(VecHYPRE_IJVectorPushVec(hjac->x, x));
440: else PetscCall(VecHYPRE_IJVectorPushVecWrite(hjac->x, x));
441: PetscCallExternal(HYPRE_IJMatrixGetObject, hjac->ij, (void **)&hmat);
442: PetscCallExternal(HYPRE_IJVectorGetObject, hjac->b->ij, (void **)&jbv);
443: PetscCallExternal(HYPRE_IJVectorGetObject, hjac->x->ij, (void **)&jxv);
444: PetscStackCallExternalVoid(
445: "Hypre solve", do {
446: HYPRE_Int hierr = (*jac->solve)(jac->hsolver, hmat, jbv, jxv);
447: if (hierr) {
448: PetscCheck(hierr == HYPRE_ERROR_CONV, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error in HYPRE solver, error code %d", (int)hierr);
449: HYPRE_ClearAllErrors();
450: }
451: } while (0));
453: if (jac->setup == HYPRE_AMSSetup && jac->ams_beta_is_zero_part) PetscCallExternal(HYPRE_AMSProjectOutGradients, jac->hsolver, jxv);
454: PetscCall(VecHYPRE_IJVectorPopVec(hjac->x));
455: PetscCall(VecHYPRE_IJVectorPopVec(hjac->b));
456: PetscFunctionReturn(PETSC_SUCCESS);
457: }
459: static PetscErrorCode PCMatApply_HYPRE_BoomerAMG(PC pc, Mat B, Mat X)
460: {
461: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
462: Mat_HYPRE *hjac = (Mat_HYPRE *)jac->hpmat->data;
463: hypre_ParCSRMatrix *par_matrix;
464: HYPRE_ParVector hb, hx;
465: const PetscScalar *b;
466: PetscScalar *x;
467: PetscInt m, N, lda;
468: hypre_Vector *x_local;
469: PetscMemType type;
471: PetscFunctionBegin;
472: PetscCall(PetscCitationsRegister(hypreCitation, &cite));
473: PetscCallExternal(HYPRE_IJMatrixGetObject, hjac->ij, (void **)&par_matrix);
474: PetscCall(MatGetLocalSize(B, &m, NULL));
475: PetscCall(MatGetSize(B, NULL, &N));
476: PetscCallExternal(HYPRE_ParMultiVectorCreate, hypre_ParCSRMatrixComm(par_matrix), hypre_ParCSRMatrixGlobalNumRows(par_matrix), hypre_ParCSRMatrixRowStarts(par_matrix), N, &hb);
477: PetscCallExternal(HYPRE_ParMultiVectorCreate, hypre_ParCSRMatrixComm(par_matrix), hypre_ParCSRMatrixGlobalNumRows(par_matrix), hypre_ParCSRMatrixRowStarts(par_matrix), N, &hx);
478: PetscCall(MatZeroEntries(X));
479: PetscCall(MatDenseGetArrayReadAndMemType(B, &b, &type));
480: PetscCall(MatDenseGetLDA(B, &lda));
481: PetscCheck(lda == m, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Cannot use a LDA different than the number of local rows: % " PetscInt_FMT " != % " PetscInt_FMT, lda, m);
482: PetscCall(MatDenseGetLDA(X, &lda));
483: PetscCheck(lda == m, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Cannot use a LDA different than the number of local rows: % " PetscInt_FMT " != % " PetscInt_FMT, lda, m);
484: x_local = hypre_ParVectorLocalVector(hb);
485: PetscCallExternal(hypre_SeqVectorSetDataOwner, x_local, 0);
486: hypre_VectorData(x_local) = (HYPRE_Complex *)b;
487: PetscCall(MatDenseGetArrayWriteAndMemType(X, &x, NULL));
488: x_local = hypre_ParVectorLocalVector(hx);
489: PetscCallExternal(hypre_SeqVectorSetDataOwner, x_local, 0);
490: hypre_VectorData(x_local) = (HYPRE_Complex *)x;
491: PetscCallExternal(hypre_ParVectorInitialize_v2, hb, type == PETSC_MEMTYPE_HOST ? HYPRE_MEMORY_HOST : HYPRE_MEMORY_DEVICE);
492: PetscCallExternal(hypre_ParVectorInitialize_v2, hx, type == PETSC_MEMTYPE_HOST ? HYPRE_MEMORY_HOST : HYPRE_MEMORY_DEVICE);
493: PetscStackCallExternalVoid(
494: "Hypre solve", do {
495: HYPRE_Int hierr = (*jac->solve)(jac->hsolver, par_matrix, hb, hx);
496: if (hierr) {
497: PetscCheck(hierr == HYPRE_ERROR_CONV, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error in HYPRE solver, error code %d", (int)hierr);
498: HYPRE_ClearAllErrors();
499: }
500: } while (0));
501: PetscCallExternal(HYPRE_ParVectorDestroy, hb);
502: PetscCallExternal(HYPRE_ParVectorDestroy, hx);
503: PetscCall(MatDenseRestoreArrayReadAndMemType(B, &b));
504: PetscCall(MatDenseRestoreArrayWriteAndMemType(X, &x));
505: PetscFunctionReturn(PETSC_SUCCESS);
506: }
508: static PetscErrorCode PCReset_HYPRE(PC pc)
509: {
510: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
512: PetscFunctionBegin;
513: PetscCall(MatDestroy(&jac->hpmat));
514: PetscCall(MatDestroy(&jac->G));
515: PetscCall(MatDestroy(&jac->C));
516: PetscCall(MatDestroy(&jac->alpha_Poisson));
517: PetscCall(MatDestroy(&jac->beta_Poisson));
518: PetscCall(MatDestroy(&jac->RT_PiFull));
519: PetscCall(MatDestroy(&jac->RT_Pi[0]));
520: PetscCall(MatDestroy(&jac->RT_Pi[1]));
521: PetscCall(MatDestroy(&jac->RT_Pi[2]));
522: PetscCall(MatDestroy(&jac->ND_PiFull));
523: PetscCall(MatDestroy(&jac->ND_Pi[0]));
524: PetscCall(MatDestroy(&jac->ND_Pi[1]));
525: PetscCall(MatDestroy(&jac->ND_Pi[2]));
526: PetscCall(VecHYPRE_IJVectorDestroy(&jac->coords[0]));
527: PetscCall(VecHYPRE_IJVectorDestroy(&jac->coords[1]));
528: PetscCall(VecHYPRE_IJVectorDestroy(&jac->coords[2]));
529: PetscCall(VecHYPRE_IJVectorDestroy(&jac->constants[0]));
530: PetscCall(VecHYPRE_IJVectorDestroy(&jac->constants[1]));
531: PetscCall(VecHYPRE_IJVectorDestroy(&jac->constants[2]));
532: PetscCall(VecHYPRE_IJVectorDestroy(&jac->interior));
533: PetscCall(PCHYPREResetNearNullSpace_Private(pc));
534: jac->ams_beta_is_zero = PETSC_FALSE;
535: jac->ams_beta_is_zero_part = PETSC_FALSE;
536: jac->dim = 0;
537: PetscFunctionReturn(PETSC_SUCCESS);
538: }
540: static PetscErrorCode PCDestroy_HYPRE(PC pc)
541: {
542: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
544: PetscFunctionBegin;
545: PetscCall(PCReset_HYPRE(pc));
546: if (jac->destroy) PetscCallExternal(jac->destroy, jac->hsolver);
547: PetscCall(PetscFree(jac->hypre_type));
548: #if PETSC_PKG_HYPRE_VERSION_GE(2, 23, 0)
549: PetscCall(PetscFree(jac->spgemm_type));
550: #endif
551: if (jac->comm_hypre != MPI_COMM_NULL) PetscCall(PetscCommRestoreComm(PetscObjectComm((PetscObject)pc), &jac->comm_hypre));
552: PetscCall(PetscFree(pc->data));
554: PetscCall(PetscObjectChangeTypeName((PetscObject)pc, 0));
555: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetType_C", NULL));
556: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPREGetType_C", NULL));
557: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetDiscreteGradient_C", NULL));
558: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetDiscreteCurl_C", NULL));
559: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetInterpolations_C", NULL));
560: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetConstantEdgeVectors_C", NULL));
561: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetPoissonMatrix_C", NULL));
562: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetEdgeConstantVectors_C", NULL));
563: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPREAMSSetInteriorNodes_C", NULL));
564: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGetInterpolations_C", NULL));
565: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGetCoarseOperators_C", NULL));
566: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGGalerkinSetMatProductAlgorithm_C", NULL));
567: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGGalerkinGetMatProductAlgorithm_C", NULL));
568: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCSetCoordinates_C", NULL));
569: PetscFunctionReturn(PETSC_SUCCESS);
570: }
572: static PetscErrorCode PCSetFromOptions_HYPRE_Pilut(PC pc, PetscOptionItems *PetscOptionsObject)
573: {
574: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
575: PetscBool flag;
577: PetscFunctionBegin;
578: PetscOptionsHeadBegin(PetscOptionsObject, "HYPRE Pilut Options");
579: PetscCall(PetscOptionsInt("-pc_hypre_pilut_maxiter", "Number of iterations", "None", jac->maxiter, &jac->maxiter, &flag));
580: if (flag) PetscCallExternal(HYPRE_ParCSRPilutSetMaxIter, jac->hsolver, jac->maxiter);
581: PetscCall(PetscOptionsReal("-pc_hypre_pilut_tol", "Drop tolerance", "None", jac->tol, &jac->tol, &flag));
582: if (flag) PetscCallExternal(HYPRE_ParCSRPilutSetDropTolerance, jac->hsolver, jac->tol);
583: PetscCall(PetscOptionsInt("-pc_hypre_pilut_factorrowsize", "FactorRowSize", "None", jac->factorrowsize, &jac->factorrowsize, &flag));
584: if (flag) PetscCallExternal(HYPRE_ParCSRPilutSetFactorRowSize, jac->hsolver, jac->factorrowsize);
585: PetscOptionsHeadEnd();
586: PetscFunctionReturn(PETSC_SUCCESS);
587: }
589: static PetscErrorCode PCView_HYPRE_Pilut(PC pc, PetscViewer viewer)
590: {
591: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
592: PetscBool iascii;
594: PetscFunctionBegin;
595: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
596: if (iascii) {
597: PetscCall(PetscViewerASCIIPrintf(viewer, " HYPRE Pilut preconditioning\n"));
598: if (jac->maxiter != PETSC_DEFAULT) {
599: PetscCall(PetscViewerASCIIPrintf(viewer, " maximum number of iterations %" PetscInt_FMT "\n", jac->maxiter));
600: } else {
601: PetscCall(PetscViewerASCIIPrintf(viewer, " default maximum number of iterations \n"));
602: }
603: if (jac->tol != PETSC_DEFAULT) {
604: PetscCall(PetscViewerASCIIPrintf(viewer, " drop tolerance %g\n", (double)jac->tol));
605: } else {
606: PetscCall(PetscViewerASCIIPrintf(viewer, " default drop tolerance \n"));
607: }
608: if (jac->factorrowsize != PETSC_DEFAULT) {
609: PetscCall(PetscViewerASCIIPrintf(viewer, " factor row size %" PetscInt_FMT "\n", jac->factorrowsize));
610: } else {
611: PetscCall(PetscViewerASCIIPrintf(viewer, " default factor row size \n"));
612: }
613: }
614: PetscFunctionReturn(PETSC_SUCCESS);
615: }
617: static PetscErrorCode PCSetFromOptions_HYPRE_Euclid(PC pc, PetscOptionItems *PetscOptionsObject)
618: {
619: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
620: PetscBool flag, eu_bj = jac->eu_bj ? PETSC_TRUE : PETSC_FALSE;
622: PetscFunctionBegin;
623: PetscOptionsHeadBegin(PetscOptionsObject, "HYPRE Euclid Options");
624: PetscCall(PetscOptionsInt("-pc_hypre_euclid_level", "Factorization levels", "None", jac->eu_level, &jac->eu_level, &flag));
625: if (flag) PetscCallExternal(HYPRE_EuclidSetLevel, jac->hsolver, jac->eu_level);
627: PetscCall(PetscOptionsReal("-pc_hypre_euclid_droptolerance", "Drop tolerance for ILU(k) in Euclid", "None", jac->eu_droptolerance, &jac->eu_droptolerance, &flag));
628: if (flag) {
629: PetscMPIInt size;
631: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pc), &size));
632: PetscCheck(size == 1, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "hypre's Euclid does not support a parallel drop tolerance");
633: PetscCallExternal(HYPRE_EuclidSetILUT, jac->hsolver, jac->eu_droptolerance);
634: }
636: PetscCall(PetscOptionsBool("-pc_hypre_euclid_bj", "Use Block Jacobi for ILU in Euclid", "None", eu_bj, &eu_bj, &flag));
637: if (flag) {
638: jac->eu_bj = eu_bj ? 1 : 0;
639: PetscCallExternal(HYPRE_EuclidSetBJ, jac->hsolver, jac->eu_bj);
640: }
641: PetscOptionsHeadEnd();
642: PetscFunctionReturn(PETSC_SUCCESS);
643: }
645: static PetscErrorCode PCView_HYPRE_Euclid(PC pc, PetscViewer viewer)
646: {
647: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
648: PetscBool iascii;
650: PetscFunctionBegin;
651: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
652: if (iascii) {
653: PetscCall(PetscViewerASCIIPrintf(viewer, " HYPRE Euclid preconditioning\n"));
654: if (jac->eu_level != PETSC_DEFAULT) {
655: PetscCall(PetscViewerASCIIPrintf(viewer, " factorization levels %" PetscInt_FMT "\n", jac->eu_level));
656: } else {
657: PetscCall(PetscViewerASCIIPrintf(viewer, " default factorization levels \n"));
658: }
659: PetscCall(PetscViewerASCIIPrintf(viewer, " drop tolerance %g\n", (double)jac->eu_droptolerance));
660: PetscCall(PetscViewerASCIIPrintf(viewer, " use Block-Jacobi? %" PetscInt_FMT "\n", jac->eu_bj));
661: }
662: PetscFunctionReturn(PETSC_SUCCESS);
663: }
665: static PetscErrorCode PCApplyTranspose_HYPRE_BoomerAMG(PC pc, Vec b, Vec x)
666: {
667: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
668: Mat_HYPRE *hjac = (Mat_HYPRE *)jac->hpmat->data;
669: HYPRE_ParCSRMatrix hmat;
670: HYPRE_ParVector jbv, jxv;
672: PetscFunctionBegin;
673: PetscCall(PetscCitationsRegister(hypreCitation, &cite));
674: PetscCall(VecSet(x, 0.0));
675: PetscCall(VecHYPRE_IJVectorPushVecRead(hjac->x, b));
676: PetscCall(VecHYPRE_IJVectorPushVecWrite(hjac->b, x));
678: PetscCallExternal(HYPRE_IJMatrixGetObject, hjac->ij, (void **)&hmat);
679: PetscCallExternal(HYPRE_IJVectorGetObject, hjac->b->ij, (void **)&jbv);
680: PetscCallExternal(HYPRE_IJVectorGetObject, hjac->x->ij, (void **)&jxv);
682: PetscStackCallExternalVoid(
683: "Hypre Transpose solve", do {
684: HYPRE_Int hierr = HYPRE_BoomerAMGSolveT(jac->hsolver, hmat, jbv, jxv);
685: if (hierr) {
686: /* error code of 1 in BoomerAMG merely means convergence not achieved */
687: PetscCheck(hierr == 1, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error in HYPRE solver, error code %d", (int)hierr);
688: HYPRE_ClearAllErrors();
689: }
690: } while (0));
692: PetscCall(VecHYPRE_IJVectorPopVec(hjac->x));
693: PetscCall(VecHYPRE_IJVectorPopVec(hjac->b));
694: PetscFunctionReturn(PETSC_SUCCESS);
695: }
697: static PetscErrorCode PCMGGalerkinSetMatProductAlgorithm_HYPRE_BoomerAMG(PC pc, const char name[])
698: {
699: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
700: PetscBool flag;
702: #if PETSC_PKG_HYPRE_VERSION_GE(2, 23, 0)
703: PetscFunctionBegin;
704: if (jac->spgemm_type) {
705: PetscCall(PetscStrcmp(jac->spgemm_type, name, &flag));
706: PetscCheck(flag, PetscObjectComm((PetscObject)pc), PETSC_ERR_ORDER, "Cannot reset the HYPRE SpGEMM (really we can)");
707: PetscFunctionReturn(PETSC_SUCCESS);
708: } else {
709: PetscCall(PetscStrallocpy(name, &jac->spgemm_type));
710: }
711: PetscCall(PetscStrcmp("cusparse", jac->spgemm_type, &flag));
712: if (flag) {
713: PetscCallExternal(HYPRE_SetSpGemmUseCusparse, 1);
714: PetscFunctionReturn(PETSC_SUCCESS);
715: }
716: PetscCall(PetscStrcmp("hypre", jac->spgemm_type, &flag));
717: if (flag) {
718: PetscCallExternal(HYPRE_SetSpGemmUseCusparse, 0);
719: PetscFunctionReturn(PETSC_SUCCESS);
720: }
721: jac->spgemm_type = NULL;
722: SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown HYPRE SpGEMM type %s; Choices are cusparse, hypre", name);
723: #endif
724: }
726: static PetscErrorCode PCMGGalerkinGetMatProductAlgorithm_HYPRE_BoomerAMG(PC pc, const char *spgemm[])
727: {
728: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
730: PetscFunctionBegin;
732: #if PETSC_PKG_HYPRE_VERSION_GE(2, 23, 0)
733: *spgemm = jac->spgemm_type;
734: #endif
735: PetscFunctionReturn(PETSC_SUCCESS);
736: }
738: static const char *HYPREBoomerAMGCycleType[] = {"", "V", "W"};
739: static const char *HYPREBoomerAMGCoarsenType[] = {"CLJP", "Ruge-Stueben", "", "modifiedRuge-Stueben", "", "", "Falgout", "", "PMIS", "", "HMIS"};
740: static const char *HYPREBoomerAMGMeasureType[] = {"local", "global"};
741: /* The following corresponds to HYPRE_BoomerAMGSetRelaxType which has many missing numbers in the enum */
742: static const char *HYPREBoomerAMGSmoothType[] = {"Schwarz-smoothers", "Pilut", "ParaSails", "Euclid"};
743: static const char *HYPREBoomerAMGRelaxType[] = {"Jacobi", "sequential-Gauss-Seidel", "seqboundary-Gauss-Seidel", "SOR/Jacobi", "backward-SOR/Jacobi", "" /* [5] hybrid chaotic Gauss-Seidel (works only with OpenMP) */, "symmetric-SOR/Jacobi", "" /* 7 */, "l1scaled-SOR/Jacobi", "Gaussian-elimination", "" /* 10 */, "" /* 11 */, "" /* 12 */, "l1-Gauss-Seidel" /* nonsymmetric */, "backward-l1-Gauss-Seidel" /* nonsymmetric */, "CG" /* non-stationary */, "Chebyshev", "FCF-Jacobi", "l1scaled-Jacobi"};
744: static const char *HYPREBoomerAMGInterpType[] = {"classical", "", "", "direct", "multipass", "multipass-wts", "ext+i", "ext+i-cc", "standard", "standard-wts", "block", "block-wtd", "FF", "FF1", "ext", "ad-wts", "ext-mm", "ext+i-mm", "ext+e-mm"};
745: static PetscErrorCode PCSetFromOptions_HYPRE_BoomerAMG(PC pc, PetscOptionItems *PetscOptionsObject)
746: {
747: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
748: PetscInt bs, n, indx, level;
749: PetscBool flg, tmp_truth;
750: PetscReal tmpdbl, twodbl[2];
751: const char *symtlist[] = {"nonsymmetric", "SPD", "nonsymmetric,SPD"};
752: const char *PCHYPRESpgemmTypes[] = {"cusparse", "hypre"};
754: PetscFunctionBegin;
755: PetscOptionsHeadBegin(PetscOptionsObject, "HYPRE BoomerAMG Options");
756: PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_cycle_type", "Cycle type", "None", HYPREBoomerAMGCycleType + 1, 2, HYPREBoomerAMGCycleType[jac->cycletype], &indx, &flg));
757: if (flg) {
758: jac->cycletype = indx + 1;
759: PetscCallExternal(HYPRE_BoomerAMGSetCycleType, jac->hsolver, jac->cycletype);
760: }
761: PetscCall(PetscOptionsBoundedInt("-pc_hypre_boomeramg_max_levels", "Number of levels (of grids) allowed", "None", jac->maxlevels, &jac->maxlevels, &flg, 2));
762: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetMaxLevels, jac->hsolver, jac->maxlevels);
763: PetscCall(PetscOptionsBoundedInt("-pc_hypre_boomeramg_max_iter", "Maximum iterations used PER hypre call", "None", jac->maxiter, &jac->maxiter, &flg, 1));
764: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetMaxIter, jac->hsolver, jac->maxiter);
765: PetscCall(PetscOptionsBoundedReal("-pc_hypre_boomeramg_tol", "Convergence tolerance PER hypre call (0.0 = use a fixed number of iterations)", "None", jac->tol, &jac->tol, &flg, 0.0));
766: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetTol, jac->hsolver, jac->tol);
767: bs = 1;
768: if (pc->pmat) PetscCall(MatGetBlockSize(pc->pmat, &bs));
