Actual source code: gcreate.c
1: #include <petsc/private/matimpl.h>
3: #include <../src/mat/impls/aij/seq/aij.h>
4: #include <../src/mat/impls/aij/mpi/mpiaij.h>
6: PetscErrorCode MatSetBlockSizes_Default(Mat mat, PetscInt rbs, PetscInt cbs)
7: {
8: PetscFunctionBegin;
9: if (!mat->preallocated) PetscFunctionReturn(PETSC_SUCCESS);
10: PetscCheck(mat->rmap->bs <= 0 || mat->rmap->bs == rbs, PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "Cannot change row block size %" PetscInt_FMT " to %" PetscInt_FMT, mat->rmap->bs, rbs);
11: PetscCheck(mat->cmap->bs <= 0 || mat->cmap->bs == cbs, PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "Cannot change column block size %" PetscInt_FMT " to %" PetscInt_FMT, mat->cmap->bs, cbs);
12: PetscFunctionReturn(PETSC_SUCCESS);
13: }
15: PetscErrorCode MatShift_Basic(Mat Y, PetscScalar a)
16: {
17: PetscInt i, start, end, oldValA = 0, oldValB = 0;
18: PetscScalar alpha = a;
19: PetscBool prevoption;
20: PetscBool isSeqAIJDerived, isMPIAIJDerived; // all classes sharing SEQAIJHEADER or MPIAIJHEADER
21: Mat A = NULL, B = NULL;
23: PetscFunctionBegin;
24: PetscCall(MatGetOption(Y, MAT_NO_OFF_PROC_ENTRIES, &prevoption));
25: PetscCall(MatSetOption(Y, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
26: PetscCall(PetscObjectBaseTypeCompareAny((PetscObject)Y, &isSeqAIJDerived, MATSEQAIJ, MATSEQBAIJ, MATSEQSBAIJ, ""));
27: PetscCall(PetscObjectBaseTypeCompareAny((PetscObject)Y, &isMPIAIJDerived, MATMPIAIJ, MATMPIBAIJ, MATMPISBAIJ, ""));
29: if (isSeqAIJDerived) A = Y;
30: else if (isMPIAIJDerived) {
31: Mat_MPIAIJ *mpiaij = (Mat_MPIAIJ *)Y->data;
32: A = mpiaij->A;
33: B = mpiaij->B;
34: }
36: if (A) {
37: oldValA = ((Mat_SeqAIJ *)A->data)->nonew;
38: ((Mat_SeqAIJ *)A->data)->nonew = 0; // so that new nonzero locations are allowed
39: }
40: if (B) {
41: oldValB = ((Mat_SeqAIJ *)B->data)->nonew;
42: ((Mat_SeqAIJ *)B->data)->nonew = 0;
43: }
45: PetscCall(MatGetOwnershipRange(Y, &start, &end));
46: for (i = start; i < end; i++) {
47: if (i < Y->cmap->N) PetscCall(MatSetValues(Y, 1, &i, 1, &i, &alpha, ADD_VALUES));
48: }
49: PetscCall(MatAssemblyBegin(Y, MAT_FINAL_ASSEMBLY));
50: PetscCall(MatAssemblyEnd(Y, MAT_FINAL_ASSEMBLY));
51: PetscCall(MatSetOption(Y, MAT_NO_OFF_PROC_ENTRIES, prevoption));
52: if (A) ((Mat_SeqAIJ *)A->data)->nonew = oldValA;
53: if (B) ((Mat_SeqAIJ *)B->data)->nonew = oldValB;
54: PetscFunctionReturn(PETSC_SUCCESS);
55: }
57: /*@
58: MatCreate - Creates a matrix where the type is determined
59: from either a call to `MatSetType()` or from the options database
60: with a call to `MatSetFromOptions()`.
62: Collective
64: Input Parameter:
65: . comm - MPI communicator
67: Output Parameter:
68: . A - the matrix
70: Options Database Keys:
71: + -mat_type seqaij - `MATSEQAIJ` type, uses `MatCreateSeqAIJ()`
72: . -mat_type mpiaij - `MATMPIAIJ` type, uses `MatCreateAIJ()`
73: . -mat_type seqdense - `MATSEQDENSE`, uses `MatCreateSeqDense()`
74: . -mat_type mpidense - `MATMPIDENSE` type, uses `MatCreateDense()`
75: . -mat_type seqbaij - `MATSEQBAIJ` type, uses `MatCreateSeqBAIJ()`
76: - -mat_type mpibaij - `MATMPIBAIJ` type, uses `MatCreateBAIJ()`
78: See the manpages for particular formats (e.g., `MATSEQAIJ`)
79: for additional format-specific options.
81: Level: beginner
83: Notes:
84: The default matrix type is `MATAIJ`, using the routines `MatCreateSeqAIJ()` or
85: `MatCreateAIJ()` if you do not set a type in the options database. If you never call
86: `MatSetType()` or `MatSetFromOptions()` it will generate an error when you try to use the
87: matrix.
