Actual source code: plexfem.c
1: #include <petsc/private/dmpleximpl.h>
2: #include <petscsf.h>
4: #include <petscblaslapack.h>
5: #include <petsc/private/hashsetij.h>
6: #include <petsc/private/petscfeimpl.h>
7: #include <petsc/private/petscfvimpl.h>
9: PetscBool Clementcite = PETSC_FALSE;
10: const char ClementCitation[] = "@article{clement1975approximation,\n"
11: " title = {Approximation by finite element functions using local regularization},\n"
12: " author = {Philippe Cl{\\'e}ment},\n"
13: " journal = {Revue fran{\\c{c}}aise d'automatique, informatique, recherche op{\\'e}rationnelle. Analyse num{\\'e}rique},\n"
14: " volume = {9},\n"
15: " number = {R2},\n"
16: " pages = {77--84},\n"
17: " year = {1975}\n}\n";
19: static PetscErrorCode DMPlexConvertPlex(DM dm, DM *plex, PetscBool copy)
20: {
21: PetscBool isPlex;
23: PetscFunctionBegin;
24: PetscCall(PetscObjectTypeCompare((PetscObject)dm, DMPLEX, &isPlex));
25: if (isPlex) {
26: *plex = dm;
27: PetscCall(PetscObjectReference((PetscObject)dm));
28: } else {
29: PetscCall(PetscObjectQuery((PetscObject)dm, "dm_plex", (PetscObject *)plex));
30: if (!*plex) {
31: PetscCall(DMConvert(dm, DMPLEX, plex));
32: PetscCall(PetscObjectCompose((PetscObject)dm, "dm_plex", (PetscObject)*plex));
33: } else {
34: PetscCall(PetscObjectReference((PetscObject)*plex));
35: }
36: if (copy) {
37: DMSubDomainHookLink link;
39: PetscCall(DMCopyDS(dm, *plex));
40: PetscCall(DMCopyAuxiliaryVec(dm, *plex));
41: /* Run the subdomain hook (this will copy the DMSNES/DMTS) */
42: for (link = dm->subdomainhook; link; link = link->next) {
43: if (link->ddhook) PetscCall((*link->ddhook)(dm, *plex, link->ctx));
44: }
45: }
46: }
47: PetscFunctionReturn(PETSC_SUCCESS);
48: }
50: static PetscErrorCode PetscContainerUserDestroy_PetscFEGeom(void *ctx)
51: {
52: PetscFEGeom *geom = (PetscFEGeom *)ctx;
54: PetscFunctionBegin;
55: PetscCall(PetscFEGeomDestroy(&geom));
56: PetscFunctionReturn(PETSC_SUCCESS);
57: }
59: static PetscErrorCode DMPlexGetFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
60: {
61: char composeStr[33] = {0};
62: PetscObjectId id;
63: PetscContainer container;
65: PetscFunctionBegin;
66: PetscCall(PetscObjectGetId((PetscObject)quad, &id));
67: PetscCall(PetscSNPrintf(composeStr, 32, "DMPlexGetFEGeom_%" PetscInt64_FMT "\n", id));
68: PetscCall(PetscObjectQuery((PetscObject)pointIS, composeStr, (PetscObject *)&container));
69: if (container) {
70: PetscCall(PetscContainerGetPointer(container, (void **)geom));
71: } else {
72: PetscCall(DMFieldCreateFEGeom(coordField, pointIS, quad, faceData, geom));
73: PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
74: PetscCall(PetscContainerSetPointer(container, (void *)*geom));
75: PetscCall(PetscContainerSetUserDestroy(container, PetscContainerUserDestroy_PetscFEGeom));
76: PetscCall(PetscObjectCompose((PetscObject)pointIS, composeStr, (PetscObject)container));
77: PetscCall(PetscContainerDestroy(&container));
78: }
79: PetscFunctionReturn(PETSC_SUCCESS);
80: }
82: static PetscErrorCode DMPlexRestoreFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
83: {
84: PetscFunctionBegin;