769: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_numfunctions", "Number of functions", "HYPRE_BoomerAMGSetNumFunctions", bs, &bs, &flg));
770: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetNumFunctions, jac->hsolver, bs);
772: PetscCall(PetscOptionsBoundedReal("-pc_hypre_boomeramg_truncfactor", "Truncation factor for interpolation (0=no truncation)", "None", jac->truncfactor, &jac->truncfactor, &flg, 0.0));
773: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetTruncFactor, jac->hsolver, jac->truncfactor);
775: PetscCall(PetscOptionsBoundedInt("-pc_hypre_boomeramg_P_max", "Max elements per row for interpolation operator (0=unlimited)", "None", jac->pmax, &jac->pmax, &flg, 0));
776: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetPMaxElmts, jac->hsolver, jac->pmax);
778: PetscCall(PetscOptionsRangeInt("-pc_hypre_boomeramg_agg_nl", "Number of levels of aggressive coarsening", "None", jac->agg_nl, &jac->agg_nl, &flg, 0, jac->maxlevels));
779: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetAggNumLevels, jac->hsolver, jac->agg_nl);
781: PetscCall(PetscOptionsBoundedInt("-pc_hypre_boomeramg_agg_num_paths", "Number of paths for aggressive coarsening", "None", jac->agg_num_paths, &jac->agg_num_paths, &flg, 1));
782: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetNumPaths, jac->hsolver, jac->agg_num_paths);
784: PetscCall(PetscOptionsBoundedReal("-pc_hypre_boomeramg_strong_threshold", "Threshold for being strongly connected", "None", jac->strongthreshold, &jac->strongthreshold, &flg, 0.0));
785: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetStrongThreshold, jac->hsolver, jac->strongthreshold);
786: PetscCall(PetscOptionsRangeReal("-pc_hypre_boomeramg_max_row_sum", "Maximum row sum", "None", jac->maxrowsum, &jac->maxrowsum, &flg, 0.0, 1.0));
787: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetMaxRowSum, jac->hsolver, jac->maxrowsum);
789: /* Grid sweeps */
790: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_grid_sweeps_all", "Number of sweeps for the up and down grid levels", "None", jac->gridsweeps[0], &indx, &flg));
791: if (flg) {
792: PetscCallExternal(HYPRE_BoomerAMGSetNumSweeps, jac->hsolver, indx);
793: /* modify the jac structure so we can view the updated options with PC_View */
794: jac->gridsweeps[0] = indx;
795: jac->gridsweeps[1] = indx;
796: /*defaults coarse to 1 */
797: jac->gridsweeps[2] = 1;
798: }
799: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_nodal_coarsen", "Use a nodal based coarsening 1-6", "HYPRE_BoomerAMGSetNodal", jac->nodal_coarsening, &jac->nodal_coarsening, &flg));
800: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetNodal, jac->hsolver, jac->nodal_coarsening);
801: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_nodal_coarsen_diag", "Diagonal in strength matrix for nodal based coarsening 0-2", "HYPRE_BoomerAMGSetNodalDiag", jac->nodal_coarsening_diag, &jac->nodal_coarsening_diag, &flg));
802: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetNodalDiag, jac->hsolver, jac->nodal_coarsening_diag);
803: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_vec_interp_variant", "Variant of algorithm 1-3", "HYPRE_BoomerAMGSetInterpVecVariant", jac->vec_interp_variant, &jac->vec_interp_variant, &flg));
804: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetInterpVecVariant, jac->hsolver, jac->vec_interp_variant);
805: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_vec_interp_qmax", "Max elements per row for each Q", "HYPRE_BoomerAMGSetInterpVecQMax", jac->vec_interp_qmax, &jac->vec_interp_qmax, &flg));
806: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetInterpVecQMax, jac->hsolver, jac->vec_interp_qmax);
807: PetscCall(PetscOptionsBool("-pc_hypre_boomeramg_vec_interp_smooth", "Whether to smooth the interpolation vectors", "HYPRE_BoomerAMGSetSmoothInterpVectors", jac->vec_interp_smooth, &jac->vec_interp_smooth, &flg));
808: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetSmoothInterpVectors, jac->hsolver, jac->vec_interp_smooth);
809: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_interp_refine", "Preprocess the interpolation matrix through iterative weight refinement", "HYPRE_BoomerAMGSetInterpRefine", jac->interp_refine, &jac->interp_refine, &flg));
810: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetInterpRefine, jac->hsolver, jac->interp_refine);
811: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_grid_sweeps_down", "Number of sweeps for the down cycles", "None", jac->gridsweeps[0], &indx, &flg));
812: if (flg) {
813: PetscCallExternal(HYPRE_BoomerAMGSetCycleNumSweeps, jac->hsolver, indx, 1);
814: jac->gridsweeps[0] = indx;
815: }
816: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_grid_sweeps_up", "Number of sweeps for the up cycles", "None", jac->gridsweeps[1], &indx, &flg));
817: if (flg) {
818: PetscCallExternal(HYPRE_BoomerAMGSetCycleNumSweeps, jac->hsolver, indx, 2);
819: jac->gridsweeps[1] = indx;
820: }
821: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_grid_sweeps_coarse", "Number of sweeps for the coarse level", "None", jac->gridsweeps[2], &indx, &flg));
822: if (flg) {
823: PetscCallExternal(HYPRE_BoomerAMGSetCycleNumSweeps, jac->hsolver, indx, 3);
824: jac->gridsweeps[2] = indx;
825: }
827: /* Smooth type */
828: PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_smooth_type", "Enable more complex smoothers", "None", HYPREBoomerAMGSmoothType, PETSC_STATIC_ARRAY_LENGTH(HYPREBoomerAMGSmoothType), HYPREBoomerAMGSmoothType[0], &indx, &flg));
829: if (flg) {
830: jac->smoothtype = indx;
831: PetscCallExternal(HYPRE_BoomerAMGSetSmoothType, jac->hsolver, indx + 6);
832: jac->smoothnumlevels = 25;
833: PetscCallExternal(HYPRE_BoomerAMGSetSmoothNumLevels, jac->hsolver, 25);
834: }
836: /* Number of smoothing levels */
837: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_smooth_num_levels", "Number of levels on which more complex smoothers are used", "None", 25, &indx, &flg));
838: if (flg && (jac->smoothtype != -1)) {
839: jac->smoothnumlevels = indx;
840: PetscCallExternal(HYPRE_BoomerAMGSetSmoothNumLevels, jac->hsolver, indx);
841: }
843: /* Number of levels for ILU(k) for Euclid */
844: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_eu_level", "Number of levels for ILU(k) in Euclid smoother", "None", 0, &indx, &flg));
845: if (flg && (jac->smoothtype == 3)) {
846: jac->eu_level = indx;
847: PetscCallExternal(HYPRE_BoomerAMGSetEuLevel, jac->hsolver, indx);
848: }
850: /* Filter for ILU(k) for Euclid */
851: PetscReal droptolerance;
852: PetscCall(PetscOptionsReal("-pc_hypre_boomeramg_eu_droptolerance", "Drop tolerance for ILU(k) in Euclid smoother", "None", 0, &droptolerance, &flg));
853: if (flg && (jac->smoothtype == 3)) {
854: jac->eu_droptolerance = droptolerance;
855: PetscCallExternal(HYPRE_BoomerAMGSetEuLevel, jac->hsolver, droptolerance);
856: }
858: /* Use Block Jacobi ILUT for Euclid */
859: PetscCall(PetscOptionsBool("-pc_hypre_boomeramg_eu_bj", "Use Block Jacobi for ILU in Euclid smoother?", "None", PETSC_FALSE, &tmp_truth, &flg));
860: if (flg && (jac->smoothtype == 3)) {
861: jac->eu_bj = tmp_truth;
862: PetscCallExternal(HYPRE_BoomerAMGSetEuBJ, jac->hsolver, jac->eu_bj);
863: }
865: /* Relax type */
866: PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_relax_type_all", "Relax type for the up and down cycles", "None", HYPREBoomerAMGRelaxType, PETSC_STATIC_ARRAY_LENGTH(HYPREBoomerAMGRelaxType), HYPREBoomerAMGRelaxType[6], &indx, &flg));
867: if (flg) {
868: jac->relaxtype[0] = jac->relaxtype[1] = indx;
869: PetscCallExternal(HYPRE_BoomerAMGSetRelaxType, jac->hsolver, indx);
870: /* by default, coarse type set to 9 */
871: jac->relaxtype[2] = 9;
872: PetscCallExternal(HYPRE_BoomerAMGSetCycleRelaxType, jac->hsolver, 9, 3);
873: }
874: PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_relax_type_down", "Relax type for the down cycles", "None", HYPREBoomerAMGRelaxType, PETSC_STATIC_ARRAY_LENGTH(HYPREBoomerAMGRelaxType), HYPREBoomerAMGRelaxType[6], &indx, &flg));
875: if (flg) {
876: jac->relaxtype[0] = indx;
877: PetscCallExternal(HYPRE_BoomerAMGSetCycleRelaxType, jac->hsolver, indx, 1);
878: }
879: PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_relax_type_up", "Relax type for the up cycles", "None", HYPREBoomerAMGRelaxType, PETSC_STATIC_ARRAY_LENGTH(HYPREBoomerAMGRelaxType), HYPREBoomerAMGRelaxType[6], &indx, &flg));
880: if (flg) {
881: jac->relaxtype[1] = indx;
882: PetscCallExternal(HYPRE_BoomerAMGSetCycleRelaxType, jac->hsolver, indx, 2);
883: }
884: PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_relax_type_coarse", "Relax type on coarse grid", "None", HYPREBoomerAMGRelaxType, PETSC_STATIC_ARRAY_LENGTH(HYPREBoomerAMGRelaxType), HYPREBoomerAMGRelaxType[9], &indx, &flg));
885: if (flg) {
886: jac->relaxtype[2] = indx;
887: PetscCallExternal(HYPRE_BoomerAMGSetCycleRelaxType, jac->hsolver, indx, 3);
888: }
890: /* Relaxation Weight */
891: PetscCall(PetscOptionsReal("-pc_hypre_boomeramg_relax_weight_all", "Relaxation weight for all levels (0 = hypre estimates, -k = determined with k CG steps)", "None", jac->relaxweight, &tmpdbl, &flg));
892: if (flg) {
893: PetscCallExternal(HYPRE_BoomerAMGSetRelaxWt, jac->hsolver, tmpdbl);
894: jac->relaxweight = tmpdbl;
895: }
897: n = 2;
898: twodbl[0] = twodbl[1] = 1.0;
899: PetscCall(PetscOptionsRealArray("-pc_hypre_boomeramg_relax_weight_level", "Set the relaxation weight for a particular level (weight,level)", "None", twodbl, &n, &flg));
900: if (flg) {
901: PetscCheck(n == 2, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Relax weight level: you must provide 2 values separated by a comma (and no space), you provided %" PetscInt_FMT, n);
902: indx = (int)PetscAbsReal(twodbl[1]);
903: PetscCallExternal(HYPRE_BoomerAMGSetLevelRelaxWt, jac->hsolver, twodbl[0], indx);
904: }
906: /* Outer relaxation Weight */
907: PetscCall(PetscOptionsReal("-pc_hypre_boomeramg_outer_relax_weight_all", "Outer relaxation weight for all levels (-k = determined with k CG steps)", "None", jac->outerrelaxweight, &tmpdbl, &flg));
908: if (flg) {
909: PetscCallExternal(HYPRE_BoomerAMGSetOuterWt, jac->hsolver, tmpdbl);
910: jac->outerrelaxweight = tmpdbl;
911: }
913: n = 2;
914: twodbl[0] = twodbl[1] = 1.0;
915: PetscCall(PetscOptionsRealArray("-pc_hypre_boomeramg_outer_relax_weight_level", "Set the outer relaxation weight for a particular level (weight,level)", "None", twodbl, &n, &flg));
916: if (flg) {
917: PetscCheck(n == 2, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Relax weight outer level: You must provide 2 values separated by a comma (and no space), you provided %" PetscInt_FMT, n);
918: indx = (int)PetscAbsReal(twodbl[1]);
919: PetscCallExternal(HYPRE_BoomerAMGSetLevelOuterWt, jac->hsolver, twodbl[0], indx);
920: }
922: /* the Relax Order */
923: PetscCall(PetscOptionsBool("-pc_hypre_boomeramg_no_CF", "Do not use CF-relaxation", "None", PETSC_FALSE, &tmp_truth, &flg));
925: if (flg && tmp_truth) {
926: jac->relaxorder = 0;
927: PetscCallExternal(HYPRE_BoomerAMGSetRelaxOrder, jac->hsolver, jac->relaxorder);
928: }
929: PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_measure_type", "Measure type", "None", HYPREBoomerAMGMeasureType, PETSC_STATIC_ARRAY_LENGTH(HYPREBoomerAMGMeasureType), HYPREBoomerAMGMeasureType[0], &indx, &flg));
930: if (flg) {
931: jac->measuretype = indx;
932: PetscCallExternal(HYPRE_BoomerAMGSetMeasureType, jac->hsolver, jac->measuretype);
933: }
934: /* update list length 3/07 */
935: PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_coarsen_type", "Coarsen type", "None", HYPREBoomerAMGCoarsenType, PETSC_STATIC_ARRAY_LENGTH(HYPREBoomerAMGCoarsenType), HYPREBoomerAMGCoarsenType[6], &indx, &flg));
936: if (flg) {
937: jac->coarsentype = indx;
938: PetscCallExternal(HYPRE_BoomerAMGSetCoarsenType, jac->hsolver, jac->coarsentype);
939: }
941: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_max_coarse_size", "Maximum size of coarsest grid", "None", jac->maxc, &jac->maxc, &flg));
942: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetMaxCoarseSize, jac->hsolver, jac->maxc);
943: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_min_coarse_size", "Minimum size of coarsest grid", "None", jac->minc, &jac->minc, &flg));
944: if (flg) PetscCallExternal(HYPRE_BoomerAMGSetMinCoarseSize, jac->hsolver, jac->minc);
945: #if PETSC_PKG_HYPRE_VERSION_GE(2, 23, 0)
946: // global parameter but is closely associated with BoomerAMG
947: PetscCall(PetscOptionsEList("-pc_mg_galerkin_mat_product_algorithm", "Type of SpGEMM to use in hypre (only for now)", "PCMGGalerkinSetMatProductAlgorithm", PCHYPRESpgemmTypes, PETSC_STATIC_ARRAY_LENGTH(PCHYPRESpgemmTypes), PCHYPRESpgemmTypes[0], &indx, &flg));
948: #if defined(PETSC_HAVE_HYPRE_DEVICE)
949: if (!flg) indx = 0;
950: PetscCall(PCMGGalerkinSetMatProductAlgorithm_HYPRE_BoomerAMG(pc, PCHYPRESpgemmTypes[indx]));
951: #else
952: PetscCall(PCMGGalerkinSetMatProductAlgorithm_HYPRE_BoomerAMG(pc, "hypre"));
953: #endif
954: #endif
955: /* AIR */
956: #if PETSC_PKG_HYPRE_VERSION_GE(2, 18, 0)
957: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_restriction_type", "Type of AIR method (distance 1 or 2, 0 means no AIR)", "None", jac->Rtype, &jac->Rtype, NULL));
958: PetscCallExternal(HYPRE_BoomerAMGSetRestriction, jac->hsolver, jac->Rtype);
959: if (jac->Rtype) {
960: HYPRE_Int **grid_relax_points = hypre_TAlloc(HYPRE_Int *, 4, HYPRE_MEMORY_HOST);
961: char *prerelax[256];
962: char *postrelax[256];
963: char stringF[2] = "F", stringC[2] = "C", stringA[2] = "A";
964: PetscInt ns_down = 256, ns_up = 256;
965: PetscBool matchF, matchC, matchA;
967: jac->interptype = 100; /* no way we can pass this with strings... Set it as default as in MFEM, then users can still customize it back to a different one */
969: PetscCall(PetscOptionsReal("-pc_hypre_boomeramg_strongthresholdR", "Threshold for R", "None", jac->Rstrongthreshold, &jac->Rstrongthreshold, NULL));
970: PetscCallExternal(HYPRE_BoomerAMGSetStrongThresholdR, jac->hsolver, jac->Rstrongthreshold);
972: PetscCall(PetscOptionsReal("-pc_hypre_boomeramg_filterthresholdR", "Filter threshold for R", "None", jac->Rfilterthreshold, &jac->Rfilterthreshold, NULL));
973: PetscCallExternal(HYPRE_BoomerAMGSetFilterThresholdR, jac->hsolver, jac->Rfilterthreshold);
975: PetscCall(PetscOptionsReal("-pc_hypre_boomeramg_Adroptol", "Defines the drop tolerance for the A-matrices from the 2nd level of AMG", "None", jac->Adroptol, &jac->Adroptol, NULL));
976: PetscCallExternal(HYPRE_BoomerAMGSetADropTol, jac->hsolver, jac->Adroptol);
978: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_Adroptype", "Drops the entries that are not on the diagonal and smaller than its row norm: type 1: 1-norm, 2: 2-norm, -1: infinity norm", "None", jac->Adroptype, &jac->Adroptype, NULL));
979: PetscCallExternal(HYPRE_BoomerAMGSetADropType, jac->hsolver, jac->Adroptype);
980: PetscCall(PetscOptionsStringArray("-pc_hypre_boomeramg_prerelax", "Defines prerelax scheme", "None", prerelax, &ns_down, NULL));
981: PetscCall(PetscOptionsStringArray("-pc_hypre_boomeramg_postrelax", "Defines postrelax scheme", "None", postrelax, &ns_up, NULL));
982: PetscCheck(ns_down == jac->gridsweeps[0], PetscObjectComm((PetscObject)jac), PETSC_ERR_ARG_SIZ, "The number of arguments passed to -pc_hypre_boomeramg_prerelax must match the number passed to -pc_hypre_bomeramg_grid_sweeps_down");
983: PetscCheck(ns_up == jac->gridsweeps[1], PetscObjectComm((PetscObject)jac), PETSC_ERR_ARG_SIZ, "The number of arguments passed to -pc_hypre_boomeramg_postrelax must match the number passed to -pc_hypre_bomeramg_grid_sweeps_up");
985: grid_relax_points[0] = NULL;
986: grid_relax_points[1] = hypre_TAlloc(HYPRE_Int, ns_down, HYPRE_MEMORY_HOST);
987: grid_relax_points[2] = hypre_TAlloc(HYPRE_Int, ns_up, HYPRE_MEMORY_HOST);
988: grid_relax_points[3] = hypre_TAlloc(HYPRE_Int, jac->gridsweeps[2], HYPRE_MEMORY_HOST);
989: grid_relax_points[3][0] = 0;
991: // set down relax scheme
992: for (PetscInt i = 0; i < ns_down; i++) {
993: PetscCall(PetscStrcasecmp(prerelax[i], stringF, &matchF));
994: PetscCall(PetscStrcasecmp(prerelax[i], stringC, &matchC));
995: PetscCall(PetscStrcasecmp(prerelax[i], stringA, &matchA));
996: PetscCheck(matchF || matchC || matchA, PetscObjectComm((PetscObject)jac), PETSC_ERR_ARG_WRONG, "Valid argument options for -pc_hypre_boomeramg_prerelax are C, F, and A");
997: if (matchF) grid_relax_points[1][i] = -1;
998: else if (matchC) grid_relax_points[1][i] = 1;
999: else if (matchA) grid_relax_points[1][i] = 0;
1000: }
1002: // set up relax scheme
1003: for (PetscInt i = 0; i < ns_up; i++) {
1004: PetscCall(PetscStrcasecmp(postrelax[i], stringF, &matchF));
1005: PetscCall(PetscStrcasecmp(postrelax[i], stringC, &matchC));
1006: PetscCall(PetscStrcasecmp(postrelax[i], stringA, &matchA));
1007: PetscCheck(matchF || matchC || matchA, PetscObjectComm((PetscObject)jac), PETSC_ERR_ARG_WRONG, "Valid argument options for -pc_hypre_boomeramg_postrelax are C, F, and A");
1008: if (matchF) grid_relax_points[2][i] = -1;
1009: else if (matchC) grid_relax_points[2][i] = 1;
1010: else if (matchA) grid_relax_points[2][i] = 0;
1011: }
1013: // set coarse relax scheme
1014: for (PetscInt i = 0; i < jac->gridsweeps[2]; i++) grid_relax_points[3][i] = 0;