89: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatCreateAIJ()`,
90: `MatCreateSeqDense()`, `MatCreateDense()`,
91: `MatCreateSeqBAIJ()`, `MatCreateBAIJ()`,
92: `MatCreateSeqSBAIJ()`, `MatCreateSBAIJ()`,
93: `MatConvert()`
94: @*/
95: PetscErrorCode MatCreate(MPI_Comm comm, Mat *A)
96: {
97: Mat B;
99: PetscFunctionBegin;
100: PetscAssertPointer(A, 2);
102: *A = NULL;
103: PetscCall(MatInitializePackage());
105: PetscCall(PetscHeaderCreate(B, MAT_CLASSID, "Mat", "Matrix", "Mat", comm, MatDestroy, MatView));
106: PetscCall(PetscLayoutCreate(comm, &B->rmap));
107: PetscCall(PetscLayoutCreate(comm, &B->cmap));
108: PetscCall(PetscStrallocpy(VECSTANDARD, &B->defaultvectype));
109: PetscCall(PetscStrallocpy(PETSCRANDER48, &B->defaultrandtype));
111: B->symmetric = PETSC_BOOL3_UNKNOWN;
112: B->hermitian = PETSC_BOOL3_UNKNOWN;
113: B->structurally_symmetric = PETSC_BOOL3_UNKNOWN;
114: B->spd = PETSC_BOOL3_UNKNOWN;
115: B->symmetry_eternal = PETSC_FALSE;
116: B->structural_symmetry_eternal = PETSC_FALSE;
118: B->congruentlayouts = PETSC_DECIDE;
119: B->preallocated = PETSC_FALSE;
120: #if defined(PETSC_HAVE_DEVICE)
121: B->boundtocpu = PETSC_TRUE;
122: #endif
123: *A = B;
124: PetscFunctionReturn(PETSC_SUCCESS);
125: }
127: /*@C
128: MatCreateFromOptions - Creates a matrix whose type is set from the options database
130: Collective
132: Input Parameters:
133: + comm - MPI communicator
134: . prefix - [optional] prefix for the options database
135: . bs - the blocksize (commonly 1)
136: . m - the local number of rows (or `PETSC_DECIDE`)
137: . n - the local number of columns (or `PETSC_DECIDE` or `PETSC_DETERMINE`)
138: . M - the global number of rows (or `PETSC_DETERMINE`)
139: - N - the global number of columns (or `PETSC_DETERMINE`)
141: Output Parameter:
142: . A - the matrix
144: Options Database Key:
145: . -mat_type - see `MatType`, for example `aij`, `aijcusparse`, `baij`, `sbaij`, dense, defaults to `aij`
147: Level: beginner
149: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatCreateAIJ()`,
150: `MatCreateSeqDense()`, `MatCreateDense()`,
151: `MatCreateSeqBAIJ()`, `MatCreateBAIJ()`,
152: `MatCreateSeqSBAIJ()`, `MatCreateSBAIJ()`,
153: `MatConvert()`, `MatCreate()`
154: @*/
155: PetscErrorCode MatCreateFromOptions(MPI_Comm comm, const char *prefix, PetscInt bs, PetscInt m, PetscInt n, PetscInt M, PetscInt N, Mat *A)
156: {
157: PetscFunctionBegin;
158: PetscAssertPointer(A, 8);
159: PetscCall(MatCreate(comm, A));
160: if (prefix) PetscCall(MatSetOptionsPrefix(*A, prefix));
161: PetscCall(MatSetBlockSize(*A, bs));
162: PetscCall(MatSetSizes(*A, m, n, M, N));
163: PetscCall(MatSetFromOptions(*A));
164: PetscFunctionReturn(PETSC_SUCCESS);
165: }
167: /*@
168: MatSetErrorIfFailure - Causes `Mat` to generate an immediate error, for example a zero pivot, is detected.
170: Logically Collective
172: Input Parameters:
173: + mat - matrix obtained from `MatCreate()`
174: - flg - `PETSC_TRUE` indicates you want the error generated
176: Level: advanced
178: Note:
179: If this flag is not set then the matrix operation will note the error and continue. The error may cause a later `PC` or `KSP` error
180: or result in a `KSPConvergedReason` indicating the method did not converge.
182: .seealso: [](ch_matrices), `Mat`, `PCSetErrorIfFailure()`, `KSPConvergedReason`, `SNESConvergedReason`
183: @*/
184: PetscErrorCode MatSetErrorIfFailure(Mat mat, PetscBool flg)
185: {
186: PetscFunctionBegin;
189: mat->erroriffailure = flg;
190: PetscFunctionReturn(PETSC_SUCCESS);
191: }
193: /*@
194: MatSetSizes - Sets the local and global sizes, and checks to determine compatibility
196: Collective
198: Input Parameters:
199: + A - the matrix
200: . m - number of local rows (or `PETSC_DECIDE`)
201: . n - number of local columns (or `PETSC_DECIDE`)
202: . M - number of global rows (or `PETSC_DETERMINE`)
203: - N - number of global columns (or `PETSC_DETERMINE`)
205: Level: beginner
207: Notes:
208: `m` (`n`) and `M` (`N`) cannot be both `PETSC_DECIDE`
209: If one processor calls this with `M` (`N`) of `PETSC_DECIDE` then all processors must, otherwise the program will hang.
211: If `PETSC_DECIDE` is not used for the arguments 'm' and 'n', then the
212: user must ensure that they are chosen to be compatible with the
213: vectors. To do this, one first considers the matrix-vector product
214: 'y = A x'. The `m` that is used in the above routine must match the
215: local size used in the vector creation routine `VecCreateMPI()` for 'y'.
216: Likewise, the `n` used must match that used as the local size in
217: `VecCreateMPI()` for 'x'.
219: If `m` and `n` are not `PETSC_DECIDE`, then the values determine the `PetscLayout` of the matrix and the ranges returned by
220: `MatGetOwnershipRange()`, `MatGetOwnershipRanges()`, `MatGetOwnershipRangeColumn()`, and `MatGetOwnershipRangesColumn()`.
222: You cannot change the sizes once they have been set.
224: The sizes must be set before `MatSetUp()` or MatXXXSetPreallocation() is called.
