Actual source code: dspacelagrange.c

  1: #include <petsc/private/petscfeimpl.h>
  2: #include <petscdmplex.h>
  3: #include <petscblaslapack.h>

  5: PetscErrorCode DMPlexGetTransitiveClosure_Internal(DM, PetscInt, PetscInt, PetscBool, PetscInt *, PetscInt *[]);

  7: struct _n_Petsc1DNodeFamily {
  8:   PetscInt        refct;
  9:   PetscDTNodeType nodeFamily;
 10:   PetscReal       gaussJacobiExp;
 11:   PetscInt        nComputed;
 12:   PetscReal     **nodesets;
 13:   PetscBool       endpoints;
 14: };

 16: /* users set node families for PETSCDUALSPACELAGRANGE with just the inputs to this function, but internally we create
 17:  * an object that can cache the computations across multiple dual spaces */
 18: static PetscErrorCode Petsc1DNodeFamilyCreate(PetscDTNodeType family, PetscReal gaussJacobiExp, PetscBool endpoints, Petsc1DNodeFamily *nf)
 19: {
 20:   Petsc1DNodeFamily f;

 22:   PetscFunctionBegin;
 23:   PetscCall(PetscNew(&f));
 24:   switch (family) {
 25:   case PETSCDTNODES_GAUSSJACOBI:
 26:   case PETSCDTNODES_EQUISPACED:
 27:     f->nodeFamily = family;
 28:     break;
 29:   default:
 30:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Unknown 1D node family");
 31:   }
 32:   f->endpoints      = endpoints;
 33:   f->gaussJacobiExp = 0.;
 34:   if (family == PETSCDTNODES_GAUSSJACOBI) {
 35:     PetscCheck(gaussJacobiExp > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Gauss-Jacobi exponent must be > -1.");
 36:     f->gaussJacobiExp = gaussJacobiExp;
 37:   }
 38:   f->refct = 1;
 39:   *nf      = f;
 40:   PetscFunctionReturn(PETSC_SUCCESS);
 41: }

 43: static PetscErrorCode Petsc1DNodeFamilyReference(Petsc1DNodeFamily nf)
 44: {
 45:   PetscFunctionBegin;
 46:   if (nf) nf->refct++;
 47:   PetscFunctionReturn(PETSC_SUCCESS);
 48: }

 50: static PetscErrorCode Petsc1DNodeFamilyDestroy(Petsc1DNodeFamily *nf)
 51: {
 52:   PetscInt i, nc;

 54:   PetscFunctionBegin;
 55:   if (!*nf) PetscFunctionReturn(PETSC_SUCCESS);
 56:   if (--(*nf)->refct > 0) {
 57:     *nf = NULL;
 58:     PetscFunctionReturn(PETSC_SUCCESS);
 59:   }
 60:   nc = (*nf)->nComputed;
 61:   for (i = 0; i < nc; i++) PetscCall(PetscFree((*nf)->nodesets[i]));
 62:   PetscCall(PetscFree((*nf)->nodesets));
 63:   PetscCall(PetscFree(*nf));
 64:   *nf = NULL;
 65:   PetscFunctionReturn(PETSC_SUCCESS);
 66: }

 68: static PetscErrorCode Petsc1DNodeFamilyGetNodeSets(Petsc1DNodeFamily f, PetscInt degree, PetscReal ***nodesets)
 69: {
 70:   PetscInt nc;

 72:   PetscFunctionBegin;
 73:   nc = f->nComputed;
 74:   if (degree >= nc) {
 75:     PetscInt    i, j;
 76:     PetscReal **new_nodesets;
 77:     PetscReal  *w;

 79:     PetscCall(PetscMalloc1(degree + 1, &new_nodesets));
 80:     PetscCall(PetscArraycpy(new_nodesets, f->nodesets, nc));
 81:     PetscCall(PetscFree(f->nodesets));
 82:     f->nodesets = new_nodesets;
 83:     PetscCall(PetscMalloc1(degree + 1, &w));
 84:     for (i = nc; i < degree + 1; i++) {
 85:       PetscCall(PetscMalloc1(i + 1, &f->nodesets[i]));
 86:       if (!i) {
 87:         f->nodesets[i][0] = 0.5;
 88:       } else {
 89:         switch (f->nodeFamily) {
 90:         case PETSCDTNODES_EQUISPACED:
 91:           if (f->endpoints) {
 92:             for (j = 0; j <= i; j++) f->nodesets[i][j] = (PetscReal)j / (PetscReal)i;
 93:           } else {
 94:             /* these nodes are at the centroids of the small simplices created by the equispaced nodes that include
 95:              * the endpoints */
 96:             for (j = 0; j <= i; j++) f->nodesets[i][j] = ((PetscReal)j + 0.5) / ((PetscReal)i + 1.);
 97:           }
 98:           break;
 99:         case PETSCDTNODES_GAUSSJACOBI:
100:           if (f->endpoints) {
101:             PetscCall(PetscDTGaussLobattoJacobiQuadrature(i + 1, 0., 1., f->gaussJacobiExp, f->gaussJacobiExp, f->nodesets[i], w));
102:           } else {
103:             PetscCall(PetscDTGaussJacobiQuadrature(i + 1, 0., 1., f->gaussJacobiExp, f->gaussJacobiExp, f->nodesets[i], w));
104:           }
105:           break;
106:         default:
107:           SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Unknown 1D node family");
108:         }
109:       }
110:     }
111:     PetscCall(PetscFree(w));
112:     f->nComputed = degree + 1;
113:   }
114:   *nodesets = f->nodesets;
115:   PetscFunctionReturn(PETSC_SUCCESS);
116: }

118: /* http://arxiv.org/abs/2002.09421 for details */
119: static PetscErrorCode PetscNodeRecursive_Internal(PetscInt dim, PetscInt degree, PetscReal **nodesets, PetscInt tup[], PetscReal node[])
120: {
121:   PetscReal w;
122:   PetscInt  i, j;

124:   PetscFunctionBeginHot;
125:   w = 0.;
126:   if (dim == 1) {
127:     node[0] = nodesets[degree][tup[0]];
128:     node[1] = nodesets[degree][tup[1]];
129:   } else {
130:     for (i = 0; i < dim + 1; i++) node[i] = 0.;
131:     for (i = 0; i < dim + 1; i++) {
132:       PetscReal wi = nodesets[degree][degree - tup[i]];

134:       for (j = 0; j < dim + 1; j++) tup[dim + 1 + j] = tup[j + (j >= i)];
135:       PetscCall(PetscNodeRecursive_Internal(dim - 1, degree - tup[i], nodesets, &tup[dim + 1], &node[dim + 1]));
136:       for (j = 0; j < dim + 1; j++) node[j + (j >= i)] += wi * node[dim + 1 + j];
137:       w += wi;
138:     }
139:     for (i = 0; i < dim + 1; i++) node[i] /= w;
140:   }
141:   PetscFunctionReturn(PETSC_SUCCESS);
142: }

144: /* compute simplex nodes for the biunit simplex from the 1D node family */
145: static PetscErrorCode Petsc1DNodeFamilyComputeSimplexNodes(Petsc1DNodeFamily f, PetscInt dim, PetscInt degree, PetscReal points[])
146: {
147:   PetscInt   *tup;
148:   PetscInt    k;
149:   PetscInt    npoints;
150:   PetscReal **nodesets = NULL;
151:   PetscInt    worksize;
152:   PetscReal  *nodework;
153:   PetscInt   *tupwork;

155:   PetscFunctionBegin;
156:   PetscCheck(dim >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Must have non-negative dimension");
157:   PetscCheck(degree >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Must have non-negative degree");
158:   if (!dim) PetscFunctionReturn(PETSC_SUCCESS);
159:   PetscCall(PetscCalloc1(dim + 2, &tup));
160:   k = 0;
161:   PetscCall(PetscDTBinomialInt(degree + dim, dim, &npoints));
162:   PetscCall(Petsc1DNodeFamilyGetNodeSets(f, degree, &nodesets));
163:   worksize = ((dim + 2) * (dim + 3)) / 2;
164:   PetscCall(PetscCalloc2(worksize, &nodework, worksize, &tupwork));
165:   /* loop over the tuples of length dim with sum at most degree */
166:   for (k = 0; k < npoints; k++) {
167:     PetscInt i;

169:     /* turn thm into tuples of length dim + 1 with sum equal to degree (barycentric indice) */
170:     tup[0] = degree;
171:     for (i = 0; i < dim; i++) tup[0] -= tup[i + 1];
172:     switch (f->nodeFamily) {
173:     case PETSCDTNODES_EQUISPACED:
174:       /* compute equispaces nodes on the unit reference triangle */
175:       if (f->endpoints) {
176:         PetscCheck(degree > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Must have positive degree");
177:         for (i = 0; i < dim; i++) points[dim * k + i] = (PetscReal)tup[i + 1] / (PetscReal)degree;
178:       } else {
179:         for (i = 0; i < dim; i++) {
180:           /* these nodes are at the centroids of the small simplices created by the equispaced nodes that include
181:            * the endpoints */
182:           points[dim * k + i] = ((PetscReal)tup[i + 1] + 1. / (dim + 1.)) / (PetscReal)(degree + 1.);
183:         }
184:       }
185:       break;
186:     default:
187:       /* compute equispaced nodes on the barycentric reference triangle (the trace on the first dim dimensions are the
188:        * unit reference triangle nodes */
189:       for (i = 0; i < dim + 1; i++) tupwork[i] = tup[i];
190:       PetscCall(PetscNodeRecursive_Internal(dim, degree, nodesets, tupwork, nodework));
191:       for (i = 0; i < dim; i++) points[dim * k + i] = nodework[i + 1];
192:       break;
193:     }
194:     PetscCall(PetscDualSpaceLatticePointLexicographic_Internal(dim, degree, &tup[1]));
195:   }
196:   /* map from unit simplex to biunit simplex */
197:   for (k = 0; k < npoints * dim; k++) points[k] = points[k] * 2. - 1.;
198:   PetscCall(PetscFree2(nodework, tupwork));
199:   PetscCall(PetscFree(tup));
200:   PetscFunctionReturn(PETSC_SUCCESS);
201: }

203: /* If we need to get the dofs from a mesh point, or add values into dofs at a mesh point, and there is more than one dof
204:  * on that mesh point, we have to be careful about getting/adding everything in the right place.
205:  *
206:  * With nodal dofs like PETSCDUALSPACELAGRANGE makes, the general approach to calculate the value of dofs associate
207:  * with a node A is
208:  * - transform the node locations x(A) by the map that takes the mesh point to its reorientation, x' = phi(x(A))
209:  * - figure out which node was originally at the location of the transformed point, A' = idx(x')
210:  * - if the dofs are not scalars, figure out how to represent the transformed dofs in terms of the basis
211:  *   of dofs at A' (using pushforward/pullback rules)
212:  *
213:  * The one sticky point with this approach is the "A' = idx(x')" step: trying to go from real valued coordinates
214:  * back to indices.  I don't want to rely on floating point tolerances.  Additionally, PETSCDUALSPACELAGRANGE may
215:  * eventually support quasi-Lagrangian dofs, which could involve quadrature at multiple points, so the location "x(A)"
216:  * would be ambiguous.
217:  *
218:  * So each dof gets an integer value coordinate (nodeIdx in the structure below).  The choice of integer coordinates
219:  * is somewhat arbitrary, as long as all of the relevant symmetries of the mesh point correspond to *permutations* of
220:  * the integer coordinates, which do not depend on numerical precision.
221:  *
222:  * So
223:  *
224:  * - DMPlexGetTransitiveClosure_Internal() tells me how an orientation turns into a permutation of the vertices of a
225:  *   mesh point
226:  * - The permutation of the vertices, and the nodeIdx values assigned to them, tells what permutation in index space
227:  *   is associated with the orientation
228:  * - I uses that permutation to get xi' = phi(xi(A)), the integer coordinate of the transformed dof
229:  * - I can without numerical issues compute A' = idx(xi')
230:  *
231:  * Here are some examples of how the process works
232:  *
233:  * - With a triangle:
234:  *
235:  *   The triangle has the following integer coordinates for vertices, taken from the barycentric triangle
236:  *
237:  *     closure order 2
238:  *     nodeIdx (0,0,1)
239:  *      \
240:  *       +
241:  *       |\
242:  *       | \
243:  *       |  \
244:  *       |   \    closure order 1
245:  *       |    \ / nodeIdx (0,1,0)
246:  *       +-----+
247:  *        \
248:  *      closure order 0
249:  *      nodeIdx (1,0,0)
250:  *
251:  *   If I do DMPlexGetTransitiveClosure_Internal() with orientation 1, the vertices would appear
252:  *   in the order (1, 2, 0)
253:  *
254:  *   If I list the nodeIdx of each vertex in closure order for orientation 0 (0, 1, 2) and orientation 1 (1, 2, 0), I
255:  *   see
256:  *
257:  *   orientation 0  | orientation 1
258:  *
259:  *   [0] (1,0,0)      [1] (0,1,0)
260:  *   [1] (0,1,0)      [2] (0,0,1)
261:  *   [2] (0,0,1)      [0] (1,0,0)
262:  *          A                B
263:  *
264:  *   In other words, B is the result of a row permutation of A.  But, there is also
265:  *   a column permutation that accomplishes the same result, (2,0,1).
266:  *
267:  *   So if a dof has nodeIdx coordinate (a,b,c), after the transformation its nodeIdx coordinate
268:  *   is (c,a,b), and the transformed degree of freedom will be a linear combination of dofs
269:  *   that originally had coordinate (c,a,b).
270:  *
271:  * - With a quadrilateral:
272:  *
273:  *   The quadrilateral has the following integer coordinates for vertices, taken from concatenating barycentric
274:  *   coordinates for two segments:
275:  *
276:  *     closure order 3      closure order 2
277:  *     nodeIdx (1,0,0,1)    nodeIdx (0,1,0,1)
278:  *                   \      /
279:  *                    +----+
280:  *                    |    |
281:  *                    |    |
282:  *                    +----+
283:  *                   /      \
284:  *     closure order 0      closure order 1
285:  *     nodeIdx (1,0,1,0)    nodeIdx (0,1,1,0)
286:  *
287:  *   If I do DMPlexGetTransitiveClosure_Internal() with orientation 1, the vertices would appear
288:  *   in the order (1, 2, 3, 0)
289:  *
290:  *   If I list the nodeIdx of each vertex in closure order for orientation 0 (0, 1, 2, 3) and
291:  *   orientation 1 (1, 2, 3, 0), I see
292:  *
293:  *   orientation 0  | orientation 1
294:  *
295:  *   [0] (1,0,1,0)    [1] (0,1,1,0)
296:  *   [1] (0,1,1,0)    [2] (0,1,0,1)
297:  *   [2] (0,1,0,1)    [3] (1,0,0,1)
298:  *   [3] (1,0,0,1)    [0] (1,0,1,0)
299:  *          A                B
300:  *
301:  *   The column permutation that accomplishes the same result is (3,2,0,1).
302:  *
303:  *   So if a dof has nodeIdx coordinate (a,b,c,d), after the transformation its nodeIdx coordinate
304:  *   is (d,c,a,b), and the transformed degree of freedom will be a linear combination of dofs
305:  *   that originally had coordinate (d,c,a,b).
306:  *
307:  * Previously PETSCDUALSPACELAGRANGE had hardcoded symmetries for the triangle and quadrilateral,
308:  * but this approach will work for any polytope, such as the wedge (triangular prism).
309:  */
310: struct _n_PetscLagNodeIndices {
311:   PetscInt   refct;
312:   PetscInt   nodeIdxDim;
313:   PetscInt   nodeVecDim;
314:   PetscInt   nNodes;
315:   PetscInt  *nodeIdx; /* for each node an index of size nodeIdxDim */
316:   PetscReal *nodeVec; /* for each node a vector of size nodeVecDim */
317:   PetscInt  *perm;    /* if these are vertices, perm takes DMPlex point index to closure order;
318:                               if these are nodes, perm lists nodes in index revlex order */
319: };

321: /* this is just here so I can access the values in tests/ex1.c outside the library */
322: PetscErrorCode PetscLagNodeIndicesGetData_Internal(PetscLagNodeIndices ni, PetscInt *nodeIdxDim, PetscInt *nodeVecDim, PetscInt *nNodes, const PetscInt *nodeIdx[], const PetscReal *nodeVec[])
323: {
324:   PetscFunctionBegin;
325:   *nodeIdxDim = ni->nodeIdxDim;
326:   *nodeVecDim = ni->nodeVecDim;
327:   *nNodes     = ni->nNodes;
328:   *nodeIdx    = ni->nodeIdx;
329:   *nodeVec    = ni->nodeVec;
330:   PetscFunctionReturn(PETSC_SUCCESS);
331: }

333: static PetscErrorCode PetscLagNodeIndicesReference(PetscLagNodeIndices ni)
334: {
335:   PetscFunctionBegin;
336:   if (ni) ni->refct++;
337:   PetscFunctionReturn(PETSC_SUCCESS);
338: }

340: static PetscErrorCode PetscLagNodeIndicesDuplicate(PetscLagNodeIndices ni, PetscLagNodeIndices *niNew)
341: {
342:   PetscFunctionBegin;
343:   PetscCall(PetscNew(niNew));
344:   (*niNew)->refct      = 1;
345:   (*niNew)->nodeIdxDim = ni->nodeIdxDim;
346:   (*niNew)->nodeVecDim = ni->nodeVecDim;
347:   (*niNew)->nNodes     = ni->nNodes;
348:   PetscCall(PetscMalloc1(ni->nNodes * ni->nodeIdxDim, &((*niNew)->nodeIdx)));
349:   PetscCall(PetscArraycpy((*niNew)->nodeIdx, ni->nodeIdx, ni->nNodes * ni->nodeIdxDim));
350:   PetscCall(PetscMalloc1(ni->nNodes * ni->nodeVecDim, &((*niNew)->nodeVec)));
351:   PetscCall(PetscArraycpy((*niNew)->nodeVec, ni->nodeVec, ni->nNodes * ni->nodeVecDim));
352:   (*niNew)->perm = NULL;
353:   PetscFunctionReturn(PETSC_SUCCESS);
354: }

356: static PetscErrorCode PetscLagNodeIndicesDestroy(PetscLagNodeIndices *ni)
357: {
358:   PetscFunctionBegin;
359:   if (!*ni) PetscFunctionReturn(PETSC_SUCCESS);
360:   if (--(*ni)->refct > 0) {
361:     *ni = NULL;
362:     PetscFunctionReturn(PETSC_SUCCESS);
363:   }
364:   PetscCall(PetscFree((*ni)->nodeIdx));
365:   PetscCall(PetscFree((*ni)->nodeVec));
366:   PetscCall(PetscFree((*ni)->perm));
367:   PetscCall(PetscFree(*ni));
368:   *ni = NULL;
369:   PetscFunctionReturn(PETSC_SUCCESS);
370: }

372: /* The vertices are given nodeIdx coordinates (e.g. the corners of the barycentric triangle).  Those coordinates are
373:  * in some other order, and to understand the effect of different symmetries, we need them to be in closure order.
374:  *
375:  * If sortIdx is PETSC_FALSE, the coordinates are already in revlex order, otherwise we must sort them
376:  * to that order before we do the real work of this function, which is
377:  *
378:  * - mark the vertices in closure order
379:  * - sort them in revlex order
380:  * - use the resulting permutation to list the vertex coordinates in closure order
381:  */
382: static PetscErrorCode PetscLagNodeIndicesComputeVertexOrder(DM dm, PetscLagNodeIndices ni, PetscBool sortIdx)
383: {
384:   PetscInt           v, w, vStart, vEnd, c, d;
385:   PetscInt           nVerts;
386:   PetscInt           closureSize = 0;
387:   PetscInt          *closure     = NULL;
388:   PetscInt          *closureOrder;
389:   PetscInt          *invClosureOrder;
390:   PetscInt          *revlexOrder;
391:   PetscInt          *newNodeIdx;
392:   PetscInt           dim;
393:   Vec                coordVec;
394:   const PetscScalar *coords;

396:   PetscFunctionBegin;
397:   PetscCall(DMGetDimension(dm, &dim));
398:   PetscCall(DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd));
399:   nVerts = vEnd - vStart;
400:   PetscCall(PetscMalloc1(nVerts, &closureOrder));
401:   PetscCall(PetscMalloc1(nVerts, &invClosureOrder));
402:   PetscCall(PetscMalloc1(nVerts, &revlexOrder));
403:   if (sortIdx) { /* bubble sort nodeIdx into revlex order */
404:     PetscInt  nodeIdxDim = ni->nodeIdxDim;
405:     PetscInt *idxOrder;

407:     PetscCall(PetscMalloc1(nVerts * nodeIdxDim, &newNodeIdx));
408:     PetscCall(PetscMalloc1(nVerts, &idxOrder));
409:     for (v = 0; v < nVerts; v++) idxOrder[v] = v;
410:     for (v = 0; v < nVerts; v++) {
411:       for (w = v + 1; w < nVerts; w++) {
412:         const PetscInt *iv   = &(ni->nodeIdx[idxOrder[v] * nodeIdxDim]);
413:         const PetscInt *iw   = &(ni->nodeIdx[idxOrder[w] * nodeIdxDim]);
414:         PetscInt        diff = 0;

416:         for (d = nodeIdxDim - 1; d >= 0; d--)
417:           if ((diff = (iv[d] - iw[d]))) break;
418:         if (diff > 0) {
419:           PetscInt swap = idxOrder[v];

421:           idxOrder[v] = idxOrder[w];
422:           idxOrder[w] = swap;
423:         }
424:       }
425:     }
426:     for (v = 0; v < nVerts; v++) {
427:       for (d = 0; d < nodeIdxDim; d++) newNodeIdx[v * ni->nodeIdxDim + d] = ni->nodeIdx[idxOrder[v] * nodeIdxDim + d];
428:     }
429:     PetscCall(PetscFree(ni->nodeIdx));
430:     ni->nodeIdx = newNodeIdx;
431:     newNodeIdx  = NULL;
432:     PetscCall(PetscFree(idxOrder));
433:   }
434:   PetscCall(DMPlexGetTransitiveClosure(dm, 0, PETSC_TRUE, &closureSize, &closure));
435:   c = closureSize - nVerts;
436:   for (v = 0; v < nVerts; v++) closureOrder[v] = closure[2 * (c + v)] - vStart;
437:   for (v = 0; v < nVerts; v++) invClosureOrder[closureOrder[v]] = v;
438:   PetscCall(DMPlexRestoreTransitiveClosure(dm, 0, PETSC_TRUE, &closureSize, &closure));
439:   PetscCall(DMGetCoordinatesLocal(dm, &coordVec));
440:   PetscCall(VecGetArrayRead(coordVec, &coords));
441:   /* bubble sort closure vertices by coordinates in revlex order */
442:   for (v = 0; v < nVerts; v++) revlexOrder[v] = v;
443:   for (v = 0; v < nVerts; v++) {
444:     for (w = v + 1; w < nVerts; w++) {
445:       const PetscScalar *cv   = &coords[closureOrder[revlexOrder[v]] * dim];
446:       const PetscScalar *cw   = &coords[closureOrder[revlexOrder[w]] * dim];
447:       PetscReal          diff = 0;

449:       for (d = dim - 1; d >= 0; d--)
450:         if ((diff = PetscRealPart(cv[d] - cw[d])) != 0.) break;
451:       if (diff > 0.) {
452:         PetscInt swap = revlexOrder[v];

454:         revlexOrder[v] = revlexOrder[w];
455:         revlexOrder[w] = swap;
456:       }
457:     }
458:   }
459:   PetscCall(VecRestoreArrayRead(coordVec, &coords));
460:   PetscCall(PetscMalloc1(ni->nodeIdxDim * nVerts, &newNodeIdx));
461:   /* reorder nodeIdx to be in closure order */
462:   for (v = 0; v < nVerts; v++) {
463:     for (d = 0; d < ni->nodeIdxDim; d++) newNodeIdx[revlexOrder[v] * ni->nodeIdxDim + d] = ni->nodeIdx[v * ni->nodeIdxDim + d];
464:   }
465:   PetscCall(PetscFree(ni->nodeIdx));
466:   ni->nodeIdx = newNodeIdx;
467:   ni->perm    = invClosureOrder;
468:   PetscCall(PetscFree(revlexOrder));
469:   PetscCall(PetscFree(closureOrder));
470:   PetscFunctionReturn(PETSC_SUCCESS);
471: }