1016: // Pass relax schemes to hypre
1017: PetscCallExternal(HYPRE_BoomerAMGSetGridRelaxPoints, jac->hsolver, grid_relax_points);
1019: // cleanup memory
1020: for (PetscInt i = 0; i < ns_down; i++) PetscCall(PetscFree(prerelax[i]));
1021: for (PetscInt i = 0; i < ns_up; i++) PetscCall(PetscFree(postrelax[i]));
1022: }
1023: #endif
1025: #if PETSC_PKG_HYPRE_VERSION_LE(9, 9, 9)
1026: PetscCheck(!jac->Rtype || !jac->agg_nl, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_INCOMP, "-pc_hypre_boomeramg_restriction_type (%" PetscInt_FMT ") and -pc_hypre_boomeramg_agg_nl (%" PetscInt_FMT ")", jac->Rtype, jac->agg_nl);
1027: #endif
1029: /* new 3/07 */
1030: PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_interp_type", "Interpolation type", "None", HYPREBoomerAMGInterpType, PETSC_STATIC_ARRAY_LENGTH(HYPREBoomerAMGInterpType), HYPREBoomerAMGInterpType[0], &indx, &flg));
1031: if (flg || jac->Rtype) {
1032: if (flg) jac->interptype = indx;
1033: PetscCallExternal(HYPRE_BoomerAMGSetInterpType, jac->hsolver, jac->interptype);
1034: }
1036: PetscCall(PetscOptionsName("-pc_hypre_boomeramg_print_statistics", "Print statistics", "None", &flg));
1037: if (flg) {
1038: level = 3;
1039: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_print_statistics", "Print statistics", "None", level, &level, NULL));
1041: jac->printstatistics = PETSC_TRUE;
1042: PetscCallExternal(HYPRE_BoomerAMGSetPrintLevel, jac->hsolver, level);
1043: }
1045: PetscCall(PetscOptionsName("-pc_hypre_boomeramg_print_debug", "Print debug information", "None", &flg));
1046: if (flg) {
1047: level = 3;
1048: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_print_debug", "Print debug information", "None", level, &level, NULL));
1050: jac->printstatistics = PETSC_TRUE;
1051: PetscCallExternal(HYPRE_BoomerAMGSetDebugFlag, jac->hsolver, level);
1052: }
1054: PetscCall(PetscOptionsBool("-pc_hypre_boomeramg_nodal_relaxation", "Nodal relaxation via Schwarz", "None", PETSC_FALSE, &tmp_truth, &flg));
1055: if (flg && tmp_truth) {
1056: PetscInt tmp_int;
1057: PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_nodal_relaxation", "Nodal relaxation via Schwarz", "None", jac->nodal_relax_levels, &tmp_int, &flg));
1058: if (flg) jac->nodal_relax_levels = tmp_int;
1059: PetscCallExternal(HYPRE_BoomerAMGSetSmoothType, jac->hsolver, 6);
1060: PetscCallExternal(HYPRE_BoomerAMGSetDomainType, jac->hsolver, 1);
1061: PetscCallExternal(HYPRE_BoomerAMGSetOverlap, jac->hsolver, 0);
1062: PetscCallExternal(HYPRE_BoomerAMGSetSmoothNumLevels, jac->hsolver, jac->nodal_relax_levels);
1063: }
1065: PetscCall(PetscOptionsBool("-pc_hypre_boomeramg_keeptranspose", "Avoid transpose matvecs in preconditioner application", "None", jac->keeptranspose, &jac->keeptranspose, NULL));
1066: PetscCallExternal(HYPRE_BoomerAMGSetKeepTranspose, jac->hsolver, jac->keeptranspose ? 1 : 0);
1068: /* options for ParaSails solvers */
1069: PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_parasails_sym", "Symmetry of matrix and preconditioner", "None", symtlist, PETSC_STATIC_ARRAY_LENGTH(symtlist), symtlist[0], &indx, &flg));
1070: if (flg) {
1071: jac->symt = indx;
1072: PetscCallExternal(HYPRE_BoomerAMGSetSym, jac->hsolver, jac->symt);
1073: }
1075: PetscOptionsHeadEnd();
1076: PetscFunctionReturn(PETSC_SUCCESS);
1077: }
1079: static PetscErrorCode PCApplyRichardson_HYPRE_BoomerAMG(PC pc, Vec b, Vec y, Vec w, PetscReal rtol, PetscReal abstol, PetscReal dtol, PetscInt its, PetscBool guesszero, PetscInt *outits, PCRichardsonConvergedReason *reason)
1080: {
1081: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1082: HYPRE_Int oits;
1084: PetscFunctionBegin;
1085: PetscCall(PetscCitationsRegister(hypreCitation, &cite));
1086: PetscCallExternal(HYPRE_BoomerAMGSetMaxIter, jac->hsolver, its * jac->maxiter);
1087: PetscCallExternal(HYPRE_BoomerAMGSetTol, jac->hsolver, rtol);
1088: jac->applyrichardson = PETSC_TRUE;
1089: PetscCall(PCApply_HYPRE(pc, b, y));
1090: jac->applyrichardson = PETSC_FALSE;
1091: PetscCallExternal(HYPRE_BoomerAMGGetNumIterations, jac->hsolver, &oits);
1092: *outits = oits;
1093: if (oits == its) *reason = PCRICHARDSON_CONVERGED_ITS;
1094: else *reason = PCRICHARDSON_CONVERGED_RTOL;
1095: PetscCallExternal(HYPRE_BoomerAMGSetTol, jac->hsolver, jac->tol);
1096: PetscCallExternal(HYPRE_BoomerAMGSetMaxIter, jac->hsolver, jac->maxiter);
1097: PetscFunctionReturn(PETSC_SUCCESS);
1098: }
1100: static PetscErrorCode PCView_HYPRE_BoomerAMG(PC pc, PetscViewer viewer)
1101: {
1102: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1103: PetscBool iascii;
1105: PetscFunctionBegin;
1106: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1107: if (iascii) {
1108: PetscCall(PetscViewerASCIIPrintf(viewer, " HYPRE BoomerAMG preconditioning\n"));
1109: PetscCall(PetscViewerASCIIPrintf(viewer, " Cycle type %s\n", HYPREBoomerAMGCycleType[jac->cycletype]));
1110: PetscCall(PetscViewerASCIIPrintf(viewer, " Maximum number of levels %" PetscInt_FMT "\n", jac->maxlevels));
1111: PetscCall(PetscViewerASCIIPrintf(viewer, " Maximum number of iterations PER hypre call %" PetscInt_FMT "\n", jac->maxiter));
1112: PetscCall(PetscViewerASCIIPrintf(viewer, " Convergence tolerance PER hypre call %g\n", (double)jac->tol));
1113: PetscCall(PetscViewerASCIIPrintf(viewer, " Threshold for strong coupling %g\n", (double)jac->strongthreshold));
1114: PetscCall(PetscViewerASCIIPrintf(viewer, " Interpolation truncation factor %g\n", (double)jac->truncfactor));
1115: PetscCall(PetscViewerASCIIPrintf(viewer, " Interpolation: max elements per row %" PetscInt_FMT "\n", jac->pmax));
1116: if (jac->interp_refine) PetscCall(PetscViewerASCIIPrintf(viewer, " Interpolation: number of steps of weighted refinement %" PetscInt_FMT "\n", jac->interp_refine));
1117: PetscCall(PetscViewerASCIIPrintf(viewer, " Number of levels of aggressive coarsening %" PetscInt_FMT "\n", jac->agg_nl));
1118: PetscCall(PetscViewerASCIIPrintf(viewer, " Number of paths for aggressive coarsening %" PetscInt_FMT "\n", jac->agg_num_paths));
1120: PetscCall(PetscViewerASCIIPrintf(viewer, " Maximum row sums %g\n", (double)jac->maxrowsum));
1122: PetscCall(PetscViewerASCIIPrintf(viewer, " Sweeps down %" PetscInt_FMT "\n", jac->gridsweeps[0]));
1123: PetscCall(PetscViewerASCIIPrintf(viewer, " Sweeps up %" PetscInt_FMT "\n", jac->gridsweeps[1]));
1124: PetscCall(PetscViewerASCIIPrintf(viewer, " Sweeps on coarse %" PetscInt_FMT "\n", jac->gridsweeps[2]));
1126: PetscCall(PetscViewerASCIIPrintf(viewer, " Relax down %s\n", HYPREBoomerAMGRelaxType[jac->relaxtype[0]]));
1127: PetscCall(PetscViewerASCIIPrintf(viewer, " Relax up %s\n", HYPREBoomerAMGRelaxType[jac->relaxtype[1]]));
1128: PetscCall(PetscViewerASCIIPrintf(viewer, " Relax on coarse %s\n", HYPREBoomerAMGRelaxType[jac->relaxtype[2]]));
1130: PetscCall(PetscViewerASCIIPrintf(viewer, " Relax weight (all) %g\n", (double)jac->relaxweight));
1131: PetscCall(PetscViewerASCIIPrintf(viewer, " Outer relax weight (all) %g\n", (double)jac->outerrelaxweight));
1133: PetscCall(PetscViewerASCIIPrintf(viewer, " Maximum size of coarsest grid %" PetscInt_FMT "\n", jac->maxc));
1134: PetscCall(PetscViewerASCIIPrintf(viewer, " Minimum size of coarsest grid %" PetscInt_FMT "\n", jac->minc));
1136: if (jac->relaxorder) {
1137: PetscCall(PetscViewerASCIIPrintf(viewer, " Using CF-relaxation\n"));
1138: } else {
1139: PetscCall(PetscViewerASCIIPrintf(viewer, " Not using CF-relaxation\n"));
1140: }
1141: if (jac->smoothtype != -1) {
1142: PetscCall(PetscViewerASCIIPrintf(viewer, " Smooth type %s\n", HYPREBoomerAMGSmoothType[jac->smoothtype]));
1143: PetscCall(PetscViewerASCIIPrintf(viewer, " Smooth num levels %" PetscInt_FMT "\n", jac->smoothnumlevels));
1144: } else {
1145: PetscCall(PetscViewerASCIIPrintf(viewer, " Not using more complex smoothers.\n"));
1146: }
1147: if (jac->smoothtype == 3) {
1148: PetscCall(PetscViewerASCIIPrintf(viewer, " Euclid ILU(k) levels %" PetscInt_FMT "\n", jac->eu_level));
1149: PetscCall(PetscViewerASCIIPrintf(viewer, " Euclid ILU(k) drop tolerance %g\n", (double)jac->eu_droptolerance));
1150: PetscCall(PetscViewerASCIIPrintf(viewer, " Euclid ILU use Block-Jacobi? %" PetscInt_FMT "\n", jac->eu_bj));
1151: }
1152: PetscCall(PetscViewerASCIIPrintf(viewer, " Measure type %s\n", HYPREBoomerAMGMeasureType[jac->measuretype]));
1153: PetscCall(PetscViewerASCIIPrintf(viewer, " Coarsen type %s\n", HYPREBoomerAMGCoarsenType[jac->coarsentype]));
1154: PetscCall(PetscViewerASCIIPrintf(viewer, " Interpolation type %s\n", jac->interptype != 100 ? HYPREBoomerAMGInterpType[jac->interptype] : "1pt"));
1155: if (jac->nodal_coarsening) PetscCall(PetscViewerASCIIPrintf(viewer, " Using nodal coarsening with HYPRE_BOOMERAMGSetNodal() %" PetscInt_FMT "\n", jac->nodal_coarsening));
1156: if (jac->vec_interp_variant) {
1157: PetscCall(PetscViewerASCIIPrintf(viewer, " HYPRE_BoomerAMGSetInterpVecVariant() %" PetscInt_FMT "\n", jac->vec_interp_variant));
1158: PetscCall(PetscViewerASCIIPrintf(viewer, " HYPRE_BoomerAMGSetInterpVecQMax() %" PetscInt_FMT "\n", jac->vec_interp_qmax));
1159: PetscCall(PetscViewerASCIIPrintf(viewer, " HYPRE_BoomerAMGSetSmoothInterpVectors() %d\n", jac->vec_interp_smooth));
1160: }
1161: if (jac->nodal_relax) PetscCall(PetscViewerASCIIPrintf(viewer, " Using nodal relaxation via Schwarz smoothing on levels %" PetscInt_FMT "\n", jac->nodal_relax_levels));
1162: #if PETSC_PKG_HYPRE_VERSION_GE(2, 23, 0)
1163: PetscCall(PetscViewerASCIIPrintf(viewer, " SpGEMM type %s\n", jac->spgemm_type));
1164: #else
1165: PetscCall(PetscViewerASCIIPrintf(viewer, " SpGEMM type %s\n", "hypre"));
1166: #endif
1167: /* AIR */
1168: if (jac->Rtype) {
1169: PetscCall(PetscViewerASCIIPrintf(viewer, " Using approximate ideal restriction type %" PetscInt_FMT "\n", jac->Rtype));
1170: PetscCall(PetscViewerASCIIPrintf(viewer, " Threshold for R %g\n", (double)jac->Rstrongthreshold));
1171: PetscCall(PetscViewerASCIIPrintf(viewer, " Filter for R %g\n", (double)jac->Rfilterthreshold));
1172: PetscCall(PetscViewerASCIIPrintf(viewer, " A drop tolerance %g\n", (double)jac->Adroptol));
1173: PetscCall(PetscViewerASCIIPrintf(viewer, " A drop type %" PetscInt_FMT "\n", jac->Adroptype));
1174: }
1175: }
1176: PetscFunctionReturn(PETSC_SUCCESS);
1177: }
1179: static PetscErrorCode PCSetFromOptions_HYPRE_ParaSails(PC pc, PetscOptionItems *PetscOptionsObject)
1180: {
1181: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1182: PetscInt indx;
1183: PetscBool flag;
1184: const char *symtlist[] = {"nonsymmetric", "SPD", "nonsymmetric,SPD"};
1186: PetscFunctionBegin;
1187: PetscOptionsHeadBegin(PetscOptionsObject, "HYPRE ParaSails Options");
1188: PetscCall(PetscOptionsInt("-pc_hypre_parasails_nlevels", "Number of number of levels", "None", jac->nlevels, &jac->nlevels, 0));
1189: PetscCall(PetscOptionsReal("-pc_hypre_parasails_thresh", "Threshold", "None", jac->threshold, &jac->threshold, &flag));
1190: if (flag) PetscCallExternal(HYPRE_ParaSailsSetParams, jac->hsolver, jac->threshold, jac->nlevels);
1192: PetscCall(PetscOptionsReal("-pc_hypre_parasails_filter", "filter", "None", jac->filter, &jac->filter, &flag));
1193: if (flag) PetscCallExternal(HYPRE_ParaSailsSetFilter, jac->hsolver, jac->filter);
1195: PetscCall(PetscOptionsReal("-pc_hypre_parasails_loadbal", "Load balance", "None", jac->loadbal, &jac->loadbal, &flag));
1196: if (flag) PetscCallExternal(HYPRE_ParaSailsSetLoadbal, jac->hsolver, jac->loadbal);
1198: PetscCall(PetscOptionsBool("-pc_hypre_parasails_logging", "Print info to screen", "None", (PetscBool)jac->logging, (PetscBool *)&jac->logging, &flag));
1199: if (flag) PetscCallExternal(HYPRE_ParaSailsSetLogging, jac->hsolver, jac->logging);
1201: PetscCall(PetscOptionsBool("-pc_hypre_parasails_reuse", "Reuse nonzero pattern in preconditioner", "None", (PetscBool)jac->ruse, (PetscBool *)&jac->ruse, &flag));
1202: if (flag) PetscCallExternal(HYPRE_ParaSailsSetReuse, jac->hsolver, jac->ruse);
1204: PetscCall(PetscOptionsEList("-pc_hypre_parasails_sym", "Symmetry of matrix and preconditioner", "None", symtlist, PETSC_STATIC_ARRAY_LENGTH(symtlist), symtlist[0], &indx, &flag));
1205: if (flag) {
1206: jac->symt = indx;
1207: PetscCallExternal(HYPRE_ParaSailsSetSym, jac->hsolver, jac->symt);
1208: }
1210: PetscOptionsHeadEnd();
1211: PetscFunctionReturn(PETSC_SUCCESS);
1212: }
1214: static PetscErrorCode PCView_HYPRE_ParaSails(PC pc, PetscViewer viewer)
1215: {
1216: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1217: PetscBool iascii;
1218: const char *symt = 0;
1220: PetscFunctionBegin;
1221: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1222: if (iascii) {
1223: PetscCall(PetscViewerASCIIPrintf(viewer, " HYPRE ParaSails preconditioning\n"));
1224: PetscCall(PetscViewerASCIIPrintf(viewer, " nlevels %" PetscInt_FMT "\n", jac->nlevels));
1225: PetscCall(PetscViewerASCIIPrintf(viewer, " threshold %g\n", (double)jac->threshold));
1226: PetscCall(PetscViewerASCIIPrintf(viewer, " filter %g\n", (double)jac->filter));
1227: PetscCall(PetscViewerASCIIPrintf(viewer, " load balance %g\n", (double)jac->loadbal));
1228: PetscCall(PetscViewerASCIIPrintf(viewer, " reuse nonzero structure %s\n", PetscBools[jac->ruse]));
1229: PetscCall(PetscViewerASCIIPrintf(viewer, " print info to screen %s\n", PetscBools[jac->logging]));
1230: if (!jac->symt) symt = "nonsymmetric matrix and preconditioner";
1231: else if (jac->symt == 1) symt = "SPD matrix and preconditioner";
1232: else if (jac->symt == 2) symt = "nonsymmetric matrix but SPD preconditioner";
1233: else SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONG, "Unknown HYPRE ParaSails symmetric option %" PetscInt_FMT, jac->symt);
1234: PetscCall(PetscViewerASCIIPrintf(viewer, " %s\n", symt));
1235: }
1236: PetscFunctionReturn(PETSC_SUCCESS);
1237: }
1239: static PetscErrorCode PCSetFromOptions_HYPRE_AMS(PC pc, PetscOptionItems *PetscOptionsObject)
1240: {
1241: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1242: PetscInt n;
1243: PetscBool flag, flag2, flag3, flag4;
1245: PetscFunctionBegin;
1246: PetscOptionsHeadBegin(PetscOptionsObject, "HYPRE AMS Options");
1247: PetscCall(PetscOptionsInt("-pc_hypre_ams_print_level", "Debugging output level for AMS", "None", jac->as_print, &jac->as_print, &flag));
1248: if (flag) PetscCallExternal(HYPRE_AMSSetPrintLevel, jac->hsolver, jac->as_print);
1249: PetscCall(PetscOptionsInt("-pc_hypre_ams_max_iter", "Maximum number of AMS multigrid iterations within PCApply", "None", jac->as_max_iter, &jac->as_max_iter, &flag));
1250: if (flag) PetscCallExternal(HYPRE_AMSSetMaxIter, jac->hsolver, jac->as_max_iter);
1251: PetscCall(PetscOptionsInt("-pc_hypre_ams_cycle_type", "Cycle type for AMS multigrid", "None", jac->ams_cycle_type, &jac->ams_cycle_type, &flag));
1252: if (flag) PetscCallExternal(HYPRE_AMSSetCycleType, jac->hsolver, jac->ams_cycle_type);
1253: PetscCall(PetscOptionsReal("-pc_hypre_ams_tol", "Error tolerance for AMS multigrid", "None", jac->as_tol, &jac->as_tol, &flag));
1254: if (flag) PetscCallExternal(HYPRE_AMSSetTol, jac->hsolver, jac->as_tol);
1255: PetscCall(PetscOptionsInt("-pc_hypre_ams_relax_type", "Relaxation type for AMS smoother", "None", jac->as_relax_type, &jac->as_relax_type, &flag));
1256: PetscCall(PetscOptionsInt("-pc_hypre_ams_relax_times", "Number of relaxation steps for AMS smoother", "None", jac->as_relax_times, &jac->as_relax_times, &flag2));
1257: PetscCall(PetscOptionsReal("-pc_hypre_ams_relax_weight", "Relaxation weight for AMS smoother", "None", jac->as_relax_weight, &jac->as_relax_weight, &flag3));
1258: PetscCall(PetscOptionsReal("-pc_hypre_ams_omega", "SSOR coefficient for AMS smoother", "None", jac->as_omega, &jac->as_omega, &flag4));
1259: if (flag || flag2 || flag3 || flag4) PetscCallExternal(HYPRE_AMSSetSmoothingOptions, jac->hsolver, jac->as_relax_type, jac->as_relax_times, jac->as_relax_weight, jac->as_omega);
1260: PetscCall(PetscOptionsReal("-pc_hypre_ams_amg_alpha_theta", "Threshold for strong coupling of vector Poisson AMG solver", "None", jac->as_amg_alpha_theta, &jac->as_amg_alpha_theta, &flag));
1261: n = 5;
1262: PetscCall(PetscOptionsIntArray("-pc_hypre_ams_amg_alpha_options", "AMG options for vector Poisson", "None", jac->as_amg_alpha_opts, &n, &flag2));
1263: if (flag || flag2) {
1264: PetscCallExternal(HYPRE_AMSSetAlphaAMGOptions, jac->hsolver, jac->as_amg_alpha_opts[0], /* AMG coarsen type */
1265: jac->as_amg_alpha_opts[1], /* AMG agg_levels */
1266: jac->as_amg_alpha_opts[2], /* AMG relax_type */
1267: jac->as_amg_alpha_theta, jac->as_amg_alpha_opts[3], /* AMG interp_type */
1268: jac->as_amg_alpha_opts[4]); /* AMG Pmax */
1269: }
1270: PetscCall(PetscOptionsReal("-pc_hypre_ams_amg_beta_theta", "Threshold for strong coupling of scalar Poisson AMG solver", "None", jac->as_amg_beta_theta, &jac->as_amg_beta_theta, &flag));
1271: n = 5;
1272: PetscCall(PetscOptionsIntArray("-pc_hypre_ams_amg_beta_options", "AMG options for scalar Poisson solver", "None", jac->as_amg_beta_opts, &n, &flag2));
1273: if (flag || flag2) {
1274: PetscCallExternal(HYPRE_AMSSetBetaAMGOptions, jac->hsolver, jac->as_amg_beta_opts[0], /* AMG coarsen type */
1275: jac->as_amg_beta_opts[1], /* AMG agg_levels */
1276: jac->as_amg_beta_opts[2], /* AMG relax_type */
