Actual source code: plexproject.c
1: #include <petsc/private/dmpleximpl.h>
3: #include <petsc/private/petscfeimpl.h>
5: /*@
6: DMPlexGetActivePoint - Get the point on which projection is currently working
8: Not Collective
10: Input Parameter:
11: . dm - the `DM`
13: Output Parameter:
14: . point - The mesh point involved in the current projection
16: Level: developer
18: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSetActivePoint()`
19: @*/
20: PetscErrorCode DMPlexGetActivePoint(DM dm, PetscInt *point)
21: {
22: PetscFunctionBeginHot;
23: *point = ((DM_Plex *)dm->data)->activePoint;
24: PetscFunctionReturn(PETSC_SUCCESS);
25: }
27: /*@
28: DMPlexSetActivePoint - Set the point on which projection is currently working
30: Not Collective
32: Input Parameters:
33: + dm - the `DM`
34: - point - The mesh point involved in the current projection
36: Level: developer
38: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetActivePoint()`
39: @*/
40: PetscErrorCode DMPlexSetActivePoint(DM dm, PetscInt point)
41: {
42: PetscFunctionBeginHot;
43: ((DM_Plex *)dm->data)->activePoint = point;
44: PetscFunctionReturn(PETSC_SUCCESS);
45: }
47: /*
48: DMProjectPoint_Func_Private - Interpolate the given function in the output basis on the given point
50: Input Parameters:
51: + dm - The output `DM`
52: . ds - The output `DS`
53: . dmIn - The input `DM`
54: . dsIn - The input `DS`
55: . time - The time for this evaluation
56: . fegeom - The FE geometry for this point
57: . fvgeom - The FV geometry for this point
58: . isFE - Flag indicating whether each output field has an FE discretization
59: . sp - The output `PetscDualSpace` for each field
60: . funcs - The evaluation function for each field
61: - ctxs - The user context for each field
63: Output Parameter:
64: . values - The value for each dual basis vector in the output dual space
66: Level: developer
68: .seealso:[](ch_unstructured), `DM`, `DMPLEX`, `PetscDS`, `PetscFEGeom`, `PetscFVCellGeom`, `PetscDualSpace`
69: */
70: static PetscErrorCode DMProjectPoint_Func_Private(DM dm, PetscDS ds, DM dmIn, PetscDS dsIn, PetscReal time, PetscFEGeom *fegeom, PetscFVCellGeom *fvgeom, PetscBool isFE[], PetscDualSpace sp[], PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, PetscScalar values[])
71: {
72: PetscInt coordDim, Nf, *Nc, f, spDim, d, v, tp;
73: PetscBool isAffine, isCohesive, transform;
75: PetscFunctionBeginHot;
76: PetscCall(DMGetCoordinateDim(dmIn, &coordDim));
77: PetscCall(DMHasBasisTransform(dmIn, &transform));
78: PetscCall(PetscDSGetNumFields(ds, &Nf));
79: PetscCall(PetscDSGetComponents(ds, &Nc));
80: PetscCall(PetscDSIsCohesive(ds, &isCohesive));
81: /* Get values for closure */
82: isAffine = fegeom->isAffine;
83: for (f = 0, v = 0, tp = 0; f < Nf; ++f) {
84: void *const ctx = ctxs ? ctxs[f] : NULL;
85: PetscBool cohesive;
87: if (!sp[f]) continue;
88: PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
89: PetscCall(PetscDualSpaceGetDimension(sp[f], &spDim));
90: if (funcs[f]) {
91: if (isFE[f]) {
92: PetscQuadrature allPoints;
93: PetscInt q, dim, numPoints;
94: const PetscReal *points;
95: PetscScalar *pointEval;
96: PetscReal *x;
97: DM rdm;
99: PetscCall(PetscDualSpaceGetDM(sp[f], &rdm));
100: PetscCall(PetscDualSpaceGetAllData(sp[f], &allPoints, NULL));
101: PetscCall(PetscQuadratureGetData(allPoints, &dim, NULL, &numPoints, &points, NULL));
102: PetscCall(DMGetWorkArray(rdm, numPoints * Nc[f], MPIU_SCALAR, &pointEval));
103: PetscCall(DMGetWorkArray(rdm, coordDim, MPIU_REAL, &x));
104: PetscCall(PetscArrayzero(pointEval, numPoints * Nc[f]));
105: for (q = 0; q < numPoints; q++, tp++) {
106: const PetscReal *v0;
108: if (isAffine) {
109: const PetscReal *refpoint = &points[q * dim];
110: PetscReal injpoint[3] = {0., 0., 0.};
112: if (dim != fegeom->dim) {
113: if (isCohesive) {
114: /* We just need to inject into the higher dimensional space assuming the last dimension is collapsed */
115: for (d = 0; d < dim; ++d) injpoint[d] = refpoint[d];
116: refpoint = injpoint;
117: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Reference spatial dimension %" PetscInt_FMT " != %" PetscInt_FMT " dual basis spatial dimension", fegeom->dim, dim);
118: }
119: CoordinatesRefToReal(coordDim, fegeom->dim, fegeom->xi, fegeom->v, fegeom->J, refpoint, x);
120: v0 = x;
121: } else {
122: v0 = &fegeom->v[tp * coordDim];
123: }
124: if (transform) {
125: PetscCall(DMPlexBasisTransformApplyReal_Internal(dmIn, v0, PETSC_TRUE, coordDim, v0, x, dm->transformCtx));
126: v0 = x;
127: }
128: PetscCall((*funcs[f])(coordDim, time, v0, Nc[f], &pointEval[Nc[f] * q], ctx));
129: }
130: /* Transform point evaluations pointEval[q,c] */
131: PetscCall(PetscDualSpacePullback(sp[f], fegeom, numPoints, Nc[f], pointEval));
132: PetscCall(PetscDualSpaceApplyAll(sp[f], pointEval, &values[v]));
133: PetscCall(DMRestoreWorkArray(rdm, coordDim, MPIU_REAL, &x));
134: PetscCall(DMRestoreWorkArray(rdm, numPoints * Nc[f], MPIU_SCALAR, &pointEval));
135: v += spDim;
136: if (isCohesive && !cohesive) {
137: for (d = 0; d < spDim; d++, v++) values[v] = values[v - spDim];
138: }
139: } else {
140: for (d = 0; d < spDim; ++d, ++v) PetscCall(PetscDualSpaceApplyFVM(sp[f], d, time, fvgeom, Nc[f], funcs[f], ctx, &values[v]));
141: }
142: } else {
143: for (d = 0; d < spDim; d++, v++) values[v] = 0.;
144: if (isCohesive && !cohesive) {
145: for (d = 0; d < spDim; d++, v++) values[v] = 0.;
146: }
147: }
148: }
149: PetscFunctionReturn(PETSC_SUCCESS);
150: }
152: /*
153: DMProjectPoint_Field_Private - Interpolate a function of the given field, in the input basis, using the output basis on the given point
155: Input Parameters:
156: + dm - The output DM
157: . ds - The output DS
158: . dmIn - The input DM
159: . dsIn - The input DS
160: . dmAux - The auxiliary DM, which is always for the input space
161: . dsAux - The auxiliary DS, which is always for the input space
162: . time - The time for this evaluation
163: . localU - The local solution
164: . localA - The local auziliary fields
165: . cgeom - The FE geometry for this point
166: . sp - The output PetscDualSpace for each field