226: .seealso: [](ch_matrices), `Mat`, `MatGetSize()`, `PetscSplitOwnership()`, `MatGetOwnershipRange()`, `MatGetOwnershipRanges()`,
227: `MatGetOwnershipRangeColumn()`, `MatGetOwnershipRangesColumn()`, `PetscLayout`, `VecSetSizes()`
228: @*/
229: PetscErrorCode MatSetSizes(Mat A, PetscInt m, PetscInt n, PetscInt M, PetscInt N)
230: {
231: PetscFunctionBegin;
235: PetscCheck(M <= 0 || m <= M, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local row size %" PetscInt_FMT " cannot be larger than global row size %" PetscInt_FMT, m, M);
236: PetscCheck(N <= 0 || n <= N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local column size %" PetscInt_FMT " cannot be larger than global column size %" PetscInt_FMT, n, N);
237: PetscCheck((A->rmap->n < 0 || A->rmap->N < 0) || (A->rmap->n == m && (M <= 0 || A->rmap->N == M)), PETSC_COMM_SELF, PETSC_ERR_SUP, "Cannot change/reset row sizes to %" PetscInt_FMT " local %" PetscInt_FMT " global after previously setting them to %" PetscInt_FMT " local %" PetscInt_FMT " global", m, M,
238: A->rmap->n, A->rmap->N);
239: PetscCheck((A->cmap->n < 0 || A->cmap->N < 0) || (A->cmap->n == n && (N <= 0 || A->cmap->N == N)), PETSC_COMM_SELF, PETSC_ERR_SUP, "Cannot change/reset column sizes to %" PetscInt_FMT " local %" PetscInt_FMT " global after previously setting them to %" PetscInt_FMT " local %" PetscInt_FMT " global", n, N,
240: A->cmap->n, A->cmap->N);
241: A->rmap->n = m;
242: A->cmap->n = n;
243: A->rmap->N = M > -1 ? M : A->rmap->N;
244: A->cmap->N = N > -1 ? N : A->cmap->N;
245: PetscFunctionReturn(PETSC_SUCCESS);
246: }
248: /*@
249: MatSetFromOptions - Creates a matrix where the type is determined
250: from the options database.
252: Collective
254: Input Parameter:
255: . B - the matrix
257: Options Database Keys:
258: + -mat_type seqaij - `MATSEQAIJ` type, uses `MatCreateSeqAIJ()`
259: . -mat_type mpiaij - `MATMPIAIJ` type, uses `MatCreateAIJ()`
260: . -mat_type seqdense - `MATSEQDENSE` type, uses `MatCreateSeqDense()`
261: . -mat_type mpidense - `MATMPIDENSE`, uses `MatCreateDense()`
262: . -mat_type seqbaij - `MATSEQBAIJ`, uses `MatCreateSeqBAIJ()`
263: - -mat_type mpibaij - `MATMPIBAIJ`, uses `MatCreateBAIJ()`
265: See the manpages for particular formats (e.g., `MATSEQAIJ`)
266: for additional format-specific options.
268: Level: beginner
270: Notes:
271: Generates a parallel MPI matrix if the communicator has more than one processor. The default
272: matrix type is `MATAIJ`, using the routines `MatCreateSeqAIJ()` and `MatCreateAIJ()` if you
273: do not select a type in the options database.
275: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatCreateAIJ()`,
276: `MatCreateSeqDense()`, `MatCreateDense()`,
277: `MatCreateSeqBAIJ()`, `MatCreateBAIJ()`,
278: `MatCreateSeqSBAIJ()`, `MatCreateSBAIJ()`,
279: `MatConvert()`
280: @*/
281: PetscErrorCode MatSetFromOptions(Mat B)
282: {
283: const char *deft = MATAIJ;
284: char type[256];
285: PetscBool flg, set;
286: PetscInt bind_below = 0;
288: PetscFunctionBegin;
291: PetscObjectOptionsBegin((PetscObject)B);
293: if (B->rmap->bs < 0) {
294: PetscInt newbs = -1;
295: PetscCall(PetscOptionsInt("-mat_block_size", "Set the blocksize used to store the matrix", "MatSetBlockSize", newbs, &newbs, &flg));
296: if (flg) {
297: PetscCall(PetscLayoutSetBlockSize(B->rmap, newbs));
298: PetscCall(PetscLayoutSetBlockSize(B->cmap, newbs));
299: }
300: }
302: PetscCall(PetscOptionsFList("-mat_type", "Matrix type", "MatSetType", MatList, deft, type, 256, &flg));
303: if (flg) {
304: PetscCall(MatSetType(B, type));
305: } else if (!((PetscObject)B)->type_name) {
306: PetscCall(MatSetType(B, deft));
307: }
309: PetscCall(PetscOptionsName("-mat_is_symmetric", "Checks if mat is symmetric on MatAssemblyEnd()", "MatIsSymmetric", &B->checksymmetryonassembly));
310: PetscCall(PetscOptionsReal("-mat_is_symmetric", "Checks if mat is symmetric on MatAssemblyEnd()", "MatIsSymmetric", B->checksymmetrytol, &B->checksymmetrytol, NULL));
311: PetscCall(PetscOptionsBool("-mat_null_space_test", "Checks if provided null space is correct in MatAssemblyEnd()", "MatSetNullSpaceTest", B->checknullspaceonassembly, &B->checknullspaceonassembly, NULL));
312: PetscCall(PetscOptionsBool("-mat_error_if_failure", "Generate an error if an error occurs when factoring the matrix", "MatSetErrorIfFailure", B->erroriffailure, &B->erroriffailure, NULL));
314: PetscTryTypeMethod(B, setfromoptions, PetscOptionsObject);
316: flg = PETSC_FALSE;
317: PetscCall(PetscOptionsBool("-mat_new_nonzero_location_err", "Generate an error if new nonzeros are created in the matrix structure (useful to test preallocation)", "MatSetOption", flg, &flg, &set));
318: if (set) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, flg));
319: flg = PETSC_FALSE;
320: PetscCall(PetscOptionsBool("-mat_new_nonzero_allocation_err", "Generate an error if new nonzeros are allocated in the matrix structure (useful to test preallocation)", "MatSetOption", flg, &flg, &set));
321: if (set) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_ALLOCATION_ERR, flg));
322: flg = PETSC_FALSE;
323: PetscCall(PetscOptionsBool("-mat_ignore_zero_entries", "For AIJ/IS matrices this will stop zero values from creating a zero location in the matrix", "MatSetOption", flg, &flg, &set));
324: if (set) PetscCall(MatSetOption(B, MAT_IGNORE_ZERO_ENTRIES, flg));
326: flg = PETSC_FALSE;
327: PetscCall(PetscOptionsBool("-mat_form_explicit_transpose", "Hint to form an explicit transpose for operations like MatMultTranspose", "MatSetOption", flg, &flg, &set));
328: if (set) PetscCall(MatSetOption(B, MAT_FORM_EXPLICIT_TRANSPOSE, flg));
330: /* Bind to CPU if below a user-specified size threshold.