473: /* the coordinates of the simplex vertices are the corners of the barycentric simplex.
474:  * When we stack them on top of each other in revlex order, they look like the identity matrix */
475: static PetscErrorCode PetscLagNodeIndicesCreateSimplexVertices(DM dm, PetscLagNodeIndices *nodeIndices)
476: {
477:   PetscLagNodeIndices ni;
478:   PetscInt            dim, d;

480:   PetscFunctionBegin;
481:   PetscCall(PetscNew(&ni));
482:   PetscCall(DMGetDimension(dm, &dim));
483:   ni->nodeIdxDim = dim + 1;
484:   ni->nodeVecDim = 0;
485:   ni->nNodes     = dim + 1;
486:   ni->refct      = 1;
487:   PetscCall(PetscCalloc1((dim + 1) * (dim + 1), &ni->nodeIdx));
488:   for (d = 0; d < dim + 1; d++) ni->nodeIdx[d * (dim + 2)] = 1;
489:   PetscCall(PetscLagNodeIndicesComputeVertexOrder(dm, ni, PETSC_FALSE));
490:   *nodeIndices = ni;
491:   PetscFunctionReturn(PETSC_SUCCESS);
492: }

494: /* A polytope that is a tensor product of a facet and a segment.
495:  * We take whatever coordinate system was being used for the facet
496:  * and we concatenate the barycentric coordinates for the vertices
497:  * at the end of the segment, (1,0) and (0,1), to get a coordinate
498:  * system for the tensor product element */
499: static PetscErrorCode PetscLagNodeIndicesCreateTensorVertices(DM dm, PetscLagNodeIndices facetni, PetscLagNodeIndices *nodeIndices)
500: {
501:   PetscLagNodeIndices ni;
502:   PetscInt            nodeIdxDim, subNodeIdxDim = facetni->nodeIdxDim;
503:   PetscInt            nVerts, nSubVerts         = facetni->nNodes;
504:   PetscInt            dim, d, e, f, g;

506:   PetscFunctionBegin;
507:   PetscCall(PetscNew(&ni));
508:   PetscCall(DMGetDimension(dm, &dim));
509:   ni->nodeIdxDim = nodeIdxDim = subNodeIdxDim + 2;
510:   ni->nodeVecDim              = 0;
511:   ni->nNodes = nVerts = 2 * nSubVerts;
512:   ni->refct           = 1;
513:   PetscCall(PetscCalloc1(nodeIdxDim * nVerts, &ni->nodeIdx));
514:   for (f = 0, d = 0; d < 2; d++) {
515:     for (e = 0; e < nSubVerts; e++, f++) {
516:       for (g = 0; g < subNodeIdxDim; g++) ni->nodeIdx[f * nodeIdxDim + g] = facetni->nodeIdx[e * subNodeIdxDim + g];
517:       ni->nodeIdx[f * nodeIdxDim + subNodeIdxDim]     = (1 - d);
518:       ni->nodeIdx[f * nodeIdxDim + subNodeIdxDim + 1] = d;
519:     }
520:   }
521:   PetscCall(PetscLagNodeIndicesComputeVertexOrder(dm, ni, PETSC_TRUE));
522:   *nodeIndices = ni;
523:   PetscFunctionReturn(PETSC_SUCCESS);
524: }

526: /* This helps us compute symmetries, and it also helps us compute coordinates for dofs that are being pushed
527:  * forward from a boundary mesh point.
528:  *
529:  * Input:
530:  *
531:  * dm - the target reference cell where we want new coordinates and dof directions to be valid
532:  * vert - the vertex coordinate system for the target reference cell
533:  * p - the point in the target reference cell that the dofs are coming from
534:  * vertp - the vertex coordinate system for p's reference cell
535:  * ornt - the resulting coordinates and dof vectors will be for p under this orientation
536:  * nodep - the node coordinates and dof vectors in p's reference cell
537:  * formDegree - the form degree that the dofs transform as
538:  *
539:  * Output:
540:  *
541:  * pfNodeIdx - the node coordinates for p's dofs, in the dm reference cell, from the ornt perspective
542:  * pfNodeVec - the node dof vectors for p's dofs, in the dm reference cell, from the ornt perspective
543:  */
544: static PetscErrorCode PetscLagNodeIndicesPushForward(DM dm, PetscLagNodeIndices vert, PetscInt p, PetscLagNodeIndices vertp, PetscLagNodeIndices nodep, PetscInt ornt, PetscInt formDegree, PetscInt pfNodeIdx[], PetscReal pfNodeVec[])
545: {
546:   PetscInt          *closureVerts;
547:   PetscInt           closureSize = 0;
548:   PetscInt          *closure     = NULL;
549:   PetscInt           dim, pdim, c, i, j, k, n, v, vStart, vEnd;
550:   PetscInt           nSubVert      = vertp->nNodes;
551:   PetscInt           nodeIdxDim    = vert->nodeIdxDim;
552:   PetscInt           subNodeIdxDim = vertp->nodeIdxDim;
553:   PetscInt           nNodes        = nodep->nNodes;
554:   const PetscInt    *vertIdx       = vert->nodeIdx;
555:   const PetscInt    *subVertIdx    = vertp->nodeIdx;
556:   const PetscInt    *nodeIdx       = nodep->nodeIdx;
557:   const PetscReal   *nodeVec       = nodep->nodeVec;
558:   PetscReal         *J, *Jstar;
559:   PetscReal          detJ;
560:   PetscInt           depth, pdepth, Nk, pNk;
561:   Vec                coordVec;
562:   PetscScalar       *newCoords = NULL;
563:   const PetscScalar *oldCoords = NULL;

565:   PetscFunctionBegin;
566:   PetscCall(DMGetDimension(dm, &dim));
567:   PetscCall(DMPlexGetDepth(dm, &depth));
568:   PetscCall(DMGetCoordinatesLocal(dm, &coordVec));
569:   PetscCall(DMPlexGetPointDepth(dm, p, &pdepth));
570:   pdim = pdepth != depth ? pdepth != 0 ? pdepth : 0 : dim;
571:   PetscCall(DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd));
572:   PetscCall(DMGetWorkArray(dm, nSubVert, MPIU_INT, &closureVerts));
573:   PetscCall(DMPlexGetTransitiveClosure_Internal(dm, p, ornt, PETSC_TRUE, &closureSize, &closure));
574:   c = closureSize - nSubVert;
575:   /* we want which cell closure indices the closure of this point corresponds to */
576:   for (v = 0; v < nSubVert; v++) closureVerts[v] = vert->perm[closure[2 * (c + v)] - vStart];
577:   PetscCall(DMPlexRestoreTransitiveClosure(dm, p, PETSC_TRUE, &closureSize, &closure));
578:   /* push forward indices */
579:   for (i = 0; i < nodeIdxDim; i++) { /* for every component of the target index space */
580:     /* check if this is a component that all vertices around this point have in common */
581:     for (j = 1; j < nSubVert; j++) {
582:       if (vertIdx[closureVerts[j] * nodeIdxDim + i] != vertIdx[closureVerts[0] * nodeIdxDim + i]) break;
583:     }
584:     if (j == nSubVert) { /* all vertices have this component in common, directly copy to output */
585:       PetscInt val = vertIdx[closureVerts[0] * nodeIdxDim + i];
586:       for (n = 0; n < nNodes; n++) pfNodeIdx[n * nodeIdxDim + i] = val;
587:     } else {
588:       PetscInt subi = -1;
589:       /* there must be a component in vertp that looks the same */
590:       for (k = 0; k < subNodeIdxDim; k++) {
591:         for (j = 0; j < nSubVert; j++) {
592:           if (vertIdx[closureVerts[j] * nodeIdxDim + i] != subVertIdx[j * subNodeIdxDim + k]) break;
593:         }
594:         if (j == nSubVert) {
595:           subi = k;
596:           break;
597:         }
598:       }
599:       PetscCheck(subi >= 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Did not find matching coordinate");
600:       /* that component in the vertp system becomes component i in the vert system for each dof */
601:       for (n = 0; n < nNodes; n++) pfNodeIdx[n * nodeIdxDim + i] = nodeIdx[n * subNodeIdxDim + subi];
602:     }
603:   }
604:   /* push forward vectors */
605:   PetscCall(DMGetWorkArray(dm, dim * dim, MPIU_REAL, &J));
606:   if (ornt != 0) { /* temporarily change the coordinate vector so
607:                       DMPlexComputeCellGeometryAffineFEM gives us the Jacobian we want */
608:     PetscInt  closureSize2 = 0;
609:     PetscInt *closure2     = NULL;

611:     PetscCall(DMPlexGetTransitiveClosure_Internal(dm, p, 0, PETSC_TRUE, &closureSize2, &closure2));
612:     PetscCall(PetscMalloc1(dim * nSubVert, &newCoords));
613:     PetscCall(VecGetArrayRead(coordVec, &oldCoords));
614:     for (v = 0; v < nSubVert; v++) {
615:       PetscInt d;
616:       for (d = 0; d < dim; d++) newCoords[(closure2[2 * (c + v)] - vStart) * dim + d] = oldCoords[closureVerts[v] * dim + d];
617:     }
618:     PetscCall(VecRestoreArrayRead(coordVec, &oldCoords));
619:     PetscCall(DMPlexRestoreTransitiveClosure(dm, p, PETSC_TRUE, &closureSize2, &closure2));
620:     PetscCall(VecPlaceArray(coordVec, newCoords));
621:   }
622:   PetscCall(DMPlexComputeCellGeometryAffineFEM(dm, p, NULL, J, NULL, &detJ));
623:   if (ornt != 0) {
624:     PetscCall(VecResetArray(coordVec));
625:     PetscCall(PetscFree(newCoords));
626:   }
627:   PetscCall(DMRestoreWorkArray(dm, nSubVert, MPIU_INT, &closureVerts));
628:   /* compactify */
629:   for (i = 0; i < dim; i++)
630:     for (j = 0; j < pdim; j++) J[i * pdim + j] = J[i * dim + j];
631:   /* We have the Jacobian mapping the point's reference cell to this reference cell:
632:    * pulling back a function to the point and applying the dof is what we want,
633:    * so we get the pullback matrix and multiply the dof by that matrix on the right */
634:   PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(formDegree), &Nk));
635:   PetscCall(PetscDTBinomialInt(pdim, PetscAbsInt(formDegree), &pNk));
636:   PetscCall(DMGetWorkArray(dm, pNk * Nk, MPIU_REAL, &Jstar));
637:   PetscCall(PetscDTAltVPullbackMatrix(pdim, dim, J, formDegree, Jstar));
638:   for (n = 0; n < nNodes; n++) {
639:     for (i = 0; i < Nk; i++) {
640:       PetscReal val = 0.;
641:       for (j = 0; j < pNk; j++) val += nodeVec[n * pNk + j] * Jstar[j * Nk + i];
642:       pfNodeVec[n * Nk + i] = val;
643:     }
644:   }
645:   PetscCall(DMRestoreWorkArray(dm, pNk * Nk, MPIU_REAL, &Jstar));
646:   PetscCall(DMRestoreWorkArray(dm, dim * dim, MPIU_REAL, &J));
647:   PetscFunctionReturn(PETSC_SUCCESS);
648: }

650: /* given to sets of nodes, take the tensor product, where the product of the dof indices is concatenation and the
651:  * product of the dof vectors is the wedge product */
652: static PetscErrorCode PetscLagNodeIndicesTensor(PetscLagNodeIndices tracei, PetscInt dimT, PetscInt kT, PetscLagNodeIndices fiberi, PetscInt dimF, PetscInt kF, PetscLagNodeIndices *nodeIndices)
653: {
654:   PetscInt            dim = dimT + dimF;
655:   PetscInt            nodeIdxDim, nNodes;
656:   PetscInt            formDegree = kT + kF;
657:   PetscInt            Nk, NkT, NkF;
658:   PetscInt            MkT, MkF;
659:   PetscLagNodeIndices ni;
660:   PetscInt            i, j, l;
661:   PetscReal          *projF, *projT;
662:   PetscReal          *projFstar, *projTstar;
663:   PetscReal          *workF, *workF2, *workT, *workT2, *work, *work2;
664:   PetscReal          *wedgeMat;
665:   PetscReal           sign;

667:   PetscFunctionBegin;
668:   PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(formDegree), &Nk));
669:   PetscCall(PetscDTBinomialInt(dimT, PetscAbsInt(kT), &NkT));
670:   PetscCall(PetscDTBinomialInt(dimF, PetscAbsInt(kF), &NkF));
671:   PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(kT), &MkT));
672:   PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(kF), &MkF));
673:   PetscCall(PetscNew(&ni));
674:   ni->nodeIdxDim = nodeIdxDim = tracei->nodeIdxDim + fiberi->nodeIdxDim;
675:   ni->nodeVecDim              = Nk;
676:   ni->nNodes = nNodes = tracei->nNodes * fiberi->nNodes;
677:   ni->refct           = 1;
678:   PetscCall(PetscMalloc1(nNodes * nodeIdxDim, &ni->nodeIdx));
679:   /* first concatenate the indices */
680:   for (l = 0, j = 0; j < fiberi->nNodes; j++) {
681:     for (i = 0; i < tracei->nNodes; i++, l++) {
682:       PetscInt m, n = 0;

684:       for (m = 0; m < tracei->nodeIdxDim; m++) ni->nodeIdx[l * nodeIdxDim + n++] = tracei->nodeIdx[i * tracei->nodeIdxDim + m];
685:       for (m = 0; m < fiberi->nodeIdxDim; m++) ni->nodeIdx[l * nodeIdxDim + n++] = fiberi->nodeIdx[j * fiberi->nodeIdxDim + m];
686:     }
687:   }

689:   /* now wedge together the push-forward vectors */
690:   PetscCall(PetscMalloc1(nNodes * Nk, &ni->nodeVec));
691:   PetscCall(PetscCalloc2(dimT * dim, &projT, dimF * dim, &projF));
692:   for (i = 0; i < dimT; i++) projT[i * (dim + 1)] = 1.;
693:   for (i = 0; i < dimF; i++) projF[i * (dim + dimT + 1) + dimT] = 1.;
694:   PetscCall(PetscMalloc2(MkT * NkT, &projTstar, MkF * NkF, &projFstar));
695:   PetscCall(PetscDTAltVPullbackMatrix(dim, dimT, projT, kT, projTstar));
696:   PetscCall(PetscDTAltVPullbackMatrix(dim, dimF, projF, kF, projFstar));
697:   PetscCall(PetscMalloc6(MkT, &workT, MkT, &workT2, MkF, &workF, MkF, &workF2, Nk, &work, Nk, &work2));
698:   PetscCall(PetscMalloc1(Nk * MkT, &wedgeMat));
699:   sign = (PetscAbsInt(kT * kF) & 1) ? -1. : 1.;
700:   for (l = 0, j = 0; j < fiberi->nNodes; j++) {
701:     PetscInt d, e;

703:     /* push forward fiber k-form */
704:     for (d = 0; d < MkF; d++) {
705:       PetscReal val = 0.;
706:       for (e = 0; e < NkF; e++) val += projFstar[d * NkF + e] * fiberi->nodeVec[j * NkF + e];
707:       workF[d] = val;
708:     }
709:     /* Hodge star to proper form if necessary */
710:     if (kF < 0) {
711:       for (d = 0; d < MkF; d++) workF2[d] = workF[d];
712:       PetscCall(PetscDTAltVStar(dim, PetscAbsInt(kF), 1, workF2, workF));
713:     }
714:     /* Compute the matrix that wedges this form with one of the trace k-form */
715:     PetscCall(PetscDTAltVWedgeMatrix(dim, PetscAbsInt(kF), PetscAbsInt(kT), workF, wedgeMat));
716:     for (i = 0; i < tracei->nNodes; i++, l++) {
717:       /* push forward trace k-form */
718:       for (d = 0; d < MkT; d++) {
719:         PetscReal val = 0.;
720:         for (e = 0; e < NkT; e++) val += projTstar[d * NkT + e] * tracei->nodeVec[i * NkT + e];
721:         workT[d] = val;
722:       }
723:       /* Hodge star to proper form if necessary */
724:       if (kT < 0) {
725:         for (d = 0; d < MkT; d++) workT2[d] = workT[d];
726:         PetscCall(PetscDTAltVStar(dim, PetscAbsInt(kT), 1, workT2, workT));
727:       }
728:       /* compute the wedge product of the push-forward trace form and firer forms */
729:       for (d = 0; d < Nk; d++) {
730:         PetscReal val = 0.;
731:         for (e = 0; e < MkT; e++) val += wedgeMat[d * MkT + e] * workT[e];
732:         work[d] = val;
733:       }
734:       /* inverse Hodge star from proper form if necessary */
735:       if (formDegree < 0) {
736:         for (d = 0; d < Nk; d++) work2[d] = work[d];
737:         PetscCall(PetscDTAltVStar(dim, PetscAbsInt(formDegree), -1, work2, work));
738:       }
739:       /* insert into the array (adjusting for sign) */
740:       for (d = 0; d < Nk; d++) ni->nodeVec[l * Nk + d] = sign * work[d];
741:     }
742:   }
743:   PetscCall(PetscFree(wedgeMat));
744:   PetscCall(PetscFree6(workT, workT2, workF, workF2, work, work2));
745:   PetscCall(PetscFree2(projTstar, projFstar));
746:   PetscCall(PetscFree2(projT, projF));
747:   *nodeIndices = ni;
748:   PetscFunctionReturn(PETSC_SUCCESS);
749: }

751: /* simple union of two sets of nodes */
752: static PetscErrorCode PetscLagNodeIndicesMerge(PetscLagNodeIndices niA, PetscLagNodeIndices niB, PetscLagNodeIndices *nodeIndices)
753: {
754:   PetscLagNodeIndices ni;
755:   PetscInt            nodeIdxDim, nodeVecDim, nNodes;

757:   PetscFunctionBegin;
758:   PetscCall(PetscNew(&ni));
759:   ni->nodeIdxDim = nodeIdxDim = niA->nodeIdxDim;
760:   PetscCheck(niB->nodeIdxDim == nodeIdxDim, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Cannot merge PetscLagNodeIndices with different nodeIdxDim");
761:   ni->nodeVecDim = nodeVecDim = niA->nodeVecDim;
762:   PetscCheck(niB->nodeVecDim == nodeVecDim, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Cannot merge PetscLagNodeIndices with different nodeVecDim");
763:   ni->nNodes = nNodes = niA->nNodes + niB->nNodes;
764:   ni->refct           = 1;
765:   PetscCall(PetscMalloc1(nNodes * nodeIdxDim, &ni->nodeIdx));
766:   PetscCall(PetscMalloc1(nNodes * nodeVecDim, &ni->nodeVec));
767:   PetscCall(PetscArraycpy(ni->nodeIdx, niA->nodeIdx, niA->nNodes * nodeIdxDim));
768:   PetscCall(PetscArraycpy(ni->nodeVec, niA->nodeVec, niA->nNodes * nodeVecDim));
769:   PetscCall(PetscArraycpy(&(ni->nodeIdx[niA->nNodes * nodeIdxDim]), niB->nodeIdx, niB->nNodes * nodeIdxDim));
770:   PetscCall(PetscArraycpy(&(ni->nodeVec[niA->nNodes * nodeVecDim]), niB->nodeVec, niB->nNodes * nodeVecDim));
771:   *nodeIndices = ni;
772:   PetscFunctionReturn(PETSC_SUCCESS);
773: }

775: #define PETSCTUPINTCOMPREVLEX(N) \
776:   static int PetscConcat_(PetscTupIntCompRevlex_, N)(const void *a, const void *b) \
777:   { \
778:     const PetscInt *A = (const PetscInt *)a; \
779:     const PetscInt *B = (const PetscInt *)b; \
780:     int             i; \
781:     PetscInt        diff = 0; \
782:     for (i = 0; i < N; i++) { \
783:       diff = A[N - i] - B[N - i]; \
784:       if (diff) break; \
785:     } \
786:     return (diff <= 0) ? (diff < 0) ? -1 : 0 : 1; \
787:   }

789: PETSCTUPINTCOMPREVLEX(3)
790: PETSCTUPINTCOMPREVLEX(4)
791: PETSCTUPINTCOMPREVLEX(5)
792: PETSCTUPINTCOMPREVLEX(6)
793: PETSCTUPINTCOMPREVLEX(7)

795: static int PetscTupIntCompRevlex_N(const void *a, const void *b)
796: {
797:   const PetscInt *A = (const PetscInt *)a;
798:   const PetscInt *B = (const PetscInt *)b;
799:   int             i;
800:   int             N    = A[0];
801:   PetscInt        diff = 0;
802:   for (i = 0; i < N; i++) {
803:     diff = A[N - i] - B[N - i];
804:     if (diff) break;
805:   }
806:   return (diff <= 0) ? (diff < 0) ? -1 : 0 : 1;
807: }

809: /* The nodes are not necessarily in revlex order wrt nodeIdx: get the permutation
810:  * that puts them in that order */
811: static PetscErrorCode PetscLagNodeIndicesGetPermutation(PetscLagNodeIndices ni, PetscInt *perm[])
812: {
813:   PetscFunctionBegin;
814:   if (!ni->perm) {
815:     PetscInt *sorter;
816:     PetscInt  m          = ni->nNodes;
817:     PetscInt  nodeIdxDim = ni->nodeIdxDim;
818:     PetscInt  i, j, k, l;
819:     PetscInt *prm;
820:     int (*comp)(const void *, const void *);

822:     PetscCall(PetscMalloc1((nodeIdxDim + 2) * m, &sorter));
823:     for (k = 0, l = 0, i = 0; i < m; i++) {
824:       sorter[k++] = nodeIdxDim + 1;
825:       sorter[k++] = i;
826:       for (j = 0; j < nodeIdxDim; j++) sorter[k++] = ni->nodeIdx[l++];
827:     }
828:     switch (nodeIdxDim) {
829:     case 2:
830:       comp = PetscTupIntCompRevlex_3;
831:       break;
832:     case 3:
833:       comp = PetscTupIntCompRevlex_4;
834:       break;
835:     case 4:
836:       comp = PetscTupIntCompRevlex_5;
837:       break;
838:     case 5:
839:       comp = PetscTupIntCompRevlex_6;
840:       break;
841:     case 6:
842:       comp = PetscTupIntCompRevlex_7;
843:       break;
844:     default:
845:       comp = PetscTupIntCompRevlex_N;
846:       break;
847:     }
848:     qsort(sorter, m, (nodeIdxDim + 2) * sizeof(PetscInt), comp);
849:     PetscCall(PetscMalloc1(m, &prm));
850:     for (i = 0; i < m; i++) prm[i] = sorter[(nodeIdxDim + 2) * i + 1];
851:     ni->perm = prm;
852:     PetscCall(PetscFree(sorter));
853:   }
854:   *perm = ni->perm;
855:   PetscFunctionReturn(PETSC_SUCCESS);
856: }

858: static PetscErrorCode PetscDualSpaceDestroy_Lagrange(PetscDualSpace sp)
859: {
860:   PetscDualSpace_Lag *lag = (PetscDualSpace_Lag *)sp->data;

862:   PetscFunctionBegin;
863:   if (lag->symperms) {
864:     PetscInt **selfSyms = lag->symperms[0];

866:     if (selfSyms) {
867:       PetscInt i, **allocated = &selfSyms[-lag->selfSymOff];

869:       for (i = 0; i < lag->numSelfSym; i++) PetscCall(PetscFree(allocated[i]));
870:       PetscCall(PetscFree(allocated));
871:     }
872:     PetscCall(PetscFree(lag->symperms));
873:   }
874:   if (lag->symflips) {
875:     PetscScalar **selfSyms = lag->symflips[0];