167: . p - The point in the output DM
168: . T - Input basis and derivatives for each field tabulated on the quadrature points
169: . TAux - Auxiliary basis and derivatives for each aux field tabulated on the quadrature points
170: . funcs - The evaluation function for each field
171: - ctxs - The user context for each field
173: Output Parameter:
174: . values - The value for each dual basis vector in the output dual space
176: Level: developer
178: Note:
179: Not supported for FV
181: .seealso: `DMProjectPoint_Field_Private()`
182: */
183: static PetscErrorCode DMProjectPoint_Field_Private(DM dm, PetscDS ds, DM dmIn, DMEnclosureType encIn, PetscDS dsIn, DM dmAux, DMEnclosureType encAux, PetscDS dsAux, PetscReal time, Vec localU, Vec localA, PetscFEGeom *cgeom, PetscDualSpace sp[], PetscInt p, PetscTabulation *T, PetscTabulation *TAux, void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void **ctxs, PetscScalar values[])
184: {
185: PetscSection section, sectionAux = NULL;
186: PetscScalar *u, *u_t = NULL, *u_x, *a = NULL, *a_t = NULL, *a_x = NULL, *bc;
187: PetscScalar *coefficients = NULL, *coefficientsAux = NULL;
188: PetscScalar *coefficients_t = NULL, *coefficientsAux_t = NULL;
189: const PetscScalar *constants;
190: PetscReal *x;
191: PetscInt *uOff, *uOff_x, *aOff = NULL, *aOff_x = NULL, *Nc, face[2];
192: PetscFEGeom fegeom;
193: const PetscInt dE = cgeom->dimEmbed, *cone, *ornt;
194: PetscInt numConstants, Nf, NfIn, NfAux = 0, f, spDim, d, v, inp, tp = 0;
195: PetscBool isAffine, isCohesive, isCohesiveIn, transform;
196: DMPolytopeType qct;
198: PetscFunctionBeginHot;
199: PetscCall(PetscDSGetNumFields(ds, &Nf));
200: PetscCall(PetscDSGetComponents(ds, &Nc));
201: PetscCall(PetscDSIsCohesive(ds, &isCohesive));
202: PetscCall(PetscDSGetNumFields(dsIn, &NfIn));
203: PetscCall(PetscDSIsCohesive(dsIn, &isCohesiveIn));
204: PetscCall(PetscDSGetComponentOffsets(dsIn, &uOff));
205: PetscCall(PetscDSGetComponentDerivativeOffsets(dsIn, &uOff_x));
206: PetscCall(PetscDSGetEvaluationArrays(dsIn, &u, &bc /*&u_t*/, &u_x));
207: PetscCall(PetscDSGetWorkspace(dsIn, &x, NULL, NULL, NULL, NULL));
208: PetscCall(PetscDSGetConstants(dsIn, &numConstants, &constants));
209: PetscCall(DMHasBasisTransform(dmIn, &transform));
210: PetscCall(DMGetLocalSection(dmIn, §ion));
211: PetscCall(DMGetEnclosurePoint(dmIn, dm, encIn, p, &inp));
212: // Get cohesive cell hanging off face
213: if (isCohesiveIn) {
214: PetscCall(DMPlexGetCellType(dmIn, inp, &qct));
215: if ((qct != DM_POLYTOPE_POINT_PRISM_TENSOR) && (qct != DM_POLYTOPE_SEG_PRISM_TENSOR) && (qct != DM_POLYTOPE_TRI_PRISM_TENSOR) && (qct != DM_POLYTOPE_QUAD_PRISM_TENSOR)) {
216: DMPolytopeType ct;
217: const PetscInt *support;
218: PetscInt Ns, s;
220: PetscCall(DMPlexGetSupport(dmIn, inp, &support));
221: PetscCall(DMPlexGetSupportSize(dmIn, inp, &Ns));
222: for (s = 0; s < Ns; ++s) {
223: PetscCall(DMPlexGetCellType(dmIn, support[s], &ct));
224: if ((ct == DM_POLYTOPE_POINT_PRISM_TENSOR) || (ct == DM_POLYTOPE_SEG_PRISM_TENSOR) || (ct == DM_POLYTOPE_TRI_PRISM_TENSOR) || (ct == DM_POLYTOPE_QUAD_PRISM_TENSOR)) {
225: inp = support[s];
226: break;
227: }
228: }
229: PetscCheck(s < Ns, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Cohesive cell not found from face %" PetscInt_FMT, inp);
230: PetscCall(PetscDSGetComponentOffsetsCohesive(dsIn, 2, &uOff));
231: PetscCall(DMPlexGetOrientedCone(dmIn, inp, &cone, &ornt));
232: face[0] = 0;
233: face[1] = 0;
234: }
235: }
236: if (localU) PetscCall(DMPlexVecGetClosure(dmIn, section, localU, inp, NULL, &coefficients));
237: if (dmAux) {
238: PetscInt subp;
240: PetscCall(DMGetEnclosurePoint(dmAux, dm, encAux, p, &subp));
241: PetscCall(PetscDSGetNumFields(dsAux, &NfAux));
242: PetscCall(DMGetLocalSection(dmAux, §ionAux));
243: PetscCall(PetscDSGetComponentOffsets(dsAux, &aOff));
244: PetscCall(PetscDSGetComponentDerivativeOffsets(dsAux, &aOff_x));
245: PetscCall(PetscDSGetEvaluationArrays(dsAux, &a, NULL /*&a_t*/, &a_x));
246: PetscCall(DMPlexVecGetClosure(dmAux, sectionAux, localA, subp, NULL, &coefficientsAux));
247: }
248: /* Get values for closure */
249: isAffine = cgeom->isAffine;
250: fegeom.dim = cgeom->dim;
251: fegeom.dimEmbed = cgeom->dimEmbed;
252: if (isAffine) {
253: fegeom.v = x;
254: fegeom.xi = cgeom->xi;
255: fegeom.J = cgeom->J;
256: fegeom.invJ = cgeom->invJ;
257: fegeom.detJ = cgeom->detJ;
258: }
259: for (f = 0, v = 0; f < Nf; ++f) {
260: PetscQuadrature allPoints;
261: PetscInt q, dim, numPoints;
262: const PetscReal *points;
263: PetscScalar *pointEval;
264: PetscBool cohesive;
265: DM dm;
267: if (!sp[f]) continue;
268: PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
269: PetscCall(PetscDualSpaceGetDimension(sp[f], &spDim));
270: if (!funcs[f]) {
271: for (d = 0; d < spDim; d++, v++) values[v] = 0.;
272: if (isCohesive && !cohesive) {
273: for (d = 0; d < spDim; d++, v++) values[v] = 0.;
274: }
275: continue;
276: }
277: PetscCall(PetscDualSpaceGetDM(sp[f], &dm));
278: PetscCall(PetscDualSpaceGetAllData(sp[f], &allPoints, NULL));
279: PetscCall(PetscQuadratureGetData(allPoints, &dim, NULL, &numPoints, &points, NULL));
280: PetscCall(DMGetWorkArray(dm, numPoints * Nc[f], MPIU_SCALAR, &pointEval));
281: for (q = 0; q < numPoints; ++q, ++tp) {
282: PetscInt qpt[2];
284: if (isCohesiveIn) {
285: PetscCall(PetscDSPermuteQuadPoint(dsIn, ornt[0], f, q, &qpt[0]));
286: PetscCall(PetscDSPermuteQuadPoint(dsIn, DMPolytopeTypeComposeOrientationInv(qct, ornt[1], 0), f, q, &qpt[1]));
287: }
288: if (isAffine) {
289: CoordinatesRefToReal(dE, cgeom->dim, fegeom.xi, cgeom->v, fegeom.J, &points[q * dim], x);
290: } else {
291: fegeom.v = &cgeom->v[tp * dE];
292: fegeom.J = &cgeom->J[tp * dE * dE];
293: fegeom.invJ = &cgeom->invJ[tp * dE * dE];
294: fegeom.detJ = &cgeom->detJ[tp];
295: }
296: if (coefficients) {
297: if (isCohesiveIn) PetscCall(PetscFEEvaluateFieldJets_Hybrid_Internal(dsIn, NfIn, 0, tp, T, face, qpt, T, &fegeom, coefficients, coefficients_t, u, u_x, u_t));
298: else PetscCall(PetscFEEvaluateFieldJets_Internal(dsIn, NfIn, 0, tp, T, &fegeom, coefficients, coefficients_t, u, u_x, u_t));