85: *geom = NULL;
86: PetscFunctionReturn(PETSC_SUCCESS);
87: }
89: /*@
90: DMPlexGetScale - Get the scale for the specified fundamental unit
92: Not Collective
94: Input Parameters:
95: + dm - the `DM`
96: - unit - The SI unit
98: Output Parameter:
99: . scale - The value used to scale all quantities with this unit
101: Level: advanced
103: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSetScale()`, `PetscUnit`
104: @*/
105: PetscErrorCode DMPlexGetScale(DM dm, PetscUnit unit, PetscReal *scale)
106: {
107: DM_Plex *mesh = (DM_Plex *)dm->data;
109: PetscFunctionBegin;
111: PetscAssertPointer(scale, 3);
112: *scale = mesh->scale[unit];
113: PetscFunctionReturn(PETSC_SUCCESS);
114: }
116: /*@
117: DMPlexSetScale - Set the scale for the specified fundamental unit
119: Not Collective
121: Input Parameters:
122: + dm - the `DM`
123: . unit - The SI unit
124: - scale - The value used to scale all quantities with this unit
126: Level: advanced
128: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetScale()`, `PetscUnit`
129: @*/
130: PetscErrorCode DMPlexSetScale(DM dm, PetscUnit unit, PetscReal scale)
131: {
132: DM_Plex *mesh = (DM_Plex *)dm->data;
134: PetscFunctionBegin;
136: mesh->scale[unit] = scale;
137: PetscFunctionReturn(PETSC_SUCCESS);
138: }
140: PetscErrorCode DMPlexGetUseCeed_Plex(DM dm, PetscBool *useCeed)
141: {
142: DM_Plex *mesh = (DM_Plex *)dm->data;
144: PetscFunctionBegin;
145: *useCeed = mesh->useCeed;
146: PetscFunctionReturn(PETSC_SUCCESS);
147: }
148: PetscErrorCode DMPlexSetUseCeed_Plex(DM dm, PetscBool useCeed)
149: {
150: DM_Plex *mesh = (DM_Plex *)dm->data;
152: PetscFunctionBegin;
153: mesh->useCeed = useCeed;
154: PetscFunctionReturn(PETSC_SUCCESS);
155: }
157: /*@
158: DMPlexGetUseCeed - Get flag for using the LibCEED backend
160: Not collective
162: Input Parameter:
163: . dm - The `DM`
165: Output Parameter:
166: . useCeed - The flag
168: Level: intermediate
170: .seealso: `DMPlexSetUseCeed()`
171: @*/
172: PetscErrorCode DMPlexGetUseCeed(DM dm, PetscBool *useCeed)
173: {
174: PetscFunctionBegin;
176: PetscAssertPointer(useCeed, 2);
177: *useCeed = PETSC_FALSE;
178: PetscTryMethod(dm, "DMPlexGetUseCeed_C", (DM, PetscBool *), (dm, useCeed));
179: PetscFunctionReturn(PETSC_SUCCESS);
180: }
182: /*@
183: DMPlexSetUseCeed - Set flag for using the LibCEED backend
185: Not collective
187: Input Parameters:
188: + dm - The `DM`
189: - useCeed - The flag
191: Level: intermediate
193: .seealso: `DMPlexGetUseCeed()`
194: @*/
195: PetscErrorCode DMPlexSetUseCeed(DM dm, PetscBool useCeed)
196: {
197: PetscFunctionBegin;
200: PetscUseMethod(dm, "DMPlexSetUseCeed_C", (DM, PetscBool), (dm, useCeed));
201: PetscFunctionReturn(PETSC_SUCCESS);
202: }
204: /*@
205: DMPlexGetUseMatClosurePermutation - Get flag for using a closure permutation for matrix insertion
207: Not collective
209: Input Parameter:
210: . dm - The `DM`
212: Output Parameter:
213: . useClPerm - The flag
215: Level: intermediate
217: .seealso: `DMPlexSetUseMatClosurePermutation()`
218: @*/
219: PetscErrorCode DMPlexGetUseMatClosurePermutation(DM dm, PetscBool *useClPerm)