331: * This perhaps belongs in the options for the GPU Mat types, but MatBindToCPU() does nothing when called on non-GPU types,
332: * and putting it here makes is more maintainable than duplicating this for all. */
333: PetscCall(PetscOptionsInt("-mat_bind_below", "Set the size threshold (in local rows) below which the Mat is bound to the CPU", "MatBindToCPU", bind_below, &bind_below, &flg));
334: if (flg && B->rmap->n < bind_below) PetscCall(MatBindToCPU(B, PETSC_TRUE));
336: /* process any options handlers added with PetscObjectAddOptionsHandler() */
337: PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)B, PetscOptionsObject));
338: PetscOptionsEnd();
339: PetscFunctionReturn(PETSC_SUCCESS);
340: }
342: /*@C
343: MatXAIJSetPreallocation - set preallocation for serial and parallel `MATAIJ`, `MATBAIJ`, and `MATSBAIJ` matrices and their unassembled versions.
345: Collective
347: Input Parameters:
348: + A - matrix being preallocated
349: . bs - block size
350: . dnnz - number of nonzero column blocks per block row of diagonal part of parallel matrix
351: . onnz - number of nonzero column blocks per block row of off-diagonal part of parallel matrix
352: . dnnzu - number of nonzero column blocks per block row of upper-triangular part of diagonal part of parallel matrix
353: - onnzu - number of nonzero column blocks per block row of upper-triangular part of off-diagonal part of parallel matrix
355: Level: beginner
357: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJSetPreallocation()`, `MatMPIAIJSetPreallocation()`, `MatSeqBAIJSetPreallocation()`, `MatMPIBAIJSetPreallocation()`,
358: `MatSeqSBAIJSetPreallocation()`, `MatMPISBAIJSetPreallocation()`,
359: `PetscSplitOwnership()`
360: @*/
361: PetscErrorCode MatXAIJSetPreallocation(Mat A, PetscInt bs, const PetscInt dnnz[], const PetscInt onnz[], const PetscInt dnnzu[], const PetscInt onnzu[])
362: {
363: PetscInt cbs;
364: void (*aij)(void);
365: void (*is)(void);
366: void (*hyp)(void) = NULL;
368: PetscFunctionBegin;
369: if (bs != PETSC_DECIDE) { /* don't mess with an already set block size */
370: PetscCall(MatSetBlockSize(A, bs));
371: }
372: PetscCall(PetscLayoutSetUp(A->rmap));
373: PetscCall(PetscLayoutSetUp(A->cmap));
374: PetscCall(MatGetBlockSizes(A, &bs, &cbs));
375: /* these routines assumes bs == cbs, this should be checked somehow */
376: PetscCall(MatSeqBAIJSetPreallocation(A, bs, 0, dnnz));
377: PetscCall(MatMPIBAIJSetPreallocation(A, bs, 0, dnnz, 0, onnz));
378: PetscCall(MatSeqSBAIJSetPreallocation(A, bs, 0, dnnzu));
379: PetscCall(MatMPISBAIJSetPreallocation(A, bs, 0, dnnzu, 0, onnzu));
380: /*
381: In general, we have to do extra work to preallocate for scalar (AIJ) or unassembled (IS) matrices so we check whether it will do any
382: good before going on with it.
383: */
384: PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatMPIAIJSetPreallocation_C", &aij));
385: PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatISSetPreallocation_C", &is));
386: #if defined(PETSC_HAVE_HYPRE)
387: PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatHYPRESetPreallocation_C", &hyp));
388: #endif
389: if (!aij && !is && !hyp) PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSeqAIJSetPreallocation_C", &aij));
390: if (aij || is || hyp) {
391: if (bs == cbs && bs == 1) {
392: PetscCall(MatSeqAIJSetPreallocation(A, 0, dnnz));
393: PetscCall(MatMPIAIJSetPreallocation(A, 0, dnnz, 0, onnz));
394: PetscCall(MatISSetPreallocation(A, 0, dnnz, 0, onnz));
395: #if defined(PETSC_HAVE_HYPRE)
396: PetscCall(MatHYPRESetPreallocation(A, 0, dnnz, 0, onnz));
397: #endif
398: } else { /* Convert block-row precallocation to scalar-row */
399: PetscInt i, m, *sdnnz, *sonnz;
400: PetscCall(MatGetLocalSize(A, &m, NULL));
401: PetscCall(PetscMalloc2((!!dnnz) * m, &sdnnz, (!!onnz) * m, &sonnz));
402: for (i = 0; i < m; i++) {
403: if (dnnz) sdnnz[i] = dnnz[i / bs] * cbs;
404: if (onnz) sonnz[i] = onnz[i / bs] * cbs;
405: }
406: PetscCall(MatSeqAIJSetPreallocation(A, 0, dnnz ? sdnnz : NULL));
407: PetscCall(MatMPIAIJSetPreallocation(A, 0, dnnz ? sdnnz : NULL, 0, onnz ? sonnz : NULL));
408: PetscCall(MatISSetPreallocation(A, 0, dnnz ? sdnnz : NULL, 0, onnz ? sonnz : NULL));
409: #if defined(PETSC_HAVE_HYPRE)
410: PetscCall(MatHYPRESetPreallocation(A, 0, dnnz ? sdnnz : NULL, 0, onnz ? sonnz : NULL));
411: #endif
412: PetscCall(PetscFree2(sdnnz, sonnz));
413: }
414: }
415: PetscFunctionReturn(PETSC_SUCCESS);
416: }
418: /*@C
419: MatHeaderMerge - Merges some information from the header of `C` to `A`; the `C` object is then destroyed
421: Collective, No Fortran Support
423: Input Parameters:
424: + A - a `Mat` being merged into
425: - C - the `Mat` providing the merge information
427: Level: developer
429: Notes:
430: `A` and `C` must be of the same type.