299: }
300: if (dsAux) PetscCall(PetscFEEvaluateFieldJets_Internal(dsAux, NfAux, 0, tp, TAux, &fegeom, coefficientsAux, coefficientsAux_t, a, a_x, a_t));
301: if (transform) PetscCall(DMPlexBasisTransformApplyReal_Internal(dmIn, fegeom.v, PETSC_TRUE, dE, fegeom.v, fegeom.v, dm->transformCtx));
302: (*funcs[f])(dE, NfIn, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, a_t, a_x, time, fegeom.v, numConstants, constants, &pointEval[Nc[f] * q]);
303: }
304: PetscCall(PetscDualSpaceApplyAll(sp[f], pointEval, &values[v]));
305: PetscCall(DMRestoreWorkArray(dm, numPoints * Nc[f], MPIU_SCALAR, &pointEval));
306: v += spDim;
307: /* TODO: For now, set both sides equal, but this should use info from other support cell */
308: if (isCohesive && !cohesive) {
309: for (d = 0; d < spDim; d++, v++) values[v] = values[v - spDim];
310: }
311: }
312: if (localU) PetscCall(DMPlexVecRestoreClosure(dmIn, section, localU, inp, NULL, &coefficients));
313: if (dmAux) PetscCall(DMPlexVecRestoreClosure(dmAux, sectionAux, localA, p, NULL, &coefficientsAux));
314: if (isCohesiveIn) PetscCall(DMPlexRestoreOrientedCone(dmIn, inp, &cone, &ornt));
315: PetscFunctionReturn(PETSC_SUCCESS);
316: }
318: static PetscErrorCode DMProjectPoint_BdField_Private(DM dm, PetscDS ds, DM dmIn, DMEnclosureType encIn, PetscDS dsIn, DM dmAux, DMEnclosureType encAux, PetscDS dsAux, PetscReal time, Vec localU, Vec localA, PetscFEGeom *fgeom, PetscDualSpace sp[], PetscInt p, PetscTabulation *T, PetscTabulation *TAux, void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void **ctxs, PetscScalar values[])
319: {
320: PetscSection section, sectionAux = NULL;
321: PetscScalar *u, *u_t = NULL, *u_x, *a = NULL, *a_t = NULL, *a_x = NULL, *bc;
322: PetscScalar *coefficients = NULL, *coefficientsAux = NULL;
323: PetscScalar *coefficients_t = NULL, *coefficientsAux_t = NULL;
324: const PetscScalar *constants;
325: PetscReal *x;
326: PetscInt *uOff, *uOff_x, *aOff = NULL, *aOff_x = NULL, *Nc, face[2];
327: PetscFEGeom fegeom, cgeom;
328: const PetscInt dE = fgeom->dimEmbed, *cone, *ornt;
329: PetscInt numConstants, Nf, NfIn, NfAux = 0, f, spDim, d, v, inp, tp = 0;
330: PetscBool isAffine, isCohesive, isCohesiveIn, transform;
331: DMPolytopeType qct;
333: PetscFunctionBeginHot;
334: PetscCall(PetscDSGetNumFields(ds, &Nf));
335: PetscCall(PetscDSGetComponents(ds, &Nc));
336: PetscCall(PetscDSIsCohesive(ds, &isCohesive));
337: PetscCall(PetscDSGetNumFields(dsIn, &NfIn));
338: PetscCall(PetscDSIsCohesive(dsIn, &isCohesiveIn));
339: PetscCall(PetscDSGetComponentOffsets(dsIn, &uOff));
340: PetscCall(PetscDSGetComponentDerivativeOffsets(dsIn, &uOff_x));
341: PetscCall(PetscDSGetEvaluationArrays(dsIn, &u, &bc /*&u_t*/, &u_x));
342: PetscCall(PetscDSGetWorkspace(dsIn, &x, NULL, NULL, NULL, NULL));
343: PetscCall(PetscDSGetConstants(dsIn, &numConstants, &constants));
344: PetscCall(DMHasBasisTransform(dmIn, &transform));
345: PetscCall(DMGetLocalSection(dmIn, §ion));
346: PetscCall(DMGetEnclosurePoint(dmIn, dm, encIn, p, &inp));
347: // Get cohesive cell hanging off face
348: if (isCohesiveIn) {
349: PetscCall(DMPlexGetCellType(dmIn, inp, &qct));
350: if ((qct != DM_POLYTOPE_POINT_PRISM_TENSOR) && (qct != DM_POLYTOPE_SEG_PRISM_TENSOR) && (qct != DM_POLYTOPE_TRI_PRISM_TENSOR) && (qct != DM_POLYTOPE_QUAD_PRISM_TENSOR)) {
351: DMPolytopeType ct;
352: const PetscInt *support;
353: PetscInt Ns, s;
355: PetscCall(DMPlexGetSupport(dmIn, inp, &support));
356: PetscCall(DMPlexGetSupportSize(dmIn, inp, &Ns));
357: for (s = 0; s < Ns; ++s) {
358: PetscCall(DMPlexGetCellType(dmIn, support[s], &ct));
359: if ((ct == DM_POLYTOPE_POINT_PRISM_TENSOR) || (ct == DM_POLYTOPE_SEG_PRISM_TENSOR) || (ct == DM_POLYTOPE_TRI_PRISM_TENSOR) || (ct == DM_POLYTOPE_QUAD_PRISM_TENSOR)) {
360: inp = support[s];
361: break;
362: }
363: }
364: PetscCheck(s < Ns, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Cohesive cell not found from face %" PetscInt_FMT, inp);
365: PetscCall(PetscDSGetComponentOffsetsCohesive(dsIn, 2, &uOff));
366: PetscCall(DMPlexGetOrientedCone(dmIn, inp, &cone, &ornt));
367: face[0] = 0;
368: face[1] = 0;
369: }
370: }
371: if (localU) PetscCall(DMPlexVecGetClosure(dmIn, section, localU, inp, NULL, &coefficients));
372: if (dmAux) {
373: PetscInt subp;
375: PetscCall(DMGetEnclosurePoint(dmAux, dm, encAux, p, &subp));
376: PetscCall(PetscDSGetNumFields(dsAux, &NfAux));
377: PetscCall(DMGetLocalSection(dmAux, §ionAux));
378: PetscCall(PetscDSGetComponentOffsets(dsAux, &aOff));
379: PetscCall(PetscDSGetComponentDerivativeOffsets(dsAux, &aOff_x));
380: PetscCall(PetscDSGetEvaluationArrays(dsAux, &a, NULL /*&a_t*/, &a_x));
381: PetscCall(DMPlexVecGetClosure(dmAux, sectionAux, localA, subp, NULL, &coefficientsAux));
382: }
383: /* Get values for closure */
384: isAffine = fgeom->isAffine;
385: fegeom.n = NULL;
386: fegeom.J = NULL;
387: fegeom.v = NULL;
388: fegeom.xi = NULL;
389: cgeom.dim = fgeom->dim;
390: cgeom.dimEmbed = fgeom->dimEmbed;
391: if (isAffine) {
392: fegeom.v = x;
393: fegeom.xi = fgeom->xi;
394: fegeom.J = fgeom->J;
395: fegeom.invJ = fgeom->invJ;
396: fegeom.detJ = fgeom->detJ;
397: fegeom.n = fgeom->n;
399: cgeom.J = fgeom->suppJ[0];
400: cgeom.invJ = fgeom->suppInvJ[0];
401: cgeom.detJ = fgeom->suppDetJ[0];
402: }
403: for (f = 0, v = 0; f < Nf; ++f) {
404: PetscQuadrature allPoints;
405: PetscInt q, dim, numPoints;
406: const PetscReal *points;
407: PetscScalar *pointEval;
408: PetscBool cohesive;
409: DM dm;
411: if (!sp[f]) continue;
412: PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
413: PetscCall(PetscDualSpaceGetDimension(sp[f], &spDim));
414: if (!funcs[f]) {
415: for (d = 0; d < spDim; d++, v++) values[v] = 0.;
416: if (isCohesive && !cohesive) {
417: for (d = 0; d < spDim; d++, v++) values[v] = 0.;
418: }
419: continue;
420: }
421: PetscCall(PetscDualSpaceGetDM(sp[f], &dm));
422: PetscCall(PetscDualSpaceGetAllData(sp[f], &allPoints, NULL));
423: PetscCall(PetscQuadratureGetData(allPoints, &dim, NULL, &numPoints, &points, NULL));
424: PetscCall(DMGetWorkArray(dm, numPoints * Nc[f], MPIU_SCALAR, &pointEval));