877:     if (selfSyms) {
878:       PetscInt      i;
879:       PetscScalar **allocated = &selfSyms[-lag->selfSymOff];

881:       for (i = 0; i < lag->numSelfSym; i++) PetscCall(PetscFree(allocated[i]));
882:       PetscCall(PetscFree(allocated));
883:     }
884:     PetscCall(PetscFree(lag->symflips));
885:   }
886:   PetscCall(Petsc1DNodeFamilyDestroy(&lag->nodeFamily));
887:   PetscCall(PetscLagNodeIndicesDestroy(&lag->vertIndices));
888:   PetscCall(PetscLagNodeIndicesDestroy(&lag->intNodeIndices));
889:   PetscCall(PetscLagNodeIndicesDestroy(&lag->allNodeIndices));
890:   PetscCall(PetscFree(lag));
891:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeGetContinuity_C", NULL));
892:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeSetContinuity_C", NULL));
893:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeGetTensor_C", NULL));
894:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeSetTensor_C", NULL));
895:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeGetTrimmed_C", NULL));
896:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeSetTrimmed_C", NULL));
897:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeGetNodeType_C", NULL));
898:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeSetNodeType_C", NULL));
899:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeGetUseMoments_C", NULL));
900:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeSetUseMoments_C", NULL));
901:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeGetMomentOrder_C", NULL));
902:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeSetMomentOrder_C", NULL));
903:   PetscFunctionReturn(PETSC_SUCCESS);
904: }

906: static PetscErrorCode PetscDualSpaceLagrangeView_Ascii(PetscDualSpace sp, PetscViewer viewer)
907: {
908:   PetscDualSpace_Lag *lag = (PetscDualSpace_Lag *)sp->data;

910:   PetscFunctionBegin;
911:   PetscCall(PetscViewerASCIIPrintf(viewer, "%s %s%sLagrange dual space\n", lag->continuous ? "Continuous" : "Discontinuous", lag->tensorSpace ? "tensor " : "", lag->trimmed ? "trimmed " : ""));
912:   PetscFunctionReturn(PETSC_SUCCESS);
913: }

915: static PetscErrorCode PetscDualSpaceView_Lagrange(PetscDualSpace sp, PetscViewer viewer)
916: {
917:   PetscBool iascii;

919:   PetscFunctionBegin;
922:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
923:   if (iascii) PetscCall(PetscDualSpaceLagrangeView_Ascii(sp, viewer));
924:   PetscFunctionReturn(PETSC_SUCCESS);
925: }

927: static PetscErrorCode PetscDualSpaceSetFromOptions_Lagrange(PetscDualSpace sp, PetscOptionItems *PetscOptionsObject)
928: {
929:   PetscBool       continuous, tensor, trimmed, flg, flg2, flg3;
930:   PetscDTNodeType nodeType;
931:   PetscReal       nodeExponent;
932:   PetscInt        momentOrder;
933:   PetscBool       nodeEndpoints, useMoments;

935:   PetscFunctionBegin;
936:   PetscCall(PetscDualSpaceLagrangeGetContinuity(sp, &continuous));
937:   PetscCall(PetscDualSpaceLagrangeGetTensor(sp, &tensor));
938:   PetscCall(PetscDualSpaceLagrangeGetTrimmed(sp, &trimmed));
939:   PetscCall(PetscDualSpaceLagrangeGetNodeType(sp, &nodeType, &nodeEndpoints, &nodeExponent));
940:   if (nodeType == PETSCDTNODES_DEFAULT) nodeType = PETSCDTNODES_GAUSSJACOBI;
941:   PetscCall(PetscDualSpaceLagrangeGetUseMoments(sp, &useMoments));
942:   PetscCall(PetscDualSpaceLagrangeGetMomentOrder(sp, &momentOrder));
943:   PetscOptionsHeadBegin(PetscOptionsObject, "PetscDualSpace Lagrange Options");
944:   PetscCall(PetscOptionsBool("-petscdualspace_lagrange_continuity", "Flag for continuous element", "PetscDualSpaceLagrangeSetContinuity", continuous, &continuous, &flg));
945:   if (flg) PetscCall(PetscDualSpaceLagrangeSetContinuity(sp, continuous));
946:   PetscCall(PetscOptionsBool("-petscdualspace_lagrange_tensor", "Flag for tensor dual space", "PetscDualSpaceLagrangeSetTensor", tensor, &tensor, &flg));
947:   if (flg) PetscCall(PetscDualSpaceLagrangeSetTensor(sp, tensor));
948:   PetscCall(PetscOptionsBool("-petscdualspace_lagrange_trimmed", "Flag for trimmed dual space", "PetscDualSpaceLagrangeSetTrimmed", trimmed, &trimmed, &flg));
949:   if (flg) PetscCall(PetscDualSpaceLagrangeSetTrimmed(sp, trimmed));
950:   PetscCall(PetscOptionsEnum("-petscdualspace_lagrange_node_type", "Lagrange node location type", "PetscDualSpaceLagrangeSetNodeType", PetscDTNodeTypes, (PetscEnum)nodeType, (PetscEnum *)&nodeType, &flg));
951:   PetscCall(PetscOptionsBool("-petscdualspace_lagrange_node_endpoints", "Flag for nodes that include endpoints", "PetscDualSpaceLagrangeSetNodeType", nodeEndpoints, &nodeEndpoints, &flg2));
952:   flg3 = PETSC_FALSE;
953:   if (nodeType == PETSCDTNODES_GAUSSJACOBI) PetscCall(PetscOptionsReal("-petscdualspace_lagrange_node_exponent", "Gauss-Jacobi weight function exponent", "PetscDualSpaceLagrangeSetNodeType", nodeExponent, &nodeExponent, &flg3));
954:   if (flg || flg2 || flg3) PetscCall(PetscDualSpaceLagrangeSetNodeType(sp, nodeType, nodeEndpoints, nodeExponent));
955:   PetscCall(PetscOptionsBool("-petscdualspace_lagrange_use_moments", "Use moments (where appropriate) for functionals", "PetscDualSpaceLagrangeSetUseMoments", useMoments, &useMoments, &flg));
956:   if (flg) PetscCall(PetscDualSpaceLagrangeSetUseMoments(sp, useMoments));
957:   PetscCall(PetscOptionsInt("-petscdualspace_lagrange_moment_order", "Quadrature order for moment functionals", "PetscDualSpaceLagrangeSetMomentOrder", momentOrder, &momentOrder, &flg));
958:   if (flg) PetscCall(PetscDualSpaceLagrangeSetMomentOrder(sp, momentOrder));
959:   PetscOptionsHeadEnd();
960:   PetscFunctionReturn(PETSC_SUCCESS);
961: }

963: static PetscErrorCode PetscDualSpaceDuplicate_Lagrange(PetscDualSpace sp, PetscDualSpace spNew)
964: {
965:   PetscBool           cont, tensor, trimmed, boundary;
966:   PetscDTNodeType     nodeType;
967:   PetscReal           exponent;
968:   PetscDualSpace_Lag *lag = (PetscDualSpace_Lag *)sp->data;

970:   PetscFunctionBegin;
971:   PetscCall(PetscDualSpaceLagrangeGetContinuity(sp, &cont));
972:   PetscCall(PetscDualSpaceLagrangeSetContinuity(spNew, cont));
973:   PetscCall(PetscDualSpaceLagrangeGetTensor(sp, &tensor));
974:   PetscCall(PetscDualSpaceLagrangeSetTensor(spNew, tensor));
975:   PetscCall(PetscDualSpaceLagrangeGetTrimmed(sp, &trimmed));
976:   PetscCall(PetscDualSpaceLagrangeSetTrimmed(spNew, trimmed));
977:   PetscCall(PetscDualSpaceLagrangeGetNodeType(sp, &nodeType, &boundary, &exponent));
978:   PetscCall(PetscDualSpaceLagrangeSetNodeType(spNew, nodeType, boundary, exponent));
979:   if (lag->nodeFamily) {
980:     PetscDualSpace_Lag *lagnew = (PetscDualSpace_Lag *)spNew->data;

982:     PetscCall(Petsc1DNodeFamilyReference(lag->nodeFamily));
983:     lagnew->nodeFamily = lag->nodeFamily;
984:   }
985:   PetscFunctionReturn(PETSC_SUCCESS);
986: }

988: /* for making tensor product spaces: take a dual space and product a segment space that has all the same
989:  * specifications (trimmed, continuous, order, node set), except for the form degree */
990: static PetscErrorCode PetscDualSpaceCreateEdgeSubspace_Lagrange(PetscDualSpace sp, PetscInt order, PetscInt k, PetscInt Nc, PetscBool interiorOnly, PetscDualSpace *bdsp)
991: {
992:   DM                  K;
993:   PetscDualSpace_Lag *newlag;

995:   PetscFunctionBegin;
996:   PetscCall(PetscDualSpaceDuplicate(sp, bdsp));
997:   PetscCall(PetscDualSpaceSetFormDegree(*bdsp, k));
998:   PetscCall(DMPlexCreateReferenceCell(PETSC_COMM_SELF, DMPolytopeTypeSimpleShape(1, PETSC_TRUE), &K));
999:   PetscCall(PetscDualSpaceSetDM(*bdsp, K));
1000:   PetscCall(DMDestroy(&K));
1001:   PetscCall(PetscDualSpaceSetOrder(*bdsp, order));
1002:   PetscCall(PetscDualSpaceSetNumComponents(*bdsp, Nc));
1003:   newlag               = (PetscDualSpace_Lag *)(*bdsp)->data;
1004:   newlag->interiorOnly = interiorOnly;
1005:   PetscCall(PetscDualSpaceSetUp(*bdsp));
1006:   PetscFunctionReturn(PETSC_SUCCESS);
1007: }

1009: /* just the points, weights aren't handled */
1010: static PetscErrorCode PetscQuadratureCreateTensor(PetscQuadrature trace, PetscQuadrature fiber, PetscQuadrature *product)
1011: {
1012:   PetscInt         dimTrace, dimFiber;
1013:   PetscInt         numPointsTrace, numPointsFiber;
1014:   PetscInt         dim, numPoints;
1015:   const PetscReal *pointsTrace;
1016:   const PetscReal *pointsFiber;
1017:   PetscReal       *points;
1018:   PetscInt         i, j, k, p;

1020:   PetscFunctionBegin;
1021:   PetscCall(PetscQuadratureGetData(trace, &dimTrace, NULL, &numPointsTrace, &pointsTrace, NULL));
1022:   PetscCall(PetscQuadratureGetData(fiber, &dimFiber, NULL, &numPointsFiber, &pointsFiber, NULL));
1023:   dim       = dimTrace + dimFiber;
1024:   numPoints = numPointsFiber * numPointsTrace;
1025:   PetscCall(PetscMalloc1(numPoints * dim, &points));
1026:   for (p = 0, j = 0; j < numPointsFiber; j++) {
1027:     for (i = 0; i < numPointsTrace; i++, p++) {
1028:       for (k = 0; k < dimTrace; k++) points[p * dim + k] = pointsTrace[i * dimTrace + k];
1029:       for (k = 0; k < dimFiber; k++) points[p * dim + dimTrace + k] = pointsFiber[j * dimFiber + k];
1030:     }
1031:   }
1032:   PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, product));
1033:   PetscCall(PetscQuadratureSetData(*product, dim, 0, numPoints, points, NULL));
1034:   PetscFunctionReturn(PETSC_SUCCESS);
1035: }

1037: /* Kronecker tensor product where matrix is considered a matrix of k-forms, so that
1038:  * the entries in the product matrix are wedge products of the entries in the original matrices */
1039: static PetscErrorCode MatTensorAltV(Mat trace, Mat fiber, PetscInt dimTrace, PetscInt kTrace, PetscInt dimFiber, PetscInt kFiber, Mat *product)
1040: {
1041:   PetscInt     mTrace, nTrace, mFiber, nFiber, m, n, k, i, j, l;
1042:   PetscInt     dim, NkTrace, NkFiber, Nk;
1043:   PetscInt     dT, dF;
1044:   PetscInt    *nnzTrace, *nnzFiber, *nnz;
1045:   PetscInt     iT, iF, jT, jF, il, jl;
1046:   PetscReal   *workT, *workT2, *workF, *workF2, *work, *workstar;
1047:   PetscReal   *projT, *projF;
1048:   PetscReal   *projTstar, *projFstar;
1049:   PetscReal   *wedgeMat;
1050:   PetscReal    sign;
1051:   PetscScalar *workS;
1052:   Mat          prod;
1053:   /* this produces dof groups that look like the identity */

1055:   PetscFunctionBegin;
1056:   PetscCall(MatGetSize(trace, &mTrace, &nTrace));
1057:   PetscCall(PetscDTBinomialInt(dimTrace, PetscAbsInt(kTrace), &NkTrace));
1058:   PetscCheck(nTrace % NkTrace == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "point value space of trace matrix is not a multiple of k-form size");
1059:   PetscCall(MatGetSize(fiber, &mFiber, &nFiber));
1060:   PetscCall(PetscDTBinomialInt(dimFiber, PetscAbsInt(kFiber), &NkFiber));
1061:   PetscCheck(nFiber % NkFiber == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "point value space of fiber matrix is not a multiple of k-form size");
1062:   PetscCall(PetscMalloc2(mTrace, &nnzTrace, mFiber, &nnzFiber));
1063:   for (i = 0; i < mTrace; i++) {
1064:     PetscCall(MatGetRow(trace, i, &nnzTrace[i], NULL, NULL));
1065:     PetscCheck(nnzTrace[i] % NkTrace == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "nonzeros in trace matrix are not in k-form size blocks");
1066:   }
1067:   for (i = 0; i < mFiber; i++) {
1068:     PetscCall(MatGetRow(fiber, i, &nnzFiber[i], NULL, NULL));
1069:     PetscCheck(nnzFiber[i] % NkFiber == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "nonzeros in fiber matrix are not in k-form size blocks");
1070:   }
1071:   dim = dimTrace + dimFiber;
1072:   k   = kFiber + kTrace;
1073:   PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(k), &Nk));
1074:   m = mTrace * mFiber;
1075:   PetscCall(PetscMalloc1(m, &nnz));
1076:   for (l = 0, j = 0; j < mFiber; j++)
1077:     for (i = 0; i < mTrace; i++, l++) nnz[l] = (nnzTrace[i] / NkTrace) * (nnzFiber[j] / NkFiber) * Nk;
1078:   n = (nTrace / NkTrace) * (nFiber / NkFiber) * Nk;
1079:   PetscCall(MatCreateSeqAIJ(PETSC_COMM_SELF, m, n, 0, nnz, &prod));
1080:   PetscCall(PetscObjectSetOptionsPrefix((PetscObject)prod, "altv_"));
1081:   PetscCall(PetscFree(nnz));
1082:   PetscCall(PetscFree2(nnzTrace, nnzFiber));
1083:   /* reasoning about which points each dof needs depends on having zeros computed at points preserved */
1084:   PetscCall(MatSetOption(prod, MAT_IGNORE_ZERO_ENTRIES, PETSC_FALSE));
1085:   /* compute pullbacks */
1086:   PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(kTrace), &dT));
1087:   PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(kFiber), &dF));
1088:   PetscCall(PetscMalloc4(dimTrace * dim, &projT, dimFiber * dim, &projF, dT * NkTrace, &projTstar, dF * NkFiber, &projFstar));
1089:   PetscCall(PetscArrayzero(projT, dimTrace * dim));
1090:   for (i = 0; i < dimTrace; i++) projT[i * (dim + 1)] = 1.;
1091:   PetscCall(PetscArrayzero(projF, dimFiber * dim));
1092:   for (i = 0; i < dimFiber; i++) projF[i * (dim + 1) + dimTrace] = 1.;
1093:   PetscCall(PetscDTAltVPullbackMatrix(dim, dimTrace, projT, kTrace, projTstar));
1094:   PetscCall(PetscDTAltVPullbackMatrix(dim, dimFiber, projF, kFiber, projFstar));
1095:   PetscCall(PetscMalloc5(dT, &workT, dF, &workF, Nk, &work, Nk, &workstar, Nk, &workS));
1096:   PetscCall(PetscMalloc2(dT, &workT2, dF, &workF2));
1097:   PetscCall(PetscMalloc1(Nk * dT, &wedgeMat));
1098:   sign = (PetscAbsInt(kTrace * kFiber) & 1) ? -1. : 1.;
1099:   for (i = 0, iF = 0; iF < mFiber; iF++) {
1100:     PetscInt           ncolsF, nformsF;
1101:     const PetscInt    *colsF;
1102:     const PetscScalar *valsF;

1104:     PetscCall(MatGetRow(fiber, iF, &ncolsF, &colsF, &valsF));
1105:     nformsF = ncolsF / NkFiber;
1106:     for (iT = 0; iT < mTrace; iT++, i++) {
1107:       PetscInt           ncolsT, nformsT;
1108:       const PetscInt    *colsT;
1109:       const PetscScalar *valsT;

1111:       PetscCall(MatGetRow(trace, iT, &ncolsT, &colsT, &valsT));
1112:       nformsT = ncolsT / NkTrace;
1113:       for (j = 0, jF = 0; jF < nformsF; jF++) {
1114:         PetscInt colF = colsF[jF * NkFiber] / NkFiber;

1116:         for (il = 0; il < dF; il++) {
1117:           PetscReal val = 0.;
1118:           for (jl = 0; jl < NkFiber; jl++) val += projFstar[il * NkFiber + jl] * PetscRealPart(valsF[jF * NkFiber + jl]);
1119:           workF[il] = val;
1120:         }
1121:         if (kFiber < 0) {
1122:           for (il = 0; il < dF; il++) workF2[il] = workF[il];
1123:           PetscCall(PetscDTAltVStar(dim, PetscAbsInt(kFiber), 1, workF2, workF));
1124:         }
1125:         PetscCall(PetscDTAltVWedgeMatrix(dim, PetscAbsInt(kFiber), PetscAbsInt(kTrace), workF, wedgeMat));
1126:         for (jT = 0; jT < nformsT; jT++, j++) {
1127:           PetscInt           colT = colsT[jT * NkTrace] / NkTrace;
1128:           PetscInt           col  = colF * (nTrace / NkTrace) + colT;
1129:           const PetscScalar *vals;

1131:           for (il = 0; il < dT; il++) {
1132:             PetscReal val = 0.;
1133:             for (jl = 0; jl < NkTrace; jl++) val += projTstar[il * NkTrace + jl] * PetscRealPart(valsT[jT * NkTrace + jl]);
1134:             workT[il] = val;
1135:           }
1136:           if (kTrace < 0) {
1137:             for (il = 0; il < dT; il++) workT2[il] = workT[il];
1138:             PetscCall(PetscDTAltVStar(dim, PetscAbsInt(kTrace), 1, workT2, workT));
1139:           }

1141:           for (il = 0; il < Nk; il++) {
1142:             PetscReal val = 0.;
1143:             for (jl = 0; jl < dT; jl++) val += sign * wedgeMat[il * dT + jl] * workT[jl];
1144:             work[il] = val;
1145:           }
1146:           if (k < 0) {
1147:             PetscCall(PetscDTAltVStar(dim, PetscAbsInt(k), -1, work, workstar));
1148: #if defined(PETSC_USE_COMPLEX)
1149:             for (l = 0; l < Nk; l++) workS[l] = workstar[l];
1150:             vals = &workS[0];
1151: #else
1152:             vals = &workstar[0];
1153: #endif
1154:           } else {
1155: #if defined(PETSC_USE_COMPLEX)
1156:             for (l = 0; l < Nk; l++) workS[l] = work[l];
1157:             vals = &workS[0];
1158: #else
1159:             vals = &work[0];
1160: #endif
1161:           }
1162:           for (l = 0; l < Nk; l++) PetscCall(MatSetValue(prod, i, col * Nk + l, vals[l], INSERT_VALUES)); /* Nk */
1163:         } /* jT */
1164:       } /* jF */
1165:       PetscCall(MatRestoreRow(trace, iT, &ncolsT, &colsT, &valsT));
1166:     } /* iT */
1167:     PetscCall(MatRestoreRow(fiber, iF, &ncolsF, &colsF, &valsF));
1168:   } /* iF */
1169:   PetscCall(PetscFree(wedgeMat));
1170:   PetscCall(PetscFree4(projT, projF, projTstar, projFstar));
1171:   PetscCall(PetscFree2(workT2, workF2));
1172:   PetscCall(PetscFree5(workT, workF, work, workstar, workS));
1173:   PetscCall(MatAssemblyBegin(prod, MAT_FINAL_ASSEMBLY));
1174:   PetscCall(MatAssemblyEnd(prod, MAT_FINAL_ASSEMBLY));
1175:   *product = prod;
1176:   PetscFunctionReturn(PETSC_SUCCESS);
1177: }

1179: /* Union of quadrature points, with an attempt to identify common points in the two sets */
1180: static PetscErrorCode PetscQuadraturePointsMerge(PetscQuadrature quadA, PetscQuadrature quadB, PetscQuadrature *quadJoint, PetscInt *aToJoint[], PetscInt *bToJoint[])
1181: {
1182:   PetscInt         dimA, dimB;
1183:   PetscInt         nA, nB, nJoint, i, j, d;
1184:   const PetscReal *pointsA;
1185:   const PetscReal *pointsB;
1186:   PetscReal       *pointsJoint;
1187:   PetscInt        *aToJ, *bToJ;
1188:   PetscQuadrature  qJ;

1190:   PetscFunctionBegin;
1191:   PetscCall(PetscQuadratureGetData(quadA, &dimA, NULL, &nA, &pointsA, NULL));
1192:   PetscCall(PetscQuadratureGetData(quadB, &dimB, NULL, &nB, &pointsB, NULL));
1193:   PetscCheck(dimA == dimB, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Quadrature points must be in the same dimension");
1194:   nJoint = nA;
1195:   PetscCall(PetscMalloc1(nA, &aToJ));
1196:   for (i = 0; i < nA; i++) aToJ[i] = i;
1197:   PetscCall(PetscMalloc1(nB, &bToJ));
1198:   for (i = 0; i < nB; i++) {
1199:     for (j = 0; j < nA; j++) {
1200:       bToJ[i] = -1;
1201:       for (d = 0; d < dimA; d++)
1202:         if (PetscAbsReal(pointsB[i * dimA + d] - pointsA[j * dimA + d]) > PETSC_SMALL) break;
1203:       if (d == dimA) {
1204:         bToJ[i] = j;
1205:         break;
1206:       }
1207:     }
1208:     if (bToJ[i] == -1) bToJ[i] = nJoint++;
1209:   }
1210:   *aToJoint = aToJ;
1211:   *bToJoint = bToJ;
1212:   PetscCall(PetscMalloc1(nJoint * dimA, &pointsJoint));
1213:   PetscCall(PetscArraycpy(pointsJoint, pointsA, nA * dimA));
1214:   for (i = 0; i < nB; i++) {
1215:     if (bToJ[i] >= nA) {
1216:       for (d = 0; d < dimA; d++) pointsJoint[bToJ[i] * dimA + d] = pointsB[i * dimA + d];
1217:     }
1218:   }
1219:   PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, &qJ));
1220:   PetscCall(PetscQuadratureSetData(qJ, dimA, 0, nJoint, pointsJoint, NULL));
1221:   *quadJoint = qJ;
1222:   PetscFunctionReturn(PETSC_SUCCESS);
1223: }

1225: /* Matrices matA and matB are both quadrature -> dof matrices: produce a matrix that is joint quadrature -> union of
1226:  * dofs, where the joint quadrature was produced by PetscQuadraturePointsMerge */
1227: static PetscErrorCode MatricesMerge(Mat matA, Mat matB, PetscInt dim, PetscInt k, PetscInt numMerged, const PetscInt aToMerged[], const PetscInt bToMerged[], Mat *matMerged)
1228: {
1229:   PetscInt  m, n, mA, nA, mB, nB, Nk, i, j, l;
1230:   Mat       M;
1231:   PetscInt *nnz;
1232:   PetscInt  maxnnz;
1233:   PetscInt *work;