431: The object list and query function list in `A` are retained, as well as the object name, and prefix.
432: The object state of `A` is increased by 1.
434: Developer Note:
435: This is somewhat different from `MatHeaderReplace()`, it would be nice to merge the code
437: .seealso: `Mat`, `MatHeaderReplace()`
438: @*/
439: PetscErrorCode MatHeaderMerge(Mat A, Mat *C)
440: {
441: PetscInt refct;
442: PetscOps Abops;
443: struct _MatOps Aops;
444: char *mtype, *mname, *mprefix;
445: Mat_Product *product;
446: Mat_Redundant *redundant;
447: PetscObjectState state;
448: PetscObjectList olist;
449: PetscFunctionList qlist;
451: PetscFunctionBegin;
454: if (A == *C) PetscFunctionReturn(PETSC_SUCCESS);
455: PetscCheckSameTypeAndComm(A, 1, *C, 2);
456: /* save the parts of A we need */
457: Abops = ((PetscObject)A)->bops[0];
458: Aops = A->ops[0];
459: refct = ((PetscObject)A)->refct;
460: mtype = ((PetscObject)A)->type_name;
461: mname = ((PetscObject)A)->name;
462: state = ((PetscObject)A)->state;
463: mprefix = ((PetscObject)A)->prefix;
464: product = A->product;
465: redundant = A->redundant;
466: qlist = ((PetscObject)A)->qlist;
467: olist = ((PetscObject)A)->olist;
469: /* zero these so the destroy below does not free them */
470: ((PetscObject)A)->type_name = NULL;
471: ((PetscObject)A)->name = NULL;
472: ((PetscObject)A)->qlist = NULL;
473: ((PetscObject)A)->olist = NULL;
475: /*
476: free all the interior data structures from mat
477: cannot use PetscUseTypeMethod(A,destroy); because compiler
478: thinks it may print NULL type_name and name
479: */
480: PetscTryTypeMethod(A, destroy);
482: PetscCall(PetscFree(A->defaultvectype));
483: PetscCall(PetscFree(A->defaultrandtype));
484: PetscCall(PetscLayoutDestroy(&A->rmap));
485: PetscCall(PetscLayoutDestroy(&A->cmap));
486: PetscCall(PetscComposedQuantitiesDestroy((PetscObject)A));
488: /* copy C over to A */
489: PetscCall(PetscFree(A->factorprefix));
490: PetscCall(PetscMemcpy(A, *C, sizeof(struct _p_Mat)));
492: /* return the parts of A we saved */
493: ((PetscObject)A)->bops[0] = Abops;
494: A->ops[0] = Aops;
495: ((PetscObject)A)->refct = refct;
496: ((PetscObject)A)->type_name = mtype;
497: ((PetscObject)A)->name = mname;
498: ((PetscObject)A)->prefix = mprefix;
499: ((PetscObject)A)->state = state + 1;
500: A->product = product;
501: A->redundant = redundant;
503: /* Append the saved lists */
504: PetscCall(PetscFunctionListDuplicate(qlist, &((PetscObject)A)->qlist));
505: PetscCall(PetscObjectListDuplicate(olist, &((PetscObject)A)->olist));
506: PetscCall(PetscFunctionListDestroy(&qlist));
507: PetscCall(PetscObjectListDestroy(&olist));
509: /* since these two are copied into A we do not want them destroyed in C */
510: ((PetscObject)*C)->qlist = NULL;
511: ((PetscObject)*C)->olist = NULL;
512: PetscCall(PetscHeaderDestroy(C));
513: PetscFunctionReturn(PETSC_SUCCESS);
514: }
516: /*@
517: MatHeaderReplace - Replaces the internal data of matrix `A` by the internal data of matrix `C` while deleting the outer wrapper of `C`
519: Input Parameters:
520: + A - a `Mat` whose internal data is to be replaced
521: - C - the `Mat` providing new internal data for `A`
523: Level: advanced
525: Example Usage\:
526: .vb
527: Mat C;
528: MatCreateSeqAIJWithArrays(..., &C);
529: MatHeaderReplace(A, &C);
530: // C has been destroyed and A contains the matrix entries of C
531: .ve
533: Note:
534: This can be used inside a function provided to `SNESSetJacobian()`, `TSSetRHSJacobian()`, or `TSSetIJacobian()` in cases where the user code computes an entirely new sparse matrix
535: (generally with a different nonzero pattern) for each Newton update. It is usually better to reuse the matrix structure of `A` instead of constructing an entirely new one.