1277: jac->as_amg_beta_theta, jac->as_amg_beta_opts[3], /* AMG interp_type */
1278: jac->as_amg_beta_opts[4]); /* AMG Pmax */
1279: }
1280: PetscCall(PetscOptionsInt("-pc_hypre_ams_projection_frequency", "Frequency at which a projection onto the compatible subspace for problems with zero conductivity regions is performed", "None", jac->ams_proj_freq, &jac->ams_proj_freq, &flag));
1281: if (flag) { /* override HYPRE's default only if the options is used */
1282: PetscCallExternal(HYPRE_AMSSetProjectionFrequency, jac->hsolver, jac->ams_proj_freq);
1283: }
1284: PetscOptionsHeadEnd();
1285: PetscFunctionReturn(PETSC_SUCCESS);
1286: }
1288: static PetscErrorCode PCView_HYPRE_AMS(PC pc, PetscViewer viewer)
1289: {
1290: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1291: PetscBool iascii;
1293: PetscFunctionBegin;
1294: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1295: if (iascii) {
1296: PetscCall(PetscViewerASCIIPrintf(viewer, " HYPRE AMS preconditioning\n"));
1297: PetscCall(PetscViewerASCIIPrintf(viewer, " subspace iterations per application %" PetscInt_FMT "\n", jac->as_max_iter));
1298: PetscCall(PetscViewerASCIIPrintf(viewer, " subspace cycle type %" PetscInt_FMT "\n", jac->ams_cycle_type));
1299: PetscCall(PetscViewerASCIIPrintf(viewer, " subspace iteration tolerance %g\n", (double)jac->as_tol));
1300: PetscCall(PetscViewerASCIIPrintf(viewer, " smoother type %" PetscInt_FMT "\n", jac->as_relax_type));
1301: PetscCall(PetscViewerASCIIPrintf(viewer, " number of smoothing steps %" PetscInt_FMT "\n", jac->as_relax_times));
1302: PetscCall(PetscViewerASCIIPrintf(viewer, " smoother weight %g\n", (double)jac->as_relax_weight));
1303: PetscCall(PetscViewerASCIIPrintf(viewer, " smoother omega %g\n", (double)jac->as_omega));
1304: if (jac->alpha_Poisson) {
1305: PetscCall(PetscViewerASCIIPrintf(viewer, " vector Poisson solver (passed in by user)\n"));
1306: } else {
1307: PetscCall(PetscViewerASCIIPrintf(viewer, " vector Poisson solver (computed) \n"));
1308: }
1309: PetscCall(PetscViewerASCIIPrintf(viewer, " boomerAMG coarsening type %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[0]));
1310: PetscCall(PetscViewerASCIIPrintf(viewer, " boomerAMG levels of aggressive coarsening %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[1]));
1311: PetscCall(PetscViewerASCIIPrintf(viewer, " boomerAMG relaxation type %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[2]));
1312: PetscCall(PetscViewerASCIIPrintf(viewer, " boomerAMG interpolation type %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[3]));
1313: PetscCall(PetscViewerASCIIPrintf(viewer, " boomerAMG max nonzero elements in interpolation rows %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[4]));
1314: PetscCall(PetscViewerASCIIPrintf(viewer, " boomerAMG strength threshold %g\n", (double)jac->as_amg_alpha_theta));
1315: if (!jac->ams_beta_is_zero) {
1316: if (jac->beta_Poisson) {
1317: PetscCall(PetscViewerASCIIPrintf(viewer, " scalar Poisson solver (passed in by user)\n"));
1318: } else {
1319: PetscCall(PetscViewerASCIIPrintf(viewer, " scalar Poisson solver (computed) \n"));
1320: }
1321: PetscCall(PetscViewerASCIIPrintf(viewer, " boomerAMG coarsening type %" PetscInt_FMT "\n", jac->as_amg_beta_opts[0]));
1322: PetscCall(PetscViewerASCIIPrintf(viewer, " boomerAMG levels of aggressive coarsening %" PetscInt_FMT "\n", jac->as_amg_beta_opts[1]));
1323: PetscCall(PetscViewerASCIIPrintf(viewer, " boomerAMG relaxation type %" PetscInt_FMT "\n", jac->as_amg_beta_opts[2]));
1324: PetscCall(PetscViewerASCIIPrintf(viewer, " boomerAMG interpolation type %" PetscInt_FMT "\n", jac->as_amg_beta_opts[3]));
1325: PetscCall(PetscViewerASCIIPrintf(viewer, " boomerAMG max nonzero elements in interpolation rows %" PetscInt_FMT "\n", jac->as_amg_beta_opts[4]));
1326: PetscCall(PetscViewerASCIIPrintf(viewer, " boomerAMG strength threshold %g\n", (double)jac->as_amg_beta_theta));
1327: if (jac->ams_beta_is_zero_part) PetscCall(PetscViewerASCIIPrintf(viewer, " compatible subspace projection frequency %" PetscInt_FMT " (-1 HYPRE uses default)\n", jac->ams_proj_freq));
1328: } else {
1329: PetscCall(PetscViewerASCIIPrintf(viewer, " scalar Poisson solver not used (zero-conductivity everywhere) \n"));
1330: }
1331: }
1332: PetscFunctionReturn(PETSC_SUCCESS);
1333: }
1335: static PetscErrorCode PCSetFromOptions_HYPRE_ADS(PC pc, PetscOptionItems *PetscOptionsObject)
1336: {
1337: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1338: PetscInt n;
1339: PetscBool flag, flag2, flag3, flag4;
1341: PetscFunctionBegin;
1342: PetscOptionsHeadBegin(PetscOptionsObject, "HYPRE ADS Options");
1343: PetscCall(PetscOptionsInt("-pc_hypre_ads_print_level", "Debugging output level for ADS", "None", jac->as_print, &jac->as_print, &flag));
1344: if (flag) PetscCallExternal(HYPRE_ADSSetPrintLevel, jac->hsolver, jac->as_print);
1345: PetscCall(PetscOptionsInt("-pc_hypre_ads_max_iter", "Maximum number of ADS multigrid iterations within PCApply", "None", jac->as_max_iter, &jac->as_max_iter, &flag));
1346: if (flag) PetscCallExternal(HYPRE_ADSSetMaxIter, jac->hsolver, jac->as_max_iter);
1347: PetscCall(PetscOptionsInt("-pc_hypre_ads_cycle_type", "Cycle type for ADS multigrid", "None", jac->ads_cycle_type, &jac->ads_cycle_type, &flag));
1348: if (flag) PetscCallExternal(HYPRE_ADSSetCycleType, jac->hsolver, jac->ads_cycle_type);
1349: PetscCall(PetscOptionsReal("-pc_hypre_ads_tol", "Error tolerance for ADS multigrid", "None", jac->as_tol, &jac->as_tol, &flag));
1350: if (flag) PetscCallExternal(HYPRE_ADSSetTol, jac->hsolver, jac->as_tol);
1351: PetscCall(PetscOptionsInt("-pc_hypre_ads_relax_type", "Relaxation type for ADS smoother", "None", jac->as_relax_type, &jac->as_relax_type, &flag));
1352: PetscCall(PetscOptionsInt("-pc_hypre_ads_relax_times", "Number of relaxation steps for ADS smoother", "None", jac->as_relax_times, &jac->as_relax_times, &flag2));
1353: PetscCall(PetscOptionsReal("-pc_hypre_ads_relax_weight", "Relaxation weight for ADS smoother", "None", jac->as_relax_weight, &jac->as_relax_weight, &flag3));
1354: PetscCall(PetscOptionsReal("-pc_hypre_ads_omega", "SSOR coefficient for ADS smoother", "None", jac->as_omega, &jac->as_omega, &flag4));
1355: if (flag || flag2 || flag3 || flag4) PetscCallExternal(HYPRE_ADSSetSmoothingOptions, jac->hsolver, jac->as_relax_type, jac->as_relax_times, jac->as_relax_weight, jac->as_omega);
1356: PetscCall(PetscOptionsReal("-pc_hypre_ads_ams_theta", "Threshold for strong coupling of AMS solver inside ADS", "None", jac->as_amg_alpha_theta, &jac->as_amg_alpha_theta, &flag));
1357: n = 5;
1358: PetscCall(PetscOptionsIntArray("-pc_hypre_ads_ams_options", "AMG options for AMS solver inside ADS", "None", jac->as_amg_alpha_opts, &n, &flag2));
1359: PetscCall(PetscOptionsInt("-pc_hypre_ads_ams_cycle_type", "Cycle type for AMS solver inside ADS", "None", jac->ams_cycle_type, &jac->ams_cycle_type, &flag3));
1360: if (flag || flag2 || flag3) {
1361: PetscCallExternal(HYPRE_ADSSetAMSOptions, jac->hsolver, jac->ams_cycle_type, /* AMS cycle type */
1362: jac->as_amg_alpha_opts[0], /* AMG coarsen type */
1363: jac->as_amg_alpha_opts[1], /* AMG agg_levels */
1364: jac->as_amg_alpha_opts[2], /* AMG relax_type */
1365: jac->as_amg_alpha_theta, jac->as_amg_alpha_opts[3], /* AMG interp_type */
1366: jac->as_amg_alpha_opts[4]); /* AMG Pmax */
1367: }
1368: PetscCall(PetscOptionsReal("-pc_hypre_ads_amg_theta", "Threshold for strong coupling of vector AMG solver inside ADS", "None", jac->as_amg_beta_theta, &jac->as_amg_beta_theta, &flag));
1369: n = 5;
1370: PetscCall(PetscOptionsIntArray("-pc_hypre_ads_amg_options", "AMG options for vector AMG solver inside ADS", "None", jac->as_amg_beta_opts, &n, &flag2));
1371: if (flag || flag2) {
1372: PetscCallExternal(HYPRE_ADSSetAMGOptions, jac->hsolver, jac->as_amg_beta_opts[0], /* AMG coarsen type */
1373: jac->as_amg_beta_opts[1], /* AMG agg_levels */
1374: jac->as_amg_beta_opts[2], /* AMG relax_type */
1375: jac->as_amg_beta_theta, jac->as_amg_beta_opts[3], /* AMG interp_type */
1376: jac->as_amg_beta_opts[4]); /* AMG Pmax */
1377: }
1378: PetscOptionsHeadEnd();
1379: PetscFunctionReturn(PETSC_SUCCESS);
1380: }
1382: static PetscErrorCode PCView_HYPRE_ADS(PC pc, PetscViewer viewer)
1383: {
1384: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1385: PetscBool iascii;
1387: PetscFunctionBegin;
1388: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1389: if (iascii) {
1390: PetscCall(PetscViewerASCIIPrintf(viewer, " HYPRE ADS preconditioning\n"));
1391: PetscCall(PetscViewerASCIIPrintf(viewer, " subspace iterations per application %" PetscInt_FMT "\n", jac->as_max_iter));
1392: PetscCall(PetscViewerASCIIPrintf(viewer, " subspace cycle type %" PetscInt_FMT "\n", jac->ads_cycle_type));
1393: PetscCall(PetscViewerASCIIPrintf(viewer, " subspace iteration tolerance %g\n", (double)jac->as_tol));
1394: PetscCall(PetscViewerASCIIPrintf(viewer, " smoother type %" PetscInt_FMT "\n", jac->as_relax_type));
1395: PetscCall(PetscViewerASCIIPrintf(viewer, " number of smoothing steps %" PetscInt_FMT "\n", jac->as_relax_times));
1396: PetscCall(PetscViewerASCIIPrintf(viewer, " smoother weight %g\n", (double)jac->as_relax_weight));
1397: PetscCall(PetscViewerASCIIPrintf(viewer, " smoother omega %g\n", (double)jac->as_omega));
1398: PetscCall(PetscViewerASCIIPrintf(viewer, " AMS solver using boomerAMG\n"));
1399: PetscCall(PetscViewerASCIIPrintf(viewer, " subspace cycle type %" PetscInt_FMT "\n", jac->ams_cycle_type));
1400: PetscCall(PetscViewerASCIIPrintf(viewer, " coarsening type %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[0]));
1401: PetscCall(PetscViewerASCIIPrintf(viewer, " levels of aggressive coarsening %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[1]));
1402: PetscCall(PetscViewerASCIIPrintf(viewer, " relaxation type %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[2]));
1403: PetscCall(PetscViewerASCIIPrintf(viewer, " interpolation type %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[3]));
1404: PetscCall(PetscViewerASCIIPrintf(viewer, " max nonzero elements in interpolation rows %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[4]));
1405: PetscCall(PetscViewerASCIIPrintf(viewer, " strength threshold %g\n", (double)jac->as_amg_alpha_theta));
1406: PetscCall(PetscViewerASCIIPrintf(viewer, " vector Poisson solver using boomerAMG\n"));
1407: PetscCall(PetscViewerASCIIPrintf(viewer, " coarsening type %" PetscInt_FMT "\n", jac->as_amg_beta_opts[0]));
1408: PetscCall(PetscViewerASCIIPrintf(viewer, " levels of aggressive coarsening %" PetscInt_FMT "\n", jac->as_amg_beta_opts[1]));
1409: PetscCall(PetscViewerASCIIPrintf(viewer, " relaxation type %" PetscInt_FMT "\n", jac->as_amg_beta_opts[2]));
1410: PetscCall(PetscViewerASCIIPrintf(viewer, " interpolation type %" PetscInt_FMT "\n", jac->as_amg_beta_opts[3]));
1411: PetscCall(PetscViewerASCIIPrintf(viewer, " max nonzero elements in interpolation rows %" PetscInt_FMT "\n", jac->as_amg_beta_opts[4]));
1412: PetscCall(PetscViewerASCIIPrintf(viewer, " strength threshold %g\n", (double)jac->as_amg_beta_theta));
1413: }
1414: PetscFunctionReturn(PETSC_SUCCESS);
1415: }
1417: static PetscErrorCode PCHYPRESetDiscreteGradient_HYPRE(PC pc, Mat G)
1418: {
1419: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1420: PetscBool ishypre;
1422: PetscFunctionBegin;
1423: PetscCall(PetscObjectTypeCompare((PetscObject)G, MATHYPRE, &ishypre));
1424: if (ishypre) {
1425: PetscCall(PetscObjectReference((PetscObject)G));
1426: PetscCall(MatDestroy(&jac->G));
1427: jac->G = G;
1428: } else {
1429: PetscCall(MatDestroy(&jac->G));
1430: PetscCall(MatConvert(G, MATHYPRE, MAT_INITIAL_MATRIX, &jac->G));
1431: }
1432: PetscFunctionReturn(PETSC_SUCCESS);
1433: }
1435: /*@
1436: PCHYPRESetDiscreteGradient - Set discrete gradient matrix for `PCHYPRE` type of ams or ads
1438: Collective
1440: Input Parameters:
1441: + pc - the preconditioning context
1442: - G - the discrete gradient
1444: Level: intermediate
1446: Notes:
1447: G should have as many rows as the number of edges and as many columns as the number of vertices in the mesh
1449: Each row of G has 2 nonzeros, with column indexes being the global indexes of edge's endpoints: matrix entries are +1 and -1 depending on edge orientation
1451: Developer Notes:
1452: This automatically converts the matrix to `MATHYPRE` if it is not already of that type
1454: .seealso: [](ch_ksp), `PCHYPRE`, `PCHYPRESetDiscreteCurl()`
1455: @*/
1456: PetscErrorCode PCHYPRESetDiscreteGradient(PC pc, Mat G)
1457: {
1458: PetscFunctionBegin;
1461: PetscCheckSameComm(pc, 1, G, 2);
1462: PetscTryMethod(pc, "PCHYPRESetDiscreteGradient_C", (PC, Mat), (pc, G));
1463: PetscFunctionReturn(PETSC_SUCCESS);
1464: }
1466: static PetscErrorCode PCHYPRESetDiscreteCurl_HYPRE(PC pc, Mat C)
1467: {
1468: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1469: PetscBool ishypre;
1471: PetscFunctionBegin;
1472: PetscCall(PetscObjectTypeCompare((PetscObject)C, MATHYPRE, &ishypre));
1473: if (ishypre) {
1474: PetscCall(PetscObjectReference((PetscObject)C));
1475: PetscCall(MatDestroy(&jac->C));
1476: jac->C = C;
1477: } else {
1478: PetscCall(MatDestroy(&jac->C));
1479: PetscCall(MatConvert(C, MATHYPRE, MAT_INITIAL_MATRIX, &jac->C));
1480: }
1481: PetscFunctionReturn(PETSC_SUCCESS);
1482: }
1484: /*@
1485: PCHYPRESetDiscreteCurl - Set discrete curl matrx for `PCHYPRE` type of ads
1487: Collective
1489: Input Parameters:
1490: + pc - the preconditioning context
1491: - C - the discrete curl
1493: Level: intermediate
1495: Notes:
1496: C should have as many rows as the number of faces and as many columns as the number of edges in the mesh
1498: Each row of G has as many nonzeros as the number of edges of a face, with column indexes being the global indexes of the corresponding edge: matrix entries are +1 and -1 depending on edge orientation with respect to the face orientation
1500: Developer Notes:
1501: This automatically converts the matrix to `MATHYPRE` if it is not already of that type
1503: If this is only for `PCHYPRE` type of ads it should be called `PCHYPREADSSetDiscreteCurl()`
1505: .seealso: [](ch_ksp), `PCHYPRE`, `PCHYPRESetDiscreteGradient()`
1506: @*/
1507: PetscErrorCode PCHYPRESetDiscreteCurl(PC pc, Mat C)
1508: {
1509: PetscFunctionBegin;
1512: PetscCheckSameComm(pc, 1, C, 2);
1513: PetscTryMethod(pc, "PCHYPRESetDiscreteCurl_C", (PC, Mat), (pc, C));
1514: PetscFunctionReturn(PETSC_SUCCESS);
1515: }
1517: static PetscErrorCode PCHYPRESetInterpolations_HYPRE(PC pc, PetscInt dim, Mat RT_PiFull, Mat RT_Pi[], Mat ND_PiFull, Mat ND_Pi[])
1518: {
1519: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1520: PetscBool ishypre;
1521: PetscInt i;
1523: PetscFunctionBegin;
1524: PetscCall(MatDestroy(&jac->RT_PiFull));
1525: PetscCall(MatDestroy(&jac->ND_PiFull));
1526: for (i = 0; i < 3; ++i) {
1527: PetscCall(MatDestroy(&jac->RT_Pi[i]));
1528: PetscCall(MatDestroy(&jac->ND_Pi[i]));
1529: }
1531: jac->dim = dim;
1532: if (RT_PiFull) {
1533: PetscCall(PetscObjectTypeCompare((PetscObject)RT_PiFull, MATHYPRE, &ishypre));
1534: if (ishypre) {
1535: PetscCall(PetscObjectReference((PetscObject)RT_PiFull));
1536: jac->RT_PiFull = RT_PiFull;
1537: } else {
1538: PetscCall(MatConvert(RT_PiFull, MATHYPRE, MAT_INITIAL_MATRIX, &jac->RT_PiFull));
1539: }
1540: }
1541: if (RT_Pi) {
1542: for (i = 0; i < dim; ++i) {
1543: if (RT_Pi[i]) {
1544: PetscCall(PetscObjectTypeCompare((PetscObject)RT_Pi[i], MATHYPRE, &ishypre));
1545: if (ishypre) {
1546: PetscCall(PetscObjectReference((PetscObject)RT_Pi[i]));
1547: jac->RT_Pi[i] = RT_Pi[i];
1548: } else {
1549: PetscCall(MatConvert(RT_Pi[i], MATHYPRE, MAT_INITIAL_MATRIX, &jac->RT_Pi[i]));
1550: }
1551: }
1552: }
1553: }
1554: if (ND_PiFull) {
1555: PetscCall(PetscObjectTypeCompare((PetscObject)ND_PiFull, MATHYPRE, &ishypre));
1556: if (ishypre) {
1557: PetscCall(PetscObjectReference((PetscObject)ND_PiFull));
1558: jac->ND_PiFull = ND_PiFull;
1559: } else {
1560: PetscCall(MatConvert(ND_PiFull, MATHYPRE, MAT_INITIAL_MATRIX, &jac->ND_PiFull));
1561: }
1562: }
1563: if (ND_Pi) {
1564: for (i = 0; i < dim; ++i) {
1565: if (ND_Pi[i]) {
1566: PetscCall(PetscObjectTypeCompare((PetscObject)ND_Pi[i], MATHYPRE, &ishypre));
1567: if (ishypre) {
1568: PetscCall(PetscObjectReference((PetscObject)ND_Pi[i]));
1569: jac->ND_Pi[i] = ND_Pi[i];
1570: } else {
1571: PetscCall(MatConvert(ND_Pi[i], MATHYPRE, MAT_INITIAL_MATRIX, &jac->ND_Pi[i]));
1572: }
1573: }
1574: }
1575: }
1576: PetscFunctionReturn(PETSC_SUCCESS);
1577: }
1579: /*@
1580: PCHYPRESetInterpolations - Set interpolation matrices for `PCHYPRE` type of ams or ads
1582: Collective
1584: Input Parameters:
1585: + pc - the preconditioning context
1586: . dim - the dimension of the problem, only used in AMS
1587: . RT_PiFull - Raviart-Thomas interpolation matrix
1588: . RT_Pi - x/y/z component of Raviart-Thomas interpolation matrix
1589: . ND_PiFull - Nedelec interpolation matrix
1590: - ND_Pi - x/y/z component of Nedelec interpolation matrix
1592: Level: intermediate
1594: Notes:
1595: For AMS, only Nedelec interpolation matrices are needed, the Raviart-Thomas interpolation matrices can be set to NULL.
1597: For ADS, both type of interpolation matrices are needed.