425: for (q = 0; q < numPoints; ++q, ++tp) {
426: PetscInt qpt[2];
428: if (isCohesiveIn) {
429: // These points are not integration quadratures, but dual space quadratures
430: // If they had multiple points we should match them from both sides, similar to hybrid residual eval
431: qpt[0] = qpt[1] = q;
432: }
433: if (isAffine) {
434: CoordinatesRefToReal(dE, fgeom->dim, fegeom.xi, fgeom->v, fegeom.J, &points[q * dim], x);
435: } else {
436: fegeom.v = &fgeom->v[tp * dE];
437: fegeom.J = &fgeom->J[tp * dE * dE];
438: fegeom.invJ = &fgeom->invJ[tp * dE * dE];
439: fegeom.detJ = &fgeom->detJ[tp];
440: fegeom.n = &fgeom->n[tp * dE];
442: cgeom.J = &fgeom->suppJ[0][tp * dE * dE];
443: cgeom.invJ = &fgeom->suppInvJ[0][tp * dE * dE];
444: cgeom.detJ = &fgeom->suppDetJ[0][tp];
445: }
446: /* TODO We should use cgeom here, instead of fegeom, however the geometry coming in through fgeom does not have the support cell geometry */
447: if (coefficients) {
448: if (isCohesiveIn) PetscCall(PetscFEEvaluateFieldJets_Hybrid_Internal(dsIn, NfIn, 0, tp, T, face, qpt, T, &cgeom, coefficients, coefficients_t, u, u_x, u_t));
449: else PetscCall(PetscFEEvaluateFieldJets_Internal(dsIn, NfIn, 0, tp, T, &cgeom, coefficients, coefficients_t, u, u_x, u_t));
450: }
451: if (dsAux) PetscCall(PetscFEEvaluateFieldJets_Internal(dsAux, NfAux, 0, tp, TAux, &cgeom, coefficientsAux, coefficientsAux_t, a, a_x, a_t));
452: if (transform) PetscCall(DMPlexBasisTransformApplyReal_Internal(dmIn, fegeom.v, PETSC_TRUE, dE, fegeom.v, fegeom.v, dm->transformCtx));
453: (*funcs[f])(dE, NfIn, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, a_t, a_x, time, fegeom.v, fegeom.n, numConstants, constants, &pointEval[Nc[f] * q]);
454: }
455: PetscCall(PetscDualSpaceApplyAll(sp[f], pointEval, &values[v]));
456: PetscCall(DMRestoreWorkArray(dm, numPoints * Nc[f], MPIU_SCALAR, &pointEval));
457: v += spDim;
458: /* TODO: For now, set both sides equal, but this should use info from other support cell */
459: if (isCohesive && !cohesive) {
460: for (d = 0; d < spDim; d++, v++) values[v] = values[v - spDim];
461: }
462: }
463: if (localU) PetscCall(DMPlexVecRestoreClosure(dmIn, section, localU, inp, NULL, &coefficients));
464: if (dmAux) PetscCall(DMPlexVecRestoreClosure(dmAux, sectionAux, localA, p, NULL, &coefficientsAux));
465: if (isCohesiveIn) PetscCall(DMPlexRestoreOrientedCone(dmIn, inp, &cone, &ornt));
466: PetscFunctionReturn(PETSC_SUCCESS);
467: }
469: static PetscErrorCode DMProjectPoint_Private(DM dm, PetscDS ds, DM dmIn, DMEnclosureType encIn, PetscDS dsIn, DM dmAux, DMEnclosureType encAux, PetscDS dsAux, PetscFEGeom *fegeom, PetscInt effectiveHeight, PetscReal time, Vec localU, Vec localA, PetscBool hasFE, PetscBool hasFV, PetscBool isFE[], PetscDualSpace sp[], PetscInt p, PetscTabulation *T, PetscTabulation *TAux, DMBoundaryConditionType type, void (**funcs)(void), void **ctxs, PetscBool fieldActive[], PetscScalar values[])
470: {
471: PetscFVCellGeom fvgeom;
472: PetscInt dim, dimEmbed;
474: PetscFunctionBeginHot;
475: PetscCall(DMGetDimension(dm, &dim));
476: PetscCall(DMGetCoordinateDim(dm, &dimEmbed));
477: if (hasFV) PetscCall(DMPlexComputeCellGeometryFVM(dm, p, &fvgeom.volume, fvgeom.centroid, NULL));
478: switch (type) {
479: case DM_BC_ESSENTIAL:
480: case DM_BC_NATURAL:
481: PetscCall(DMProjectPoint_Func_Private(dm, ds, dmIn, dsIn, time, fegeom, &fvgeom, isFE, sp, (PetscErrorCode(**)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *))funcs, ctxs, values));
482: break;
483: case DM_BC_ESSENTIAL_FIELD:
484: case DM_BC_NATURAL_FIELD:
485: PetscCall(DMProjectPoint_Field_Private(dm, ds, dmIn, encIn, dsIn, dmAux, encAux, dsAux, time, localU, localA, fegeom, sp, p, T, TAux, (void (**)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))funcs, ctxs, values));
486: break;
487: case DM_BC_ESSENTIAL_BD_FIELD:
488: PetscCall(DMProjectPoint_BdField_Private(dm, ds, dmIn, encIn, dsIn, dmAux, encAux, dsAux, time, localU, localA, fegeom, sp, p, T, TAux, (void (**)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))funcs, ctxs, values));
489: break;
490: default:
491: SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown boundary condition type: %d", (int)type);
492: }
493: PetscFunctionReturn(PETSC_SUCCESS);
494: }
496: static PetscErrorCode PetscDualSpaceGetAllPointsUnion(PetscInt Nf, PetscDualSpace *sp, PetscInt dim, void (**funcs)(void), PetscQuadrature *allPoints)
497: {
498: PetscReal *points;
499: PetscInt f, numPoints;
501: PetscFunctionBegin;
502: if (!dim) {
503: PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, allPoints));
504: PetscFunctionReturn(PETSC_SUCCESS);
505: }
506: numPoints = 0;
507: for (f = 0; f < Nf; ++f) {
508: if (funcs[f]) {
509: PetscQuadrature fAllPoints;
510: PetscInt fNumPoints;
512: PetscCall(PetscDualSpaceGetAllData(sp[f], &fAllPoints, NULL));
513: PetscCall(PetscQuadratureGetData(fAllPoints, NULL, NULL, &fNumPoints, NULL, NULL));
514: numPoints += fNumPoints;
515: }
516: }
517: PetscCall(PetscMalloc1(dim * numPoints, &points));
518: numPoints = 0;
519: for (f = 0; f < Nf; ++f) {
520: if (funcs[f]) {
521: PetscQuadrature fAllPoints;
522: PetscInt qdim, fNumPoints, q;
523: const PetscReal *fPoints;
525: PetscCall(PetscDualSpaceGetAllData(sp[f], &fAllPoints, NULL));
526: PetscCall(PetscQuadratureGetData(fAllPoints, &qdim, NULL, &fNumPoints, &fPoints, NULL));
527: PetscCheck(qdim == dim, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Spatial dimension %" PetscInt_FMT " for dual basis does not match input dimension %" PetscInt_FMT, qdim, dim);
528: for (q = 0; q < fNumPoints * dim; ++q) points[numPoints * dim + q] = fPoints[q];
529: numPoints += fNumPoints;
530: }
531: }
532: PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, allPoints));
533: PetscCall(PetscQuadratureSetData(*allPoints, dim, 0, numPoints, points, NULL));
534: PetscFunctionReturn(PETSC_SUCCESS);
535: }
537: /*@C
538: DMGetFirstLabeledPoint - Find first labeled `point` in `odm` such that the corresponding point in `dm` has the specified `height`. Return `point` and the corresponding `ds`.