1235:   PetscFunctionBegin;
1236:   PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(k), &Nk));
1237:   PetscCall(MatGetSize(matA, &mA, &nA));
1238:   PetscCheck(nA % Nk == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "matA column space not a multiple of k-form size");
1239:   PetscCall(MatGetSize(matB, &mB, &nB));
1240:   PetscCheck(nB % Nk == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "matB column space not a multiple of k-form size");
1241:   m = mA + mB;
1242:   n = numMerged * Nk;
1243:   PetscCall(PetscMalloc1(m, &nnz));
1244:   maxnnz = 0;
1245:   for (i = 0; i < mA; i++) {
1246:     PetscCall(MatGetRow(matA, i, &nnz[i], NULL, NULL));
1247:     PetscCheck(nnz[i] % Nk == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "nonzeros in matA are not in k-form size blocks");
1248:     maxnnz = PetscMax(maxnnz, nnz[i]);
1249:   }
1250:   for (i = 0; i < mB; i++) {
1251:     PetscCall(MatGetRow(matB, i, &nnz[i + mA], NULL, NULL));
1252:     PetscCheck(nnz[i + mA] % Nk == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "nonzeros in matB are not in k-form size blocks");
1253:     maxnnz = PetscMax(maxnnz, nnz[i + mA]);
1254:   }
1255:   PetscCall(MatCreateSeqAIJ(PETSC_COMM_SELF, m, n, 0, nnz, &M));
1256:   PetscCall(PetscObjectSetOptionsPrefix((PetscObject)M, "altv_"));
1257:   PetscCall(PetscFree(nnz));
1258:   /* reasoning about which points each dof needs depends on having zeros computed at points preserved */
1259:   PetscCall(MatSetOption(M, MAT_IGNORE_ZERO_ENTRIES, PETSC_FALSE));
1260:   PetscCall(PetscMalloc1(maxnnz, &work));
1261:   for (i = 0; i < mA; i++) {
1262:     const PetscInt    *cols;
1263:     const PetscScalar *vals;
1264:     PetscInt           nCols;
1265:     PetscCall(MatGetRow(matA, i, &nCols, &cols, &vals));
1266:     for (j = 0; j < nCols / Nk; j++) {
1267:       PetscInt newCol = aToMerged[cols[j * Nk] / Nk];
1268:       for (l = 0; l < Nk; l++) work[j * Nk + l] = newCol * Nk + l;
1269:     }
1270:     PetscCall(MatSetValuesBlocked(M, 1, &i, nCols, work, vals, INSERT_VALUES));
1271:     PetscCall(MatRestoreRow(matA, i, &nCols, &cols, &vals));
1272:   }
1273:   for (i = 0; i < mB; i++) {
1274:     const PetscInt    *cols;
1275:     const PetscScalar *vals;

1277:     PetscInt row = i + mA;
1278:     PetscInt nCols;
1279:     PetscCall(MatGetRow(matB, i, &nCols, &cols, &vals));
1280:     for (j = 0; j < nCols / Nk; j++) {
1281:       PetscInt newCol = bToMerged[cols[j * Nk] / Nk];
1282:       for (l = 0; l < Nk; l++) work[j * Nk + l] = newCol * Nk + l;
1283:     }
1284:     PetscCall(MatSetValuesBlocked(M, 1, &row, nCols, work, vals, INSERT_VALUES));
1285:     PetscCall(MatRestoreRow(matB, i, &nCols, &cols, &vals));
1286:   }
1287:   PetscCall(PetscFree(work));
1288:   PetscCall(MatAssemblyBegin(M, MAT_FINAL_ASSEMBLY));
1289:   PetscCall(MatAssemblyEnd(M, MAT_FINAL_ASSEMBLY));
1290:   *matMerged = M;
1291:   PetscFunctionReturn(PETSC_SUCCESS);
1292: }

1294: /* Take a dual space and product a segment space that has all the same specifications (trimmed, continuous, order,
1295:  * node set), except for the form degree.  For computing boundary dofs and for making tensor product spaces */
1296: static PetscErrorCode PetscDualSpaceCreateFacetSubspace_Lagrange(PetscDualSpace sp, DM K, PetscInt f, PetscInt k, PetscInt Ncopies, PetscBool interiorOnly, PetscDualSpace *bdsp)
1297: {
1298:   PetscInt            Nknew, Ncnew;
1299:   PetscInt            dim, pointDim = -1;
1300:   PetscInt            depth;
1301:   DM                  dm;
1302:   PetscDualSpace_Lag *newlag;

1304:   PetscFunctionBegin;
1305:   PetscCall(PetscDualSpaceGetDM(sp, &dm));
1306:   PetscCall(DMGetDimension(dm, &dim));
1307:   PetscCall(DMPlexGetDepth(dm, &depth));
1308:   PetscCall(PetscDualSpaceDuplicate(sp, bdsp));
1309:   PetscCall(PetscDualSpaceSetFormDegree(*bdsp, k));
1310:   if (!K) {
1311:     if (depth == dim) {
1312:       DMPolytopeType ct;

1314:       pointDim = dim - 1;
1315:       PetscCall(DMPlexGetCellType(dm, f, &ct));
1316:       PetscCall(DMPlexCreateReferenceCell(PETSC_COMM_SELF, ct, &K));
1317:     } else if (depth == 1) {
1318:       pointDim = 0;
1319:       PetscCall(DMPlexCreateReferenceCell(PETSC_COMM_SELF, DM_POLYTOPE_POINT, &K));
1320:     } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Unsupported interpolation state of reference element");
1321:   } else {
1322:     PetscCall(PetscObjectReference((PetscObject)K));
1323:     PetscCall(DMGetDimension(K, &pointDim));
1324:   }
1325:   PetscCall(PetscDualSpaceSetDM(*bdsp, K));
1326:   PetscCall(DMDestroy(&K));
1327:   PetscCall(PetscDTBinomialInt(pointDim, PetscAbsInt(k), &Nknew));
1328:   Ncnew = Nknew * Ncopies;
1329:   PetscCall(PetscDualSpaceSetNumComponents(*bdsp, Ncnew));
1330:   newlag               = (PetscDualSpace_Lag *)(*bdsp)->data;
1331:   newlag->interiorOnly = interiorOnly;
1332:   PetscCall(PetscDualSpaceSetUp(*bdsp));
1333:   PetscFunctionReturn(PETSC_SUCCESS);
1334: }

1336: /* Construct simplex nodes from a nodefamily, add Nk dof vectors of length Nk at each node.
1337:  * Return the (quadrature, matrix) form of the dofs and the nodeIndices form as well.
1338:  *
1339:  * Sometimes we want a set of nodes to be contained in the interior of the element,
1340:  * even when the node scheme puts nodes on the boundaries.  numNodeSkip tells
1341:  * the routine how many "layers" of nodes need to be skipped.
1342:  * */
1343: static PetscErrorCode PetscDualSpaceLagrangeCreateSimplexNodeMat(Petsc1DNodeFamily nodeFamily, PetscInt dim, PetscInt sum, PetscInt Nk, PetscInt numNodeSkip, PetscQuadrature *iNodes, Mat *iMat, PetscLagNodeIndices *nodeIndices)
1344: {
1345:   PetscReal          *extraNodeCoords, *nodeCoords;
1346:   PetscInt            nNodes, nExtraNodes;
1347:   PetscInt            i, j, k, extraSum = sum + numNodeSkip * (1 + dim);
1348:   PetscQuadrature     intNodes;
1349:   Mat                 intMat;
1350:   PetscLagNodeIndices ni;

1352:   PetscFunctionBegin;
1353:   PetscCall(PetscDTBinomialInt(dim + sum, dim, &nNodes));
1354:   PetscCall(PetscDTBinomialInt(dim + extraSum, dim, &nExtraNodes));

1356:   PetscCall(PetscMalloc1(dim * nExtraNodes, &extraNodeCoords));
1357:   PetscCall(PetscNew(&ni));
1358:   ni->nodeIdxDim = dim + 1;
1359:   ni->nodeVecDim = Nk;
1360:   ni->nNodes     = nNodes * Nk;
1361:   ni->refct      = 1;
1362:   PetscCall(PetscMalloc1(nNodes * Nk * (dim + 1), &ni->nodeIdx));
1363:   PetscCall(PetscMalloc1(nNodes * Nk * Nk, &ni->nodeVec));
1364:   for (i = 0; i < nNodes; i++)
1365:     for (j = 0; j < Nk; j++)
1366:       for (k = 0; k < Nk; k++) ni->nodeVec[(i * Nk + j) * Nk + k] = (j == k) ? 1. : 0.;
1367:   PetscCall(Petsc1DNodeFamilyComputeSimplexNodes(nodeFamily, dim, extraSum, extraNodeCoords));
1368:   if (numNodeSkip) {
1369:     PetscInt  k;
1370:     PetscInt *tup;

1372:     PetscCall(PetscMalloc1(dim * nNodes, &nodeCoords));
1373:     PetscCall(PetscMalloc1(dim + 1, &tup));
1374:     for (k = 0; k < nNodes; k++) {
1375:       PetscInt j, c;
1376:       PetscInt index;

1378:       PetscCall(PetscDTIndexToBary(dim + 1, sum, k, tup));
1379:       for (j = 0; j < dim + 1; j++) tup[j] += numNodeSkip;
1380:       for (c = 0; c < Nk; c++) {
1381:         for (j = 0; j < dim + 1; j++) ni->nodeIdx[(k * Nk + c) * (dim + 1) + j] = tup[j] + 1;
1382:       }
1383:       PetscCall(PetscDTBaryToIndex(dim + 1, extraSum, tup, &index));
1384:       for (j = 0; j < dim; j++) nodeCoords[k * dim + j] = extraNodeCoords[index * dim + j];
1385:     }
1386:     PetscCall(PetscFree(tup));
1387:     PetscCall(PetscFree(extraNodeCoords));
1388:   } else {
1389:     PetscInt  k;
1390:     PetscInt *tup;

1392:     nodeCoords = extraNodeCoords;
1393:     PetscCall(PetscMalloc1(dim + 1, &tup));
1394:     for (k = 0; k < nNodes; k++) {
1395:       PetscInt j, c;

1397:       PetscCall(PetscDTIndexToBary(dim + 1, sum, k, tup));
1398:       for (c = 0; c < Nk; c++) {
1399:         for (j = 0; j < dim + 1; j++) {
1400:           /* barycentric indices can have zeros, but we don't want to push forward zeros because it makes it harder to
1401:            * determine which nodes correspond to which under symmetries, so we increase by 1.  This is fine
1402:            * because the nodeIdx coordinates don't have any meaning other than helping to identify symmetries */
1403:           ni->nodeIdx[(k * Nk + c) * (dim + 1) + j] = tup[j] + 1;
1404:         }
1405:       }
1406:     }
1407:     PetscCall(PetscFree(tup));
1408:   }
1409:   PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, &intNodes));
1410:   PetscCall(PetscQuadratureSetData(intNodes, dim, 0, nNodes, nodeCoords, NULL));
1411:   PetscCall(MatCreateSeqAIJ(PETSC_COMM_SELF, nNodes * Nk, nNodes * Nk, Nk, NULL, &intMat));
1412:   PetscCall(PetscObjectSetOptionsPrefix((PetscObject)intMat, "lag_"));
1413:   PetscCall(MatSetOption(intMat, MAT_IGNORE_ZERO_ENTRIES, PETSC_FALSE));
1414:   for (j = 0; j < nNodes * Nk; j++) {
1415:     PetscInt rem = j % Nk;
1416:     PetscInt a, aprev = j - rem;
1417:     PetscInt anext = aprev + Nk;

1419:     for (a = aprev; a < anext; a++) PetscCall(MatSetValue(intMat, j, a, (a == j) ? 1. : 0., INSERT_VALUES));
1420:   }
1421:   PetscCall(MatAssemblyBegin(intMat, MAT_FINAL_ASSEMBLY));
1422:   PetscCall(MatAssemblyEnd(intMat, MAT_FINAL_ASSEMBLY));
1423:   *iNodes      = intNodes;
1424:   *iMat        = intMat;
1425:   *nodeIndices = ni;
1426:   PetscFunctionReturn(PETSC_SUCCESS);
1427: }

1429: /* once the nodeIndices have been created for the interior of the reference cell, and for all of the boundary cells,
1430:  * push forward the boundary dofs and concatenate them into the full node indices for the dual space */
1431: static PetscErrorCode PetscDualSpaceLagrangeCreateAllNodeIdx(PetscDualSpace sp)
1432: {
1433:   DM                  dm;
1434:   PetscInt            dim, nDofs;
1435:   PetscSection        section;
1436:   PetscInt            pStart, pEnd, p;
1437:   PetscInt            formDegree, Nk;
1438:   PetscInt            nodeIdxDim, spintdim;
1439:   PetscDualSpace_Lag *lag;
1440:   PetscLagNodeIndices ni, verti;

1442:   PetscFunctionBegin;
1443:   lag   = (PetscDualSpace_Lag *)sp->data;
1444:   verti = lag->vertIndices;
1445:   PetscCall(PetscDualSpaceGetDM(sp, &dm));
1446:   PetscCall(DMGetDimension(dm, &dim));
1447:   PetscCall(PetscDualSpaceGetFormDegree(sp, &formDegree));
1448:   PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(formDegree), &Nk));
1449:   PetscCall(PetscDualSpaceGetSection(sp, &section));
1450:   PetscCall(PetscSectionGetStorageSize(section, &nDofs));
1451:   PetscCall(PetscNew(&ni));
1452:   ni->nodeIdxDim = nodeIdxDim = verti->nodeIdxDim;
1453:   ni->nodeVecDim              = Nk;
1454:   ni->nNodes                  = nDofs;
1455:   ni->refct                   = 1;
1456:   PetscCall(PetscMalloc1(nodeIdxDim * nDofs, &ni->nodeIdx));
1457:   PetscCall(PetscMalloc1(Nk * nDofs, &ni->nodeVec));
1458:   PetscCall(DMPlexGetChart(dm, &pStart, &pEnd));
1459:   PetscCall(PetscSectionGetDof(section, 0, &spintdim));
1460:   if (spintdim) {
1461:     PetscCall(PetscArraycpy(ni->nodeIdx, lag->intNodeIndices->nodeIdx, spintdim * nodeIdxDim));
1462:     PetscCall(PetscArraycpy(ni->nodeVec, lag->intNodeIndices->nodeVec, spintdim * Nk));
1463:   }
1464:   for (p = pStart + 1; p < pEnd; p++) {
1465:     PetscDualSpace      psp = sp->pointSpaces[p];
1466:     PetscDualSpace_Lag *plag;
1467:     PetscInt            dof, off;

1469:     PetscCall(PetscSectionGetDof(section, p, &dof));
1470:     if (!dof) continue;
1471:     plag = (PetscDualSpace_Lag *)psp->data;
1472:     PetscCall(PetscSectionGetOffset(section, p, &off));
1473:     PetscCall(PetscLagNodeIndicesPushForward(dm, verti, p, plag->vertIndices, plag->intNodeIndices, 0, formDegree, &ni->nodeIdx[off * nodeIdxDim], &ni->nodeVec[off * Nk]));
1474:   }
1475:   lag->allNodeIndices = ni;
1476:   PetscFunctionReturn(PETSC_SUCCESS);
1477: }

1479: /* once the (quadrature, Matrix) forms of the dofs have been created for the interior of the
1480:  * reference cell and for the boundary cells, jk
1481:  * push forward the boundary data and concatenate them into the full (quadrature, matrix) data
1482:  * for the dual space */
1483: static PetscErrorCode PetscDualSpaceCreateAllDataFromInteriorData(PetscDualSpace sp)
1484: {
1485:   DM              dm;
1486:   PetscSection    section;
1487:   PetscInt        pStart, pEnd, p, k, Nk, dim, Nc;
1488:   PetscInt        nNodes;
1489:   PetscInt        countNodes;
1490:   Mat             allMat;
1491:   PetscQuadrature allNodes;
1492:   PetscInt        nDofs;
1493:   PetscInt        maxNzforms, j;
1494:   PetscScalar    *work;
1495:   PetscReal      *L, *J, *Jinv, *v0, *pv0;
1496:   PetscInt       *iwork;
1497:   PetscReal      *nodes;

1499:   PetscFunctionBegin;
1500:   PetscCall(PetscDualSpaceGetDM(sp, &dm));
1501:   PetscCall(DMGetDimension(dm, &dim));
1502:   PetscCall(PetscDualSpaceGetSection(sp, &section));
1503:   PetscCall(PetscSectionGetStorageSize(section, &nDofs));
1504:   PetscCall(DMPlexGetChart(dm, &pStart, &pEnd));
1505:   PetscCall(PetscDualSpaceGetFormDegree(sp, &k));
1506:   PetscCall(PetscDualSpaceGetNumComponents(sp, &Nc));
1507:   PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(k), &Nk));
1508:   for (p = pStart, nNodes = 0, maxNzforms = 0; p < pEnd; p++) {
1509:     PetscDualSpace  psp;
1510:     DM              pdm;
1511:     PetscInt        pdim, pNk;
1512:     PetscQuadrature intNodes;
1513:     Mat             intMat;

1515:     PetscCall(PetscDualSpaceGetPointSubspace(sp, p, &psp));
1516:     if (!psp) continue;
1517:     PetscCall(PetscDualSpaceGetDM(psp, &pdm));
1518:     PetscCall(DMGetDimension(pdm, &pdim));
1519:     if (pdim < PetscAbsInt(k)) continue;
1520:     PetscCall(PetscDTBinomialInt(pdim, PetscAbsInt(k), &pNk));
1521:     PetscCall(PetscDualSpaceGetInteriorData(psp, &intNodes, &intMat));
1522:     if (intNodes) {
1523:       PetscInt nNodesp;

1525:       PetscCall(PetscQuadratureGetData(intNodes, NULL, NULL, &nNodesp, NULL, NULL));
1526:       nNodes += nNodesp;
1527:     }
1528:     if (intMat) {
1529:       PetscInt maxNzsp;
1530:       PetscInt maxNzformsp;

1532:       PetscCall(MatSeqAIJGetMaxRowNonzeros(intMat, &maxNzsp));
1533:       PetscCheck(maxNzsp % pNk == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "interior matrix is not laid out as blocks of k-forms");
1534:       maxNzformsp = maxNzsp / pNk;
1535:       maxNzforms  = PetscMax(maxNzforms, maxNzformsp);
1536:     }
1537:   }
1538:   PetscCall(MatCreateSeqAIJ(PETSC_COMM_SELF, nDofs, nNodes * Nc, maxNzforms * Nk, NULL, &allMat));
1539:   PetscCall(PetscObjectSetOptionsPrefix((PetscObject)allMat, "ds_"));
1540:   PetscCall(MatSetOption(allMat, MAT_IGNORE_ZERO_ENTRIES, PETSC_FALSE));
1541:   PetscCall(PetscMalloc7(dim, &v0, dim, &pv0, dim * dim, &J, dim * dim, &Jinv, Nk * Nk, &L, maxNzforms * Nk, &work, maxNzforms * Nk, &iwork));
1542:   for (j = 0; j < dim; j++) pv0[j] = -1.;
1543:   PetscCall(PetscMalloc1(dim * nNodes, &nodes));
1544:   for (p = pStart, countNodes = 0; p < pEnd; p++) {
1545:     PetscDualSpace  psp;
1546:     PetscQuadrature intNodes;
1547:     DM              pdm;
1548:     PetscInt        pdim, pNk;
1549:     PetscInt        countNodesIn = countNodes;
1550:     PetscReal       detJ;
1551:     Mat             intMat;

1553:     PetscCall(PetscDualSpaceGetPointSubspace(sp, p, &psp));
1554:     if (!psp) continue;
1555:     PetscCall(PetscDualSpaceGetDM(psp, &pdm));
1556:     PetscCall(DMGetDimension(pdm, &pdim));
1557:     if (pdim < PetscAbsInt(k)) continue;
1558:     PetscCall(PetscDualSpaceGetInteriorData(psp, &intNodes, &intMat));
1559:     if (intNodes == NULL && intMat == NULL) continue;
1560:     PetscCall(PetscDTBinomialInt(pdim, PetscAbsInt(k), &pNk));
1561:     if (p) {
1562:       PetscCall(DMPlexComputeCellGeometryAffineFEM(dm, p, v0, J, Jinv, &detJ));
1563:     } else { /* identity */
1564:       PetscInt i, j;

1566:       for (i = 0; i < dim; i++)
1567:         for (j = 0; j < dim; j++) J[i * dim + j] = Jinv[i * dim + j] = 0.;
1568:       for (i = 0; i < dim; i++) J[i * dim + i] = Jinv[i * dim + i] = 1.;
1569:       for (i = 0; i < dim; i++) v0[i] = -1.;
1570:     }
1571:     if (pdim != dim) { /* compactify Jacobian */
1572:       PetscInt i, j;

1574:       for (i = 0; i < dim; i++)
1575:         for (j = 0; j < pdim; j++) J[i * pdim + j] = J[i * dim + j];
1576:     }
1577:     PetscCall(PetscDTAltVPullbackMatrix(pdim, dim, J, k, L));
1578:     if (intNodes) { /* push forward quadrature locations by the affine transformation */
1579:       PetscInt         nNodesp;
1580:       const PetscReal *nodesp;
1581:       PetscInt         j;

1583:       PetscCall(PetscQuadratureGetData(intNodes, NULL, NULL, &nNodesp, &nodesp, NULL));
1584:       for (j = 0; j < nNodesp; j++, countNodes++) {
1585:         PetscInt d, e;

1587:         for (d = 0; d < dim; d++) {
1588:           nodes[countNodes * dim + d] = v0[d];
1589:           for (e = 0; e < pdim; e++) nodes[countNodes * dim + d] += J[d * pdim + e] * (nodesp[j * pdim + e] - pv0[e]);
1590:         }
1591:       }
1592:     }
1593:     if (intMat) {
1594:       PetscInt nrows;
1595:       PetscInt off;

1597:       PetscCall(PetscSectionGetDof(section, p, &nrows));
1598:       PetscCall(PetscSectionGetOffset(section, p, &off));
1599:       for (j = 0; j < nrows; j++) {
1600:         PetscInt           ncols;
1601:         const PetscInt    *cols;
1602:         const PetscScalar *vals;
1603:         PetscInt           l, d, e;
1604:         PetscInt           row = j + off;

1606:         PetscCall(MatGetRow(intMat, j, &ncols, &cols, &vals));
1607:         PetscCheck(ncols % pNk == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "interior matrix is not laid out as blocks of k-forms");
1608:         for (l = 0; l < ncols / pNk; l++) {
1609:           PetscInt blockcol;

1611:           for (d = 0; d < pNk; d++) PetscCheck((cols[l * pNk + d] % pNk) == d, PETSC_COMM_SELF, PETSC_ERR_PLIB, "interior matrix is not laid out as blocks of k-forms");
1612:           blockcol = cols[l * pNk] / pNk;
1613:           for (d = 0; d < Nk; d++) iwork[l * Nk + d] = (blockcol + countNodesIn) * Nk + d;
1614:           for (d = 0; d < Nk; d++) work[l * Nk + d] = 0.;
1615:           for (d = 0; d < Nk; d++) {
1616:             for (e = 0; e < pNk; e++) {
1617:               /* "push forward" dof by pulling back a k-form to be evaluated on the point: multiply on the right by L */
1618:               work[l * Nk + d] += vals[l * pNk + e] * L[e * Nk + d];
1619:             }
1620:           }
1621:         }
1622:         PetscCall(MatSetValues(allMat, 1, &row, (ncols / pNk) * Nk, iwork, work, INSERT_VALUES));
1623:         PetscCall(MatRestoreRow(intMat, j, &ncols, &cols, &vals));
1624:       }
1625:     }
1626:   }
1627:   PetscCall(MatAssemblyBegin(allMat, MAT_FINAL_ASSEMBLY));
1628:   PetscCall(MatAssemblyEnd(allMat, MAT_FINAL_ASSEMBLY));
1629:   PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, &allNodes));
1630:   PetscCall(PetscQuadratureSetData(allNodes, dim, 0, nNodes, nodes, NULL));
1631:   PetscCall(PetscFree7(v0, pv0, J, Jinv, L, work, iwork));
1632:   PetscCall(MatDestroy(&sp->allMat));
1633:   sp->allMat = allMat;
1634:   PetscCall(PetscQuadratureDestroy(&sp->allNodes));
1635:   sp->allNodes = allNodes;
1636:   PetscFunctionReturn(PETSC_SUCCESS);
1637: }