1599: Developer Notes:
1600: This automatically converts the matrix to `MATHYPRE` if it is not already of that type
1602: .seealso: [](ch_ksp), `PCHYPRE`
1603: @*/
1604: PetscErrorCode PCHYPRESetInterpolations(PC pc, PetscInt dim, Mat RT_PiFull, Mat RT_Pi[], Mat ND_PiFull, Mat ND_Pi[])
1605: {
1606: PetscInt i;
1608: PetscFunctionBegin;
1610: if (RT_PiFull) {
1612: PetscCheckSameComm(pc, 1, RT_PiFull, 3);
1613: }
1614: if (RT_Pi) {
1615: PetscAssertPointer(RT_Pi, 4);
1616: for (i = 0; i < dim; ++i) {
1617: if (RT_Pi[i]) {
1619: PetscCheckSameComm(pc, 1, RT_Pi[i], 4);
1620: }
1621: }
1622: }
1623: if (ND_PiFull) {
1625: PetscCheckSameComm(pc, 1, ND_PiFull, 5);
1626: }
1627: if (ND_Pi) {
1628: PetscAssertPointer(ND_Pi, 6);
1629: for (i = 0; i < dim; ++i) {
1630: if (ND_Pi[i]) {
1632: PetscCheckSameComm(pc, 1, ND_Pi[i], 6);
1633: }
1634: }
1635: }
1636: PetscTryMethod(pc, "PCHYPRESetInterpolations_C", (PC, PetscInt, Mat, Mat[], Mat, Mat[]), (pc, dim, RT_PiFull, RT_Pi, ND_PiFull, ND_Pi));
1637: PetscFunctionReturn(PETSC_SUCCESS);
1638: }
1640: static PetscErrorCode PCHYPRESetPoissonMatrix_HYPRE(PC pc, Mat A, PetscBool isalpha)
1641: {
1642: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1643: PetscBool ishypre;
1645: PetscFunctionBegin;
1646: PetscCall(PetscObjectTypeCompare((PetscObject)A, MATHYPRE, &ishypre));
1647: if (ishypre) {
1648: if (isalpha) {
1649: PetscCall(PetscObjectReference((PetscObject)A));
1650: PetscCall(MatDestroy(&jac->alpha_Poisson));
1651: jac->alpha_Poisson = A;
1652: } else {
1653: if (A) {
1654: PetscCall(PetscObjectReference((PetscObject)A));
1655: } else {
1656: jac->ams_beta_is_zero = PETSC_TRUE;
1657: }
1658: PetscCall(MatDestroy(&jac->beta_Poisson));
1659: jac->beta_Poisson = A;
1660: }
1661: } else {
1662: if (isalpha) {
1663: PetscCall(MatDestroy(&jac->alpha_Poisson));
1664: PetscCall(MatConvert(A, MATHYPRE, MAT_INITIAL_MATRIX, &jac->alpha_Poisson));
1665: } else {
1666: if (A) {
1667: PetscCall(MatDestroy(&jac->beta_Poisson));
1668: PetscCall(MatConvert(A, MATHYPRE, MAT_INITIAL_MATRIX, &jac->beta_Poisson));
1669: } else {
1670: PetscCall(MatDestroy(&jac->beta_Poisson));
1671: jac->ams_beta_is_zero = PETSC_TRUE;
1672: }
1673: }
1674: }
1675: PetscFunctionReturn(PETSC_SUCCESS);
1676: }
1678: /*@
1679: PCHYPRESetAlphaPoissonMatrix - Set vector Poisson matrix for `PCHYPRE` of type ams
1681: Collective
1683: Input Parameters:
1684: + pc - the preconditioning context
1685: - A - the matrix
1687: Level: intermediate
1689: Note:
1690: A should be obtained by discretizing the vector valued Poisson problem with linear finite elements
1692: Developer Notes:
1693: This automatically converts the matrix to `MATHYPRE` if it is not already of that type
1695: If this is only for `PCHYPRE` type of ams it should be called `PCHYPREAMSSetAlphaPoissonMatrix()`
1697: .seealso: [](ch_ksp), `PCHYPRE`, `PCHYPRESetDiscreteGradient()`, `PCHYPRESetDiscreteCurl()`, `PCHYPRESetBetaPoissonMatrix()`
1698: @*/
1699: PetscErrorCode PCHYPRESetAlphaPoissonMatrix(PC pc, Mat A)
1700: {
1701: PetscFunctionBegin;
1704: PetscCheckSameComm(pc, 1, A, 2);
1705: PetscTryMethod(pc, "PCHYPRESetPoissonMatrix_C", (PC, Mat, PetscBool), (pc, A, PETSC_TRUE));
1706: PetscFunctionReturn(PETSC_SUCCESS);
1707: }
1709: /*@
1710: PCHYPRESetBetaPoissonMatrix - Set Poisson matrix for `PCHYPRE` of type ams
1712: Collective
1714: Input Parameters:
1715: + pc - the preconditioning context
1716: - A - the matrix, or NULL to turn it off
1718: Level: intermediate
1720: Note:
1721: A should be obtained by discretizing the Poisson problem with linear finite elements.
1723: Developer Notes:
1724: This automatically converts the matrix to `MATHYPRE` if it is not already of that type
1726: If this is only for `PCHYPRE` type of ams it should be called `PCHYPREAMSPCHYPRESetBetaPoissonMatrix()`
1728: .seealso: [](ch_ksp), `PCHYPRE`, `PCHYPRESetDiscreteGradient()`, `PCHYPRESetDiscreteCurl()`, `PCHYPRESetAlphaPoissonMatrix()`
1729: @*/
1730: PetscErrorCode PCHYPRESetBetaPoissonMatrix(PC pc, Mat A)
1731: {
1732: PetscFunctionBegin;
1734: if (A) {
1736: PetscCheckSameComm(pc, 1, A, 2);
1737: }
1738: PetscTryMethod(pc, "PCHYPRESetPoissonMatrix_C", (PC, Mat, PetscBool), (pc, A, PETSC_FALSE));
1739: PetscFunctionReturn(PETSC_SUCCESS);
1740: }
1742: static PetscErrorCode PCHYPRESetEdgeConstantVectors_HYPRE(PC pc, Vec ozz, Vec zoz, Vec zzo)
1743: {
1744: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1746: PetscFunctionBegin;
1747: /* throw away any vector if already set */
1748: PetscCall(VecHYPRE_IJVectorDestroy(&jac->constants[0]));
1749: PetscCall(VecHYPRE_IJVectorDestroy(&jac->constants[1]));
1750: PetscCall(VecHYPRE_IJVectorDestroy(&jac->constants[2]));
1751: PetscCall(VecHYPRE_IJVectorCreate(ozz->map, &jac->constants[0]));
1752: PetscCall(VecHYPRE_IJVectorCopy(ozz, jac->constants[0]));
1753: PetscCall(VecHYPRE_IJVectorCreate(zoz->map, &jac->constants[1]));
1754: PetscCall(VecHYPRE_IJVectorCopy(zoz, jac->constants[1]));
1755: jac->dim = 2;
1756: if (zzo) {
1757: PetscCall(VecHYPRE_IJVectorCreate(zzo->map, &jac->constants[2]));
1758: PetscCall(VecHYPRE_IJVectorCopy(zzo, jac->constants[2]));
1759: jac->dim++;
1760: }
1761: PetscFunctionReturn(PETSC_SUCCESS);
1762: }
1764: /*@
1765: PCHYPRESetEdgeConstantVectors - Set the representation of the constant vector fields in the edge element basis for `PCHYPRE` of type ams
1767: Collective
1769: Input Parameters:
1770: + pc - the preconditioning context
1771: . ozz - vector representing (1,0,0) (or (1,0) in 2D)
1772: . zoz - vector representing (0,1,0) (or (0,1) in 2D)
1773: - zzo - vector representing (0,0,1) (use NULL in 2D)
1775: Level: intermediate
1777: Developer Notes:
1778: If this is only for `PCHYPRE` type of ams it should be called `PCHYPREAMSSetEdgeConstantVectors()`
1780: .seealso: [](ch_ksp), `PCHYPRE`, `PCHYPRESetDiscreteGradient()`, `PCHYPRESetDiscreteCurl()`, `PCHYPRESetAlphaPoissonMatrix()`
1781: @*/
1782: PetscErrorCode PCHYPRESetEdgeConstantVectors(PC pc, Vec ozz, Vec zoz, Vec zzo)
1783: {
1784: PetscFunctionBegin;
1789: PetscCheckSameComm(pc, 1, ozz, 2);
1790: PetscCheckSameComm(pc, 1, zoz, 3);
1791: if (zzo) PetscCheckSameComm(pc, 1, zzo, 4);
1792: PetscTryMethod(pc, "PCHYPRESetEdgeConstantVectors_C", (PC, Vec, Vec, Vec), (pc, ozz, zoz, zzo));
1793: PetscFunctionReturn(PETSC_SUCCESS);
1794: }
1796: static PetscErrorCode PCHYPREAMSSetInteriorNodes_HYPRE(PC pc, Vec interior)
1797: {
1798: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1800: PetscFunctionBegin;
1801: PetscCall(VecHYPRE_IJVectorDestroy(&jac->interior));
1802: PetscCall(VecHYPRE_IJVectorCreate(interior->map, &jac->interior));
1803: PetscCall(VecHYPRE_IJVectorCopy(interior, jac->interior));
1804: jac->ams_beta_is_zero_part = PETSC_TRUE;
1805: PetscFunctionReturn(PETSC_SUCCESS);
1806: }
1808: /*@
1809: PCHYPREAMSSetInteriorNodes - Set the list of interior nodes to a zero-conductivity region for `PCHYPRE` of type ams
1811: Collective
1813: Input Parameters:
1814: + pc - the preconditioning context
1815: - interior - vector. node is interior if its entry in the array is 1.0.
1817: Level: intermediate
1819: Note:
1820: This calls `HYPRE_AMSSetInteriorNodes()`
1822: Developer Notes:
1823: If this is only for `PCHYPRE` type of ams it should be called `PCHYPREAMSSetInteriorNodes()`
1825: .seealso: [](ch_ksp), `PCHYPRE`, `PCHYPRESetDiscreteGradient()`, `PCHYPRESetDiscreteCurl()`, `PCHYPRESetAlphaPoissonMatrix()`
1826: @*/
1827: PetscErrorCode PCHYPREAMSSetInteriorNodes(PC pc, Vec interior)
1828: {
1829: PetscFunctionBegin;
1832: PetscCheckSameComm(pc, 1, interior, 2);
1833: PetscTryMethod(pc, "PCHYPREAMSSetInteriorNodes_C", (PC, Vec), (pc, interior));
1834: PetscFunctionReturn(PETSC_SUCCESS);
1835: }
1837: static PetscErrorCode PCSetCoordinates_HYPRE(PC pc, PetscInt dim, PetscInt nloc, PetscReal *coords)
1838: {
1839: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1840: Vec tv;
1841: PetscInt i;
1843: PetscFunctionBegin;
1844: /* throw away any coordinate vector if already set */
1845: PetscCall(VecHYPRE_IJVectorDestroy(&jac->coords[0]));
1846: PetscCall(VecHYPRE_IJVectorDestroy(&jac->coords[1]));
1847: PetscCall(VecHYPRE_IJVectorDestroy(&jac->coords[2]));
1848: jac->dim = dim;
1850: /* compute IJ vector for coordinates */
1851: PetscCall(VecCreate(PetscObjectComm((PetscObject)pc), &tv));
1852: PetscCall(VecSetType(tv, VECSTANDARD));
1853: PetscCall(VecSetSizes(tv, nloc, PETSC_DECIDE));
1854: for (i = 0; i < dim; i++) {
1855: PetscScalar *array;
1856: PetscInt j;
1858: PetscCall(VecHYPRE_IJVectorCreate(tv->map, &jac->coords[i]));
1859: PetscCall(VecGetArrayWrite(tv, &array));
1860: for (j = 0; j < nloc; j++) array[j] = coords[j * dim + i];
1861: PetscCall(VecRestoreArrayWrite(tv, &array));
1862: PetscCall(VecHYPRE_IJVectorCopy(tv, jac->coords[i]));
1863: }
1864: PetscCall(VecDestroy(&tv));
1865: PetscFunctionReturn(PETSC_SUCCESS);
1866: }
1868: static PetscErrorCode PCHYPREGetType_HYPRE(PC pc, const char *name[])
1869: {
1870: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1872: PetscFunctionBegin;
1873: *name = jac->hypre_type;
1874: PetscFunctionReturn(PETSC_SUCCESS);
1875: }
1877: static PetscErrorCode PCHYPRESetType_HYPRE(PC pc, const char name[])
1878: {
1879: PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1880: PetscBool flag;
1882: PetscFunctionBegin;
1883: if (jac->hypre_type) {
1884: PetscCall(PetscStrcmp(jac->hypre_type, name, &flag));
1885: PetscCheck(flag, PetscObjectComm((PetscObject)pc), PETSC_ERR_ORDER, "Cannot reset the HYPRE preconditioner type once it has been set");
1886: PetscFunctionReturn(PETSC_SUCCESS);
1887: } else {
1888: PetscCall(PetscStrallocpy(name, &jac->hypre_type));
1889: }
1891: jac->maxiter = PETSC_DEFAULT;
1892: jac->tol = PETSC_DEFAULT;
1893: jac->printstatistics = PetscLogPrintInfo;
1895: PetscCall(PetscStrcmp("pilut", jac->hypre_type, &flag));
1896: if (flag) {
1897: PetscCall(PetscCommGetComm(PetscObjectComm((PetscObject)pc), &jac->comm_hypre));
1898: PetscCallExternal(HYPRE_ParCSRPilutCreate, jac->comm_hypre, &jac->hsolver);
1899: pc->ops->setfromoptions = PCSetFromOptions_HYPRE_Pilut;
1900: pc->ops->view = PCView_HYPRE_Pilut;
1901: jac->destroy = HYPRE_ParCSRPilutDestroy;
1902: jac->setup = HYPRE_ParCSRPilutSetup;
1903: jac->solve = HYPRE_ParCSRPilutSolve;
1904: jac->factorrowsize = PETSC_DEFAULT;
1905: PetscFunctionReturn(PETSC_SUCCESS);
1906: }
1907: PetscCall(PetscStrcmp("euclid", jac->hypre_type, &flag));
1908: if (flag) {
1909: #if defined(PETSC_USE_64BIT_INDICES)
1910: SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Hypre Euclid does not support 64-bit indices");
1911: #endif
1912: PetscCall(PetscCommGetComm(PetscObjectComm((PetscObject)pc), &jac->comm_hypre));
1913: PetscCallExternal(HYPRE_EuclidCreate, jac->comm_hypre, &jac->hsolver);
1914: pc->ops->setfromoptions = PCSetFromOptions_HYPRE_Euclid;
1915: pc->ops->view = PCView_HYPRE_Euclid;
1916: jac->destroy = HYPRE_EuclidDestroy;
1917: jac->setup = HYPRE_EuclidSetup;
1918: jac->solve = HYPRE_EuclidSolve;
1919: jac->factorrowsize = PETSC_DEFAULT;
1920: jac->eu_level = PETSC_DEFAULT; /* default */
1921: PetscFunctionReturn(PETSC_SUCCESS);
1922: }
1923: PetscCall(PetscStrcmp("parasails", jac->hypre_type, &flag));
1924: if (flag) {
1925: PetscCall(PetscCommGetComm(PetscObjectComm((PetscObject)pc), &jac->comm_hypre));
1926: PetscCallExternal(HYPRE_ParaSailsCreate, jac->comm_hypre, &jac->hsolver);
1927: pc->ops->setfromoptions = PCSetFromOptions_HYPRE_ParaSails;
1928: pc->ops->view = PCView_HYPRE_ParaSails;
1929: jac->destroy = HYPRE_ParaSailsDestroy;
1930: jac->setup = HYPRE_ParaSailsSetup;
1931: jac->solve = HYPRE_ParaSailsSolve;
1932: /* initialize */
1933: jac->nlevels = 1;
1934: jac->threshold = .1;
1935: jac->filter = .1;
1936: jac->loadbal = 0;
1937: if (PetscLogPrintInfo) jac->logging = (int)PETSC_TRUE;
1938: else jac->logging = (int)PETSC_FALSE;
1940: jac->ruse = (int)PETSC_FALSE;
1941: jac->symt = 0;
1942: PetscCallExternal(HYPRE_ParaSailsSetParams, jac->hsolver, jac->threshold, jac->nlevels);
1943: PetscCallExternal(HYPRE_ParaSailsSetFilter, jac->hsolver, jac->filter);
1944: PetscCallExternal(HYPRE_ParaSailsSetLoadbal, jac->hsolver, jac->loadbal);
1945: PetscCallExternal(HYPRE_ParaSailsSetLogging, jac->hsolver, jac->logging);
1946: PetscCallExternal(HYPRE_ParaSailsSetReuse, jac->hsolver, jac->ruse);
1947: PetscCallExternal(HYPRE_ParaSailsSetSym, jac->hsolver, jac->symt);
1948: PetscFunctionReturn(PETSC_SUCCESS);
1949: }
1950: PetscCall(PetscStrcmp("boomeramg", jac->hypre_type, &flag));
1951: if (flag) {
1952: PetscCallExternal(HYPRE_BoomerAMGCreate, &jac->hsolver);
1953: pc->ops->setfromoptions = PCSetFromOptions_HYPRE_BoomerAMG;
1954: pc->ops->view = PCView_HYPRE_BoomerAMG;
1955: pc->ops->applytranspose = PCApplyTranspose_HYPRE_BoomerAMG;
1956: pc->ops->applyrichardson = PCApplyRichardson_HYPRE_BoomerAMG;
1957: pc->ops->matapply = PCMatApply_HYPRE_BoomerAMG;
1958: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGetInterpolations_C", PCGetInterpolations_BoomerAMG));
1959: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGetCoarseOperators_C", PCGetCoarseOperators_BoomerAMG));
1960: jac->destroy = HYPRE_BoomerAMGDestroy;
1961: jac->setup = HYPRE_BoomerAMGSetup;
1962: jac->solve = HYPRE_BoomerAMGSolve;
1963: jac->applyrichardson = PETSC_FALSE;
1964: /* these defaults match the hypre defaults */
1965: jac->cycletype = 1;
1966: jac->maxlevels = 25;
1967: jac->maxiter = 1;
1968: jac->tol = 0.0; /* tolerance of zero indicates use as preconditioner (suppresses convergence errors) */
1969: jac->truncfactor = 0.0;
1970: jac->strongthreshold = .25;
1971: jac->maxrowsum = .9;
1972: jac->coarsentype = 6;
1973: jac->measuretype = 0;
1974: jac->gridsweeps[0] = jac->gridsweeps[1] = jac->gridsweeps[2] = 1;
1975: jac->smoothtype = -1; /* Not set by default */
1976: jac->smoothnumlevels = 25;
1977: jac->eu_level = 0;
1978: jac->eu_droptolerance = 0;
1979: jac->eu_bj = 0;
1980: jac->relaxtype[0] = jac->relaxtype[1] = 6; /* Defaults to SYMMETRIC since in PETSc we are using a PC - most likely with CG */
1981: jac->relaxtype[2] = 9; /*G.E. */
1982: jac->relaxweight = 1.0;
1983: jac->outerrelaxweight = 1.0;
1984: jac->relaxorder = 1;
1985: jac->interptype = 0;
1986: jac->Rtype = 0;
1987: jac->Rstrongthreshold = 0.25;
1988: jac->Rfilterthreshold = 0.0;
1989: jac->Adroptype = -1;
1990: jac->Adroptol = 0.0;
1991: jac->agg_nl = 0;
1992: jac->agg_interptype = 4;
1993: jac->pmax = 0;
1994: jac->truncfactor = 0.0;
1995: jac->agg_num_paths = 1;
1996: jac->maxc = 9;
1997: jac->minc = 1;
1998: jac->nodal_coarsening = 0;
1999: jac->nodal_coarsening_diag = 0;
2000: jac->vec_interp_variant = 0;
2001: jac->vec_interp_qmax = 0;
2002: jac->vec_interp_smooth = PETSC_FALSE;
2003: jac->interp_refine = 0;
2004: jac->nodal_relax = PETSC_FALSE;
2005: jac->nodal_relax_levels = 1;
2006: jac->rap2 = 0;
2008: /* GPU defaults
2009: from https://hypre.readthedocs.io/en/latest/solvers-boomeramg.html#gpu-supported-options
2010: and /src/parcsr_ls/par_amg.c */
2011: #if defined(PETSC_HAVE_HYPRE_DEVICE)
2012: jac->keeptranspose = PETSC_TRUE;
2013: jac->mod_rap2 = 1;
2014: jac->coarsentype = 8;
2015: jac->relaxorder = 0;
2016: jac->interptype = 6;
2017: jac->relaxtype[0] = 18;
2018: jac->relaxtype[1] = 18;
2019: jac->agg_interptype = 7;
2020: #else
2021: jac->keeptranspose = PETSC_FALSE;
2022: jac->mod_rap2 = 0;
2023: #endif
2024: PetscCallExternal(HYPRE_BoomerAMGSetCycleType, jac->hsolver, jac->cycletype);
2025: PetscCallExternal(HYPRE_BoomerAMGSetMaxLevels, jac->hsolver, jac->maxlevels);
2026: PetscCallExternal(HYPRE_BoomerAMGSetMaxIter, jac->hsolver, jac->maxiter);