537: Developer Note:
538: This is somewhat different from `MatHeaderMerge()` it would be nice to merge the code
540: .seealso: `Mat`, `MatHeaderMerge()`
541: @*/
542: PetscErrorCode MatHeaderReplace(Mat A, Mat *C)
543: {
544: PetscInt refct;
545: PetscObjectState state;
546: struct _p_Mat buffer;
547: MatStencilInfo stencil;
549: PetscFunctionBegin;
552: if (A == *C) PetscFunctionReturn(PETSC_SUCCESS);
553: PetscCheckSameComm(A, 1, *C, 2);
554: PetscCheck(((PetscObject)*C)->refct == 1, PetscObjectComm((PetscObject)C), PETSC_ERR_ARG_WRONGSTATE, "Object C has refct %" PetscInt_FMT " > 1, would leave hanging reference", ((PetscObject)*C)->refct);
556: /* swap C and A */
557: refct = ((PetscObject)A)->refct;
558: state = ((PetscObject)A)->state;
559: stencil = A->stencil;
560: PetscCall(PetscMemcpy(&buffer, A, sizeof(struct _p_Mat)));
561: PetscCall(PetscMemcpy(A, *C, sizeof(struct _p_Mat)));
562: PetscCall(PetscMemcpy(*C, &buffer, sizeof(struct _p_Mat)));
563: ((PetscObject)A)->refct = refct;
564: ((PetscObject)A)->state = state + 1;
565: A->stencil = stencil;
567: ((PetscObject)*C)->refct = 1;
568: PetscCall(MatDestroy(C));
569: PetscFunctionReturn(PETSC_SUCCESS);
570: }
572: /*@
573: MatBindToCPU - marks a matrix to temporarily stay on the CPU and perform computations on the CPU
575: Logically Collective
577: Input Parameters:
578: + A - the matrix
579: - flg - bind to the CPU if value of `PETSC_TRUE`
581: Level: intermediate
583: .seealso: [](ch_matrices), `Mat`, `MatBoundToCPU()`
584: @*/
585: PetscErrorCode MatBindToCPU(Mat A, PetscBool flg)
586: {
587: PetscFunctionBegin;
590: #if defined(PETSC_HAVE_DEVICE)
591: if (A->boundtocpu == flg) PetscFunctionReturn(PETSC_SUCCESS);
592: A->boundtocpu = flg;
593: PetscTryTypeMethod(A, bindtocpu, flg);
594: #endif
595: PetscFunctionReturn(PETSC_SUCCESS);
596: }
598: /*@
599: MatBoundToCPU - query if a matrix is bound to the CPU
601: Input Parameter:
602: . A - the matrix
604: Output Parameter:
605: . flg - the logical flag
607: Level: intermediate
609: .seealso: [](ch_matrices), `Mat`, `MatBindToCPU()`
610: @*/
611: PetscErrorCode MatBoundToCPU(Mat A, PetscBool *flg)
612: {
613: PetscFunctionBegin;
615: PetscAssertPointer(flg, 2);
616: #if defined(PETSC_HAVE_DEVICE)
617: *flg = A->boundtocpu;
618: #else
619: *flg = PETSC_TRUE;
620: #endif
621: PetscFunctionReturn(PETSC_SUCCESS);
622: }
624: PetscErrorCode MatSetValuesCOO_Basic(Mat A, const PetscScalar coo_v[], InsertMode imode)
625: {
626: IS is_coo_i, is_coo_j;
627: const PetscInt *coo_i, *coo_j;
628: PetscInt n, n_i, n_j;
629: PetscScalar zero = 0.;
631: PetscFunctionBegin;
632: PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_coo_i", (PetscObject *)&is_coo_i));
633: PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_coo_j", (PetscObject *)&is_coo_j));
634: PetscCheck(is_coo_i, PetscObjectComm((PetscObject)A), PETSC_ERR_COR, "Missing coo_i IS");
635: PetscCheck(is_coo_j, PetscObjectComm((PetscObject)A), PETSC_ERR_COR, "Missing coo_j IS");
636: PetscCall(ISGetLocalSize(is_coo_i, &n_i));
637: PetscCall(ISGetLocalSize(is_coo_j, &n_j));
638: PetscCheck(n_i == n_j, PETSC_COMM_SELF, PETSC_ERR_COR, "Wrong local size %" PetscInt_FMT " != %" PetscInt_FMT, n_i, n_j);
639: PetscCall(ISGetIndices(is_coo_i, &coo_i));
640: PetscCall(ISGetIndices(is_coo_j, &coo_j));
641: if (imode != ADD_VALUES) PetscCall(MatZeroEntries(A));
642: for (n = 0; n < n_i; n++) PetscCall(MatSetValue(A, coo_i[n], coo_j[n], coo_v ? coo_v[n] : zero, ADD_VALUES));
643: PetscCall(ISRestoreIndices(is_coo_i, &coo_i));
644: PetscCall(ISRestoreIndices(is_coo_j, &coo_j));
645: PetscFunctionReturn(PETSC_SUCCESS);
646: }
648: PetscErrorCode MatSetPreallocationCOO_Basic(Mat A, PetscCount ncoo, PetscInt coo_i[], PetscInt coo_j[])
649: {
650: Mat preallocator;
651: IS is_coo_i, is_coo_j;
652: PetscScalar zero = 0.0;
654: PetscFunctionBegin;
655: PetscCall(PetscLayoutSetUp(A->rmap));
656: PetscCall(PetscLayoutSetUp(A->cmap));
657: PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &preallocator));
658: PetscCall(MatSetType(preallocator, MATPREALLOCATOR));
659: PetscCall(MatSetSizes(preallocator, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
660: PetscCall(MatSetLayouts(preallocator, A->rmap, A->cmap));
661: PetscCall(MatSetUp(preallocator));
662: for (PetscCount n = 0; n < ncoo; n++) PetscCall(MatSetValue(preallocator, coo_i[n], coo_j[n], zero, INSERT_VALUES));
663: PetscCall(MatAssemblyBegin(preallocator, MAT_FINAL_ASSEMBLY));
664: PetscCall(MatAssemblyEnd(preallocator, MAT_FINAL_ASSEMBLY));
665: PetscCall(MatPreallocatorPreallocate(preallocator, PETSC_TRUE, A));
666: PetscCall(MatDestroy(&preallocator));
667: PetscCheck(ncoo <= PETSC_MAX_INT, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ncoo %" PetscCount_FMT " overflowed PetscInt; configure --with-64-bit-indices or request support", ncoo);
668: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, ncoo, coo_i, PETSC_COPY_VALUES, &is_coo_i));
669: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, ncoo, coo_j, PETSC_COPY_VALUES, &is_coo_j));
670: PetscCall(PetscObjectCompose((PetscObject)A, "__PETSc_coo_i", (PetscObject)is_coo_i));
671: PetscCall(PetscObjectCompose((PetscObject)A, "__PETSc_coo_j", (PetscObject)is_coo_j));
672: PetscCall(ISDestroy(&is_coo_i));
673: PetscCall(ISDestroy(&is_coo_j));
674: PetscFunctionReturn(PETSC_SUCCESS);
675: }
677: /*@C
678: MatSetPreallocationCOO - set preallocation for matrices using a coordinate format of the entries with global indices
680: Collective
682: Input Parameters:
683: + A - matrix being preallocated
684: . ncoo - number of entries
685: . coo_i - row indices
686: - coo_j - column indices
688: Level: beginner
690: Notes:
691: The indices within `coo_i` and `coo_j` may be modified within this function. The caller should not rely on them
692: having any specific value after this function returns. The arrays can be freed or reused immediately
693: after this function returns.