540: Input Parameters:
541: + dm - the `DM`
542: . odm - the enclosing `DM`
543: . label - label for `DM` domain, or `NULL` for whole domain
544: . numIds - the number of `ids`
545: . ids - An array of the label ids in sequence for the domain
546: - height - Height of target cells in `DMPLEX` topology
548: Output Parameters:
549: + point - the first labeled point
550: - ds - the `PetscDS` corresponding to the first labeled point
552: Level: developer
554: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSetActivePoint()`, `DMLabel`, `PetscDS`
555: @*/
556: PetscErrorCode DMGetFirstLabeledPoint(DM dm, DM odm, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt height, PetscInt *point, PetscDS *ds)
557: {
558: DM plex;
559: DMEnclosureType enc;
560: PetscInt ls = -1;
562: PetscFunctionBegin;
563: if (point) *point = -1;
564: if (!label) PetscFunctionReturn(PETSC_SUCCESS);
565: PetscCall(DMGetEnclosureRelation(dm, odm, &enc));
566: PetscCall(DMConvert(dm, DMPLEX, &plex));
567: for (PetscInt i = 0; i < numIds; ++i) {
568: IS labelIS;
569: PetscInt num_points, pStart, pEnd;
570: PetscCall(DMLabelGetStratumIS(label, ids[i], &labelIS));
571: if (!labelIS) continue; /* No points with that id on this process */
572: PetscCall(DMPlexGetHeightStratum(plex, height, &pStart, &pEnd));
573: PetscCall(ISGetSize(labelIS, &num_points));
574: if (num_points) {
575: const PetscInt *points;
576: PetscCall(ISGetIndices(labelIS, &points));
577: for (PetscInt i = 0; i < num_points; i++) {
578: PetscInt point;
579: PetscCall(DMGetEnclosurePoint(dm, odm, enc, points[i], &point));
580: if (pStart <= point && point < pEnd) {
581: ls = point;
582: if (ds) {
583: // If this is a face of a cohesive cell, then prefer that DS
584: if (height == 1) {
585: const PetscInt *supp;
586: PetscInt suppSize;
587: DMPolytopeType ct;
589: PetscCall(DMPlexGetSupport(dm, ls, &supp));
590: PetscCall(DMPlexGetSupportSize(dm, ls, &suppSize));
591: for (PetscInt s = 0; s < suppSize; ++s) {
592: PetscCall(DMPlexGetCellType(dm, supp[s], &ct));
593: if ((ct == DM_POLYTOPE_POINT_PRISM_TENSOR) || (ct == DM_POLYTOPE_SEG_PRISM_TENSOR) || (ct == DM_POLYTOPE_TRI_PRISM_TENSOR) || (ct == DM_POLYTOPE_QUAD_PRISM_TENSOR)) {
594: ls = supp[s];
595: break;
596: }
597: }
598: }
599: PetscCall(DMGetCellDS(dm, ls, ds, NULL));
600: }
601: if (ls >= 0) break;
602: }
603: }
604: PetscCall(ISRestoreIndices(labelIS, &points));
605: }
606: PetscCall(ISDestroy(&labelIS));
607: if (ls >= 0) break;
608: }
609: if (point) *point = ls;
610: PetscCall(DMDestroy(&plex));
611: PetscFunctionReturn(PETSC_SUCCESS);
612: }
614: /*
615: This function iterates over a manifold, and interpolates the input function/field using the basis provided by the DS in our DM
617: There are several different scenarios:
619: 1) Volumetric mesh with volumetric auxiliary data
621: Here minHeight=0 since we loop over cells.
623: 2) Boundary mesh with boundary auxiliary data
625: Here minHeight=1 since we loop over faces. This normally happens since we hang cells off of our boundary meshes to facilitate computation.
627: 3) Volumetric mesh with boundary auxiliary data
629: Here minHeight=1 and auxbd=PETSC_TRUE since we loop over faces and use data only supported on those faces. This is common when imposing Dirichlet boundary conditions.
631: 4) Volumetric input mesh with boundary output mesh
633: Here we must get a subspace for the input DS
635: The maxHeight is used to support enforcement of constraints in DMForest.
637: If localU is given and not equal to localX, we call DMPlexInsertBoundaryValues() to complete it.
639: If we are using an input field (DM_BC_ESSENTIAL_FIELD or DM_BC_NATURAL_FIELD), we need to evaluate it at all the quadrature points of the dual basis functionals.
640: - We use effectiveHeight to mean the height above our incoming DS. For example, if the DS is for a submesh then the effective height is zero, whereas if the DS
641: is for the volumetric mesh, but we are iterating over a surface, then the effective height is nonzero. When the effective height is nonzero, we need to extract
642: dual spaces for the boundary from our input spaces.
643: - After extracting all quadrature points, we tabulate the input fields and auxiliary fields on them.
645: We check that the #dof(closure(p)) == #dual basis functionals(p) for a representative p in the iteration
647: If we have a label, we iterate over those points. This will probably break the maxHeight functionality since we do not check the height of those points.
648: */
649: static PetscErrorCode DMProjectLocal_Generic_Plex(DM dm, PetscReal time, Vec localU, PetscInt Ncc, const PetscInt comps[], DMLabel label, PetscInt numIds, const PetscInt ids[], DMBoundaryConditionType type, void (**funcs)(void), void **ctxs, InsertMode mode, Vec localX)
650: {
651: DM plex, dmIn, plexIn, dmAux = NULL, plexAux = NULL, tdm;
652: DMEnclosureType encIn, encAux;
653: PetscDS ds = NULL, dsIn = NULL, dsAux = NULL;
654: Vec localA = NULL, tv;
655: IS fieldIS;
656: PetscSection section;
657: PetscDualSpace *sp, *cellsp, *spIn, *cellspIn;
658: PetscTabulation *T = NULL, *TAux = NULL;
659: PetscInt *Nc;
660: PetscInt dim, dimEmbed, depth, htInc = 0, htIncIn = 0, htIncAux = 0, minHeight, maxHeight, minHeightIn, minHeightAux, h, regionNum, Nf, NfIn, NfAux = 0, NfTot, f;
661: PetscBool *isFE, hasFE = PETSC_FALSE, hasFV = PETSC_FALSE, isCohesive = PETSC_FALSE, isCohesiveIn = PETSC_FALSE, transform;
662: DMField coordField;
663: DMLabel depthLabel;
664: PetscQuadrature allPoints = NULL;
666: PetscFunctionBegin;
667: if (localU) PetscCall(VecGetDM(localU, &dmIn));
668: else dmIn = dm;
669: PetscCall(DMGetAuxiliaryVec(dm, label, numIds ? ids[0] : 0, 0, &localA));
670: if (localA) PetscCall(VecGetDM(localA, &dmAux));
671: else dmAux = NULL;
672: PetscCall(DMConvert(dm, DMPLEX, &plex));
673: PetscCall(DMConvert(dmIn, DMPLEX, &plexIn));
674: PetscCall(DMGetEnclosureRelation(dmIn, dm, &encIn));
675: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
676: PetscCall(DMGetDimension(dm, &dim));
677: PetscCall(DMPlexGetVTKCellHeight(plex, &minHeight));