2027: PetscCallExternal(HYPRE_BoomerAMGSetTol, jac->hsolver, jac->tol);
2028: PetscCallExternal(HYPRE_BoomerAMGSetTruncFactor, jac->hsolver, jac->truncfactor);
2029: PetscCallExternal(HYPRE_BoomerAMGSetStrongThreshold, jac->hsolver, jac->strongthreshold);
2030: PetscCallExternal(HYPRE_BoomerAMGSetMaxRowSum, jac->hsolver, jac->maxrowsum);
2031: PetscCallExternal(HYPRE_BoomerAMGSetCoarsenType, jac->hsolver, jac->coarsentype);
2032: PetscCallExternal(HYPRE_BoomerAMGSetMeasureType, jac->hsolver, jac->measuretype);
2033: PetscCallExternal(HYPRE_BoomerAMGSetRelaxOrder, jac->hsolver, jac->relaxorder);
2034: PetscCallExternal(HYPRE_BoomerAMGSetInterpType, jac->hsolver, jac->interptype);
2035: PetscCallExternal(HYPRE_BoomerAMGSetAggNumLevels, jac->hsolver, jac->agg_nl);
2036: PetscCallExternal(HYPRE_BoomerAMGSetAggInterpType, jac->hsolver, jac->agg_interptype);
2037: PetscCallExternal(HYPRE_BoomerAMGSetPMaxElmts, jac->hsolver, jac->pmax);
2038: PetscCallExternal(HYPRE_BoomerAMGSetNumPaths, jac->hsolver, jac->agg_num_paths);
2039: PetscCallExternal(HYPRE_BoomerAMGSetRelaxType, jac->hsolver, jac->relaxtype[0]); /* defaults coarse to 9 */
2040: PetscCallExternal(HYPRE_BoomerAMGSetNumSweeps, jac->hsolver, jac->gridsweeps[0]); /* defaults coarse to 1 */
2041: PetscCallExternal(HYPRE_BoomerAMGSetMaxCoarseSize, jac->hsolver, jac->maxc);
2042: PetscCallExternal(HYPRE_BoomerAMGSetMinCoarseSize, jac->hsolver, jac->minc);
2043: /* GPU */
2044: #if PETSC_PKG_HYPRE_VERSION_GE(2, 18, 0)
2045: PetscCallExternal(HYPRE_BoomerAMGSetKeepTranspose, jac->hsolver, jac->keeptranspose ? 1 : 0);
2046: PetscCallExternal(HYPRE_BoomerAMGSetRAP2, jac->hsolver, jac->rap2);
2047: PetscCallExternal(HYPRE_BoomerAMGSetModuleRAP2, jac->hsolver, jac->mod_rap2);
2048: #endif
2050: /* AIR */
2051: #if PETSC_PKG_HYPRE_VERSION_GE(2, 18, 0)
2052: PetscCallExternal(HYPRE_BoomerAMGSetRestriction, jac->hsolver, jac->Rtype);
2053: PetscCallExternal(HYPRE_BoomerAMGSetStrongThresholdR, jac->hsolver, jac->Rstrongthreshold);
2054: PetscCallExternal(HYPRE_BoomerAMGSetFilterThresholdR, jac->hsolver, jac->Rfilterthreshold);
2055: PetscCallExternal(HYPRE_BoomerAMGSetADropTol, jac->hsolver, jac->Adroptol);
2056: PetscCallExternal(HYPRE_BoomerAMGSetADropType, jac->hsolver, jac->Adroptype);
2057: #endif
2058: PetscFunctionReturn(PETSC_SUCCESS);
2059: }
2060: PetscCall(PetscStrcmp("ams", jac->hypre_type, &flag));
2061: if (flag) {
2062: PetscCallExternal(HYPRE_AMSCreate, &jac->hsolver);
2063: pc->ops->setfromoptions = PCSetFromOptions_HYPRE_AMS;
2064: pc->ops->view = PCView_HYPRE_AMS;
2065: jac->destroy = HYPRE_AMSDestroy;
2066: jac->setup = HYPRE_AMSSetup;
2067: jac->solve = HYPRE_AMSSolve;
2068: jac->coords[0] = NULL;
2069: jac->coords[1] = NULL;
2070: jac->coords[2] = NULL;
2071: jac->interior = NULL;
2072: /* solver parameters: these are borrowed from mfem package, and they are not the default values from HYPRE AMS */
2073: jac->as_print = 0;
2074: jac->as_max_iter = 1; /* used as a preconditioner */
2075: jac->as_tol = 0.; /* used as a preconditioner */
2076: jac->ams_cycle_type = 13;
2077: /* Smoothing options */
2078: jac->as_relax_type = 2;
2079: jac->as_relax_times = 1;
2080: jac->as_relax_weight = 1.0;
2081: jac->as_omega = 1.0;
2082: /* Vector valued Poisson AMG solver parameters: coarsen type, agg_levels, relax_type, interp_type, Pmax */
2083: jac->as_amg_alpha_opts[0] = 10;
2084: jac->as_amg_alpha_opts[1] = 1;
2085: jac->as_amg_alpha_opts[2] = 6;
2086: jac->as_amg_alpha_opts[3] = 6;
2087: jac->as_amg_alpha_opts[4] = 4;
2088: jac->as_amg_alpha_theta = 0.25;
2089: /* Scalar Poisson AMG solver parameters: coarsen type, agg_levels, relax_type, interp_type, Pmax */
2090: jac->as_amg_beta_opts[0] = 10;
2091: jac->as_amg_beta_opts[1] = 1;
2092: jac->as_amg_beta_opts[2] = 6;
2093: jac->as_amg_beta_opts[3] = 6;
2094: jac->as_amg_beta_opts[4] = 4;
2095: jac->as_amg_beta_theta = 0.25;
2096: PetscCallExternal(HYPRE_AMSSetPrintLevel, jac->hsolver, jac->as_print);
2097: PetscCallExternal(HYPRE_AMSSetMaxIter, jac->hsolver, jac->as_max_iter);
2098: PetscCallExternal(HYPRE_AMSSetCycleType, jac->hsolver, jac->ams_cycle_type);
2099: PetscCallExternal(HYPRE_AMSSetTol, jac->hsolver, jac->as_tol);
2100: PetscCallExternal(HYPRE_AMSSetSmoothingOptions, jac->hsolver, jac->as_relax_type, jac->as_relax_times, jac->as_relax_weight, jac->as_omega);
2101: PetscCallExternal(HYPRE_AMSSetAlphaAMGOptions, jac->hsolver, jac->as_amg_alpha_opts[0], /* AMG coarsen type */
2102: jac->as_amg_alpha_opts[1], /* AMG agg_levels */
2103: jac->as_amg_alpha_opts[2], /* AMG relax_type */
2104: jac->as_amg_alpha_theta, jac->as_amg_alpha_opts[3], /* AMG interp_type */
2105: jac->as_amg_alpha_opts[4]); /* AMG Pmax */
2106: PetscCallExternal(HYPRE_AMSSetBetaAMGOptions, jac->hsolver, jac->as_amg_beta_opts[0], /* AMG coarsen type */
2107: jac->as_amg_beta_opts[1], /* AMG agg_levels */
2108: jac->as_amg_beta_opts[2], /* AMG relax_type */
2109: jac->as_amg_beta_theta, jac->as_amg_beta_opts[3], /* AMG interp_type */
2110: jac->as_amg_beta_opts[4]); /* AMG Pmax */
2111: /* Zero conductivity */
2112: jac->ams_beta_is_zero = PETSC_FALSE;
2113: jac->ams_beta_is_zero_part = PETSC_FALSE;
2114: PetscFunctionReturn(PETSC_SUCCESS);
2115: }
2116: PetscCall(PetscStrcmp("ads", jac->hypre_type, &flag));
2117: if (flag) {
2118: PetscCallExternal(HYPRE_ADSCreate, &jac->hsolver);
2119: pc->ops->setfromoptions = PCSetFromOptions_HYPRE_ADS;
2120: pc->ops->view = PCView_HYPRE_ADS;
2121: jac->destroy = HYPRE_ADSDestroy;
2122: jac->setup = HYPRE_ADSSetup;
2123: jac->solve = HYPRE_ADSSolve;
2124: jac->coords[0] = NULL;
2125: jac->coords[1] = NULL;
2126: jac->coords[2] = NULL;
2127: /* solver parameters: these are borrowed from mfem package, and they are not the default values from HYPRE ADS */
2128: jac->as_print = 0;
2129: jac->as_max_iter = 1; /* used as a preconditioner */
2130: jac->as_tol = 0.; /* used as a preconditioner */
2131: jac->ads_cycle_type = 13;
2132: /* Smoothing options */
2133: jac->as_relax_type = 2;
2134: jac->as_relax_times = 1;
2135: jac->as_relax_weight = 1.0;
2136: jac->as_omega = 1.0;
2137: /* AMS solver parameters: cycle_type, coarsen type, agg_levels, relax_type, interp_type, Pmax */
2138: jac->ams_cycle_type = 14;
2139: jac->as_amg_alpha_opts[0] = 10;
2140: jac->as_amg_alpha_opts[1] = 1;
2141: jac->as_amg_alpha_opts[2] = 6;
2142: jac->as_amg_alpha_opts[3] = 6;
2143: jac->as_amg_alpha_opts[4] = 4;
2144: jac->as_amg_alpha_theta = 0.25;
2145: /* Vector Poisson AMG solver parameters: coarsen type, agg_levels, relax_type, interp_type, Pmax */
2146: jac->as_amg_beta_opts[0] = 10;
2147: jac->as_amg_beta_opts[1] = 1;
2148: jac->as_amg_beta_opts[2] = 6;
2149: jac->as_amg_beta_opts[3] = 6;
2150: jac->as_amg_beta_opts[4] = 4;
2151: jac->as_amg_beta_theta = 0.25;
2152: PetscCallExternal(HYPRE_ADSSetPrintLevel, jac->hsolver, jac->as_print);
2153: PetscCallExternal(HYPRE_ADSSetMaxIter, jac->hsolver, jac->as_max_iter);
2154: PetscCallExternal(HYPRE_ADSSetCycleType, jac->hsolver, jac->ams_cycle_type);
2155: PetscCallExternal(HYPRE_ADSSetTol, jac->hsolver, jac->as_tol);
2156: PetscCallExternal(HYPRE_ADSSetSmoothingOptions, jac->hsolver, jac->as_relax_type, jac->as_relax_times, jac->as_relax_weight, jac->as_omega);
2157: PetscCallExternal(HYPRE_ADSSetAMSOptions, jac->hsolver, jac->ams_cycle_type, /* AMG coarsen type */
2158: jac->as_amg_alpha_opts[0], /* AMG coarsen type */
2159: jac->as_amg_alpha_opts[1], /* AMG agg_levels */
2160: jac->as_amg_alpha_opts[2], /* AMG relax_type */
2161: jac->as_amg_alpha_theta, jac->as_amg_alpha_opts[3], /* AMG interp_type */
2162: jac->as_amg_alpha_opts[4]); /* AMG Pmax */
2163: PetscCallExternal(HYPRE_ADSSetAMGOptions, jac->hsolver, jac->as_amg_beta_opts[0], /* AMG coarsen type */
2164: jac->as_amg_beta_opts[1], /* AMG agg_levels */
2165: jac->as_amg_beta_opts[2], /* AMG relax_type */
2166: jac->as_amg_beta_theta, jac->as_amg_beta_opts[3], /* AMG interp_type */
2167: jac->as_amg_beta_opts[4]); /* AMG Pmax */
2168: PetscFunctionReturn(PETSC_SUCCESS);
2169: }
2170: PetscCall(PetscFree(jac->hypre_type));
2172: jac->hypre_type = NULL;
2173: SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown HYPRE preconditioner %s; Choices are euclid, pilut, parasails, boomeramg, ams", name);
2174: }
2176: /*
2177: It only gets here if the HYPRE type has not been set before the call to
2178: ...SetFromOptions() which actually is most of the time
2179: */
2180: static PetscErrorCode PCSetFromOptions_HYPRE(PC pc, PetscOptionItems *PetscOptionsObject)
2181: {
2182: PetscInt indx;
2183: const char *type[] = {"euclid", "pilut", "parasails", "boomeramg", "ams", "ads"};
2184: PetscBool flg;
2186: PetscFunctionBegin;
2187: PetscOptionsHeadBegin(PetscOptionsObject, "HYPRE preconditioner options");
2188: PetscCall(PetscOptionsEList("-pc_hypre_type", "HYPRE preconditioner type", "PCHYPRESetType", type, PETSC_STATIC_ARRAY_LENGTH(type), "boomeramg", &indx, &flg));
2189: if (flg) {
2190: PetscCall(PCHYPRESetType_HYPRE(pc, type[indx]));
2191: } else {
2192: PetscCall(PCHYPRESetType_HYPRE(pc, "boomeramg"));
2193: }
2194: PetscTryTypeMethod(pc, setfromoptions, PetscOptionsObject);
2195: PetscOptionsHeadEnd();
2196: PetscFunctionReturn(PETSC_SUCCESS);
2197: }
2199: /*@C
2200: PCHYPRESetType - Sets which hypre preconditioner you wish to use
2202: Input Parameters:
2203: + pc - the preconditioner context
2204: - name - either euclid, pilut, parasails, boomeramg, ams, ads
2206: Options Database Key:
2207: . pc_hypre_type - One of euclid, pilut, parasails, boomeramg, ams, ads
2209: Level: intermediate
2211: .seealso: [](ch_ksp), `PCCreate()`, `PCSetType()`, `PCType`, `PC`, `PCHYPRE`
2212: @*/
2213: PetscErrorCode PCHYPRESetType(PC pc, const char name[])
2214: {
2215: PetscFunctionBegin;
2217: PetscAssertPointer(name, 2);
2218: PetscTryMethod(pc, "PCHYPRESetType_C", (PC, const char[]), (pc, name));
2219: PetscFunctionReturn(PETSC_SUCCESS);
2220: }
2222: /*@C
2223: PCHYPREGetType - Gets which hypre preconditioner you are using
2225: Input Parameter:
2226: . pc - the preconditioner context
2228: Output Parameter:
2229: . name - either euclid, pilut, parasails, boomeramg, ams, ads
2231: Level: intermediate
2233: .seealso: [](ch_ksp), `PCCreate()`, `PCHYPRESetType()`, `PCType`, `PC`, `PCHYPRE`
2234: @*/
2235: PetscErrorCode PCHYPREGetType(PC pc, const char *name[])
2236: {
2237: PetscFunctionBegin;
2239: PetscAssertPointer(name, 2);
2240: PetscTryMethod(pc, "PCHYPREGetType_C", (PC, const char *[]), (pc, name));
2241: PetscFunctionReturn(PETSC_SUCCESS);
2242: }
2244: /*@C
2245: PCMGGalerkinSetMatProductAlgorithm - Set type of SpGEMM for hypre to use on GPUs
2247: Logically Collective
2249: Input Parameters:
2250: + pc - the hypre context
2251: - name - one of 'cusparse', 'hypre'
2253: Options Database Key:
2254: . -pc_mg_galerkin_mat_product_algorithm <cusparse,hypre> - Type of SpGEMM to use in hypre
2256: Level: intermediate
2258: Developer Notes:
2259: How the name starts with `PCMG`, should it not be `PCHYPREBoomerAMG`?
2261: .seealso: [](ch_ksp), `PCHYPRE`, `PCMGGalerkinGetMatProductAlgorithm()`
2262: @*/
2263: PetscErrorCode PCMGGalerkinSetMatProductAlgorithm(PC pc, const char name[])
2264: {
2265: PetscFunctionBegin;
2267: PetscTryMethod(pc, "PCMGGalerkinSetMatProductAlgorithm_C", (PC, const char[]), (pc, name));
2268: PetscFunctionReturn(PETSC_SUCCESS);
2269: }
2271: /*@C
2272: PCMGGalerkinGetMatProductAlgorithm - Get type of SpGEMM for hypre to use on GPUs
2274: Not Collective
2276: Input Parameter:
2277: . pc - the multigrid context
2279: Output Parameter:
2280: . name - one of 'cusparse', 'hypre'
2282: Level: intermediate
2284: .seealso: [](ch_ksp), `PCHYPRE`, `PCMGGalerkinSetMatProductAlgorithm()`
2285: @*/
2286: PetscErrorCode PCMGGalerkinGetMatProductAlgorithm(PC pc, const char *name[])
2287: {
2288: PetscFunctionBegin;
2290: PetscTryMethod(pc, "PCMGGalerkinGetMatProductAlgorithm_C", (PC, const char *[]), (pc, name));
2291: PetscFunctionReturn(PETSC_SUCCESS);
2292: }
2294: /*MC
2295: PCHYPRE - Allows you to use the matrix element based preconditioners in the LLNL package hypre as PETSc `PC`
2297: Options Database Keys:
2298: + -pc_hypre_type - One of `euclid`, `pilut`, `parasails`, `boomeramg`, `ams`, or `ads`
2299: . -pc_hypre_boomeramg_nodal_coarsen <n> - where n is from 1 to 6 (see `HYPRE_BOOMERAMGSetNodal()`)
2300: . -pc_hypre_boomeramg_vec_interp_variant <v> - where v is from 1 to 3 (see `HYPRE_BoomerAMGSetInterpVecVariant()`)
2301: - Many others, run with `-pc_type hypre` `-pc_hypre_type XXX` `-help` to see options for the XXX preconditioner
2303: Level: intermediate
2305: Notes:
2306: Apart from `-pc_hypre_type` (for which there is `PCHYPRESetType()`),
2307: the many hypre options can ONLY be set via the options database (e.g. the command line
2308: or with `PetscOptionsSetValue()`, there are no functions to set them)
2310: The options `-pc_hypre_boomeramg_max_iter` and `-pc_hypre_boomeramg_tol` refer to the number of iterations
2311: (V-cycles) and tolerance that boomerAMG does EACH time it is called. So for example, if
2312: `-pc_hypre_boomeramg_max_iter` is set to 2 then 2-V-cycles are being used to define the preconditioner
2313: (`-pc_hypre_boomeramg_tol` should be set to 0.0 - the default - to strictly use a fixed number of
2314: iterations per hypre call). `-ksp_max_it` and `-ksp_rtol` STILL determine the total number of iterations
2315: and tolerance for the Krylov solver. For example, if `-pc_hypre_boomeramg_max_iter` is 2 and `-ksp_max_it` is 10
2316: then AT MOST twenty V-cycles of boomeramg will be used.
2318: Note that the option `-pc_hypre_boomeramg_relax_type_all` defaults to symmetric relaxation
2319: (symmetric-SOR/Jacobi), which is required for Krylov solvers like CG that expect symmetry.
2320: Otherwise, you may want to use `-pc_hypre_boomeramg_relax_type_all SOR/Jacobi`.
2322: `MatSetNearNullSpace()` - if you provide a near null space to your matrix it is ignored by hypre UNLESS you also use
2323: the following two options: `-pc_hypre_boomeramg_nodal_coarsen <n> -pc_hypre_boomeramg_vec_interp_variant <v>`
2325: See `PCPFMG`, `PCSMG`, and `PCSYSPFMG` for access to hypre's other (nonalgebraic) multigrid solvers
2327: For `PCHYPRE` type of `ams` or `ads` auxiliary data must be provided to the preconditioner with `PCHYPRESetDiscreteGradient()`,
2328: `PCHYPRESetDiscreteCurl()`, `PCHYPRESetInterpolations()`, `PCHYPRESetAlphaPoissonMatrix()`, `PCHYPRESetBetaPoissonMatrix()`, `PCHYPRESetEdgeConstantVectors()`,
2329: `PCHYPREAMSSetInteriorNodes()`
2331: Sometimes people want to try algebraic multigrid as a "standalone" solver, that is not accelerating it with a Krylov method. Though we generally do not recommend this
2332: since it is usually slower, one should use a `KSPType` of `KSPRICHARDSON`
2333: (or equivalently `-ksp_type richardson`) to achieve this. Using `KSPPREONLY` will not work since it only applies a single cycle of multigrid.
2335: PETSc provides its own geometric and algebraic multigrid solvers `PCMG` and `PCGAMG`, also see `PCHMG` which is useful for certain multicomponent problems
2337: GPU Notes:
2338: To configure hypre BoomerAMG so that it can utilize NVIDIA GPUs run ./configure --download-hypre --with-cuda
2339: Then pass `VECCUDA` vectors and `MATAIJCUSPARSE` matrices to the solvers and PETSc will automatically utilize hypre's GPU solvers.
2341: To configure hypre BoomerAMG so that it can utilize AMD GPUs run ./configure --download-hypre --with-hip
2342: Then pass `VECHIP` vectors to the solvers and PETSc will automatically utilize hypre's GPU solvers.