695: Entries can be repeated, see `MatSetValuesCOO()`. Entries with negative row or column indices are allowed
696: but will be ignored. The corresponding entries in `MatSetValuesCOO()` will be ignored too. Remote entries
697: are allowed and will be properly added or inserted to the matrix, unless the matrix option `MAT_IGNORE_OFF_PROC_ENTRIES`
698: is set, in which case remote entries are ignored, or `MAT_NO_OFF_PROC_ENTRIES` is set, in which case an error will be generated.
700: If you just want to create a sequential AIJ matrix (`MATSEQAIJ`), and your matrix entries in COO format are unique, you can also use
701: `MatCreateSeqAIJFromTriple()`. But that is not recommended for iterative applications.
703: .seealso: [](ch_matrices), `Mat`, `MatSetValuesCOO()`, `MatSeqAIJSetPreallocation()`, `MatMPIAIJSetPreallocation()`, `MatSeqBAIJSetPreallocation()`,
704: `MatMPIBAIJSetPreallocation()`, `MatSeqSBAIJSetPreallocation()`, `MatMPISBAIJSetPreallocation()`, `MatSetPreallocationCOOLocal()`,
705: `DMSetMatrixPreallocateSkip()`, `MatCreateSeqAIJFromTriple()`
706: @*/
707: PetscErrorCode MatSetPreallocationCOO(Mat A, PetscCount ncoo, PetscInt coo_i[], PetscInt coo_j[])
708: {
709: PetscErrorCode (*f)(Mat, PetscCount, PetscInt[], PetscInt[]) = NULL;
711: PetscFunctionBegin;
714: if (ncoo) PetscAssertPointer(coo_i, 3);
715: if (ncoo) PetscAssertPointer(coo_j, 4);
716: PetscCall(PetscLayoutSetUp(A->rmap));
717: PetscCall(PetscLayoutSetUp(A->cmap));
718: PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSetPreallocationCOO_C", &f));
720: PetscCall(PetscLogEventBegin(MAT_PreallCOO, A, 0, 0, 0));
721: if (f) {
722: PetscCall((*f)(A, ncoo, coo_i, coo_j));
723: } else { /* allow fallback, very slow */
724: PetscCall(MatSetPreallocationCOO_Basic(A, ncoo, coo_i, coo_j));
725: }
726: PetscCall(PetscLogEventEnd(MAT_PreallCOO, A, 0, 0, 0));
727: A->preallocated = PETSC_TRUE;
728: A->nonzerostate++;
729: PetscFunctionReturn(PETSC_SUCCESS);
730: }
732: /*@C
733: MatSetPreallocationCOOLocal - set preallocation for matrices using a coordinate format of the entries with local indices
735: Collective
737: Input Parameters:
738: + A - matrix being preallocated
739: . ncoo - number of entries
740: . coo_i - row indices (local numbering; may be modified)
741: - coo_j - column indices (local numbering; may be modified)
743: Level: beginner
745: Notes:
746: The local indices are translated using the local to global mapping, thus `MatSetLocalToGlobalMapping()` must have been
747: called prior to this function. For matrices created with `DMCreateMatrix()` the local to global mapping is often already provided.
749: The indices `coo_i` and `coo_j` may be modified within this function. They might be translated to corresponding global
750: indices, but the caller should not rely on them having any specific value after this function returns. The arrays
751: can be freed or reused immediately after this function returns.
753: Entries can be repeated, see `MatSetValuesCOO()`. Entries with negative row or column indices are allowed
754: but will be ignored. The corresponding entries in `MatSetValuesCOO()` will be ignored too. Remote entries
755: are allowed and will be properly added or inserted to the matrix.