678: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
679: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
680: PetscCall(DMHasBasisTransform(dm, &transform));
681: /* Auxiliary information can only be used with interpolation of field functions */
682: if (dmAux) {
683: PetscCall(DMConvert(dmAux, DMPLEX, &plexAux));
684: if (type == DM_BC_ESSENTIAL_FIELD || type == DM_BC_ESSENTIAL_BD_FIELD || type == DM_BC_NATURAL_FIELD) PetscCheck(localA, PETSC_COMM_SELF, PETSC_ERR_USER, "Missing localA vector");
685: }
686: if (localU && localU != localX) PetscCall(DMPlexInsertBoundaryValues(plexIn, PETSC_TRUE, localU, time, NULL, NULL, NULL));
687: PetscCall(DMGetCoordinateField(dm, &coordField));
688: PetscCheck(coordField, PETSC_COMM_SELF, PETSC_ERR_USER, "DM must have a coordinate field");
689: /**** No collective calls below this point ****/
690: /* Determine height for iteration of all meshes */
691: {
692: DMPolytopeType ct, ctIn, ctAux;
693: PetscInt lStart, pStart, pEnd, p, pStartIn, pStartAux, pEndAux;
694: PetscInt dim = -1, dimIn = -1, dimAux = -1;
696: PetscCall(DMPlexGetSimplexOrBoxCells(plex, minHeight, &pStart, &pEnd));
697: if (pEnd > pStart) {
698: PetscCall(DMGetFirstLabeledPoint(dm, dm, label, numIds, ids, minHeight, &lStart, NULL));
699: p = lStart < 0 ? pStart : lStart;
700: PetscCall(DMPlexGetCellType(plex, p, &ct));
701: dim = DMPolytopeTypeGetDim(ct);
702: PetscCall(DMPlexGetVTKCellHeight(plexIn, &minHeightIn));
703: PetscCall(DMPlexGetSimplexOrBoxCells(plexIn, minHeightIn, &pStartIn, NULL));
704: PetscCall(DMPlexGetCellType(plexIn, pStartIn, &ctIn));
705: dimIn = DMPolytopeTypeGetDim(ctIn);
706: if (dmAux) {
707: PetscCall(DMPlexGetVTKCellHeight(plexAux, &minHeightAux));
708: PetscCall(DMPlexGetSimplexOrBoxCells(plexAux, minHeightAux, &pStartAux, &pEndAux));
709: if (pStartAux < pEndAux) {
710: PetscCall(DMPlexGetCellType(plexAux, pStartAux, &ctAux));
711: dimAux = DMPolytopeTypeGetDim(ctAux);
712: }
713: } else dimAux = dim;
714: } else {
715: PetscCall(DMDestroy(&plex));
716: PetscCall(DMDestroy(&plexIn));
717: if (dmAux) PetscCall(DMDestroy(&plexAux));
718: PetscFunctionReturn(PETSC_SUCCESS);
719: }
720: if (dim < 0) {
721: DMLabel spmap = NULL, spmapIn = NULL, spmapAux = NULL;
723: /* Fall back to determination based on being a submesh */
724: PetscCall(DMPlexGetSubpointMap(plex, &spmap));
725: PetscCall(DMPlexGetSubpointMap(plexIn, &spmapIn));
726: if (plexAux) PetscCall(DMPlexGetSubpointMap(plexAux, &spmapAux));
727: dim = spmap ? 1 : 0;
728: dimIn = spmapIn ? 1 : 0;
729: dimAux = spmapAux ? 1 : 0;
730: }
731: {
732: PetscInt dimProj = PetscMin(PetscMin(dim, dimIn), (dimAux < 0 ? PETSC_MAX_INT : dimAux));
733: PetscInt dimAuxEff = dimAux < 0 ? dimProj : dimAux;
735: PetscCheck(PetscAbsInt(dimProj - dim) <= 1 && PetscAbsInt(dimProj - dimIn) <= 1 && PetscAbsInt(dimProj - dimAuxEff) <= 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "Do not currently support differences of more than 1 in dimension");
736: if (dimProj < dim) minHeight = 1;
737: htInc = dim - dimProj;
738: htIncIn = dimIn - dimProj;
739: htIncAux = dimAuxEff - dimProj;
740: }
741: }
742: PetscCall(DMPlexGetDepth(plex, &depth));
743: PetscCall(DMPlexGetDepthLabel(plex, &depthLabel));
744: PetscCall(DMPlexGetMaxProjectionHeight(plex, &maxHeight));
745: maxHeight = PetscMax(maxHeight, minHeight);
746: PetscCheck(maxHeight >= 0 && maxHeight <= dim, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Maximum projection height %" PetscInt_FMT " not in [0, %" PetscInt_FMT ")", maxHeight, dim);
747: PetscCall(DMGetFirstLabeledPoint(dm, dm, label, numIds, ids, minHeight, NULL, &ds));
748: if (!ds) PetscCall(DMGetDS(dm, &ds));
749: PetscCall(DMGetFirstLabeledPoint(dmIn, dm, label, numIds, ids, minHeight, NULL, &dsIn));
750: if (!dsIn) PetscCall(DMGetDS(dmIn, &dsIn));
751: PetscCall(PetscDSGetNumFields(ds, &Nf));
752: PetscCall(PetscDSGetNumFields(dsIn, &NfIn));
753: PetscCall(PetscDSIsCohesive(dsIn, &isCohesiveIn));
754: if (isCohesiveIn) --htIncIn; // Should be rearranged
755: PetscCall(DMGetNumFields(dm, &NfTot));
756: PetscCall(DMFindRegionNum(dm, ds, ®ionNum));
757: PetscCall(DMGetRegionNumDS(dm, regionNum, NULL, &fieldIS, NULL, NULL));
758: PetscCall(PetscDSIsCohesive(ds, &isCohesive));
759: PetscCall(DMGetCoordinateDim(dm, &dimEmbed));
760: PetscCall(DMGetLocalSection(dm, §ion));
761: if (dmAux) {
762: PetscCall(DMGetDS(dmAux, &dsAux));
763: PetscCall(PetscDSGetNumFields(dsAux, &NfAux));
764: }
765: PetscCall(PetscDSGetComponents(ds, &Nc));
766: PetscCall(PetscMalloc3(Nf, &isFE, Nf, &sp, NfIn, &spIn));
767: if (maxHeight > 0) PetscCall(PetscMalloc2(Nf, &cellsp, NfIn, &cellspIn));
768: else {
769: cellsp = sp;
770: cellspIn = spIn;
771: }
772: /* Get cell dual spaces */
773: for (f = 0; f < Nf; ++f) {
774: PetscDiscType disctype;
776: PetscCall(PetscDSGetDiscType_Internal(ds, f, &disctype));
777: if (disctype == PETSC_DISC_FE) {
778: PetscFE fe;
780: isFE[f] = PETSC_TRUE;
781: hasFE = PETSC_TRUE;
782: PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
783: PetscCall(PetscFEGetDualSpace(fe, &cellsp[f]));
784: } else if (disctype == PETSC_DISC_FV) {
785: PetscFV fv;
787: isFE[f] = PETSC_FALSE;
788: hasFV = PETSC_TRUE;
789: PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fv));
790: PetscCall(PetscFVGetDualSpace(fv, &cellsp[f]));
791: } else {
792: isFE[f] = PETSC_FALSE;
793: cellsp[f] = NULL;
794: }
795: }
796: for (f = 0; f < NfIn; ++f) {
797: PetscDiscType disctype;
799: PetscCall(PetscDSGetDiscType_Internal(dsIn, f, &disctype));
800: if (disctype == PETSC_DISC_FE) {
801: PetscFE fe;
803: PetscCall(PetscDSGetDiscretization(dsIn, f, (PetscObject *)&fe));
804: PetscCall(PetscFEGetDualSpace(fe, &cellspIn[f]));
805: } else if (disctype == PETSC_DISC_FV) {
806: PetscFV fv;
808: PetscCall(PetscDSGetDiscretization(dsIn, f, (PetscObject *)&fv));
809: PetscCall(PetscFVGetDualSpace(fv, &cellspIn[f]));
810: } else {
811: cellspIn[f] = NULL;
812: }
813: }
814: for (f = 0; f < Nf; ++f) {
815: if (!htInc) {
816: sp[f] = cellsp[f];
817: } else PetscCall(PetscDualSpaceGetHeightSubspace(cellsp[f], htInc, &sp[f]));
818: }