1639: static PetscErrorCode PetscDualSpaceComputeFunctionalsFromAllData_Moments(PetscDualSpace sp)
1640: {
1641:   Mat              allMat;
1642:   PetscInt         momentOrder, i;
1643:   PetscBool        tensor = PETSC_FALSE;
1644:   const PetscReal *weights;
1645:   PetscScalar     *array;
1646:   PetscInt         nDofs;
1647:   PetscInt         dim, Nc;
1648:   DM               dm;
1649:   PetscQuadrature  allNodes;
1650:   PetscInt         nNodes;

1652:   PetscFunctionBegin;
1653:   PetscCall(PetscDualSpaceGetDM(sp, &dm));
1654:   PetscCall(DMGetDimension(dm, &dim));
1655:   PetscCall(PetscDualSpaceGetNumComponents(sp, &Nc));
1656:   PetscCall(PetscDualSpaceGetAllData(sp, &allNodes, &allMat));
1657:   PetscCall(MatGetSize(allMat, &nDofs, NULL));
1658:   PetscCheck(nDofs == 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "We do not yet support moments beyond P0, nDofs == %" PetscInt_FMT, nDofs);
1659:   PetscCall(PetscMalloc1(nDofs, &sp->functional));
1660:   PetscCall(PetscDualSpaceLagrangeGetMomentOrder(sp, &momentOrder));
1661:   PetscCall(PetscDualSpaceLagrangeGetTensor(sp, &tensor));
1662:   if (!tensor) PetscCall(PetscDTStroudConicalQuadrature(dim, Nc, PetscMax(momentOrder + 1, 1), -1.0, 1.0, &sp->functional[0]));
1663:   else PetscCall(PetscDTGaussTensorQuadrature(dim, Nc, PetscMax(momentOrder + 1, 1), -1.0, 1.0, &sp->functional[0]));
1664:   /* Need to replace allNodes and allMat */
1665:   PetscCall(PetscObjectReference((PetscObject)sp->functional[0]));
1666:   PetscCall(PetscQuadratureDestroy(&sp->allNodes));
1667:   sp->allNodes = sp->functional[0];
1668:   PetscCall(PetscQuadratureGetData(sp->allNodes, NULL, NULL, &nNodes, NULL, &weights));
1669:   PetscCall(MatCreateSeqDense(PETSC_COMM_SELF, nDofs, nNodes * Nc, NULL, &allMat));
1670:   PetscCall(PetscObjectSetOptionsPrefix((PetscObject)allMat, "ds_"));
1671:   PetscCall(MatDenseGetArrayWrite(allMat, &array));
1672:   for (i = 0; i < nNodes * Nc; ++i) array[i] = weights[i];
1673:   PetscCall(MatDenseRestoreArrayWrite(allMat, &array));
1674:   PetscCall(MatAssemblyBegin(allMat, MAT_FINAL_ASSEMBLY));
1675:   PetscCall(MatAssemblyEnd(allMat, MAT_FINAL_ASSEMBLY));
1676:   PetscCall(MatDestroy(&sp->allMat));
1677:   sp->allMat = allMat;
1678:   PetscFunctionReturn(PETSC_SUCCESS);
1679: }

1681: /* rather than trying to get all data from the functionals, we create
1682:  * the functionals from rows of the quadrature -> dof matrix.
1683:  *
1684:  * Ideally most of the uses of PetscDualSpace in PetscFE will switch
1685:  * to using intMat and allMat, so that the individual functionals
1686:  * don't need to be constructed at all */
1687: PETSC_INTERN PetscErrorCode PetscDualSpaceComputeFunctionalsFromAllData(PetscDualSpace sp)
1688: {
1689:   PetscQuadrature  allNodes;
1690:   Mat              allMat;
1691:   PetscInt         nDofs;
1692:   PetscInt         dim, Nc, f;
1693:   DM               dm;
1694:   PetscInt         nNodes, spdim;
1695:   const PetscReal *nodes = NULL;
1696:   PetscSection     section;
1697:   PetscBool        useMoments;

1699:   PetscFunctionBegin;
1700:   PetscCall(PetscDualSpaceGetDM(sp, &dm));
1701:   PetscCall(DMGetDimension(dm, &dim));
1702:   PetscCall(PetscDualSpaceGetNumComponents(sp, &Nc));
1703:   PetscCall(PetscDualSpaceGetAllData(sp, &allNodes, &allMat));
1704:   nNodes = 0;
1705:   if (allNodes) PetscCall(PetscQuadratureGetData(allNodes, NULL, NULL, &nNodes, &nodes, NULL));
1706:   PetscCall(MatGetSize(allMat, &nDofs, NULL));
1707:   PetscCall(PetscDualSpaceGetSection(sp, &section));
1708:   PetscCall(PetscSectionGetStorageSize(section, &spdim));
1709:   PetscCheck(spdim == nDofs, PETSC_COMM_SELF, PETSC_ERR_PLIB, "incompatible all matrix size");
1710:   PetscCall(PetscMalloc1(nDofs, &sp->functional));
1711:   PetscCall(PetscDualSpaceLagrangeGetUseMoments(sp, &useMoments));
1712:   for (f = 0; f < nDofs; f++) {
1713:     PetscInt           ncols, c;
1714:     const PetscInt    *cols;
1715:     const PetscScalar *vals;
1716:     PetscReal         *nodesf;
1717:     PetscReal         *weightsf;
1718:     PetscInt           nNodesf;
1719:     PetscInt           countNodes;

1721:     PetscCall(MatGetRow(allMat, f, &ncols, &cols, &vals));
1722:     for (c = 1, nNodesf = 1; c < ncols; c++) {
1723:       if ((cols[c] / Nc) != (cols[c - 1] / Nc)) nNodesf++;
1724:     }
1725:     PetscCall(PetscMalloc1(dim * nNodesf, &nodesf));
1726:     PetscCall(PetscMalloc1(Nc * nNodesf, &weightsf));
1727:     for (c = 0, countNodes = 0; c < ncols; c++) {
1728:       if (!c || ((cols[c] / Nc) != (cols[c - 1] / Nc))) {
1729:         PetscInt d;

1731:         for (d = 0; d < Nc; d++) weightsf[countNodes * Nc + d] = 0.;
1732:         for (d = 0; d < dim; d++) nodesf[countNodes * dim + d] = nodes[(cols[c] / Nc) * dim + d];
1733:         countNodes++;
1734:       }
1735:       weightsf[(countNodes - 1) * Nc + (cols[c] % Nc)] = PetscRealPart(vals[c]);
1736:     }
1737:     PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, &sp->functional[f]));
1738:     PetscCall(PetscQuadratureSetData(sp->functional[f], dim, Nc, nNodesf, nodesf, weightsf));
1739:     PetscCall(MatRestoreRow(allMat, f, &ncols, &cols, &vals));
1740:   }
1741:   PetscFunctionReturn(PETSC_SUCCESS);
1742: }

1744: /* check if a cell is a tensor product of the segment with a facet,
1745:  * specifically checking if f and f2 can be the "endpoints" (like the triangles
1746:  * at either end of a wedge) */
1747: static PetscErrorCode DMPlexPointIsTensor_Internal_Given(DM dm, PetscInt p, PetscInt f, PetscInt f2, PetscBool *isTensor)
1748: {
1749:   PetscInt        coneSize, c;
1750:   const PetscInt *cone;
1751:   const PetscInt *fCone;
1752:   const PetscInt *f2Cone;
1753:   PetscInt        fs[2];
1754:   PetscInt        meetSize, nmeet;
1755:   const PetscInt *meet;

1757:   PetscFunctionBegin;
1758:   fs[0] = f;
1759:   fs[1] = f2;
1760:   PetscCall(DMPlexGetMeet(dm, 2, fs, &meetSize, &meet));
1761:   nmeet = meetSize;
1762:   PetscCall(DMPlexRestoreMeet(dm, 2, fs, &meetSize, &meet));
1763:   /* two points that have a non-empty meet cannot be at opposite ends of a cell */
1764:   if (nmeet) {
1765:     *isTensor = PETSC_FALSE;
1766:     PetscFunctionReturn(PETSC_SUCCESS);
1767:   }
1768:   PetscCall(DMPlexGetConeSize(dm, p, &coneSize));
1769:   PetscCall(DMPlexGetCone(dm, p, &cone));
1770:   PetscCall(DMPlexGetCone(dm, f, &fCone));
1771:   PetscCall(DMPlexGetCone(dm, f2, &f2Cone));
1772:   for (c = 0; c < coneSize; c++) {
1773:     PetscInt        e, ef;
1774:     PetscInt        d = -1, d2 = -1;
1775:     PetscInt        dcount, d2count;
1776:     PetscInt        t = cone[c];
1777:     PetscInt        tConeSize;
1778:     PetscBool       tIsTensor;
1779:     const PetscInt *tCone;

1781:     if (t == f || t == f2) continue;
1782:     /* for every other facet in the cone, check that is has
1783:      * one ridge in common with each end */
1784:     PetscCall(DMPlexGetConeSize(dm, t, &tConeSize));
1785:     PetscCall(DMPlexGetCone(dm, t, &tCone));

1787:     dcount  = 0;
1788:     d2count = 0;
1789:     for (e = 0; e < tConeSize; e++) {
1790:       PetscInt q = tCone[e];
1791:       for (ef = 0; ef < coneSize - 2; ef++) {
1792:         if (fCone[ef] == q) {
1793:           if (dcount) {
1794:             *isTensor = PETSC_FALSE;
1795:             PetscFunctionReturn(PETSC_SUCCESS);
1796:           }
1797:           d = q;
1798:           dcount++;
1799:         } else if (f2Cone[ef] == q) {
1800:           if (d2count) {
1801:             *isTensor = PETSC_FALSE;
1802:             PetscFunctionReturn(PETSC_SUCCESS);
1803:           }
1804:           d2 = q;
1805:           d2count++;
1806:         }
1807:       }
1808:     }
1809:     /* if the whole cell is a tensor with the segment, then this
1810:      * facet should be a tensor with the segment */
1811:     PetscCall(DMPlexPointIsTensor_Internal_Given(dm, t, d, d2, &tIsTensor));
1812:     if (!tIsTensor) {
1813:       *isTensor = PETSC_FALSE;
1814:       PetscFunctionReturn(PETSC_SUCCESS);
1815:     }
1816:   }
1817:   *isTensor = PETSC_TRUE;
1818:   PetscFunctionReturn(PETSC_SUCCESS);
1819: }

1821: /* determine if a cell is a tensor with a segment by looping over pairs of facets to find a pair
1822:  * that could be the opposite ends */
1823: static PetscErrorCode DMPlexPointIsTensor_Internal(DM dm, PetscInt p, PetscBool *isTensor, PetscInt *endA, PetscInt *endB)
1824: {
1825:   PetscInt        coneSize, c, c2;
1826:   const PetscInt *cone;

1828:   PetscFunctionBegin;
1829:   PetscCall(DMPlexGetConeSize(dm, p, &coneSize));
1830:   if (!coneSize) {
1831:     if (isTensor) *isTensor = PETSC_FALSE;
1832:     if (endA) *endA = -1;
1833:     if (endB) *endB = -1;
1834:   }
1835:   PetscCall(DMPlexGetCone(dm, p, &cone));
1836:   for (c = 0; c < coneSize; c++) {
1837:     PetscInt f = cone[c];
1838:     PetscInt fConeSize;

1840:     PetscCall(DMPlexGetConeSize(dm, f, &fConeSize));
1841:     if (fConeSize != coneSize - 2) continue;

1843:     for (c2 = c + 1; c2 < coneSize; c2++) {
1844:       PetscInt  f2 = cone[c2];
1845:       PetscBool isTensorff2;
1846:       PetscInt  f2ConeSize;

1848:       PetscCall(DMPlexGetConeSize(dm, f2, &f2ConeSize));
1849:       if (f2ConeSize != coneSize - 2) continue;

1851:       PetscCall(DMPlexPointIsTensor_Internal_Given(dm, p, f, f2, &isTensorff2));
1852:       if (isTensorff2) {
1853:         if (isTensor) *isTensor = PETSC_TRUE;
1854:         if (endA) *endA = f;
1855:         if (endB) *endB = f2;
1856:         PetscFunctionReturn(PETSC_SUCCESS);
1857:       }
1858:     }
1859:   }
1860:   if (isTensor) *isTensor = PETSC_FALSE;
1861:   if (endA) *endA = -1;
1862:   if (endB) *endB = -1;
1863:   PetscFunctionReturn(PETSC_SUCCESS);
1864: }

1866: /* determine if a cell is a tensor with a segment by looping over pairs of facets to find a pair
1867:  * that could be the opposite ends */
1868: static PetscErrorCode DMPlexPointIsTensor(DM dm, PetscInt p, PetscBool *isTensor, PetscInt *endA, PetscInt *endB)
1869: {
1870:   DMPlexInterpolatedFlag interpolated;

1872:   PetscFunctionBegin;
1873:   PetscCall(DMPlexIsInterpolated(dm, &interpolated));
1874:   PetscCheck(interpolated == DMPLEX_INTERPOLATED_FULL, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONGSTATE, "Only for interpolated DMPlex's");
1875:   PetscCall(DMPlexPointIsTensor_Internal(dm, p, isTensor, endA, endB));
1876:   PetscFunctionReturn(PETSC_SUCCESS);
1877: }

1879: /* Let k = formDegree and k' = -sign(k) * dim + k.  Transform a symmetric frame for k-forms on the biunit simplex into
1880:  * a symmetric frame for k'-forms on the biunit simplex.
1881:  *
1882:  * A frame is "symmetric" if the pullback of every symmetry of the biunit simplex is a permutation of the frame.
1883:  *
1884:  * forms in the symmetric frame are used as dofs in the untrimmed simplex spaces.  This way, symmetries of the
1885:  * reference cell result in permutations of dofs grouped by node.
1886:  *
1887:  * Use T to transform dof matrices for k'-forms into dof matrices for k-forms as a block diagonal transformation on
1888:  * the right.
1889:  */
1890: static PetscErrorCode BiunitSimplexSymmetricFormTransformation(PetscInt dim, PetscInt formDegree, PetscReal T[])
1891: {
1892:   PetscInt   k  = formDegree;
1893:   PetscInt   kd = k < 0 ? dim + k : k - dim;
1894:   PetscInt   Nk;
1895:   PetscReal *biToEq, *eqToBi, *biToEqStar, *eqToBiStar;
1896:   PetscInt   fact;

1898:   PetscFunctionBegin;
1899:   PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(k), &Nk));
1900:   PetscCall(PetscCalloc4(dim * dim, &biToEq, dim * dim, &eqToBi, Nk * Nk, &biToEqStar, Nk * Nk, &eqToBiStar));
1901:   /* fill in biToEq: Jacobian of the transformation from the biunit simplex to the equilateral simplex */
1902:   fact = 0;
1903:   for (PetscInt i = 0; i < dim; i++) {
1904:     biToEq[i * dim + i] = PetscSqrtReal(((PetscReal)i + 2.) / (2. * ((PetscReal)i + 1.)));
1905:     fact += 4 * (i + 1);
1906:     for (PetscInt j = i + 1; j < dim; j++) biToEq[i * dim + j] = PetscSqrtReal(1. / (PetscReal)fact);
1907:   }
1908:   /* fill in eqToBi: Jacobian of the transformation from the equilateral simplex to the biunit simplex */
1909:   fact = 0;
1910:   for (PetscInt j = 0; j < dim; j++) {
1911:     eqToBi[j * dim + j] = PetscSqrtReal(2. * ((PetscReal)j + 1.) / ((PetscReal)j + 2));
1912:     fact += j + 1;
1913:     for (PetscInt i = 0; i < j; i++) eqToBi[i * dim + j] = -PetscSqrtReal(1. / (PetscReal)fact);
1914:   }
1915:   PetscCall(PetscDTAltVPullbackMatrix(dim, dim, biToEq, kd, biToEqStar));
1916:   PetscCall(PetscDTAltVPullbackMatrix(dim, dim, eqToBi, k, eqToBiStar));
1917:   /* product of pullbacks simulates the following steps
1918:    *
1919:    * 1. start with frame W = [w_1, w_2, ..., w_m] of k forms that is symmetric on the biunit simplex:
1920:           if J is the Jacobian of a symmetry of the biunit simplex, then J_k* W = [J_k*w_1, ..., J_k*w_m]
1921:           is a permutation of W.
1922:           Even though a k' form --- a (dim - k) form represented by its Hodge star --- has the same geometric
1923:           content as a k form, W is not a symmetric frame of k' forms on the biunit simplex.  That's because,
1924:           for general Jacobian J, J_k* != J_k'*.
1925:    * 2. pullback W to the equilateral triangle using the k pullback, W_eq = eqToBi_k* W.  All symmetries of the
1926:           equilateral simplex have orthonormal Jacobians.  For an orthonormal Jacobian O, J_k* = J_k'*, so W_eq is
1927:           also a symmetric frame for k' forms on the equilateral simplex.
1928:      3. pullback W_eq back to the biunit simplex using the k' pulback, V = biToEq_k'* W_eq = biToEq_k'* eqToBi_k* W.
1929:           V is a symmetric frame for k' forms on the biunit simplex.
1930:    */
1931:   for (PetscInt i = 0; i < Nk; i++) {
1932:     for (PetscInt j = 0; j < Nk; j++) {
1933:       PetscReal val = 0.;
1934:       for (PetscInt k = 0; k < Nk; k++) val += biToEqStar[i * Nk + k] * eqToBiStar[k * Nk + j];
1935:       T[i * Nk + j] = val;
1936:     }
1937:   }
1938:   PetscCall(PetscFree4(biToEq, eqToBi, biToEqStar, eqToBiStar));
1939:   PetscFunctionReturn(PETSC_SUCCESS);
1940: }

1942: /* permute a quadrature -> dof matrix so that its rows are in revlex order by nodeIdx */
1943: static PetscErrorCode MatPermuteByNodeIdx(Mat A, PetscLagNodeIndices ni, Mat *Aperm)
1944: {
1945:   PetscInt   m, n, i, j;
1946:   PetscInt   nodeIdxDim = ni->nodeIdxDim;
1947:   PetscInt   nodeVecDim = ni->nodeVecDim;
1948:   PetscInt  *perm;
1949:   IS         permIS;
1950:   IS         id;
1951:   PetscInt  *nIdxPerm;
1952:   PetscReal *nVecPerm;

1954:   PetscFunctionBegin;
1955:   PetscCall(PetscLagNodeIndicesGetPermutation(ni, &perm));
1956:   PetscCall(MatGetSize(A, &m, &n));
1957:   PetscCall(PetscMalloc1(nodeIdxDim * m, &nIdxPerm));
1958:   PetscCall(PetscMalloc1(nodeVecDim * m, &nVecPerm));
1959:   for (i = 0; i < m; i++)
1960:     for (j = 0; j < nodeIdxDim; j++) nIdxPerm[i * nodeIdxDim + j] = ni->nodeIdx[perm[i] * nodeIdxDim + j];
1961:   for (i = 0; i < m; i++)
1962:     for (j = 0; j < nodeVecDim; j++) nVecPerm[i * nodeVecDim + j] = ni->nodeVec[perm[i] * nodeVecDim + j];
1963:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, m, perm, PETSC_USE_POINTER, &permIS));
1964:   PetscCall(ISSetPermutation(permIS));
1965:   PetscCall(ISCreateStride(PETSC_COMM_SELF, n, 0, 1, &id));
1966:   PetscCall(ISSetPermutation(id));
1967:   PetscCall(MatPermute(A, permIS, id, Aperm));
1968:   PetscCall(ISDestroy(&permIS));
1969:   PetscCall(ISDestroy(&id));
1970:   for (i = 0; i < m; i++) perm[i] = i;
1971:   PetscCall(PetscFree(ni->nodeIdx));
1972:   PetscCall(PetscFree(ni->nodeVec));
1973:   ni->nodeIdx = nIdxPerm;
1974:   ni->nodeVec = nVecPerm;
1975:   PetscFunctionReturn(PETSC_SUCCESS);
1976: }

1978: static PetscErrorCode PetscDualSpaceSetUp_Lagrange(PetscDualSpace sp)
1979: {
1980:   PetscDualSpace_Lag    *lag   = (PetscDualSpace_Lag *)sp->data;
1981:   DM                     dm    = sp->dm;
1982:   DM                     dmint = NULL;
1983:   PetscInt               order;
1984:   PetscInt               Nc = sp->Nc;
1985:   MPI_Comm               comm;
1986:   PetscBool              continuous;
1987:   PetscSection           section;
1988:   PetscInt               depth, dim, pStart, pEnd, cStart, cEnd, p, *pStratStart, *pStratEnd, d;
1989:   PetscInt               formDegree, Nk, Ncopies;
1990:   PetscInt               tensorf = -1, tensorf2 = -1;
1991:   PetscBool              tensorCell, tensorSpace;
1992:   PetscBool              uniform, trimmed;
1993:   Petsc1DNodeFamily      nodeFamily;
1994:   PetscInt               numNodeSkip;
1995:   DMPlexInterpolatedFlag interpolated;
1996:   PetscBool              isbdm;