757: .seealso: [](ch_matrices), `Mat`, `MatSetValuesCOO()`, `MatSeqAIJSetPreallocation()`, `MatMPIAIJSetPreallocation()`, `MatSeqBAIJSetPreallocation()`,
758: `MatMPIBAIJSetPreallocation()`, `MatSeqSBAIJSetPreallocation()`, `MatMPISBAIJSetPreallocation()`, `MatSetPreallocationCOO()`,
759: `DMSetMatrixPreallocateSkip()`
760: @*/
761: PetscErrorCode MatSetPreallocationCOOLocal(Mat A, PetscCount ncoo, PetscInt coo_i[], PetscInt coo_j[])
762: {
763: PetscErrorCode (*f)(Mat, PetscCount, PetscInt[], PetscInt[]) = NULL;
765: PetscFunctionBegin;
768: if (ncoo) PetscAssertPointer(coo_i, 3);
769: if (ncoo) PetscAssertPointer(coo_j, 4);
770: PetscCheck(ncoo <= PETSC_MAX_INT, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ncoo %" PetscCount_FMT " overflowed PetscInt; configure --with-64-bit-indices or request support", ncoo);
771: PetscCall(PetscLayoutSetUp(A->rmap));
772: PetscCall(PetscLayoutSetUp(A->cmap));
774: PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSetPreallocationCOOLocal_C", &f));
775: if (f) {
776: PetscCall((*f)(A, ncoo, coo_i, coo_j));
777: A->nonzerostate++;
778: } else {
779: ISLocalToGlobalMapping ltog_row, ltog_col;
780: PetscCall(MatGetLocalToGlobalMapping(A, <og_row, <og_col));
781: if (ltog_row) PetscCall(ISLocalToGlobalMappingApply(ltog_row, ncoo, coo_i, coo_i));
782: if (ltog_col) PetscCall(ISLocalToGlobalMappingApply(ltog_col, ncoo, coo_j, coo_j));
783: PetscCall(MatSetPreallocationCOO(A, ncoo, coo_i, coo_j));
784: }
785: A->preallocated = PETSC_TRUE;
786: PetscFunctionReturn(PETSC_SUCCESS);
787: }
789: /*@
790: MatSetValuesCOO - set values at once in a matrix preallocated using `MatSetPreallocationCOO()`
792: Collective
794: Input Parameters:
795: + A - matrix being preallocated
796: . coo_v - the matrix values (can be `NULL`)
797: - imode - the insert mode
799: Level: beginner
801: Notes:
802: The values must follow the order of the indices prescribed with `MatSetPreallocationCOO()` or `MatSetPreallocationCOOLocal()`.
804: When repeated entries are specified in the COO indices the `coo_v` values are first properly summed, regardless of the value of imode.
805: The imode flag indicates if coo_v must be added to the current values of the matrix (`ADD_VALUES`) or overwritten (`INSERT_VALUES`).
807: `MatAssemblyBegin()` and `MatAssemblyEnd()` do not need to be called after this routine. It automatically handles the assembly process.
809: .seealso: [](ch_matrices), `Mat`, `MatSetPreallocationCOO()`, `MatSetPreallocationCOOLocal()`, `InsertMode`, `INSERT_VALUES`, `ADD_VALUES`
810: @*/
811: PetscErrorCode MatSetValuesCOO(Mat A, const PetscScalar coo_v[], InsertMode imode)
812: {
813: PetscErrorCode (*f)(Mat, const PetscScalar[], InsertMode) = NULL;
814: PetscBool oldFlg;
816: PetscFunctionBegin;
819: MatCheckPreallocated(A, 1);
821: PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSetValuesCOO_C", &f));
822: PetscCall(PetscLogEventBegin(MAT_SetVCOO, A, 0, 0, 0));
823: if (f) {
824: PetscCall((*f)(A, coo_v, imode)); // all known COO implementations do not use MatStash. They do their own off-proc communication
825: PetscCall(MatGetOption(A, MAT_NO_OFF_PROC_ENTRIES, &oldFlg));
826: PetscCall(MatSetOption(A, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE)); // set A->nooffprocentries to avoid costly MatStash scatter in MatAssembly
827: } else {
828: PetscCall(MatSetValuesCOO_Basic(A, coo_v, imode)); // fall back to MatSetValues, which might use MatStash
829: }
830: PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
831: PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
832: if (f) PetscCall(MatSetOption(A, MAT_NO_OFF_PROC_ENTRIES, oldFlg));
833: PetscCall(PetscLogEventEnd(MAT_SetVCOO, A, 0, 0, 0));
834: PetscFunctionReturn(PETSC_SUCCESS);
835: }
837: /*@
838: MatSetBindingPropagates - Sets whether the state of being bound to the CPU for a GPU matrix type propagates to child and some other associated objects
840: Input Parameters:
841: + A - the matrix
842: - flg - flag indicating whether the boundtocpu flag should be propagated
844: Level: developer
846: Notes:
847: If the value of flg is set to true, the following will occur
848: + `MatCreateSubMatrices()` and `MatCreateRedundantMatrix()` - bind created matrices to CPU if the input matrix is bound to the CPU.
849: - `MatCreateVecs()` - bind created vectors to CPU if the input matrix is bound to the CPU.
851: The bindingpropagates flag itself is also propagated by the above routines.
853: Developer Notes:
854: If the fine-scale `DMDA` has the `-dm_bind_below` option set to true, then `DMCreateInterpolationScale()` calls `MatSetBindingPropagates()`
855: on the restriction/interpolation operator to set the bindingpropagates flag to true.
857: .seealso: [](ch_matrices), `Mat`, `VecSetBindingPropagates()`, `MatGetBindingPropagates()`
858: @*/
859: PetscErrorCode MatSetBindingPropagates(Mat A, PetscBool flg)
860: {
861: PetscFunctionBegin;
863: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
864: A->bindingpropagates = flg;
865: #endif
866: PetscFunctionReturn(PETSC_SUCCESS);
867: }
869: /*@
870: MatGetBindingPropagates - Gets whether the state of being bound to the CPU for a GPU matrix type propagates to child and some other associated objects
872: Input Parameter:
873: . A - the matrix
875: Output Parameter:
876: . flg - flag indicating whether the boundtocpu flag will be propagated
878: Level: developer
880: .seealso: [](ch_matrices), `Mat`, `MatSetBindingPropagates()`
881: @*/
882: PetscErrorCode MatGetBindingPropagates(Mat A, PetscBool *flg)
883: {
884: PetscFunctionBegin;
886: PetscAssertPointer(flg, 2);
887: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
888: *flg = A->bindingpropagates;
889: #else
890: *flg = PETSC_FALSE;
891: #endif
892: PetscFunctionReturn(PETSC_SUCCESS);
893: }