819: if (type == DM_BC_ESSENTIAL_FIELD || type == DM_BC_ESSENTIAL_BD_FIELD || type == DM_BC_NATURAL_FIELD) {
820: PetscFE fem, subfem;
821: PetscDiscType disctype;
822: const PetscReal *points;
823: PetscInt numPoints;
825: PetscCheck(maxHeight <= minHeight, PetscObjectComm((PetscObject)dm), PETSC_ERR_SUP, "Field projection not supported for face interpolation");
826: PetscCall(PetscDualSpaceGetAllPointsUnion(Nf, sp, dim - htInc, funcs, &allPoints));
827: PetscCall(PetscQuadratureGetData(allPoints, NULL, NULL, &numPoints, &points, NULL));
828: PetscCall(PetscMalloc2(NfIn, &T, NfAux, &TAux));
829: for (f = 0; f < NfIn; ++f) {
830: if (!htIncIn) {
831: spIn[f] = cellspIn[f];
832: } else PetscCall(PetscDualSpaceGetHeightSubspace(cellspIn[f], htIncIn, &spIn[f]));
834: PetscCall(PetscDSGetDiscType_Internal(dsIn, f, &disctype));
835: if (disctype != PETSC_DISC_FE) continue;
836: PetscCall(PetscDSGetDiscretization(dsIn, f, (PetscObject *)&fem));
837: if (!htIncIn) {
838: subfem = fem;
839: } else PetscCall(PetscFEGetHeightSubspace(fem, htIncIn, &subfem));
840: PetscCall(PetscFECreateTabulation(subfem, 1, numPoints, points, 1, &T[f]));
841: }
842: for (f = 0; f < NfAux; ++f) {
843: PetscCall(PetscDSGetDiscType_Internal(dsAux, f, &disctype));
844: if (disctype != PETSC_DISC_FE) continue;
845: PetscCall(PetscDSGetDiscretization(dsAux, f, (PetscObject *)&fem));
846: if (!htIncAux) {
847: subfem = fem;
848: } else PetscCall(PetscFEGetHeightSubspace(fem, htIncAux, &subfem));
849: PetscCall(PetscFECreateTabulation(subfem, 1, numPoints, points, 1, &TAux[f]));
850: }
851: }
852: /* Note: We make no attempt to optimize for height. Higher height things just overwrite the lower height results. */
853: for (h = minHeight; h <= maxHeight; h++) {
854: PetscInt hEff = h - minHeight + htInc;
855: PetscInt hEffIn = h - minHeight + htIncIn;
856: PetscInt hEffAux = h - minHeight + htIncAux;
857: PetscDS dsEff = ds;
858: PetscDS dsEffIn = dsIn;
859: PetscDS dsEffAux = dsAux;
860: PetscScalar *values;
861: PetscBool *fieldActive;
862: PetscInt maxDegree;
863: PetscInt pStart, pEnd, p, lStart, spDim, totDim, numValues;
864: IS heightIS;
866: if (h > minHeight) {
867: for (f = 0; f < Nf; ++f) PetscCall(PetscDualSpaceGetHeightSubspace(cellsp[f], hEff, &sp[f]));
868: }
869: PetscCall(DMPlexGetSimplexOrBoxCells(plex, h, &pStart, &pEnd));
870: PetscCall(DMGetFirstLabeledPoint(dm, dm, label, numIds, ids, h, &lStart, NULL));
871: PetscCall(DMLabelGetStratumIS(depthLabel, depth - h, &heightIS));
872: if (pEnd <= pStart) {
873: PetscCall(ISDestroy(&heightIS));
874: continue;
875: }
876: /* Compute totDim, the number of dofs in the closure of a point at this height */
877: totDim = 0;
878: for (f = 0; f < Nf; ++f) {
879: PetscBool cohesive;
881: if (!sp[f]) continue;
882: PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
883: PetscCall(PetscDualSpaceGetDimension(sp[f], &spDim));
884: totDim += spDim;
885: if (isCohesive && !cohesive) totDim += spDim;
886: }
887: p = lStart < 0 ? pStart : lStart;
888: PetscCall(DMPlexVecGetClosure(plex, section, localX, p, &numValues, NULL));
889: PetscCheck(numValues == totDim, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "The output section point (%" PetscInt_FMT ") closure size %" PetscInt_FMT " != dual space dimension %" PetscInt_FMT " at height %" PetscInt_FMT " in [%" PetscInt_FMT ", %" PetscInt_FMT "]", p, numValues, totDim, h, minHeight, maxHeight);
890: if (!totDim) {
891: PetscCall(ISDestroy(&heightIS));
892: continue;
893: }
894: if (htInc) PetscCall(PetscDSGetHeightSubspace(ds, hEff, &dsEff));
895: /* Compute totDimIn, the number of dofs in the closure of a point at this height */
896: if (localU) {
897: PetscInt totDimIn, pIn, numValuesIn;
899: totDimIn = 0;
900: for (f = 0; f < NfIn; ++f) {
901: PetscBool cohesive;
903: if (!spIn[f]) continue;
904: PetscCall(PetscDSGetCohesive(dsIn, f, &cohesive));
905: PetscCall(PetscDualSpaceGetDimension(spIn[f], &spDim));
906: totDimIn += spDim;
907: if (isCohesiveIn && !cohesive) totDimIn += spDim;
908: }
909: PetscCall(DMGetEnclosurePoint(dmIn, dm, encIn, lStart < 0 ? pStart : lStart, &pIn));
910: PetscCall(DMPlexVecGetClosure(plexIn, NULL, localU, pIn, &numValuesIn, NULL));
911: // TODO We could check that pIn is a cohesive cell for this check
912: PetscCheck(isCohesiveIn || (numValuesIn == totDimIn), PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "The input section point (%" PetscInt_FMT ") closure size %" PetscInt_FMT " != dual space dimension %" PetscInt_FMT " at height %" PetscInt_FMT, pIn, numValuesIn, totDimIn, htIncIn);
913: if (htIncIn) PetscCall(PetscDSGetHeightSubspace(dsIn, hEffIn, &dsEffIn));
914: }
915: if (htIncAux) PetscCall(PetscDSGetHeightSubspace(dsAux, hEffAux, &dsEffAux));
916: /* Loop over points at this height */
917: PetscCall(DMGetWorkArray(dm, numValues, MPIU_SCALAR, &values));
918: PetscCall(DMGetWorkArray(dm, NfTot, MPI_INT, &fieldActive));
919: {
920: const PetscInt *fields;
922: PetscCall(ISGetIndices(fieldIS, &fields));
923: for (f = 0; f < NfTot; ++f) fieldActive[f] = PETSC_FALSE;
924: for (f = 0; f < Nf; ++f) fieldActive[fields[f]] = (funcs[f] && sp[f]) ? PETSC_TRUE : PETSC_FALSE;
925: PetscCall(ISRestoreIndices(fieldIS, &fields));
926: }
927: if (label) {
928: PetscInt i;
930: for (i = 0; i < numIds; ++i) {
931: IS pointIS, isectIS;
932: const PetscInt *points;
933: PetscInt n;
934: PetscFEGeom *fegeom = NULL, *chunkgeom = NULL;
935: PetscQuadrature quad = NULL;
937: PetscCall(DMLabelGetStratumIS(label, ids[i], &pointIS));
938: if (!pointIS) continue; /* No points with that id on this process */
939: PetscCall(ISIntersect(pointIS, heightIS, &isectIS));
940: PetscCall(ISDestroy(&pointIS));
941: if (!isectIS) continue;
942: PetscCall(ISGetLocalSize(isectIS, &n));
943: PetscCall(ISGetIndices(isectIS, &points));
944: PetscCall(DMFieldGetDegree(coordField, isectIS, NULL, &maxDegree));
945: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, isectIS, &quad));
946: if (!quad) {
947: if (!h && allPoints) {
948: quad = allPoints;
949: allPoints = NULL;
950: } else {
951: PetscCall(PetscDualSpaceGetAllPointsUnion(Nf, sp, isCohesive ? dim - htInc - 1 : dim - htInc, funcs, &quad));