1998:   PetscFunctionBegin;
1999:   /* step 1: sanitize input */
2000:   PetscCall(PetscObjectGetComm((PetscObject)sp, &comm));
2001:   PetscCall(DMGetDimension(dm, &dim));
2002:   PetscCall(PetscObjectTypeCompare((PetscObject)sp, PETSCDUALSPACEBDM, &isbdm));
2003:   if (isbdm) {
2004:     sp->k = -(dim - 1); /* form degree of H-div */
2005:     PetscCall(PetscObjectChangeTypeName((PetscObject)sp, PETSCDUALSPACELAGRANGE));
2006:   }
2007:   PetscCall(PetscDualSpaceGetFormDegree(sp, &formDegree));
2008:   PetscCheck(PetscAbsInt(formDegree) <= dim, comm, PETSC_ERR_ARG_OUTOFRANGE, "Form degree must be bounded by dimension");
2009:   PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(formDegree), &Nk));
2010:   if (sp->Nc <= 0 && lag->numCopies > 0) sp->Nc = Nk * lag->numCopies;
2011:   Nc = sp->Nc;
2012:   PetscCheck(Nc % Nk == 0, comm, PETSC_ERR_ARG_INCOMP, "Number of components is not a multiple of form degree size");
2013:   if (lag->numCopies <= 0) lag->numCopies = Nc / Nk;
2014:   Ncopies = lag->numCopies;
2015:   PetscCheck(Nc / Nk == Ncopies, comm, PETSC_ERR_ARG_INCOMP, "Number of copies * (dim choose k) != Nc");
2016:   if (!dim) sp->order = 0;
2017:   order   = sp->order;
2018:   uniform = sp->uniform;
2019:   PetscCheck(uniform, PETSC_COMM_SELF, PETSC_ERR_SUP, "Variable order not supported yet");
2020:   if (lag->trimmed && !formDegree) lag->trimmed = PETSC_FALSE; /* trimmed spaces are the same as full spaces for 0-forms */
2021:   if (lag->nodeType == PETSCDTNODES_DEFAULT) {
2022:     lag->nodeType     = PETSCDTNODES_GAUSSJACOBI;
2023:     lag->nodeExponent = 0.;
2024:     /* trimmed spaces don't include corner vertices, so don't use end nodes by default */
2025:     lag->endNodes = lag->trimmed ? PETSC_FALSE : PETSC_TRUE;
2026:   }
2027:   /* If a trimmed space and the user did choose nodes with endpoints, skip them by default */
2028:   if (lag->numNodeSkip < 0) lag->numNodeSkip = (lag->trimmed && lag->endNodes) ? 1 : 0;
2029:   numNodeSkip = lag->numNodeSkip;
2030:   PetscCheck(!lag->trimmed || order, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Cannot have zeroth order trimmed elements");
2031:   if (lag->trimmed && PetscAbsInt(formDegree) == dim) { /* convert trimmed n-forms to untrimmed of one polynomial order less */
2032:     sp->order--;
2033:     order--;
2034:     lag->trimmed = PETSC_FALSE;
2035:   }
2036:   trimmed = lag->trimmed;
2037:   if (!order || PetscAbsInt(formDegree) == dim) lag->continuous = PETSC_FALSE;
2038:   continuous = lag->continuous;
2039:   PetscCall(DMPlexGetDepth(dm, &depth));
2040:   PetscCall(DMPlexGetChart(dm, &pStart, &pEnd));
2041:   PetscCall(DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd));
2042:   PetscCheck(pStart == 0 && cStart == 0, PetscObjectComm((PetscObject)sp), PETSC_ERR_ARG_WRONGSTATE, "Expect DM with chart starting at zero and cells first");
2043:   PetscCheck(cEnd == 1, PetscObjectComm((PetscObject)sp), PETSC_ERR_ARG_WRONGSTATE, "Use PETSCDUALSPACEREFINED for multi-cell reference meshes");
2044:   PetscCall(DMPlexIsInterpolated(dm, &interpolated));
2045:   if (interpolated != DMPLEX_INTERPOLATED_FULL) {
2046:     PetscCall(DMPlexInterpolate(dm, &dmint));
2047:   } else {
2048:     PetscCall(PetscObjectReference((PetscObject)dm));
2049:     dmint = dm;
2050:   }
2051:   tensorCell = PETSC_FALSE;
2052:   if (dim > 1) PetscCall(DMPlexPointIsTensor(dmint, 0, &tensorCell, &tensorf, &tensorf2));
2053:   lag->tensorCell = tensorCell;
2054:   if (dim < 2 || !lag->tensorCell) lag->tensorSpace = PETSC_FALSE;
2055:   tensorSpace = lag->tensorSpace;
2056:   if (!lag->nodeFamily) PetscCall(Petsc1DNodeFamilyCreate(lag->nodeType, lag->nodeExponent, lag->endNodes, &lag->nodeFamily));
2057:   nodeFamily = lag->nodeFamily;
2058:   PetscCheck(interpolated == DMPLEX_INTERPOLATED_FULL || !continuous || (PetscAbsInt(formDegree) <= 0 && order <= 1), PETSC_COMM_SELF, PETSC_ERR_PLIB, "Reference element won't support all boundary nodes");

2060:   if (Ncopies > 1) {
2061:     PetscDualSpace scalarsp;

2063:     PetscCall(PetscDualSpaceDuplicate(sp, &scalarsp));
2064:     /* Setting the number of components to Nk is a space with 1 copy of each k-form */
2065:     sp->setupcalled = PETSC_FALSE;
2066:     PetscCall(PetscDualSpaceSetNumComponents(scalarsp, Nk));
2067:     PetscCall(PetscDualSpaceSetUp(scalarsp));
2068:     PetscCall(PetscDualSpaceSetType(sp, PETSCDUALSPACESUM));
2069:     PetscCall(PetscDualSpaceSumSetNumSubspaces(sp, Ncopies));
2070:     PetscCall(PetscDualSpaceSumSetConcatenate(sp, PETSC_TRUE));
2071:     PetscCall(PetscDualSpaceSumSetInterleave(sp, PETSC_TRUE, PETSC_FALSE));
2072:     for (PetscInt i = 0; i < Ncopies; i++) PetscCall(PetscDualSpaceSumSetSubspace(sp, i, scalarsp));
2073:     PetscCall(PetscDualSpaceSetUp(sp));
2074:     PetscCall(PetscDualSpaceDestroy(&scalarsp));
2075:     PetscCall(DMDestroy(&dmint));
2076:     PetscFunctionReturn(PETSC_SUCCESS);
2077:   }

2079:   /* step 2: construct the boundary spaces */
2080:   PetscCall(PetscMalloc2(depth + 1, &pStratStart, depth + 1, &pStratEnd));
2081:   PetscCall(PetscCalloc1(pEnd, &sp->pointSpaces));
2082:   for (d = 0; d <= depth; ++d) PetscCall(DMPlexGetDepthStratum(dm, d, &pStratStart[d], &pStratEnd[d]));
2083:   PetscCall(PetscDualSpaceSectionCreate_Internal(sp, &section));
2084:   sp->pointSection = section;
2085:   if (continuous && !lag->interiorOnly) {
2086:     PetscInt h;

2088:     for (p = pStratStart[depth - 1]; p < pStratEnd[depth - 1]; p++) { /* calculate the facet dual spaces */
2089:       PetscReal      v0[3];
2090:       DMPolytopeType ptype;
2091:       PetscReal      J[9], detJ;
2092:       PetscInt       q;

2094:       PetscCall(DMPlexComputeCellGeometryAffineFEM(dm, p, v0, J, NULL, &detJ));
2095:       PetscCall(DMPlexGetCellType(dm, p, &ptype));

2097:       /* compare to previous facets: if computed, reference that dualspace */
2098:       for (q = pStratStart[depth - 1]; q < p; q++) {
2099:         DMPolytopeType qtype;

2101:         PetscCall(DMPlexGetCellType(dm, q, &qtype));
2102:         if (qtype == ptype) break;
2103:       }
2104:       if (q < p) { /* this facet has the same dual space as that one */
2105:         PetscCall(PetscObjectReference((PetscObject)sp->pointSpaces[q]));
2106:         sp->pointSpaces[p] = sp->pointSpaces[q];
2107:         continue;
2108:       }
2109:       /* if not, recursively compute this dual space */
2110:       PetscCall(PetscDualSpaceCreateFacetSubspace_Lagrange(sp, NULL, p, formDegree, Ncopies, PETSC_FALSE, &sp->pointSpaces[p]));
2111:     }
2112:     for (h = 2; h <= depth; h++) { /* get the higher subspaces from the facet subspaces */
2113:       PetscInt hd   = depth - h;
2114:       PetscInt hdim = dim - h;

2116:       if (hdim < PetscAbsInt(formDegree)) break;
2117:       for (p = pStratStart[hd]; p < pStratEnd[hd]; p++) {
2118:         PetscInt        suppSize, s;
2119:         const PetscInt *supp;

2121:         PetscCall(DMPlexGetSupportSize(dm, p, &suppSize));
2122:         PetscCall(DMPlexGetSupport(dm, p, &supp));
2123:         for (s = 0; s < suppSize; s++) {
2124:           DM              qdm;
2125:           PetscDualSpace  qsp, psp;
2126:           PetscInt        c, coneSize, q;
2127:           const PetscInt *cone;
2128:           const PetscInt *refCone;

2130:           q   = supp[s];
2131:           qsp = sp->pointSpaces[q];
2132:           PetscCall(DMPlexGetConeSize(dm, q, &coneSize));
2133:           PetscCall(DMPlexGetCone(dm, q, &cone));
2134:           for (c = 0; c < coneSize; c++)
2135:             if (cone[c] == p) break;
2136:           PetscCheck(c != coneSize, PetscObjectComm((PetscObject)dm), PETSC_ERR_PLIB, "cone/support mismatch");
2137:           PetscCall(PetscDualSpaceGetDM(qsp, &qdm));
2138:           PetscCall(DMPlexGetCone(qdm, 0, &refCone));
2139:           /* get the equivalent dual space from the support dual space */
2140:           PetscCall(PetscDualSpaceGetPointSubspace(qsp, refCone[c], &psp));
2141:           if (!s) {
2142:             PetscCall(PetscObjectReference((PetscObject)psp));
2143:             sp->pointSpaces[p] = psp;
2144:           }
2145:         }
2146:       }
2147:     }
2148:     for (p = 1; p < pEnd; p++) {
2149:       PetscInt pspdim;
2150:       if (!sp->pointSpaces[p]) continue;
2151:       PetscCall(PetscDualSpaceGetInteriorDimension(sp->pointSpaces[p], &pspdim));
2152:       PetscCall(PetscSectionSetDof(section, p, pspdim));
2153:     }
2154:   }

2156:   if (trimmed && !continuous) {
2157:     /* the dofs of a trimmed space don't have a nice tensor/lattice structure:
2158:      * just construct the continuous dual space and copy all of the data over,
2159:      * allocating it all to the cell instead of splitting it up between the boundaries */
2160:     PetscDualSpace      spcont;
2161:     PetscInt            spdim, f;
2162:     PetscQuadrature     allNodes;
2163:     PetscDualSpace_Lag *lagc;
2164:     Mat                 allMat;

2166:     PetscCall(PetscDualSpaceDuplicate(sp, &spcont));
2167:     PetscCall(PetscDualSpaceLagrangeSetContinuity(spcont, PETSC_TRUE));
2168:     PetscCall(PetscDualSpaceSetUp(spcont));
2169:     PetscCall(PetscDualSpaceGetDimension(spcont, &spdim));
2170:     sp->spdim = sp->spintdim = spdim;
2171:     PetscCall(PetscSectionSetDof(section, 0, spdim));
2172:     PetscCall(PetscDualSpaceSectionSetUp_Internal(sp, section));
2173:     PetscCall(PetscMalloc1(spdim, &sp->functional));
2174:     for (f = 0; f < spdim; f++) {
2175:       PetscQuadrature fn;

2177:       PetscCall(PetscDualSpaceGetFunctional(spcont, f, &fn));
2178:       PetscCall(PetscObjectReference((PetscObject)fn));
2179:       sp->functional[f] = fn;
2180:     }
2181:     PetscCall(PetscDualSpaceGetAllData(spcont, &allNodes, &allMat));
2182:     PetscCall(PetscObjectReference((PetscObject)allNodes));
2183:     PetscCall(PetscObjectReference((PetscObject)allNodes));
2184:     sp->allNodes = sp->intNodes = allNodes;
2185:     PetscCall(PetscObjectReference((PetscObject)allMat));
2186:     PetscCall(PetscObjectReference((PetscObject)allMat));
2187:     sp->allMat = sp->intMat = allMat;
2188:     lagc                    = (PetscDualSpace_Lag *)spcont->data;
2189:     PetscCall(PetscLagNodeIndicesReference(lagc->vertIndices));
2190:     lag->vertIndices = lagc->vertIndices;
2191:     PetscCall(PetscLagNodeIndicesReference(lagc->allNodeIndices));
2192:     PetscCall(PetscLagNodeIndicesReference(lagc->allNodeIndices));
2193:     lag->intNodeIndices = lagc->allNodeIndices;
2194:     lag->allNodeIndices = lagc->allNodeIndices;
2195:     PetscCall(PetscDualSpaceDestroy(&spcont));
2196:     PetscCall(PetscFree2(pStratStart, pStratEnd));
2197:     PetscCall(DMDestroy(&dmint));
2198:     PetscFunctionReturn(PETSC_SUCCESS);
2199:   }

2201:   /* step 3: construct intNodes, and intMat, and combine it with boundray data to make allNodes and allMat */
2202:   if (!tensorSpace) {
2203:     if (!tensorCell) PetscCall(PetscLagNodeIndicesCreateSimplexVertices(dm, &lag->vertIndices));

2205:     if (trimmed) {
2206:       /* there is one dof in the interior of the a trimmed element for each full polynomial of with degree at most
2207:        * order + k - dim - 1 */
2208:       if (order + PetscAbsInt(formDegree) > dim) {
2209:         PetscInt sum = order + PetscAbsInt(formDegree) - dim - 1;
2210:         PetscInt nDofs;

2212:         PetscCall(PetscDualSpaceLagrangeCreateSimplexNodeMat(nodeFamily, dim, sum, Nk, numNodeSkip, &sp->intNodes, &sp->intMat, &lag->intNodeIndices));
2213:         PetscCall(MatGetSize(sp->intMat, &nDofs, NULL));
2214:         PetscCall(PetscSectionSetDof(section, 0, nDofs));
2215:       }
2216:       PetscCall(PetscDualSpaceSectionSetUp_Internal(sp, section));
2217:       PetscCall(PetscDualSpaceCreateAllDataFromInteriorData(sp));
2218:       PetscCall(PetscDualSpaceLagrangeCreateAllNodeIdx(sp));
2219:     } else {
2220:       if (!continuous) {
2221:         /* if discontinuous just construct one node for each set of dofs (a set of dofs is a basis for the k-form
2222:          * space) */
2223:         PetscInt sum = order;
2224:         PetscInt nDofs;

2226:         PetscCall(PetscDualSpaceLagrangeCreateSimplexNodeMat(nodeFamily, dim, sum, Nk, numNodeSkip, &sp->intNodes, &sp->intMat, &lag->intNodeIndices));
2227:         PetscCall(MatGetSize(sp->intMat, &nDofs, NULL));
2228:         PetscCall(PetscSectionSetDof(section, 0, nDofs));
2229:         PetscCall(PetscDualSpaceSectionSetUp_Internal(sp, section));
2230:         PetscCall(PetscObjectReference((PetscObject)sp->intNodes));
2231:         sp->allNodes = sp->intNodes;
2232:         PetscCall(PetscObjectReference((PetscObject)sp->intMat));
2233:         sp->allMat = sp->intMat;
2234:         PetscCall(PetscLagNodeIndicesReference(lag->intNodeIndices));
2235:         lag->allNodeIndices = lag->intNodeIndices;
2236:       } else {
2237:         /* there is one dof in the interior of the a full element for each trimmed polynomial of with degree at most
2238:          * order + k - dim, but with complementary form degree */
2239:         if (order + PetscAbsInt(formDegree) > dim) {
2240:           PetscDualSpace      trimmedsp;
2241:           PetscDualSpace_Lag *trimmedlag;
2242:           PetscQuadrature     intNodes;
2243:           PetscInt            trFormDegree = formDegree >= 0 ? formDegree - dim : dim - PetscAbsInt(formDegree);
2244:           PetscInt            nDofs;
2245:           Mat                 intMat;

2247:           PetscCall(PetscDualSpaceDuplicate(sp, &trimmedsp));
2248:           PetscCall(PetscDualSpaceLagrangeSetTrimmed(trimmedsp, PETSC_TRUE));
2249:           PetscCall(PetscDualSpaceSetOrder(trimmedsp, order + PetscAbsInt(formDegree) - dim));
2250:           PetscCall(PetscDualSpaceSetFormDegree(trimmedsp, trFormDegree));
2251:           trimmedlag              = (PetscDualSpace_Lag *)trimmedsp->data;
2252:           trimmedlag->numNodeSkip = numNodeSkip + 1;
2253:           PetscCall(PetscDualSpaceSetUp(trimmedsp));
2254:           PetscCall(PetscDualSpaceGetAllData(trimmedsp, &intNodes, &intMat));
2255:           PetscCall(PetscObjectReference((PetscObject)intNodes));
2256:           sp->intNodes = intNodes;
2257:           PetscCall(PetscLagNodeIndicesReference(trimmedlag->allNodeIndices));
2258:           lag->intNodeIndices = trimmedlag->allNodeIndices;
2259:           PetscCall(PetscObjectReference((PetscObject)intMat));
2260:           if (PetscAbsInt(formDegree) > 0 && PetscAbsInt(formDegree) < dim) {
2261:             PetscReal   *T;
2262:             PetscScalar *work;
2263:             PetscInt     nCols, nRows;
2264:             Mat          intMatT;

2266:             PetscCall(MatDuplicate(intMat, MAT_COPY_VALUES, &intMatT));
2267:             PetscCall(MatGetSize(intMat, &nRows, &nCols));
2268:             PetscCall(PetscMalloc2(Nk * Nk, &T, nCols, &work));
2269:             PetscCall(BiunitSimplexSymmetricFormTransformation(dim, formDegree, T));
2270:             for (PetscInt row = 0; row < nRows; row++) {
2271:               PetscInt           nrCols;
2272:               const PetscInt    *rCols;
2273:               const PetscScalar *rVals;

2275:               PetscCall(MatGetRow(intMat, row, &nrCols, &rCols, &rVals));
2276:               PetscCheck(nrCols % Nk == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "nonzeros in intMat matrix are not in k-form size blocks");
2277:               for (PetscInt b = 0; b < nrCols; b += Nk) {
2278:                 const PetscScalar *v = &rVals[b];
2279:                 PetscScalar       *w = &work[b];
2280:                 for (PetscInt j = 0; j < Nk; j++) {
2281:                   w[j] = 0.;
2282:                   for (PetscInt i = 0; i < Nk; i++) w[j] += v[i] * T[i * Nk + j];
2283:                 }
2284:               }
2285:               PetscCall(MatSetValuesBlocked(intMatT, 1, &row, nrCols, rCols, work, INSERT_VALUES));
2286:               PetscCall(MatRestoreRow(intMat, row, &nrCols, &rCols, &rVals));
2287:             }
2288:             PetscCall(MatAssemblyBegin(intMatT, MAT_FINAL_ASSEMBLY));
2289:             PetscCall(MatAssemblyEnd(intMatT, MAT_FINAL_ASSEMBLY));
2290:             PetscCall(MatDestroy(&intMat));
2291:             intMat = intMatT;
2292:             PetscCall(PetscLagNodeIndicesDestroy(&lag->intNodeIndices));
2293:             PetscCall(PetscLagNodeIndicesDuplicate(trimmedlag->allNodeIndices, &lag->intNodeIndices));
2294:             {
2295:               PetscInt         nNodes     = lag->intNodeIndices->nNodes;
2296:               PetscReal       *newNodeVec = lag->intNodeIndices->nodeVec;
2297:               const PetscReal *oldNodeVec = trimmedlag->allNodeIndices->nodeVec;

2299:               for (PetscInt n = 0; n < nNodes; n++) {
2300:                 PetscReal       *w = &newNodeVec[n * Nk];
2301:                 const PetscReal *v = &oldNodeVec[n * Nk];

2303:                 for (PetscInt j = 0; j < Nk; j++) {
2304:                   w[j] = 0.;
2305:                   for (PetscInt i = 0; i < Nk; i++) w[j] += v[i] * T[i * Nk + j];
2306:                 }
2307:               }
2308:             }
2309:             PetscCall(PetscFree2(T, work));
2310:           }
2311:           sp->intMat = intMat;
2312:           PetscCall(MatGetSize(sp->intMat, &nDofs, NULL));
2313:           PetscCall(PetscDualSpaceDestroy(&trimmedsp));
2314:           PetscCall(PetscSectionSetDof(section, 0, nDofs));
2315:         }
2316:         PetscCall(PetscDualSpaceSectionSetUp_Internal(sp, section));
2317:         PetscCall(PetscDualSpaceCreateAllDataFromInteriorData(sp));
2318:         PetscCall(PetscDualSpaceLagrangeCreateAllNodeIdx(sp));
2319:       }
2320:     }
2321:   } else {
2322:     PetscQuadrature     intNodesTrace  = NULL;
2323:     PetscQuadrature     intNodesFiber  = NULL;
2324:     PetscQuadrature     intNodes       = NULL;
2325:     PetscLagNodeIndices intNodeIndices = NULL;
2326:     Mat                 intMat         = NULL;

2328:     if (PetscAbsInt(formDegree) < dim) { /* get the trace k-forms on the first facet, and the 0-forms on the edge,
2329:                                             and wedge them together to create some of the k-form dofs */
2330:       PetscDualSpace      trace, fiber;
2331:       PetscDualSpace_Lag *tracel, *fiberl;
2332:       Mat                 intMatTrace, intMatFiber;

2334:       if (sp->pointSpaces[tensorf]) {
2335:         PetscCall(PetscObjectReference((PetscObject)sp->pointSpaces[tensorf]));
2336:         trace = sp->pointSpaces[tensorf];
2337:       } else {
2338:         PetscCall(PetscDualSpaceCreateFacetSubspace_Lagrange(sp, NULL, tensorf, formDegree, Ncopies, PETSC_TRUE, &trace));
2339:       }
2340:       PetscCall(PetscDualSpaceCreateEdgeSubspace_Lagrange(sp, order, 0, 1, PETSC_TRUE, &fiber));
2341:       tracel = (PetscDualSpace_Lag *)trace->data;
2342:       fiberl = (PetscDualSpace_Lag *)fiber->data;
2343:       PetscCall(PetscLagNodeIndicesCreateTensorVertices(dm, tracel->vertIndices, &lag->vertIndices));
2344:       PetscCall(PetscDualSpaceGetInteriorData(trace, &intNodesTrace, &intMatTrace));
2345:       PetscCall(PetscDualSpaceGetInteriorData(fiber, &intNodesFiber, &intMatFiber));
2346:       if (intNodesTrace && intNodesFiber) {
2347:         PetscCall(PetscQuadratureCreateTensor(intNodesTrace, intNodesFiber, &intNodes));
2348:         PetscCall(MatTensorAltV(intMatTrace, intMatFiber, dim - 1, formDegree, 1, 0, &intMat));
2349:         PetscCall(PetscLagNodeIndicesTensor(tracel->intNodeIndices, dim - 1, formDegree, fiberl->intNodeIndices, 1, 0, &intNodeIndices));
2350:       }
2351:       PetscCall(PetscObjectReference((PetscObject)intNodesTrace));
2352:       PetscCall(PetscObjectReference((PetscObject)intNodesFiber));
2353:       PetscCall(PetscDualSpaceDestroy(&fiber));
2354:       PetscCall(PetscDualSpaceDestroy(&trace));
2355:     }
2356:     if (PetscAbsInt(formDegree) > 0) { /* get the trace (k-1)-forms on the first facet, and the 1-forms on the edge,
2357:                                           and wedge them together to create the remaining k-form dofs */
2358:       PetscDualSpace      trace, fiber;
2359:       PetscDualSpace_Lag *tracel, *fiberl;
2360:       PetscQuadrature     intNodesTrace2, intNodesFiber2, intNodes2;
2361:       PetscLagNodeIndices intNodeIndices2;
2362:       Mat                 intMatTrace, intMatFiber, intMat2;
2363:       PetscInt            traceDegree = formDegree > 0 ? formDegree - 1 : formDegree + 1;
2364:       PetscInt            fiberDegree = formDegree > 0 ? 1 : -1;

2366:       PetscCall(PetscDualSpaceCreateFacetSubspace_Lagrange(sp, NULL, tensorf, traceDegree, Ncopies, PETSC_TRUE, &trace));
2367:       PetscCall(PetscDualSpaceCreateEdgeSubspace_Lagrange(sp, order, fiberDegree, 1, PETSC_TRUE, &fiber));
2368:       tracel = (PetscDualSpace_Lag *)trace->data;
2369:       fiberl = (PetscDualSpace_Lag *)fiber->data;
2370:       if (!lag->vertIndices) PetscCall(PetscLagNodeIndicesCreateTensorVertices(dm, tracel->vertIndices, &lag->vertIndices));
2371:       PetscCall(PetscDualSpaceGetInteriorData(trace, &intNodesTrace2, &intMatTrace));
2372:       PetscCall(PetscDualSpaceGetInteriorData(fiber, &intNodesFiber2, &intMatFiber));
2373:       if (intNodesTrace2 && intNodesFiber2) {
2374:         PetscCall(PetscQuadratureCreateTensor(intNodesTrace2, intNodesFiber2, &intNodes2));
2375:         PetscCall(MatTensorAltV(intMatTrace, intMatFiber, dim - 1, traceDegree, 1, fiberDegree, &intMat2));
2376:         PetscCall(PetscLagNodeIndicesTensor(tracel->intNodeIndices, dim - 1, traceDegree, fiberl->intNodeIndices, 1, fiberDegree, &intNodeIndices2));
2377:         if (!intMat) {
2378:           intMat         = intMat2;
2379:           intNodes       = intNodes2;
2380:           intNodeIndices = intNodeIndices2;
2381:         } else {
2382:           /* merge the matrices, quadrature points, and nodes */
2383:           PetscInt            nM;
2384:           PetscInt            nDof, nDof2;
2385:           PetscInt           *toMerged = NULL, *toMerged2 = NULL;
2386:           PetscQuadrature     merged               = NULL;
2387:           PetscLagNodeIndices intNodeIndicesMerged = NULL;
2388:           Mat                 matMerged            = NULL;