2344: .seealso: [](ch_ksp), `PCCreate()`, `PCSetType()`, `PCType`, `PC`, `PCHYPRESetType()`, `PCPFMG`, `PCGAMG`, `PCSYSPFMG`, `PCSMG`, `PCHYPRESetDiscreteGradient()`,
2345: `PCHYPRESetDiscreteCurl()`, `PCHYPRESetInterpolations()`, `PCHYPRESetAlphaPoissonMatrix()`, `PCHYPRESetBetaPoissonMatrix()`, `PCHYPRESetEdgeConstantVectors()`,
2346: PCHYPREAMSSetInteriorNodes()
2347: M*/
2349: PETSC_EXTERN PetscErrorCode PCCreate_HYPRE(PC pc)
2350: {
2351: PC_HYPRE *jac;
2353: PetscFunctionBegin;
2354: PetscCall(PetscNew(&jac));
2356: pc->data = jac;
2357: pc->ops->reset = PCReset_HYPRE;
2358: pc->ops->destroy = PCDestroy_HYPRE;
2359: pc->ops->setfromoptions = PCSetFromOptions_HYPRE;
2360: pc->ops->setup = PCSetUp_HYPRE;
2361: pc->ops->apply = PCApply_HYPRE;
2362: jac->comm_hypre = MPI_COMM_NULL;
2363: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetType_C", PCHYPRESetType_HYPRE));
2364: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPREGetType_C", PCHYPREGetType_HYPRE));
2365: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCSetCoordinates_C", PCSetCoordinates_HYPRE));
2366: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetDiscreteGradient_C", PCHYPRESetDiscreteGradient_HYPRE));
2367: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetDiscreteCurl_C", PCHYPRESetDiscreteCurl_HYPRE));
2368: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetInterpolations_C", PCHYPRESetInterpolations_HYPRE));
2369: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetEdgeConstantVectors_C", PCHYPRESetEdgeConstantVectors_HYPRE));
2370: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPREAMSSetInteriorNodes_C", PCHYPREAMSSetInteriorNodes_HYPRE));
2371: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetPoissonMatrix_C", PCHYPRESetPoissonMatrix_HYPRE));
2372: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGGalerkinSetMatProductAlgorithm_C", PCMGGalerkinSetMatProductAlgorithm_HYPRE_BoomerAMG));
2373: PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGGalerkinGetMatProductAlgorithm_C", PCMGGalerkinGetMatProductAlgorithm_HYPRE_BoomerAMG));
2374: #if defined(PETSC_HAVE_HYPRE_DEVICE)
2375: #if defined(HYPRE_USING_HIP)
2376: PetscCall(PetscDeviceInitialize(PETSC_DEVICE_HIP));
2377: #endif
2378: #if defined(HYPRE_USING_CUDA)
2379: PetscCall(PetscDeviceInitialize(PETSC_DEVICE_CUDA));
2380: #endif
2381: #endif
2382: PetscHYPREInitialize();
2383: PetscFunctionReturn(PETSC_SUCCESS);
2384: }
2386: typedef struct {
2387: MPI_Comm hcomm; /* does not share comm with HYPRE_StructMatrix because need to create solver before getting matrix */
2388: HYPRE_StructSolver hsolver;
2390: /* keep copy of PFMG options used so may view them */
2391: PetscInt its;
2392: PetscReal tol;
2393: PetscInt relax_type;
2394: PetscInt rap_type;
2395: PetscInt num_pre_relax, num_post_relax;
2396: PetscInt max_levels;
2397: PetscInt skip_relax;
2398: PetscBool print_statistics;
2399: } PC_PFMG;
2401: static PetscErrorCode PCDestroy_PFMG(PC pc)
2402: {
2403: PC_PFMG *ex = (PC_PFMG *)pc->data;
2405: PetscFunctionBegin;
2406: if (ex->hsolver) PetscCallExternal(HYPRE_StructPFMGDestroy, ex->hsolver);
2407: PetscCall(PetscCommRestoreComm(PetscObjectComm((PetscObject)pc), &ex->hcomm));
2408: PetscCall(PetscFree(pc->data));
2409: PetscFunctionReturn(PETSC_SUCCESS);
2410: }
2412: static const char *PFMGRelaxType[] = {"Jacobi", "Weighted-Jacobi", "symmetric-Red/Black-Gauss-Seidel", "Red/Black-Gauss-Seidel"};
2413: static const char *PFMGRAPType[] = {"Galerkin", "non-Galerkin"};
2415: static PetscErrorCode PCView_PFMG(PC pc, PetscViewer viewer)
2416: {
2417: PetscBool iascii;
2418: PC_PFMG *ex = (PC_PFMG *)pc->data;
2420: PetscFunctionBegin;
2421: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
2422: if (iascii) {
2423: PetscCall(PetscViewerASCIIPrintf(viewer, " HYPRE PFMG preconditioning\n"));
2424: PetscCall(PetscViewerASCIIPrintf(viewer, " max iterations %" PetscInt_FMT "\n", ex->its));
2425: PetscCall(PetscViewerASCIIPrintf(viewer, " tolerance %g\n", ex->tol));
2426: PetscCall(PetscViewerASCIIPrintf(viewer, " relax type %s\n", PFMGRelaxType[ex->relax_type]));
2427: PetscCall(PetscViewerASCIIPrintf(viewer, " RAP type %s\n", PFMGRAPType[ex->rap_type]));
2428: PetscCall(PetscViewerASCIIPrintf(viewer, " number pre-relax %" PetscInt_FMT " post-relax %" PetscInt_FMT "\n", ex->num_pre_relax, ex->num_post_relax));
2429: PetscCall(PetscViewerASCIIPrintf(viewer, " max levels %" PetscInt_FMT "\n", ex->max_levels));
2430: PetscCall(PetscViewerASCIIPrintf(viewer, " skip relax %" PetscInt_FMT "\n", ex->skip_relax));
2431: }
2432: PetscFunctionReturn(PETSC_SUCCESS);
2433: }
2435: static PetscErrorCode PCSetFromOptions_PFMG(PC pc, PetscOptionItems *PetscOptionsObject)
2436: {
2437: PC_PFMG *ex = (PC_PFMG *)pc->data;
2439: PetscFunctionBegin;
2440: PetscOptionsHeadBegin(PetscOptionsObject, "PFMG options");
2441: PetscCall(PetscOptionsBool("-pc_pfmg_print_statistics", "Print statistics", "HYPRE_StructPFMGSetPrintLevel", ex->print_statistics, &ex->print_statistics, NULL));
2442: PetscCall(PetscOptionsInt("-pc_pfmg_its", "Number of iterations of PFMG to use as preconditioner", "HYPRE_StructPFMGSetMaxIter", ex->its, &ex->its, NULL));
2443: PetscCallExternal(HYPRE_StructPFMGSetMaxIter, ex->hsolver, ex->its);
2444: PetscCall(PetscOptionsInt("-pc_pfmg_num_pre_relax", "Number of smoothing steps before coarse grid", "HYPRE_StructPFMGSetNumPreRelax", ex->num_pre_relax, &ex->num_pre_relax, NULL));
2445: PetscCallExternal(HYPRE_StructPFMGSetNumPreRelax, ex->hsolver, ex->num_pre_relax);
2446: PetscCall(PetscOptionsInt("-pc_pfmg_num_post_relax", "Number of smoothing steps after coarse grid", "HYPRE_StructPFMGSetNumPostRelax", ex->num_post_relax, &ex->num_post_relax, NULL));
2447: PetscCallExternal(HYPRE_StructPFMGSetNumPostRelax, ex->hsolver, ex->num_post_relax);
2449: PetscCall(PetscOptionsInt("-pc_pfmg_max_levels", "Max Levels for MG hierarchy", "HYPRE_StructPFMGSetMaxLevels", ex->max_levels, &ex->max_levels, NULL));
2450: PetscCallExternal(HYPRE_StructPFMGSetMaxLevels, ex->hsolver, ex->max_levels);
2452: PetscCall(PetscOptionsReal("-pc_pfmg_tol", "Tolerance of PFMG", "HYPRE_StructPFMGSetTol", ex->tol, &ex->tol, NULL));
2453: PetscCallExternal(HYPRE_StructPFMGSetTol, ex->hsolver, ex->tol);
2454: PetscCall(PetscOptionsEList("-pc_pfmg_relax_type", "Relax type for the up and down cycles", "HYPRE_StructPFMGSetRelaxType", PFMGRelaxType, PETSC_STATIC_ARRAY_LENGTH(PFMGRelaxType), PFMGRelaxType[ex->relax_type], &ex->relax_type, NULL));
2455: PetscCallExternal(HYPRE_StructPFMGSetRelaxType, ex->hsolver, ex->relax_type);
2456: PetscCall(PetscOptionsEList("-pc_pfmg_rap_type", "RAP type", "HYPRE_StructPFMGSetRAPType", PFMGRAPType, PETSC_STATIC_ARRAY_LENGTH(PFMGRAPType), PFMGRAPType[ex->rap_type], &ex->rap_type, NULL));
2457: PetscCallExternal(HYPRE_StructPFMGSetRAPType, ex->hsolver, ex->rap_type);
2458: PetscCall(PetscOptionsInt("-pc_pfmg_skip_relax", "Skip relaxation on certain grids for isotropic problems. This can greatly improve efficiency by eliminating unnecessary relaxations when the underlying problem is isotropic", "HYPRE_StructPFMGSetSkipRelax", ex->skip_relax, &ex->skip_relax, NULL));
2459: PetscCallExternal(HYPRE_StructPFMGSetSkipRelax, ex->hsolver, ex->skip_relax);
2460: PetscOptionsHeadEnd();
2461: PetscFunctionReturn(PETSC_SUCCESS);
2462: }
2464: static PetscErrorCode PCApply_PFMG(PC pc, Vec x, Vec y)
2465: {
2466: PC_PFMG *ex = (PC_PFMG *)pc->data;
2467: PetscScalar *yy;
2468: const PetscScalar *xx;
2469: PetscInt ilower[3], iupper[3];
2470: HYPRE_Int hlower[3], hupper[3];
2471: Mat_HYPREStruct *mx = (Mat_HYPREStruct *)pc->pmat->data;
2473: PetscFunctionBegin;
2474: PetscCall(PetscCitationsRegister(hypreCitation, &cite));
2475: PetscCall(DMDAGetCorners(mx->da, &ilower[0], &ilower[1], &ilower[2], &iupper[0], &iupper[1], &iupper[2]));
2476: /* when HYPRE_MIXEDINT is defined, sizeof(HYPRE_Int) == 32 */
2477: iupper[0] += ilower[0] - 1;
2478: iupper[1] += ilower[1] - 1;
2479: iupper[2] += ilower[2] - 1;
2480: hlower[0] = (HYPRE_Int)ilower[0];
2481: hlower[1] = (HYPRE_Int)ilower[1];
2482: hlower[2] = (HYPRE_Int)ilower[2];
2483: hupper[0] = (HYPRE_Int)iupper[0];
2484: hupper[1] = (HYPRE_Int)iupper[1];
2485: hupper[2] = (HYPRE_Int)iupper[2];
2487: /* copy x values over to hypre */
2488: PetscCallExternal(HYPRE_StructVectorSetConstantValues, mx->hb, 0.0);
2489: PetscCall(VecGetArrayRead(x, &xx));
2490: PetscCallExternal(HYPRE_StructVectorSetBoxValues, mx->hb, hlower, hupper, (HYPRE_Complex *)xx);
2491: PetscCall(VecRestoreArrayRead(x, &xx));
2492: PetscCallExternal(HYPRE_StructVectorAssemble, mx->hb);
2493: PetscCallExternal(HYPRE_StructPFMGSolve, ex->hsolver, mx->hmat, mx->hb, mx->hx);
2495: /* copy solution values back to PETSc */
2496: PetscCall(VecGetArray(y, &yy));
2497: PetscCallExternal(HYPRE_StructVectorGetBoxValues, mx->hx, hlower, hupper, (HYPRE_Complex *)yy);
2498: PetscCall(VecRestoreArray(y, &yy));
2499: PetscFunctionReturn(PETSC_SUCCESS);
2500: }
2502: static PetscErrorCode PCApplyRichardson_PFMG(PC pc, Vec b, Vec y, Vec w, PetscReal rtol, PetscReal abstol, PetscReal dtol, PetscInt its, PetscBool guesszero, PetscInt *outits, PCRichardsonConvergedReason *reason)
2503: {
2504: PC_PFMG *jac = (PC_PFMG *)pc->data;
2505: HYPRE_Int oits;
2507: PetscFunctionBegin;
2508: PetscCall(PetscCitationsRegister(hypreCitation, &cite));
2509: PetscCallExternal(HYPRE_StructPFMGSetMaxIter, jac->hsolver, its * jac->its);
2510: PetscCallExternal(HYPRE_StructPFMGSetTol, jac->hsolver, rtol);
2512: PetscCall(PCApply_PFMG(pc, b, y));
2513: PetscCallExternal(HYPRE_StructPFMGGetNumIterations, jac->hsolver, &oits);
2514: *outits = oits;
2515: if (oits == its) *reason = PCRICHARDSON_CONVERGED_ITS;
2516: else *reason = PCRICHARDSON_CONVERGED_RTOL;
2517: PetscCallExternal(HYPRE_StructPFMGSetTol, jac->hsolver, jac->tol);
2518: PetscCallExternal(HYPRE_StructPFMGSetMaxIter, jac->hsolver, jac->its);
2519: PetscFunctionReturn(PETSC_SUCCESS);
2520: }
2522: static PetscErrorCode PCSetUp_PFMG(PC pc)
2523: {
2524: PC_PFMG *ex = (PC_PFMG *)pc->data;
2525: Mat_HYPREStruct *mx = (Mat_HYPREStruct *)pc->pmat->data;
2526: PetscBool flg;
2528: PetscFunctionBegin;
2529: PetscCall(PetscObjectTypeCompare((PetscObject)pc->pmat, MATHYPRESTRUCT, &flg));
2530: PetscCheck(flg, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_INCOMP, "Must use MATHYPRESTRUCT with this preconditioner");
2532: /* create the hypre solver object and set its information */
2533: if (ex->hsolver) PetscCallExternal(HYPRE_StructPFMGDestroy, ex->hsolver);
2534: PetscCallExternal(HYPRE_StructPFMGCreate, ex->hcomm, &ex->hsolver);
2536: // Print Hypre statistics about the solve process
2537: if (ex->print_statistics) PetscCallExternal(HYPRE_StructPFMGSetPrintLevel, ex->hsolver, 3);
2539: // The hypre options must be repeated here because the StructPFMG was destroyed and recreated
2540: PetscCallExternal(HYPRE_StructPFMGSetMaxIter, ex->hsolver, ex->its);
2541: PetscCallExternal(HYPRE_StructPFMGSetNumPreRelax, ex->hsolver, ex->num_pre_relax);
2542: PetscCallExternal(HYPRE_StructPFMGSetNumPostRelax, ex->hsolver, ex->num_post_relax);
2543: PetscCallExternal(HYPRE_StructPFMGSetMaxLevels, ex->hsolver, ex->max_levels);
2544: PetscCallExternal(HYPRE_StructPFMGSetTol, ex->hsolver, ex->tol);
2545: PetscCallExternal(HYPRE_StructPFMGSetRelaxType, ex->hsolver, ex->relax_type);
2546: PetscCallExternal(HYPRE_StructPFMGSetRAPType, ex->hsolver, ex->rap_type);
2548: PetscCallExternal(HYPRE_StructPFMGSetup, ex->hsolver, mx->hmat, mx->hb, mx->hx);
2549: PetscCallExternal(HYPRE_StructPFMGSetZeroGuess, ex->hsolver);
2550: PetscFunctionReturn(PETSC_SUCCESS);
2551: }
2553: /*MC
2554: PCPFMG - the hypre PFMG multigrid solver
2556: Options Database Keys:
2557: + -pc_pfmg_its <its> - number of iterations of PFMG to use as preconditioner
2558: . -pc_pfmg_num_pre_relax <steps> - number of smoothing steps before coarse grid solve
2559: . -pc_pfmg_num_post_relax <steps> - number of smoothing steps after coarse grid solve
2560: . -pc_pfmg_tol <tol> - tolerance of PFMG
2561: . -pc_pfmg_relax_type - relaxation type for the up and down cycles, one of Jacobi,Weighted-Jacobi,symmetric-Red/Black-Gauss-Seidel,Red/Black-Gauss-Seidel
2562: . -pc_pfmg_rap_type - type of coarse matrix generation, one of Galerkin,non-Galerkin
2563: - -pc_pfmg_skip_relax - skip relaxation on certain grids for isotropic problems. This can greatly improve efficiency by eliminating unnecessary relaxations
2564: when the underlying problem is isotropic, one of 0,1
2566: Level: advanced
2568: Notes:
2569: This is for CELL-centered descretizations
2571: See `PCSYSPFMG` for a version suitable for systems of PDEs, and `PCSMG`
2573: See `PCHYPRE` for hypre's BoomerAMG algebraic multigrid solver
2575: This must be used with the `MATHYPRESTRUCT` matrix type.
2577: This provides only some of the functionality of PFMG, it supports only one block per process defined by a PETSc `DMDA`.
2579: .seealso: [](ch_ksp), `PCMG`, `MATHYPRESTRUCT`, `PCHYPRE`, `PCGAMG`, `PCSYSPFMG`, `PCSMG`
2580: M*/
2582: PETSC_EXTERN PetscErrorCode PCCreate_PFMG(PC pc)
2583: {
2584: PC_PFMG *ex;
2586: PetscFunctionBegin;
2587: PetscCall(PetscNew(&ex));
2588: pc->data = ex;
2590: ex->its = 1;
2591: ex->tol = 1.e-8;
2592: ex->relax_type = 1;
2593: ex->rap_type = 0;
2594: ex->num_pre_relax = 1;
2595: ex->num_post_relax = 1;
2596: ex->max_levels = 0;
2597: ex->skip_relax = 0;
2598: ex->print_statistics = PETSC_FALSE;
2600: pc->ops->setfromoptions = PCSetFromOptions_PFMG;
2601: pc->ops->view = PCView_PFMG;
2602: pc->ops->destroy = PCDestroy_PFMG;
2603: pc->ops->apply = PCApply_PFMG;
2604: pc->ops->applyrichardson = PCApplyRichardson_PFMG;
2605: pc->ops->setup = PCSetUp_PFMG;
2607: PetscCall(PetscCommGetComm(PetscObjectComm((PetscObject)pc), &ex->hcomm));
2608: PetscHYPREInitialize();
2609: PetscCallExternal(HYPRE_StructPFMGCreate, ex->hcomm, &ex->hsolver);
2610: PetscFunctionReturn(PETSC_SUCCESS);
2611: }
2613: /* we know we are working with a HYPRE_SStructMatrix */
2614: typedef struct {
2615: MPI_Comm hcomm; /* does not share comm with HYPRE_SStructMatrix because need to create solver before getting matrix */
2616: HYPRE_SStructSolver ss_solver;
2618: /* keep copy of SYSPFMG options used so may view them */
2619: PetscInt its;
2620: PetscReal tol;
2621: PetscInt relax_type;
2622: PetscInt num_pre_relax, num_post_relax;
2623: } PC_SysPFMG;
2625: static PetscErrorCode PCDestroy_SysPFMG(PC pc)
2626: {
2627: PC_SysPFMG *ex = (PC_SysPFMG *)pc->data;
2629: PetscFunctionBegin;
2630: if (ex->ss_solver) PetscCallExternal(HYPRE_SStructSysPFMGDestroy, ex->ss_solver);
2631: PetscCall(PetscCommRestoreComm(PetscObjectComm((PetscObject)pc), &ex->hcomm));
2632: PetscCall(PetscFree(pc->data));
2633: PetscFunctionReturn(PETSC_SUCCESS);
2634: }
2636: static const char *SysPFMGRelaxType[] = {"Weighted-Jacobi", "Red/Black-Gauss-Seidel"};
2638: static PetscErrorCode PCView_SysPFMG(PC pc, PetscViewer viewer)
2639: {
2640: PetscBool iascii;
2641: PC_SysPFMG *ex = (PC_SysPFMG *)pc->data;
2643: PetscFunctionBegin;
2644: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
2645: if (iascii) {
2646: PetscCall(PetscViewerASCIIPrintf(viewer, " HYPRE SysPFMG preconditioning\n"));
2647: PetscCall(PetscViewerASCIIPrintf(viewer, " max iterations %" PetscInt_FMT "\n", ex->its));
2648: PetscCall(PetscViewerASCIIPrintf(viewer, " tolerance %g\n", ex->tol));
2649: PetscCall(PetscViewerASCIIPrintf(viewer, " relax type %s\n", PFMGRelaxType[ex->relax_type]));
2650: PetscCall(PetscViewerASCIIPrintf(viewer, " number pre-relax %" PetscInt_FMT " post-relax %" PetscInt_FMT "\n", ex->num_pre_relax, ex->num_post_relax));
2651: }
2652: PetscFunctionReturn(PETSC_SUCCESS);
2653: }
2655: static PetscErrorCode PCSetFromOptions_SysPFMG(PC pc, PetscOptionItems *PetscOptionsObject)
2656: {
2657: PC_SysPFMG *ex = (PC_SysPFMG *)pc->data;
2658: PetscBool flg = PETSC_FALSE;
2660: PetscFunctionBegin;
2661: PetscOptionsHeadBegin(PetscOptionsObject, "SysPFMG options");
2662: PetscCall(PetscOptionsBool("-pc_syspfmg_print_statistics", "Print statistics", "HYPRE_SStructSysPFMGSetPrintLevel", flg, &flg, NULL));
2663: if (flg) PetscCallExternal(HYPRE_SStructSysPFMGSetPrintLevel, ex->ss_solver, 3);
2664: PetscCall(PetscOptionsInt("-pc_syspfmg_its", "Number of iterations of SysPFMG to use as preconditioner", "HYPRE_SStructSysPFMGSetMaxIter", ex->its, &ex->its, NULL));
2665: PetscCallExternal(HYPRE_SStructSysPFMGSetMaxIter, ex->ss_solver, ex->its);
2666: PetscCall(PetscOptionsInt("-pc_syspfmg_num_pre_relax", "Number of smoothing steps before coarse grid", "HYPRE_SStructSysPFMGSetNumPreRelax", ex->num_pre_relax, &ex->num_pre_relax, NULL));
2667: PetscCallExternal(HYPRE_SStructSysPFMGSetNumPreRelax, ex->ss_solver, ex->num_pre_relax);