952: }
953: }
954: PetscBool computeFaceGeom = htInc && h == minHeight ? PETSC_TRUE : PETSC_FALSE;
956: if (n) {
957: PetscInt depth, dep;
959: PetscCall(DMPlexGetDepth(dm, &depth));
960: PetscCall(DMPlexGetPointDepth(dm, points[0], &dep));
961: if (dep < depth && h == minHeight) computeFaceGeom = PETSC_TRUE;
962: }
963: PetscCall(DMFieldCreateFEGeom(coordField, isectIS, quad, computeFaceGeom, &fegeom));
964: for (p = 0; p < n; ++p) {
965: const PetscInt point = points[p];
967: PetscCall(PetscArrayzero(values, numValues));
968: PetscCall(PetscFEGeomGetChunk(fegeom, p, p + 1, &chunkgeom));
969: PetscCall(DMPlexSetActivePoint(dm, point));
970: PetscCall(DMProjectPoint_Private(dm, dsEff, plexIn, encIn, dsEffIn, plexAux, encAux, dsEffAux, chunkgeom, htInc, time, localU, localA, hasFE, hasFV, isFE, sp, point, T, TAux, type, funcs, ctxs, fieldActive, values));
971: if (transform) PetscCall(DMPlexBasisTransformPoint_Internal(plex, tdm, tv, point, fieldActive, PETSC_FALSE, values));
972: PetscCall(DMPlexVecSetFieldClosure_Internal(plex, section, localX, fieldActive, point, Ncc, comps, label, ids[i], values, mode));
973: }
974: PetscCall(PetscFEGeomRestoreChunk(fegeom, p, p + 1, &chunkgeom));
975: PetscCall(PetscFEGeomDestroy(&fegeom));
976: PetscCall(PetscQuadratureDestroy(&quad));
977: PetscCall(ISRestoreIndices(isectIS, &points));
978: PetscCall(ISDestroy(&isectIS));
979: }
980: } else {
981: PetscFEGeom *fegeom = NULL, *chunkgeom = NULL;
982: PetscQuadrature quad = NULL;
983: IS pointIS;
985: PetscCall(ISCreateStride(PETSC_COMM_SELF, pEnd - pStart, pStart, 1, &pointIS));
986: PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
987: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &quad));
988: if (!quad) {
989: if (!h && allPoints) {
990: quad = allPoints;
991: allPoints = NULL;
992: } else {
993: PetscCall(PetscDualSpaceGetAllPointsUnion(Nf, sp, dim - htInc, funcs, &quad));
994: }
995: }
996: PetscCall(DMFieldCreateFEGeom(coordField, pointIS, quad, (htInc && h == minHeight) ? PETSC_TRUE : PETSC_FALSE, &fegeom));
997: for (p = pStart; p < pEnd; ++p) {
998: PetscCall(PetscArrayzero(values, numValues));
999: PetscCall(PetscFEGeomGetChunk(fegeom, p - pStart, p - pStart + 1, &chunkgeom));
1000: PetscCall(DMPlexSetActivePoint(dm, p));
1001: PetscCall(DMProjectPoint_Private(dm, dsEff, plexIn, encIn, dsEffIn, plexAux, encAux, dsEffAux, chunkgeom, htInc, time, localU, localA, hasFE, hasFV, isFE, sp, p, T, TAux, type, funcs, ctxs, fieldActive, values));
1002: if (transform) PetscCall(DMPlexBasisTransformPoint_Internal(plex, tdm, tv, p, fieldActive, PETSC_FALSE, values));
1003: PetscCall(DMPlexVecSetFieldClosure_Internal(plex, section, localX, fieldActive, p, Ncc, comps, NULL, -1, values, mode));
1004: }
1005: PetscCall(PetscFEGeomRestoreChunk(fegeom, p - pStart, pStart - p + 1, &chunkgeom));
1006: PetscCall(PetscFEGeomDestroy(&fegeom));
1007: PetscCall(PetscQuadratureDestroy(&quad));
1008: PetscCall(ISDestroy(&pointIS));
1009: }
1010: PetscCall(ISDestroy(&heightIS));
1011: PetscCall(DMRestoreWorkArray(dm, numValues, MPIU_SCALAR, &values));
1012: PetscCall(DMRestoreWorkArray(dm, Nf, MPI_INT, &fieldActive));
1013: }
1014: /* Cleanup */
1015: if (type == DM_BC_ESSENTIAL_FIELD || type == DM_BC_ESSENTIAL_BD_FIELD || type == DM_BC_NATURAL_FIELD) {
1016: for (f = 0; f < NfIn; ++f) PetscCall(PetscTabulationDestroy(&T[f]));
1017: for (f = 0; f < NfAux; ++f) PetscCall(PetscTabulationDestroy(&TAux[f]));
1018: PetscCall(PetscFree2(T, TAux));
1019: }
1020: PetscCall(PetscQuadratureDestroy(&allPoints));
1021: PetscCall(PetscFree3(isFE, sp, spIn));
1022: if (maxHeight > 0) PetscCall(PetscFree2(cellsp, cellspIn));
1023: PetscCall(DMDestroy(&plex));
1024: PetscCall(DMDestroy(&plexIn));
1025: if (dmAux) PetscCall(DMDestroy(&plexAux));
1026: PetscFunctionReturn(PETSC_SUCCESS);
1027: }
1029: PetscErrorCode DMProjectFunctionLocal_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, InsertMode mode, Vec localX)
1030: {
1031: PetscFunctionBegin;
1032: PetscCall(DMProjectLocal_Generic_Plex(dm, time, NULL, 0, NULL, NULL, 0, NULL, DM_BC_ESSENTIAL, (void (**)(void))funcs, ctxs, mode, localX));
1033: PetscFunctionReturn(PETSC_SUCCESS);
1034: }
1036: PetscErrorCode DMProjectFunctionLabelLocal_Plex(DM dm, PetscReal time, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt Ncc, const PetscInt comps[], PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, InsertMode mode, Vec localX)
1037: {
1038: PetscFunctionBegin;
1039: PetscCall(DMProjectLocal_Generic_Plex(dm, time, NULL, Ncc, comps, label, numIds, ids, DM_BC_ESSENTIAL, (void (**)(void))funcs, ctxs, mode, localX));
1040: PetscFunctionReturn(PETSC_SUCCESS);
1041: }
1043: PetscErrorCode DMProjectFieldLocal_Plex(DM dm, PetscReal time, Vec localU, void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), InsertMode mode, Vec localX)
1044: {
1045: PetscFunctionBegin;
1046: PetscCall(DMProjectLocal_Generic_Plex(dm, time, localU, 0, NULL, NULL, 0, NULL, DM_BC_ESSENTIAL_FIELD, (void (**)(void))funcs, NULL, mode, localX));
1047: PetscFunctionReturn(PETSC_SUCCESS);
1048: }
1050: PetscErrorCode DMProjectFieldLabelLocal_Plex(DM dm, PetscReal time, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt Ncc, const PetscInt comps[], Vec localU, void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), InsertMode mode, Vec localX)
1051: {
1052: PetscFunctionBegin;
1053: PetscCall(DMProjectLocal_Generic_Plex(dm, time, localU, Ncc, comps, label, numIds, ids, DM_BC_ESSENTIAL_FIELD, (void (**)(void))funcs, NULL, mode, localX));
1054: PetscFunctionReturn(PETSC_SUCCESS);
1055: }
1057: PetscErrorCode DMProjectBdFieldLabelLocal_Plex(DM dm, PetscReal time, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt Ncc, const PetscInt comps[], Vec localU, void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), InsertMode mode, Vec localX)
1058: {
1059: PetscFunctionBegin;
1060: PetscCall(DMProjectLocal_Generic_Plex(dm, time, localU, Ncc, comps, label, numIds, ids, DM_BC_ESSENTIAL_BD_FIELD, (void (**)(void))funcs, NULL, mode, localX));
1061: PetscFunctionReturn(PETSC_SUCCESS);
1062: }