2390:           PetscCall(MatGetSize(intMat, &nDof, NULL));
2391:           PetscCall(MatGetSize(intMat2, &nDof2, NULL));
2392:           PetscCall(PetscQuadraturePointsMerge(intNodes, intNodes2, &merged, &toMerged, &toMerged2));
2393:           PetscCall(PetscQuadratureGetData(merged, NULL, NULL, &nM, NULL, NULL));
2394:           PetscCall(MatricesMerge(intMat, intMat2, dim, formDegree, nM, toMerged, toMerged2, &matMerged));
2395:           PetscCall(PetscLagNodeIndicesMerge(intNodeIndices, intNodeIndices2, &intNodeIndicesMerged));
2396:           PetscCall(PetscFree(toMerged));
2397:           PetscCall(PetscFree(toMerged2));
2398:           PetscCall(MatDestroy(&intMat));
2399:           PetscCall(MatDestroy(&intMat2));
2400:           PetscCall(PetscQuadratureDestroy(&intNodes));
2401:           PetscCall(PetscQuadratureDestroy(&intNodes2));
2402:           PetscCall(PetscLagNodeIndicesDestroy(&intNodeIndices));
2403:           PetscCall(PetscLagNodeIndicesDestroy(&intNodeIndices2));
2404:           intNodes       = merged;
2405:           intMat         = matMerged;
2406:           intNodeIndices = intNodeIndicesMerged;
2407:           if (!trimmed) {
2408:             /* I think users expect that, when a node has a full basis for the k-forms,
2409:              * they should be consecutive dofs.  That isn't the case for trimmed spaces,
2410:              * but is for some of the nodes in untrimmed spaces, so in that case we
2411:              * sort them to group them by node */
2412:             Mat intMatPerm;

2414:             PetscCall(MatPermuteByNodeIdx(intMat, intNodeIndices, &intMatPerm));
2415:             PetscCall(MatDestroy(&intMat));
2416:             intMat = intMatPerm;
2417:           }
2418:         }
2419:       }
2420:       PetscCall(PetscDualSpaceDestroy(&fiber));
2421:       PetscCall(PetscDualSpaceDestroy(&trace));
2422:     }
2423:     PetscCall(PetscQuadratureDestroy(&intNodesTrace));
2424:     PetscCall(PetscQuadratureDestroy(&intNodesFiber));
2425:     sp->intNodes        = intNodes;
2426:     sp->intMat          = intMat;
2427:     lag->intNodeIndices = intNodeIndices;
2428:     {
2429:       PetscInt nDofs = 0;

2431:       if (intMat) PetscCall(MatGetSize(intMat, &nDofs, NULL));
2432:       PetscCall(PetscSectionSetDof(section, 0, nDofs));
2433:     }
2434:     PetscCall(PetscDualSpaceSectionSetUp_Internal(sp, section));
2435:     if (continuous) {
2436:       PetscCall(PetscDualSpaceCreateAllDataFromInteriorData(sp));
2437:       PetscCall(PetscDualSpaceLagrangeCreateAllNodeIdx(sp));
2438:     } else {
2439:       PetscCall(PetscObjectReference((PetscObject)intNodes));
2440:       sp->allNodes = intNodes;
2441:       PetscCall(PetscObjectReference((PetscObject)intMat));
2442:       sp->allMat = intMat;
2443:       PetscCall(PetscLagNodeIndicesReference(intNodeIndices));
2444:       lag->allNodeIndices = intNodeIndices;
2445:     }
2446:   }
2447:   PetscCall(PetscSectionGetStorageSize(section, &sp->spdim));
2448:   PetscCall(PetscSectionGetConstrainedStorageSize(section, &sp->spintdim));
2449:   // TODO: fix this, computing functionals from moments should be no different for nodal vs modal
2450:   if (lag->useMoments) {
2451:     PetscCall(PetscDualSpaceComputeFunctionalsFromAllData_Moments(sp));
2452:   } else {
2453:     PetscCall(PetscDualSpaceComputeFunctionalsFromAllData(sp));
2454:   }
2455:   PetscCall(PetscFree2(pStratStart, pStratEnd));
2456:   PetscCall(DMDestroy(&dmint));
2457:   PetscFunctionReturn(PETSC_SUCCESS);
2458: }

2460: /* Create a matrix that represents the transformation that DMPlexVecGetClosure() would need
2461:  * to get the representation of the dofs for a mesh point if the mesh point had this orientation
2462:  * relative to the cell */
2463: PetscErrorCode PetscDualSpaceCreateInteriorSymmetryMatrix_Lagrange(PetscDualSpace sp, PetscInt ornt, Mat *symMat)
2464: {
2465:   PetscDualSpace_Lag *lag;
2466:   DM                  dm;
2467:   PetscLagNodeIndices vertIndices, intNodeIndices;
2468:   PetscLagNodeIndices ni;
2469:   PetscInt            nodeIdxDim, nodeVecDim, nNodes;
2470:   PetscInt            formDegree;
2471:   PetscInt           *perm, *permOrnt;
2472:   PetscInt           *nnz;
2473:   PetscInt            n;
2474:   PetscInt            maxGroupSize;
2475:   PetscScalar        *V, *W, *work;
2476:   Mat                 A;

2478:   PetscFunctionBegin;
2479:   if (!sp->spintdim) {
2480:     *symMat = NULL;
2481:     PetscFunctionReturn(PETSC_SUCCESS);
2482:   }
2483:   lag            = (PetscDualSpace_Lag *)sp->data;
2484:   vertIndices    = lag->vertIndices;
2485:   intNodeIndices = lag->intNodeIndices;
2486:   PetscCall(PetscDualSpaceGetDM(sp, &dm));
2487:   PetscCall(PetscDualSpaceGetFormDegree(sp, &formDegree));
2488:   PetscCall(PetscNew(&ni));
2489:   ni->refct      = 1;
2490:   ni->nodeIdxDim = nodeIdxDim = intNodeIndices->nodeIdxDim;
2491:   ni->nodeVecDim = nodeVecDim = intNodeIndices->nodeVecDim;
2492:   ni->nNodes = nNodes = intNodeIndices->nNodes;
2493:   PetscCall(PetscMalloc1(nNodes * nodeIdxDim, &ni->nodeIdx));
2494:   PetscCall(PetscMalloc1(nNodes * nodeVecDim, &ni->nodeVec));
2495:   /* push forward the dofs by the symmetry of the reference element induced by ornt */
2496:   PetscCall(PetscLagNodeIndicesPushForward(dm, vertIndices, 0, vertIndices, intNodeIndices, ornt, formDegree, ni->nodeIdx, ni->nodeVec));
2497:   /* get the revlex order for both the original and transformed dofs */
2498:   PetscCall(PetscLagNodeIndicesGetPermutation(intNodeIndices, &perm));
2499:   PetscCall(PetscLagNodeIndicesGetPermutation(ni, &permOrnt));
2500:   PetscCall(PetscMalloc1(nNodes, &nnz));
2501:   for (n = 0, maxGroupSize = 0; n < nNodes;) { /* incremented in the loop */
2502:     PetscInt *nind = &(ni->nodeIdx[permOrnt[n] * nodeIdxDim]);
2503:     PetscInt  m, nEnd;
2504:     PetscInt  groupSize;
2505:     /* for each group of dofs that have the same nodeIdx coordinate */
2506:     for (nEnd = n + 1; nEnd < nNodes; nEnd++) {
2507:       PetscInt *mind = &(ni->nodeIdx[permOrnt[nEnd] * nodeIdxDim]);
2508:       PetscInt  d;

2510:       /* compare the oriented permutation indices */
2511:       for (d = 0; d < nodeIdxDim; d++)
2512:         if (mind[d] != nind[d]) break;
2513:       if (d < nodeIdxDim) break;
2514:     }
2515:     /* permOrnt[[n, nEnd)] is a group of dofs that, under the symmetry are at the same location */

2517:     /* the symmetry had better map the group of dofs with the same permuted nodeIdx
2518:      * to a group of dofs with the same size, otherwise we messed up */
2519:     if (PetscDefined(USE_DEBUG)) {
2520:       PetscInt  m;
2521:       PetscInt *nind = &(intNodeIndices->nodeIdx[perm[n] * nodeIdxDim]);

2523:       for (m = n + 1; m < nEnd; m++) {
2524:         PetscInt *mind = &(intNodeIndices->nodeIdx[perm[m] * nodeIdxDim]);
2525:         PetscInt  d;

2527:         /* compare the oriented permutation indices */
2528:         for (d = 0; d < nodeIdxDim; d++)
2529:           if (mind[d] != nind[d]) break;
2530:         if (d < nodeIdxDim) break;
2531:       }
2532:       PetscCheck(m >= nEnd, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Dofs with same index after symmetry not same block size");
2533:     }
2534:     groupSize = nEnd - n;
2535:     /* each pushforward dof vector will be expressed in a basis of the unpermuted dofs */
2536:     for (m = n; m < nEnd; m++) nnz[permOrnt[m]] = groupSize;

2538:     maxGroupSize = PetscMax(maxGroupSize, nEnd - n);
2539:     n            = nEnd;
2540:   }
2541:   PetscCheck(maxGroupSize <= nodeVecDim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Dofs are not in blocks that can be solved");
2542:   PetscCall(MatCreateSeqAIJ(PETSC_COMM_SELF, nNodes, nNodes, 0, nnz, &A));
2543:   PetscCall(PetscObjectSetOptionsPrefix((PetscObject)A, "lag_"));
2544:   PetscCall(PetscFree(nnz));
2545:   PetscCall(PetscMalloc3(maxGroupSize * nodeVecDim, &V, maxGroupSize * nodeVecDim, &W, nodeVecDim * 2, &work));
2546:   for (n = 0; n < nNodes;) { /* incremented in the loop */
2547:     PetscInt *nind = &(ni->nodeIdx[permOrnt[n] * nodeIdxDim]);
2548:     PetscInt  nEnd;
2549:     PetscInt  m;
2550:     PetscInt  groupSize;
2551:     for (nEnd = n + 1; nEnd < nNodes; nEnd++) {
2552:       PetscInt *mind = &(ni->nodeIdx[permOrnt[nEnd] * nodeIdxDim]);
2553:       PetscInt  d;

2555:       /* compare the oriented permutation indices */
2556:       for (d = 0; d < nodeIdxDim; d++)
2557:         if (mind[d] != nind[d]) break;
2558:       if (d < nodeIdxDim) break;
2559:     }
2560:     groupSize = nEnd - n;
2561:     /* get all of the vectors from the original and all of the pushforward vectors */
2562:     for (m = n; m < nEnd; m++) {
2563:       PetscInt d;

2565:       for (d = 0; d < nodeVecDim; d++) {
2566:         V[(m - n) * nodeVecDim + d] = intNodeIndices->nodeVec[perm[m] * nodeVecDim + d];
2567:         W[(m - n) * nodeVecDim + d] = ni->nodeVec[permOrnt[m] * nodeVecDim + d];
2568:       }
2569:     }
2570:     /* now we have to solve for W in terms of V: the systems isn't always square, but the span
2571:      * of V and W should always be the same, so the solution of the normal equations works */
2572:     {
2573:       char         transpose = 'N';
2574:       PetscBLASInt bm        = nodeVecDim;
2575:       PetscBLASInt bn        = groupSize;
2576:       PetscBLASInt bnrhs     = groupSize;
2577:       PetscBLASInt blda      = bm;
2578:       PetscBLASInt bldb      = bm;
2579:       PetscBLASInt blwork    = 2 * nodeVecDim;
2580:       PetscBLASInt info;

2582:       PetscCallBLAS("LAPACKgels", LAPACKgels_(&transpose, &bm, &bn, &bnrhs, V, &blda, W, &bldb, work, &blwork, &info));
2583:       PetscCheck(info == 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Bad argument to GELS");
2584:       /* repack */
2585:       {
2586:         PetscInt i, j;

2588:         for (i = 0; i < groupSize; i++) {
2589:           for (j = 0; j < groupSize; j++) {
2590:             /* notice the different leading dimension */
2591:             V[i * groupSize + j] = W[i * nodeVecDim + j];
2592:           }
2593:         }
2594:       }
2595:       if (PetscDefined(USE_DEBUG)) {
2596:         PetscReal res;

2598:         /* check that the normal error is 0 */
2599:         for (m = n; m < nEnd; m++) {
2600:           PetscInt d;

2602:           for (d = 0; d < nodeVecDim; d++) W[(m - n) * nodeVecDim + d] = ni->nodeVec[permOrnt[m] * nodeVecDim + d];
2603:         }
2604:         res = 0.;
2605:         for (PetscInt i = 0; i < groupSize; i++) {
2606:           for (PetscInt j = 0; j < nodeVecDim; j++) {
2607:             for (PetscInt k = 0; k < groupSize; k++) W[i * nodeVecDim + j] -= V[i * groupSize + k] * intNodeIndices->nodeVec[perm[n + k] * nodeVecDim + j];
2608:             res += PetscAbsScalar(W[i * nodeVecDim + j]);
2609:           }
2610:         }
2611:         PetscCheck(res <= PETSC_SMALL, PETSC_COMM_SELF, PETSC_ERR_LIB, "Dof block did not solve");
2612:       }
2613:     }
2614:     PetscCall(MatSetValues(A, groupSize, &permOrnt[n], groupSize, &perm[n], V, INSERT_VALUES));
2615:     n = nEnd;
2616:   }
2617:   PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
2618:   PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
2619:   *symMat = A;
2620:   PetscCall(PetscFree3(V, W, work));
2621:   PetscCall(PetscLagNodeIndicesDestroy(&ni));
2622:   PetscFunctionReturn(PETSC_SUCCESS);
2623: }

2625: // get the symmetries of closure points
2626: PETSC_INTERN PetscErrorCode PetscDualSpaceGetBoundarySymmetries_Internal(PetscDualSpace sp, PetscInt ***symperms, PetscScalar ***symflips)
2627: {
2628:   PetscInt  closureSize = 0;
2629:   PetscInt *closure     = NULL;
2630:   PetscInt  r;

2632:   PetscFunctionBegin;
2633:   PetscCall(DMPlexGetTransitiveClosure(sp->dm, 0, PETSC_TRUE, &closureSize, &closure));
2634:   for (r = 0; r < closureSize; r++) {
2635:     PetscDualSpace       psp;
2636:     PetscInt             point = closure[2 * r];
2637:     PetscInt             pspintdim;
2638:     const PetscInt    ***psymperms = NULL;
2639:     const PetscScalar ***psymflips = NULL;

2641:     if (!point) continue;
2642:     PetscCall(PetscDualSpaceGetPointSubspace(sp, point, &psp));
2643:     if (!psp) continue;
2644:     PetscCall(PetscDualSpaceGetInteriorDimension(psp, &pspintdim));
2645:     if (!pspintdim) continue;
2646:     PetscCall(PetscDualSpaceGetSymmetries(psp, &psymperms, &psymflips));
2647:     symperms[r] = (PetscInt **)(psymperms ? psymperms[0] : NULL);
2648:     symflips[r] = (PetscScalar **)(psymflips ? psymflips[0] : NULL);
2649:   }
2650:   PetscCall(DMPlexRestoreTransitiveClosure(sp->dm, 0, PETSC_TRUE, &closureSize, &closure));
2651:   PetscFunctionReturn(PETSC_SUCCESS);
2652: }

2654: #define BaryIndex(perEdge, a, b, c) (((b) * (2 * perEdge + 1 - (b))) / 2) + (c)

2656: #define CartIndex(perEdge, a, b) (perEdge * (a) + b)

2658: /* the existing interface for symmetries is insufficient for all cases:
2659:  * - it should be sufficient for form degrees that are scalar (0 and n)
2660:  * - it should be sufficient for hypercube dofs
2661:  * - it isn't sufficient for simplex cells with non-scalar form degrees if
2662:  *   there are any dofs in the interior
2663:  *
2664:  * We compute the general transformation matrices, and if they fit, we return them,
2665:  * otherwise we error (but we should probably change the interface to allow for
2666:  * these symmetries)
2667:  */
2668: static PetscErrorCode PetscDualSpaceGetSymmetries_Lagrange(PetscDualSpace sp, const PetscInt ****perms, const PetscScalar ****flips)
2669: {
2670:   PetscDualSpace_Lag *lag = (PetscDualSpace_Lag *)sp->data;
2671:   PetscInt            dim, order, Nc;

2673:   PetscFunctionBegin;
2674:   PetscCall(PetscDualSpaceGetOrder(sp, &order));
2675:   PetscCall(PetscDualSpaceGetNumComponents(sp, &Nc));
2676:   PetscCall(DMGetDimension(sp->dm, &dim));
2677:   if (!lag->symComputed) { /* store symmetries */
2678:     PetscInt       pStart, pEnd, p;
2679:     PetscInt       numPoints;
2680:     PetscInt       numFaces;
2681:     PetscInt       spintdim;
2682:     PetscInt    ***symperms;
2683:     PetscScalar ***symflips;

2685:     PetscCall(DMPlexGetChart(sp->dm, &pStart, &pEnd));
2686:     numPoints = pEnd - pStart;
2687:     {
2688:       DMPolytopeType ct;
2689:       /* The number of arrangements is no longer based on the number of faces */
2690:       PetscCall(DMPlexGetCellType(sp->dm, 0, &ct));
2691:       numFaces = DMPolytopeTypeGetNumArrangements(ct) / 2;
2692:     }
2693:     PetscCall(PetscCalloc1(numPoints, &symperms));
2694:     PetscCall(PetscCalloc1(numPoints, &symflips));
2695:     spintdim = sp->spintdim;
2696:     /* The nodal symmetry behavior is not present when tensorSpace != tensorCell: someone might want this for the "S"
2697:      * family of FEEC spaces.  Most used in particular are discontinuous polynomial L2 spaces in tensor cells, where
2698:      * the symmetries are not necessary for FE assembly.  So for now we assume this is the case and don't return
2699:      * symmetries if tensorSpace != tensorCell */
2700:     if (spintdim && 0 < dim && dim < 3 && (lag->tensorSpace == lag->tensorCell)) { /* compute self symmetries */
2701:       PetscInt    **cellSymperms;
2702:       PetscScalar **cellSymflips;
2703:       PetscInt      ornt;
2704:       PetscInt      nCopies = Nc / lag->intNodeIndices->nodeVecDim;
2705:       PetscInt      nNodes  = lag->intNodeIndices->nNodes;

2707:       lag->numSelfSym = 2 * numFaces;
2708:       lag->selfSymOff = numFaces;
2709:       PetscCall(PetscCalloc1(2 * numFaces, &cellSymperms));
2710:       PetscCall(PetscCalloc1(2 * numFaces, &cellSymflips));
2711:       /* we want to be able to index symmetries directly with the orientations, which range from [-numFaces,numFaces) */
2712:       symperms[0] = &cellSymperms[numFaces];
2713:       symflips[0] = &cellSymflips[numFaces];
2714:       PetscCheck(lag->intNodeIndices->nodeVecDim * nCopies == Nc, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Node indices incompatible with dofs");
2715:       PetscCheck(nNodes * nCopies == spintdim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Node indices incompatible with dofs");
2716:       for (ornt = -numFaces; ornt < numFaces; ornt++) { /* for every symmetry, compute the symmetry matrix, and extract rows to see if it fits in the perm + flip framework */
2717:         Mat          symMat;
2718:         PetscInt    *perm;
2719:         PetscScalar *flips;
2720:         PetscInt     i;

2722:         if (!ornt) continue;
2723:         PetscCall(PetscMalloc1(spintdim, &perm));
2724:         PetscCall(PetscCalloc1(spintdim, &flips));
2725:         for (i = 0; i < spintdim; i++) perm[i] = -1;
2726:         PetscCall(PetscDualSpaceCreateInteriorSymmetryMatrix_Lagrange(sp, ornt, &symMat));
2727:         for (i = 0; i < nNodes; i++) {
2728:           PetscInt           ncols;
2729:           PetscInt           j, k;
2730:           const PetscInt    *cols;
2731:           const PetscScalar *vals;
2732:           PetscBool          nz_seen = PETSC_FALSE;

2734:           PetscCall(MatGetRow(symMat, i, &ncols, &cols, &vals));
2735:           for (j = 0; j < ncols; j++) {
2736:             if (PetscAbsScalar(vals[j]) > PETSC_SMALL) {
2737:               PetscCheck(!nz_seen, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "This dual space has symmetries that can't be described as a permutation + sign flips");
2738:               nz_seen = PETSC_TRUE;
2739:               PetscCheck(PetscAbsReal(PetscAbsScalar(vals[j]) - PetscRealConstant(1.)) <= PETSC_SMALL, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "This dual space has symmetries that can't be described as a permutation + sign flips");
2740:               PetscCheck(PetscAbsReal(PetscImaginaryPart(vals[j])) <= PETSC_SMALL, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "This dual space has symmetries that can't be described as a permutation + sign flips");
2741:               PetscCheck(perm[cols[j] * nCopies] < 0, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "This dual space has symmetries that can't be described as a permutation + sign flips");
2742:               for (k = 0; k < nCopies; k++) perm[cols[j] * nCopies + k] = i * nCopies + k;
2743:               if (PetscRealPart(vals[j]) < 0.) {
2744:                 for (k = 0; k < nCopies; k++) flips[i * nCopies + k] = -1.;
2745:               } else {
2746:                 for (k = 0; k < nCopies; k++) flips[i * nCopies + k] = 1.;
2747:               }
2748:             }
2749:           }
2750:           PetscCall(MatRestoreRow(symMat, i, &ncols, &cols, &vals));
2751:         }
2752:         PetscCall(MatDestroy(&symMat));
2753:         /* if there were no sign flips, keep NULL */
2754:         for (i = 0; i < spintdim; i++)
2755:           if (flips[i] != 1.) break;
2756:         if (i == spintdim) {
2757:           PetscCall(PetscFree(flips));
2758:           flips = NULL;
2759:         }
2760:         /* if the permutation is identity, keep NULL */
2761:         for (i = 0; i < spintdim; i++)
2762:           if (perm[i] != i) break;
2763:         if (i == spintdim) {
2764:           PetscCall(PetscFree(perm));
2765:           perm = NULL;
2766:         }
2767:         symperms[0][ornt] = perm;
2768:         symflips[0][ornt] = flips;
2769:       }
2770:       /* if no orientations produced non-identity permutations, keep NULL */
2771:       for (ornt = -numFaces; ornt < numFaces; ornt++)
2772:         if (symperms[0][ornt]) break;
2773:       if (ornt == numFaces) {
2774:         PetscCall(PetscFree(cellSymperms));
2775:         symperms[0] = NULL;
2776:       }
2777:       /* if no orientations produced sign flips, keep NULL */
2778:       for (ornt = -numFaces; ornt < numFaces; ornt++)
2779:         if (symflips[0][ornt]) break;
2780:       if (ornt == numFaces) {
2781:         PetscCall(PetscFree(cellSymflips));
2782:         symflips[0] = NULL;
2783:       }
2784:     }
2785:     PetscCall(PetscDualSpaceGetBoundarySymmetries_Internal(sp, symperms, symflips));
2786:     for (p = 0; p < pEnd; p++)
2787:       if (symperms[p]) break;
2788:     if (p == pEnd) {
2789:       PetscCall(PetscFree(symperms));
2790:       symperms = NULL;
2791:     }
2792:     for (p = 0; p < pEnd; p++)
2793:       if (symflips[p]) break;
2794:     if (p == pEnd) {
2795:       PetscCall(PetscFree(symflips));
2796:       symflips = NULL;
2797:     }
2798:     lag->symperms    = symperms;
2799:     lag->symflips    = symflips;
2800:     lag->symComputed = PETSC_TRUE;
2801:   }
2802:   if (perms) *perms = (const PetscInt ***)lag->symperms;
2803:   if (flips) *flips = (const PetscScalar ***)lag->symflips;
2804:   PetscFunctionReturn(PETSC_SUCCESS);
2805: }