2668: PetscCall(PetscOptionsInt("-pc_syspfmg_num_post_relax", "Number of smoothing steps after coarse grid", "HYPRE_SStructSysPFMGSetNumPostRelax", ex->num_post_relax, &ex->num_post_relax, NULL));
2669: PetscCallExternal(HYPRE_SStructSysPFMGSetNumPostRelax, ex->ss_solver, ex->num_post_relax);
2671: PetscCall(PetscOptionsReal("-pc_syspfmg_tol", "Tolerance of SysPFMG", "HYPRE_SStructSysPFMGSetTol", ex->tol, &ex->tol, NULL));
2672: PetscCallExternal(HYPRE_SStructSysPFMGSetTol, ex->ss_solver, ex->tol);
2673: PetscCall(PetscOptionsEList("-pc_syspfmg_relax_type", "Relax type for the up and down cycles", "HYPRE_SStructSysPFMGSetRelaxType", SysPFMGRelaxType, PETSC_STATIC_ARRAY_LENGTH(SysPFMGRelaxType), SysPFMGRelaxType[ex->relax_type], &ex->relax_type, NULL));
2674: PetscCallExternal(HYPRE_SStructSysPFMGSetRelaxType, ex->ss_solver, ex->relax_type);
2675: PetscOptionsHeadEnd();
2676: PetscFunctionReturn(PETSC_SUCCESS);
2677: }
2679: static PetscErrorCode PCApply_SysPFMG(PC pc, Vec x, Vec y)
2680: {
2681: PC_SysPFMG *ex = (PC_SysPFMG *)pc->data;
2682: PetscScalar *yy;
2683: const PetscScalar *xx;
2684: PetscInt ilower[3], iupper[3];
2685: HYPRE_Int hlower[3], hupper[3];
2686: Mat_HYPRESStruct *mx = (Mat_HYPRESStruct *)pc->pmat->data;
2687: PetscInt ordering = mx->dofs_order;
2688: PetscInt nvars = mx->nvars;
2689: PetscInt part = 0;
2690: PetscInt size;
2691: PetscInt i;
2693: PetscFunctionBegin;
2694: PetscCall(PetscCitationsRegister(hypreCitation, &cite));
2695: PetscCall(DMDAGetCorners(mx->da, &ilower[0], &ilower[1], &ilower[2], &iupper[0], &iupper[1], &iupper[2]));
2696: /* when HYPRE_MIXEDINT is defined, sizeof(HYPRE_Int) == 32 */
2697: iupper[0] += ilower[0] - 1;
2698: iupper[1] += ilower[1] - 1;
2699: iupper[2] += ilower[2] - 1;
2700: hlower[0] = (HYPRE_Int)ilower[0];
2701: hlower[1] = (HYPRE_Int)ilower[1];
2702: hlower[2] = (HYPRE_Int)ilower[2];
2703: hupper[0] = (HYPRE_Int)iupper[0];
2704: hupper[1] = (HYPRE_Int)iupper[1];
2705: hupper[2] = (HYPRE_Int)iupper[2];
2707: size = 1;
2708: for (i = 0; i < 3; i++) size *= (iupper[i] - ilower[i] + 1);
2710: /* copy x values over to hypre for variable ordering */
2711: if (ordering) {
2712: PetscCallExternal(HYPRE_SStructVectorSetConstantValues, mx->ss_b, 0.0);
2713: PetscCall(VecGetArrayRead(x, &xx));
2714: for (i = 0; i < nvars; i++) PetscCallExternal(HYPRE_SStructVectorSetBoxValues, mx->ss_b, part, hlower, hupper, i, (HYPRE_Complex *)(xx + (size * i)));
2715: PetscCall(VecRestoreArrayRead(x, &xx));
2716: PetscCallExternal(HYPRE_SStructVectorAssemble, mx->ss_b);
2717: PetscCallExternal(HYPRE_SStructMatrixMatvec, 1.0, mx->ss_mat, mx->ss_b, 0.0, mx->ss_x);
2718: PetscCallExternal(HYPRE_SStructSysPFMGSolve, ex->ss_solver, mx->ss_mat, mx->ss_b, mx->ss_x);
2720: /* copy solution values back to PETSc */
2721: PetscCall(VecGetArray(y, &yy));
2722: for (i = 0; i < nvars; i++) PetscCallExternal(HYPRE_SStructVectorGetBoxValues, mx->ss_x, part, hlower, hupper, i, (HYPRE_Complex *)(yy + (size * i)));
2723: PetscCall(VecRestoreArray(y, &yy));
2724: } else { /* nodal ordering must be mapped to variable ordering for sys_pfmg */
2725: PetscScalar *z;
2726: PetscInt j, k;
2728: PetscCall(PetscMalloc1(nvars * size, &z));
2729: PetscCallExternal(HYPRE_SStructVectorSetConstantValues, mx->ss_b, 0.0);
2730: PetscCall(VecGetArrayRead(x, &xx));
2732: /* transform nodal to hypre's variable ordering for sys_pfmg */
2733: for (i = 0; i < size; i++) {
2734: k = i * nvars;
2735: for (j = 0; j < nvars; j++) z[j * size + i] = xx[k + j];
2736: }
2737: for (i = 0; i < nvars; i++) PetscCallExternal(HYPRE_SStructVectorSetBoxValues, mx->ss_b, part, hlower, hupper, i, (HYPRE_Complex *)(z + (size * i)));
2738: PetscCall(VecRestoreArrayRead(x, &xx));
2739: PetscCallExternal(HYPRE_SStructVectorAssemble, mx->ss_b);
2740: PetscCallExternal(HYPRE_SStructSysPFMGSolve, ex->ss_solver, mx->ss_mat, mx->ss_b, mx->ss_x);
2742: /* copy solution values back to PETSc */
2743: PetscCall(VecGetArray(y, &yy));
2744: for (i = 0; i < nvars; i++) PetscCallExternal(HYPRE_SStructVectorGetBoxValues, mx->ss_x, part, hlower, hupper, i, (HYPRE_Complex *)(z + (size * i)));
2745: /* transform hypre's variable ordering for sys_pfmg to nodal ordering */
2746: for (i = 0; i < size; i++) {
2747: k = i * nvars;
2748: for (j = 0; j < nvars; j++) yy[k + j] = z[j * size + i];
2749: }
2750: PetscCall(VecRestoreArray(y, &yy));
2751: PetscCall(PetscFree(z));
2752: }
2753: PetscFunctionReturn(PETSC_SUCCESS);
2754: }
2756: static PetscErrorCode PCApplyRichardson_SysPFMG(PC pc, Vec b, Vec y, Vec w, PetscReal rtol, PetscReal abstol, PetscReal dtol, PetscInt its, PetscBool guesszero, PetscInt *outits, PCRichardsonConvergedReason *reason)
2757: {
2758: PC_SysPFMG *jac = (PC_SysPFMG *)pc->data;
2759: HYPRE_Int oits;
2761: PetscFunctionBegin;
2762: PetscCall(PetscCitationsRegister(hypreCitation, &cite));
2763: PetscCallExternal(HYPRE_SStructSysPFMGSetMaxIter, jac->ss_solver, its * jac->its);
2764: PetscCallExternal(HYPRE_SStructSysPFMGSetTol, jac->ss_solver, rtol);
2765: PetscCall(PCApply_SysPFMG(pc, b, y));
2766: PetscCallExternal(HYPRE_SStructSysPFMGGetNumIterations, jac->ss_solver, &oits);
2767: *outits = oits;
2768: if (oits == its) *reason = PCRICHARDSON_CONVERGED_ITS;
2769: else *reason = PCRICHARDSON_CONVERGED_RTOL;
2770: PetscCallExternal(HYPRE_SStructSysPFMGSetTol, jac->ss_solver, jac->tol);
2771: PetscCallExternal(HYPRE_SStructSysPFMGSetMaxIter, jac->ss_solver, jac->its);
2772: PetscFunctionReturn(PETSC_SUCCESS);
2773: }
2775: static PetscErrorCode PCSetUp_SysPFMG(PC pc)
2776: {
2777: PC_SysPFMG *ex = (PC_SysPFMG *)pc->data;
2778: Mat_HYPRESStruct *mx = (Mat_HYPRESStruct *)pc->pmat->data;
2779: PetscBool flg;
2781: PetscFunctionBegin;
2782: PetscCall(PetscObjectTypeCompare((PetscObject)pc->pmat, MATHYPRESSTRUCT, &flg));
2783: PetscCheck(flg, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_INCOMP, "Must use MATHYPRESSTRUCT with this preconditioner");
2785: /* create the hypre sstruct solver object and set its information */
2786: if (ex->ss_solver) PetscCallExternal(HYPRE_SStructSysPFMGDestroy, ex->ss_solver);
2787: PetscCallExternal(HYPRE_SStructSysPFMGCreate, ex->hcomm, &ex->ss_solver);
2788: PetscCallExternal(HYPRE_SStructSysPFMGSetZeroGuess, ex->ss_solver);
2789: PetscCallExternal(HYPRE_SStructSysPFMGSetup, ex->ss_solver, mx->ss_mat, mx->ss_b, mx->ss_x);
2790: PetscFunctionReturn(PETSC_SUCCESS);
2791: }
2793: /*MC
2794: PCSYSPFMG - the hypre SysPFMG multigrid solver
2796: Level: advanced
2798: Options Database Keys:
2799: + -pc_syspfmg_its <its> - number of iterations of SysPFMG to use as preconditioner
2800: . -pc_syspfmg_num_pre_relax <steps> - number of smoothing steps before coarse grid
2801: . -pc_syspfmg_num_post_relax <steps> - number of smoothing steps after coarse grid
2802: . -pc_syspfmg_tol <tol> - tolerance of SysPFMG
2803: - -pc_syspfmg_relax_type <Weighted-Jacobi,Red/Black-Gauss-Seidel> - relaxation type for the up and down cycles
2805: Notes:
2806: See `PCPFMG` for hypre's PFMG that works for a scalar PDE and `PCSMG`
2808: See `PCHYPRE` for hypre's BoomerAMG algebraic multigrid solver
2810: This is for CELL-centered descretizations
2812: This must be used with the `MATHYPRESSTRUCT` matrix type.
2814: This does not give access to all the functionality of hypres SysPFMG, it supports only one part, and one block per process defined by a PETSc `DMDA`.
2816: .seealso: [](ch_ksp), `PCMG`, `MATHYPRESSTRUCT`, `PCPFMG`, `PCHYPRE`, `PCGAMG`, `PCSMG`
2817: M*/
2819: PETSC_EXTERN PetscErrorCode PCCreate_SysPFMG(PC pc)
2820: {
2821: PC_SysPFMG *ex;
2823: PetscFunctionBegin;
2824: PetscCall(PetscNew(&ex));
2825: pc->data = ex;
2827: ex->its = 1;
2828: ex->tol = 1.e-8;
2829: ex->relax_type = 1;
2830: ex->num_pre_relax = 1;
2831: ex->num_post_relax = 1;
2833: pc->ops->setfromoptions = PCSetFromOptions_SysPFMG;
2834: pc->ops->view = PCView_SysPFMG;
2835: pc->ops->destroy = PCDestroy_SysPFMG;
2836: pc->ops->apply = PCApply_SysPFMG;
2837: pc->ops->applyrichardson = PCApplyRichardson_SysPFMG;
2838: pc->ops->setup = PCSetUp_SysPFMG;
2840: PetscCall(PetscCommGetComm(PetscObjectComm((PetscObject)pc), &ex->hcomm));
2841: PetscHYPREInitialize();
2842: PetscCallExternal(HYPRE_SStructSysPFMGCreate, ex->hcomm, &ex->ss_solver);
2843: PetscFunctionReturn(PETSC_SUCCESS);
2844: }
2846: /* PC SMG */
2847: typedef struct {
2848: MPI_Comm hcomm; /* does not share comm with HYPRE_StructMatrix because need to create solver before getting matrix */
2849: HYPRE_StructSolver hsolver;
2850: PetscInt its; /* keep copy of SMG options used so may view them */
2851: PetscReal tol;
2852: PetscBool print_statistics;
2853: PetscInt num_pre_relax, num_post_relax;
2854: } PC_SMG;
2856: static PetscErrorCode PCDestroy_SMG(PC pc)
2857: {
2858: PC_SMG *ex = (PC_SMG *)pc->data;
2860: PetscFunctionBegin;
2861: if (ex->hsolver) PetscCallExternal(HYPRE_StructSMGDestroy, ex->hsolver);
2862: PetscCall(PetscCommRestoreComm(PetscObjectComm((PetscObject)pc), &ex->hcomm));
2863: PetscCall(PetscFree(pc->data));
2864: PetscFunctionReturn(PETSC_SUCCESS);
2865: }
2867: static PetscErrorCode PCView_SMG(PC pc, PetscViewer viewer)
2868: {
2869: PetscBool iascii;
2870: PC_SMG *ex = (PC_SMG *)pc->data;
2872: PetscFunctionBegin;
2873: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
2874: if (iascii) {
2875: PetscCall(PetscViewerASCIIPrintf(viewer, " HYPRE SMG preconditioning\n"));
2876: PetscCall(PetscViewerASCIIPrintf(viewer, " max iterations %" PetscInt_FMT "\n", ex->its));
2877: PetscCall(PetscViewerASCIIPrintf(viewer, " tolerance %g\n", ex->tol));
2878: PetscCall(PetscViewerASCIIPrintf(viewer, " number pre-relax %" PetscInt_FMT " post-relax %" PetscInt_FMT "\n", ex->num_pre_relax, ex->num_post_relax));
2879: }
2880: PetscFunctionReturn(PETSC_SUCCESS);
2881: }
2883: static PetscErrorCode PCSetFromOptions_SMG(PC pc, PetscOptionItems *PetscOptionsObject)
2884: {
2885: PC_SMG *ex = (PC_SMG *)pc->data;
2887: PetscFunctionBegin;
2888: PetscOptionsHeadBegin(PetscOptionsObject, "SMG options");
2890: PetscCall(PetscOptionsInt("-pc_smg_its", "Number of iterations of SMG to use as preconditioner", "HYPRE_StructSMGSetMaxIter", ex->its, &ex->its, NULL));
2891: PetscCall(PetscOptionsInt("-pc_smg_num_pre_relax", "Number of smoothing steps before coarse grid", "HYPRE_StructSMGSetNumPreRelax", ex->num_pre_relax, &ex->num_pre_relax, NULL));
2892: PetscCall(PetscOptionsInt("-pc_smg_num_post_relax", "Number of smoothing steps after coarse grid", "HYPRE_StructSMGSetNumPostRelax", ex->num_post_relax, &ex->num_post_relax, NULL));
2893: PetscCall(PetscOptionsReal("-pc_smg_tol", "Tolerance of SMG", "HYPRE_StructSMGSetTol", ex->tol, &ex->tol, NULL));
2895: PetscOptionsHeadEnd();
2896: PetscFunctionReturn(PETSC_SUCCESS);
2897: }
2899: static PetscErrorCode PCApply_SMG(PC pc, Vec x, Vec y)
2900: {
2901: PC_SMG *ex = (PC_SMG *)pc->data;
2902: PetscScalar *yy;
2903: const PetscScalar *xx;
2904: PetscInt ilower[3], iupper[3];
2905: HYPRE_Int hlower[3], hupper[3];
2906: Mat_HYPREStruct *mx = (Mat_HYPREStruct *)pc->pmat->data;
2908: PetscFunctionBegin;
2909: PetscCall(PetscCitationsRegister(hypreCitation, &cite));
2910: PetscCall(DMDAGetCorners(mx->da, &ilower[0], &ilower[1], &ilower[2], &iupper[0], &iupper[1], &iupper[2]));
2911: /* when HYPRE_MIXEDINT is defined, sizeof(HYPRE_Int) == 32 */
2912: iupper[0] += ilower[0] - 1;
2913: iupper[1] += ilower[1] - 1;
2914: iupper[2] += ilower[2] - 1;
2915: hlower[0] = (HYPRE_Int)ilower[0];
2916: hlower[1] = (HYPRE_Int)ilower[1];
2917: hlower[2] = (HYPRE_Int)ilower[2];
2918: hupper[0] = (HYPRE_Int)iupper[0];
2919: hupper[1] = (HYPRE_Int)iupper[1];
2920: hupper[2] = (HYPRE_Int)iupper[2];
2922: /* copy x values over to hypre */
2923: PetscCallExternal(HYPRE_StructVectorSetConstantValues, mx->hb, 0.0);
2924: PetscCall(VecGetArrayRead(x, &xx));
2925: PetscCallExternal(HYPRE_StructVectorSetBoxValues, mx->hb, hlower, hupper, (HYPRE_Complex *)xx);
2926: PetscCall(VecRestoreArrayRead(x, &xx));
2927: PetscCallExternal(HYPRE_StructVectorAssemble, mx->hb);
2928: PetscCallExternal(HYPRE_StructSMGSolve, ex->hsolver, mx->hmat, mx->hb, mx->hx);
2930: /* copy solution values back to PETSc */
2931: PetscCall(VecGetArray(y, &yy));
2932: PetscCallExternal(HYPRE_StructVectorGetBoxValues, mx->hx, hlower, hupper, (HYPRE_Complex *)yy);
2933: PetscCall(VecRestoreArray(y, &yy));
2934: PetscFunctionReturn(PETSC_SUCCESS);
2935: }
2937: static PetscErrorCode PCApplyRichardson_SMG(PC pc, Vec b, Vec y, Vec w, PetscReal rtol, PetscReal abstol, PetscReal dtol, PetscInt its, PetscBool guesszero, PetscInt *outits, PCRichardsonConvergedReason *reason)
2938: {
2939: PC_SMG *jac = (PC_SMG *)pc->data;
2940: HYPRE_Int oits;
2942: PetscFunctionBegin;
2943: PetscCall(PetscCitationsRegister(hypreCitation, &cite));
2944: PetscCallExternal(HYPRE_StructSMGSetMaxIter, jac->hsolver, its * jac->its);
2945: PetscCallExternal(HYPRE_StructSMGSetTol, jac->hsolver, rtol);
2947: PetscCall(PCApply_SMG(pc, b, y));
2948: PetscCallExternal(HYPRE_StructSMGGetNumIterations, jac->hsolver, &oits);
2949: *outits = oits;
2950: if (oits == its) *reason = PCRICHARDSON_CONVERGED_ITS;
2951: else *reason = PCRICHARDSON_CONVERGED_RTOL;
2952: PetscCallExternal(HYPRE_StructSMGSetTol, jac->hsolver, jac->tol);
2953: PetscCallExternal(HYPRE_StructSMGSetMaxIter, jac->hsolver, jac->its);
2954: PetscFunctionReturn(PETSC_SUCCESS);
2955: }
2957: static PetscErrorCode PCSetUp_SMG(PC pc)
2958: {
2959: PetscInt i, dim;
2960: PC_SMG *ex = (PC_SMG *)pc->data;
2961: Mat_HYPREStruct *mx = (Mat_HYPREStruct *)pc->pmat->data;
2962: PetscBool flg;
2963: DMBoundaryType p[3];
2964: PetscInt M[3];
2966: PetscFunctionBegin;
2967: PetscCall(PetscObjectTypeCompare((PetscObject)pc->pmat, MATHYPRESTRUCT, &flg));
2968: PetscCheck(flg, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_INCOMP, "Must use MATHYPRESTRUCT with this preconditioner");
2970: PetscCall(DMDAGetInfo(mx->da, &dim, &M[0], &M[1], &M[2], 0, 0, 0, 0, 0, &p[0], &p[1], &p[2], 0));
2971: // Check if power of 2 in periodic directions
2972: for (i = 0; i < dim; i++) {
2973: if (((M[i] & (M[i] - 1)) != 0) && (p[i] == DM_BOUNDARY_PERIODIC)) {
2974: SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_INCOMP, "With SMG, the number of points in a periodic direction must be a power of 2, but is here %" PetscInt_FMT ".", M[i]);
2975: }
2976: }
2978: /* create the hypre solver object and set its information */
2979: if (ex->hsolver) PetscCallExternal(HYPRE_StructSMGDestroy, (ex->hsolver));
2980: PetscCallExternal(HYPRE_StructSMGCreate, ex->hcomm, &ex->hsolver);
2981: // The hypre options must be set here and not in SetFromOptions because it is created here!
2982: PetscCallExternal(HYPRE_StructSMGSetMaxIter, ex->hsolver, ex->its);
2983: PetscCallExternal(HYPRE_StructSMGSetNumPreRelax, ex->hsolver, ex->num_pre_relax);
2984: PetscCallExternal(HYPRE_StructSMGSetNumPostRelax, ex->hsolver, ex->num_post_relax);
2985: PetscCallExternal(HYPRE_StructSMGSetTol, ex->hsolver, ex->tol);
2987: PetscCallExternal(HYPRE_StructSMGSetup, ex->hsolver, mx->hmat, mx->hb, mx->hx);
2988: PetscCallExternal(HYPRE_StructSMGSetZeroGuess, ex->hsolver);
2989: PetscFunctionReturn(PETSC_SUCCESS);
2990: }
2992: /*MC
2993: PCSMG - the hypre (structured grid) SMG multigrid solver
2995: Level: advanced
2997: Options Database Keys:
2998: + -pc_smg_its <its> - number of iterations of SMG to use as preconditioner
2999: . -pc_smg_num_pre_relax <steps> - number of smoothing steps before coarse grid
3000: . -pc_smg_num_post_relax <steps> - number of smoothing steps after coarse grid
3001: - -pc_smg_tol <tol> - tolerance of SMG
3003: Notes:
3004: This is for CELL-centered descretizations
3006: This must be used with the `MATHYPRESTRUCT` `MatType`.
3008: This does not provide all the functionality of hypre's SMG solver, it supports only one block per process defined by a PETSc `DMDA`.
3010: See `PCSYSPFMG`, `PCSMG`, `PCPFMG`, and `PCHYPRE` for access to hypre's other preconditioners
3012: .seealso: `PCMG`, `MATHYPRESTRUCT`, `PCPFMG`, `PCSYSPFMG`, `PCHYPRE`, `PCGAMG`
3013: M*/
3015: PETSC_EXTERN PetscErrorCode PCCreate_SMG(PC pc)
3016: {
3017: PC_SMG *ex;
3019: PetscFunctionBegin;
3020: PetscCall(PetscNew(&ex));
3021: pc->data = ex;
3023: ex->its = 1;
3024: ex->tol = 1.e-8;
3025: ex->num_pre_relax = 1;
3026: ex->num_post_relax = 1;
3028: pc->ops->setfromoptions = PCSetFromOptions_SMG;
3029: pc->ops->view = PCView_SMG;
3030: pc->ops->destroy = PCDestroy_SMG;
3031: pc->ops->apply = PCApply_SMG;
3032: pc->ops->applyrichardson = PCApplyRichardson_SMG;
3033: pc->ops->setup = PCSetUp_SMG;
3035: PetscCall(PetscCommGetComm(PetscObjectComm((PetscObject)pc), &ex->hcomm));
3036: PetscHYPREInitialize();
3037: PetscCallExternal(HYPRE_StructSMGCreate, ex->hcomm, &ex->hsolver);
3038: PetscFunctionReturn(PETSC_SUCCESS);
3039: }