2807: static PetscErrorCode PetscDualSpaceLagrangeGetContinuity_Lagrange(PetscDualSpace sp, PetscBool *continuous)
2808: {
2809:   PetscDualSpace_Lag *lag = (PetscDualSpace_Lag *)sp->data;

2811:   PetscFunctionBegin;
2813:   PetscAssertPointer(continuous, 2);
2814:   *continuous = lag->continuous;
2815:   PetscFunctionReturn(PETSC_SUCCESS);
2816: }

2818: static PetscErrorCode PetscDualSpaceLagrangeSetContinuity_Lagrange(PetscDualSpace sp, PetscBool continuous)
2819: {
2820:   PetscDualSpace_Lag *lag = (PetscDualSpace_Lag *)sp->data;

2822:   PetscFunctionBegin;
2824:   lag->continuous = continuous;
2825:   PetscFunctionReturn(PETSC_SUCCESS);
2826: }

2828: /*@
2829:   PetscDualSpaceLagrangeGetContinuity - Retrieves the flag for element continuity

2831:   Not Collective

2833:   Input Parameter:
2834: . sp - the `PetscDualSpace`

2836:   Output Parameter:
2837: . continuous - flag for element continuity

2839:   Level: intermediate

2841: .seealso: `PETSCDUALSPACELAGRANGE`, `PetscDualSpace`, `PetscDualSpaceLagrangeSetContinuity()`
2842: @*/
2843: PetscErrorCode PetscDualSpaceLagrangeGetContinuity(PetscDualSpace sp, PetscBool *continuous)
2844: {
2845:   PetscFunctionBegin;
2847:   PetscAssertPointer(continuous, 2);
2848:   PetscTryMethod(sp, "PetscDualSpaceLagrangeGetContinuity_C", (PetscDualSpace, PetscBool *), (sp, continuous));
2849:   PetscFunctionReturn(PETSC_SUCCESS);
2850: }

2852: /*@
2853:   PetscDualSpaceLagrangeSetContinuity - Indicate whether the element is continuous

2855:   Logically Collective

2857:   Input Parameters:
2858: + sp         - the `PetscDualSpace`
2859: - continuous - flag for element continuity

2861:   Options Database Key:
2862: . -petscdualspace_lagrange_continuity <bool> - use a continuous element

2864:   Level: intermediate

2866: .seealso: `PETSCDUALSPACELAGRANGE`, `PetscDualSpace`, `PetscDualSpaceLagrangeGetContinuity()`
2867: @*/
2868: PetscErrorCode PetscDualSpaceLagrangeSetContinuity(PetscDualSpace sp, PetscBool continuous)
2869: {
2870:   PetscFunctionBegin;
2873:   PetscTryMethod(sp, "PetscDualSpaceLagrangeSetContinuity_C", (PetscDualSpace, PetscBool), (sp, continuous));
2874:   PetscFunctionReturn(PETSC_SUCCESS);
2875: }

2877: static PetscErrorCode PetscDualSpaceLagrangeGetTensor_Lagrange(PetscDualSpace sp, PetscBool *tensor)
2878: {
2879:   PetscDualSpace_Lag *lag = (PetscDualSpace_Lag *)sp->data;

2881:   PetscFunctionBegin;
2882:   *tensor = lag->tensorSpace;
2883:   PetscFunctionReturn(PETSC_SUCCESS);
2884: }

2886: static PetscErrorCode PetscDualSpaceLagrangeSetTensor_Lagrange(PetscDualSpace sp, PetscBool tensor)
2887: {
2888:   PetscDualSpace_Lag *lag = (PetscDualSpace_Lag *)sp->data;

2890:   PetscFunctionBegin;
2891:   lag->tensorSpace = tensor;
2892:   PetscFunctionReturn(PETSC_SUCCESS);
2893: }

2895: static PetscErrorCode PetscDualSpaceLagrangeGetTrimmed_Lagrange(PetscDualSpace sp, PetscBool *trimmed)
2896: {
2897:   PetscDualSpace_Lag *lag = (PetscDualSpace_Lag *)sp->data;

2899:   PetscFunctionBegin;
2900:   *trimmed = lag->trimmed;
2901:   PetscFunctionReturn(PETSC_SUCCESS);
2902: }

2904: static PetscErrorCode PetscDualSpaceLagrangeSetTrimmed_Lagrange(PetscDualSpace sp, PetscBool trimmed)
2905: {
2906:   PetscDualSpace_Lag *lag = (PetscDualSpace_Lag *)sp->data;

2908:   PetscFunctionBegin;
2909:   lag->trimmed = trimmed;
2910:   PetscFunctionReturn(PETSC_SUCCESS);
2911: }

2913: static PetscErrorCode PetscDualSpaceLagrangeGetNodeType_Lagrange(PetscDualSpace sp, PetscDTNodeType *nodeType, PetscBool *boundary, PetscReal *exponent)
2914: {
2915:   PetscDualSpace_Lag *lag = (PetscDualSpace_Lag *)sp->data;

2917:   PetscFunctionBegin;
2918:   if (nodeType) *nodeType = lag->nodeType;
2919:   if (boundary) *boundary = lag->endNodes;
2920:   if (exponent) *exponent = lag->nodeExponent;
2921:   PetscFunctionReturn(PETSC_SUCCESS);
2922: }

2924: static PetscErrorCode PetscDualSpaceLagrangeSetNodeType_Lagrange(PetscDualSpace sp, PetscDTNodeType nodeType, PetscBool boundary, PetscReal exponent)
2925: {
2926:   PetscDualSpace_Lag *lag = (PetscDualSpace_Lag *)sp->data;

2928:   PetscFunctionBegin;
2929:   PetscCheck(nodeType != PETSCDTNODES_GAUSSJACOBI || exponent > -1., PetscObjectComm((PetscObject)sp), PETSC_ERR_ARG_OUTOFRANGE, "Exponent must be > -1");
2930:   lag->nodeType     = nodeType;
2931:   lag->endNodes     = boundary;
2932:   lag->nodeExponent = exponent;
2933:   PetscFunctionReturn(PETSC_SUCCESS);
2934: }

2936: static PetscErrorCode PetscDualSpaceLagrangeGetUseMoments_Lagrange(PetscDualSpace sp, PetscBool *useMoments)
2937: {
2938:   PetscDualSpace_Lag *lag = (PetscDualSpace_Lag *)sp->data;

2940:   PetscFunctionBegin;
2941:   *useMoments = lag->useMoments;
2942:   PetscFunctionReturn(PETSC_SUCCESS);
2943: }

2945: static PetscErrorCode PetscDualSpaceLagrangeSetUseMoments_Lagrange(PetscDualSpace sp, PetscBool useMoments)
2946: {
2947:   PetscDualSpace_Lag *lag = (PetscDualSpace_Lag *)sp->data;

2949:   PetscFunctionBegin;
2950:   lag->useMoments = useMoments;
2951:   PetscFunctionReturn(PETSC_SUCCESS);
2952: }

2954: static PetscErrorCode PetscDualSpaceLagrangeGetMomentOrder_Lagrange(PetscDualSpace sp, PetscInt *momentOrder)
2955: {
2956:   PetscDualSpace_Lag *lag = (PetscDualSpace_Lag *)sp->data;

2958:   PetscFunctionBegin;
2959:   *momentOrder = lag->momentOrder;
2960:   PetscFunctionReturn(PETSC_SUCCESS);
2961: }

2963: static PetscErrorCode PetscDualSpaceLagrangeSetMomentOrder_Lagrange(PetscDualSpace sp, PetscInt momentOrder)
2964: {
2965:   PetscDualSpace_Lag *lag = (PetscDualSpace_Lag *)sp->data;

2967:   PetscFunctionBegin;
2968:   lag->momentOrder = momentOrder;
2969:   PetscFunctionReturn(PETSC_SUCCESS);
2970: }

2972: /*@
2973:   PetscDualSpaceLagrangeGetTensor - Get the tensor nature of the dual space

2975:   Not Collective

2977:   Input Parameter:
2978: . sp - The `PetscDualSpace`

2980:   Output Parameter:
2981: . tensor - Whether the dual space has tensor layout (vs. simplicial)

2983:   Level: intermediate

2985: .seealso: `PETSCDUALSPACELAGRANGE`, `PetscDualSpace`, `PetscDualSpaceLagrangeSetTensor()`, `PetscDualSpaceCreate()`
2986: @*/
2987: PetscErrorCode PetscDualSpaceLagrangeGetTensor(PetscDualSpace sp, PetscBool *tensor)
2988: {
2989:   PetscFunctionBegin;
2991:   PetscAssertPointer(tensor, 2);
2992:   PetscTryMethod(sp, "PetscDualSpaceLagrangeGetTensor_C", (PetscDualSpace, PetscBool *), (sp, tensor));
2993:   PetscFunctionReturn(PETSC_SUCCESS);
2994: }

2996: /*@
2997:   PetscDualSpaceLagrangeSetTensor - Set the tensor nature of the dual space

2999:   Not Collective

3001:   Input Parameters:
3002: + sp     - The `PetscDualSpace`
3003: - tensor - Whether the dual space has tensor layout (vs. simplicial)

3005:   Level: intermediate

3007: .seealso: `PETSCDUALSPACELAGRANGE`, `PetscDualSpace`, `PetscDualSpaceLagrangeGetTensor()`, `PetscDualSpaceCreate()`
3008: @*/
3009: PetscErrorCode PetscDualSpaceLagrangeSetTensor(PetscDualSpace sp, PetscBool tensor)
3010: {
3011:   PetscFunctionBegin;
3013:   PetscTryMethod(sp, "PetscDualSpaceLagrangeSetTensor_C", (PetscDualSpace, PetscBool), (sp, tensor));
3014:   PetscFunctionReturn(PETSC_SUCCESS);
3015: }

3017: /*@
3018:   PetscDualSpaceLagrangeGetTrimmed - Get the trimmed nature of the dual space

3020:   Not Collective

3022:   Input Parameter:
3023: . sp - The `PetscDualSpace`

3025:   Output Parameter:
3026: . trimmed - Whether the dual space represents to dual basis of a trimmed polynomial space (e.g. Raviart-Thomas and higher order / other form degree variants)

3028:   Level: intermediate

3030: .seealso: `PETSCDUALSPACELAGRANGE`, `PetscDualSpace`, `PetscDualSpaceLagrangeSetTrimmed()`, `PetscDualSpaceCreate()`
3031: @*/
3032: PetscErrorCode PetscDualSpaceLagrangeGetTrimmed(PetscDualSpace sp, PetscBool *trimmed)
3033: {
3034:   PetscFunctionBegin;
3036:   PetscAssertPointer(trimmed, 2);
3037:   PetscTryMethod(sp, "PetscDualSpaceLagrangeGetTrimmed_C", (PetscDualSpace, PetscBool *), (sp, trimmed));
3038:   PetscFunctionReturn(PETSC_SUCCESS);
3039: }

3041: /*@
3042:   PetscDualSpaceLagrangeSetTrimmed - Set the trimmed nature of the dual space

3044:   Not Collective

3046:   Input Parameters:
3047: + sp      - The `PetscDualSpace`
3048: - trimmed - Whether the dual space represents to dual basis of a trimmed polynomial space (e.g. Raviart-Thomas and higher order / other form degree variants)

3050:   Level: intermediate

3052: .seealso: `PETSCDUALSPACELAGRANGE`, `PetscDualSpace`, `PetscDualSpaceLagrangeGetTrimmed()`, `PetscDualSpaceCreate()`
3053: @*/
3054: PetscErrorCode PetscDualSpaceLagrangeSetTrimmed(PetscDualSpace sp, PetscBool trimmed)
3055: {
3056:   PetscFunctionBegin;
3058:   PetscTryMethod(sp, "PetscDualSpaceLagrangeSetTrimmed_C", (PetscDualSpace, PetscBool), (sp, trimmed));
3059:   PetscFunctionReturn(PETSC_SUCCESS);
3060: }

3062: /*@
3063:   PetscDualSpaceLagrangeGetNodeType - Get a description of how nodes are laid out for Lagrange polynomials in this
3064:   dual space

3066:   Not Collective

3068:   Input Parameter:
3069: . sp - The `PetscDualSpace`

3071:   Output Parameters:
3072: + nodeType - The type of nodes
3073: . boundary - Whether the node type is one that includes endpoints (if nodeType is `PETSCDTNODES_GAUSSJACOBI`, nodes that
3074:              include the boundary are Gauss-Lobatto-Jacobi nodes)
3075: - exponent - If nodeType is `PETSCDTNODES_GAUSJACOBI`, indicates the exponent used for both ends of the 1D Jacobi weight function
3076:              '0' is Gauss-Legendre, '-0.5' is Gauss-Chebyshev of the first type, '0.5' is Gauss-Chebyshev of the second type

3078:   Level: advanced

3080: .seealso: `PETSCDUALSPACELAGRANGE`, `PetscDualSpace`, `PetscDTNodeType`, `PetscDualSpaceLagrangeSetNodeType()`
3081: @*/
3082: PetscErrorCode PetscDualSpaceLagrangeGetNodeType(PetscDualSpace sp, PetscDTNodeType *nodeType, PetscBool *boundary, PetscReal *exponent)
3083: {
3084:   PetscFunctionBegin;
3086:   if (nodeType) PetscAssertPointer(nodeType, 2);
3087:   if (boundary) PetscAssertPointer(boundary, 3);
3088:   if (exponent) PetscAssertPointer(exponent, 4);
3089:   PetscTryMethod(sp, "PetscDualSpaceLagrangeGetNodeType_C", (PetscDualSpace, PetscDTNodeType *, PetscBool *, PetscReal *), (sp, nodeType, boundary, exponent));
3090:   PetscFunctionReturn(PETSC_SUCCESS);
3091: }

3093: /*@
3094:   PetscDualSpaceLagrangeSetNodeType - Set a description of how nodes are laid out for Lagrange polynomials in this
3095:   dual space

3097:   Logically Collective

3099:   Input Parameters:
3100: + sp       - The `PetscDualSpace`
3101: . nodeType - The type of nodes
3102: . boundary - Whether the node type is one that includes endpoints (if nodeType is `PETSCDTNODES_GAUSSJACOBI`, nodes that
3103:              include the boundary are Gauss-Lobatto-Jacobi nodes)
3104: - exponent - If nodeType is `PETSCDTNODES_GAUSJACOBI`, indicates the exponent used for both ends of the 1D Jacobi weight function
3105:              '0' is Gauss-Legendre, '-0.5' is Gauss-Chebyshev of the first type, '0.5' is Gauss-Chebyshev of the second type

3107:   Level: advanced

3109: .seealso: `PETSCDUALSPACELAGRANGE`, `PetscDualSpace`, `PetscDTNodeType`, `PetscDualSpaceLagrangeGetNodeType()`
3110: @*/
3111: PetscErrorCode PetscDualSpaceLagrangeSetNodeType(PetscDualSpace sp, PetscDTNodeType nodeType, PetscBool boundary, PetscReal exponent)
3112: {
3113:   PetscFunctionBegin;
3115:   PetscTryMethod(sp, "PetscDualSpaceLagrangeSetNodeType_C", (PetscDualSpace, PetscDTNodeType, PetscBool, PetscReal), (sp, nodeType, boundary, exponent));
3116:   PetscFunctionReturn(PETSC_SUCCESS);
3117: }

3119: /*@
3120:   PetscDualSpaceLagrangeGetUseMoments - Get the flag for using moment functionals

3122:   Not Collective

3124:   Input Parameter:
3125: . sp - The `PetscDualSpace`

3127:   Output Parameter:
3128: . useMoments - Moment flag

3130:   Level: advanced

3132: .seealso: `PETSCDUALSPACELAGRANGE`, `PetscDualSpace`, `PetscDualSpaceLagrangeSetUseMoments()`
3133: @*/
3134: PetscErrorCode PetscDualSpaceLagrangeGetUseMoments(PetscDualSpace sp, PetscBool *useMoments)
3135: {
3136:   PetscFunctionBegin;
3138:   PetscAssertPointer(useMoments, 2);
3139:   PetscUseMethod(sp, "PetscDualSpaceLagrangeGetUseMoments_C", (PetscDualSpace, PetscBool *), (sp, useMoments));
3140:   PetscFunctionReturn(PETSC_SUCCESS);
3141: }

3143: /*@
3144:   PetscDualSpaceLagrangeSetUseMoments - Set the flag for moment functionals

3146:   Logically Collective

3148:   Input Parameters:
3149: + sp         - The `PetscDualSpace`
3150: - useMoments - The flag for moment functionals

3152:   Level: advanced

3154: .seealso: `PETSCDUALSPACELAGRANGE`, `PetscDualSpace`, `PetscDualSpaceLagrangeGetUseMoments()`
3155: @*/
3156: PetscErrorCode PetscDualSpaceLagrangeSetUseMoments(PetscDualSpace sp, PetscBool useMoments)
3157: {
3158:   PetscFunctionBegin;
3160:   PetscTryMethod(sp, "PetscDualSpaceLagrangeSetUseMoments_C", (PetscDualSpace, PetscBool), (sp, useMoments));
3161:   PetscFunctionReturn(PETSC_SUCCESS);
3162: }

3164: /*@
3165:   PetscDualSpaceLagrangeGetMomentOrder - Get the order for moment integration

3167:   Not Collective

3169:   Input Parameter:
3170: . sp - The `PetscDualSpace`

3172:   Output Parameter:
3173: . order - Moment integration order

3175:   Level: advanced

3177: .seealso: `PETSCDUALSPACELAGRANGE`, `PetscDualSpace`, `PetscDualSpaceLagrangeSetMomentOrder()`
3178: @*/
3179: PetscErrorCode PetscDualSpaceLagrangeGetMomentOrder(PetscDualSpace sp, PetscInt *order)
3180: {
3181:   PetscFunctionBegin;
3183:   PetscAssertPointer(order, 2);
3184:   PetscUseMethod(sp, "PetscDualSpaceLagrangeGetMomentOrder_C", (PetscDualSpace, PetscInt *), (sp, order));
3185:   PetscFunctionReturn(PETSC_SUCCESS);
3186: }

3188: /*@
3189:   PetscDualSpaceLagrangeSetMomentOrder - Set the order for moment integration

3191:   Logically Collective

3193:   Input Parameters:
3194: + sp    - The `PetscDualSpace`
3195: - order - The order for moment integration

3197:   Level: advanced

3199: .seealso: `PETSCDUALSPACELAGRANGE`, `PetscDualSpace`, `PetscDualSpaceLagrangeGetMomentOrder()`
3200: @*/
3201: PetscErrorCode PetscDualSpaceLagrangeSetMomentOrder(PetscDualSpace sp, PetscInt order)
3202: {
3203:   PetscFunctionBegin;
3205:   PetscTryMethod(sp, "PetscDualSpaceLagrangeSetMomentOrder_C", (PetscDualSpace, PetscInt), (sp, order));
3206:   PetscFunctionReturn(PETSC_SUCCESS);
3207: }

3209: static PetscErrorCode PetscDualSpaceInitialize_Lagrange(PetscDualSpace sp)
3210: {
3211:   PetscFunctionBegin;
3212:   sp->ops->destroy              = PetscDualSpaceDestroy_Lagrange;
3213:   sp->ops->view                 = PetscDualSpaceView_Lagrange;
3214:   sp->ops->setfromoptions       = PetscDualSpaceSetFromOptions_Lagrange;
3215:   sp->ops->duplicate            = PetscDualSpaceDuplicate_Lagrange;
3216:   sp->ops->setup                = PetscDualSpaceSetUp_Lagrange;
3217:   sp->ops->createheightsubspace = NULL;
3218:   sp->ops->createpointsubspace  = NULL;
3219:   sp->ops->getsymmetries        = PetscDualSpaceGetSymmetries_Lagrange;
3220:   sp->ops->apply                = PetscDualSpaceApplyDefault;
3221:   sp->ops->applyall             = PetscDualSpaceApplyAllDefault;
3222:   sp->ops->applyint             = PetscDualSpaceApplyInteriorDefault;
3223:   sp->ops->createalldata        = PetscDualSpaceCreateAllDataDefault;
3224:   sp->ops->createintdata        = PetscDualSpaceCreateInteriorDataDefault;
3225:   PetscFunctionReturn(PETSC_SUCCESS);
3226: }

3228: /*MC
3229:   PETSCDUALSPACELAGRANGE = "lagrange" - A `PetscDualSpaceType` that encapsulates a dual space of pointwise evaluation functionals

3231:   Level: intermediate

3233:   Developer Note:
3234:   This `PetscDualSpace` seems to manage directly trimmed and untrimmed polynomials as well as tensor and non-tensor polynomials while for `PetscSpace` there seems to
3235:   be different `PetscSpaceType` for them.

3237: .seealso: `PetscDualSpace`, `PetscDualSpaceType`, `PetscDualSpaceCreate()`, `PetscDualSpaceSetType()`,
3238:           `PetscDualSpaceLagrangeSetMomentOrder()`, `PetscDualSpaceLagrangeGetMomentOrder()`, `PetscDualSpaceLagrangeSetUseMoments()`, `PetscDualSpaceLagrangeGetUseMoments()`,
3239:           `PetscDualSpaceLagrangeSetNodeType, PetscDualSpaceLagrangeGetNodeType, PetscDualSpaceLagrangeGetContinuity, PetscDualSpaceLagrangeSetContinuity,
3240:           `PetscDualSpaceLagrangeGetTensor()`, `PetscDualSpaceLagrangeSetTensor()`, `PetscDualSpaceLagrangeGetTrimmed()`, `PetscDualSpaceLagrangeSetTrimmed()`
3241: M*/
3242: PETSC_EXTERN PetscErrorCode PetscDualSpaceCreate_Lagrange(PetscDualSpace sp)
3243: {
3244:   PetscDualSpace_Lag *lag;

3246:   PetscFunctionBegin;
3248:   PetscCall(PetscNew(&lag));
3249:   sp->data = lag;

3251:   lag->tensorCell  = PETSC_FALSE;
3252:   lag->tensorSpace = PETSC_FALSE;
3253:   lag->continuous  = PETSC_TRUE;
3254:   lag->numCopies   = PETSC_DEFAULT;
3255:   lag->numNodeSkip = PETSC_DEFAULT;
3256:   lag->nodeType    = PETSCDTNODES_DEFAULT;
3257:   lag->useMoments  = PETSC_FALSE;
3258:   lag->momentOrder = 0;

3260:   PetscCall(PetscDualSpaceInitialize_Lagrange(sp));
3261:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeGetContinuity_C", PetscDualSpaceLagrangeGetContinuity_Lagrange));
3262:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeSetContinuity_C", PetscDualSpaceLagrangeSetContinuity_Lagrange));
3263:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeGetTensor_C", PetscDualSpaceLagrangeGetTensor_Lagrange));
3264:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeSetTensor_C", PetscDualSpaceLagrangeSetTensor_Lagrange));
3265:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeGetTrimmed_C", PetscDualSpaceLagrangeGetTrimmed_Lagrange));
3266:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeSetTrimmed_C", PetscDualSpaceLagrangeSetTrimmed_Lagrange));
3267:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeGetNodeType_C", PetscDualSpaceLagrangeGetNodeType_Lagrange));
3268:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeSetNodeType_C", PetscDualSpaceLagrangeSetNodeType_Lagrange));
3269:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeGetUseMoments_C", PetscDualSpaceLagrangeGetUseMoments_Lagrange));
3270:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeSetUseMoments_C", PetscDualSpaceLagrangeSetUseMoments_Lagrange));
3271:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeGetMomentOrder_C", PetscDualSpaceLagrangeGetMomentOrder_Lagrange));
3272:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscDualSpaceLagrangeSetMomentOrder_C", PetscDualSpaceLagrangeSetMomentOrder_Lagrange));
3273:   PetscFunctionReturn(PETSC_SUCCESS);
3274: }