220: {
221: DM_Plex *mesh = (DM_Plex *)dm->data;
223: PetscFunctionBegin;
225: PetscAssertPointer(useClPerm, 2);
226: *useClPerm = mesh->useMatClPerm;
227: PetscFunctionReturn(PETSC_SUCCESS);
228: }
230: /*@
231: DMPlexSetUseMatClosurePermutation - Set flag for using a closure permutation for matrix insertion
233: Not collective
235: Input Parameters:
236: + dm - The `DM`
237: - useClPerm - The flag
239: Level: intermediate
241: .seealso: `DMPlexGetUseMatClosurePermutation()`
242: @*/
243: PetscErrorCode DMPlexSetUseMatClosurePermutation(DM dm, PetscBool useClPerm)
244: {
245: DM_Plex *mesh = (DM_Plex *)dm->data;
247: PetscFunctionBegin;
250: mesh->useMatClPerm = useClPerm;
251: PetscFunctionReturn(PETSC_SUCCESS);
252: }
254: static PetscErrorCode DMPlexProjectRigidBody_Private(PetscInt dim, PetscReal t, const PetscReal X[], PetscInt Nc, PetscScalar *mode, void *ctx)
255: {
256: const PetscInt eps[3][3][3] = {
257: {{0, 0, 0}, {0, 0, 1}, {0, -1, 0}},
258: {{0, 0, -1}, {0, 0, 0}, {1, 0, 0} },
259: {{0, 1, 0}, {-1, 0, 0}, {0, 0, 0} }
260: };
261: PetscInt *ctxInt = (PetscInt *)ctx;
262: PetscInt dim2 = ctxInt[0];
263: PetscInt d = ctxInt[1];
264: PetscInt i, j, k = dim > 2 ? d - dim : d;
266: PetscFunctionBegin;
267: PetscCheck(dim == dim2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Input dimension %" PetscInt_FMT " does not match context dimension %" PetscInt_FMT, dim, dim2);
268: for (i = 0; i < dim; i++) mode[i] = 0.;
269: if (d < dim) {
270: mode[d] = 1.; /* Translation along axis d */
271: } else {
272: for (i = 0; i < dim; i++) {
273: for (j = 0; j < dim; j++) { mode[j] += eps[i][j][k] * X[i]; /* Rotation about axis d */ }
274: }
275: }
276: PetscFunctionReturn(PETSC_SUCCESS);
277: }
279: /*@
280: DMPlexCreateRigidBody - For the default global section, create rigid body modes by function space interpolation
282: Collective
284: Input Parameters:
285: + dm - the `DM`
286: - field - The field number for the rigid body space, or 0 for the default
288: Output Parameter:
289: . sp - the null space
291: Level: advanced
293: Note:
294: This is necessary to provide a suitable coarse space for algebraic multigrid
296: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `MatNullSpaceCreate()`, `PCGAMG`
297: @*/
298: PetscErrorCode DMPlexCreateRigidBody(DM dm, PetscInt field, MatNullSpace *sp)
299: {
300: PetscErrorCode (**func)(PetscInt, PetscReal, const PetscReal *, PetscInt, PetscScalar *, void *);
301: MPI_Comm comm;
302: Vec mode[6];
303: PetscSection section, globalSection;
304: PetscInt dim, dimEmbed, Nf, n, m, mmin, d, i, j;
305: void **ctxs;
307: PetscFunctionBegin;
308: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
309: PetscCall(DMGetDimension(dm, &dim));
310: PetscCall(DMGetCoordinateDim(dm, &dimEmbed));
311: PetscCall(DMGetNumFields(dm, &Nf));
312: PetscCheck(!Nf || !(field < 0 || field >= Nf), comm, PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", field, Nf);
313: if (dim == 1 && Nf < 2) {
314: PetscCall(MatNullSpaceCreate(comm, PETSC_TRUE, 0, NULL, sp));
315: PetscFunctionReturn(PETSC_SUCCESS);
316: }
317: PetscCall(DMGetLocalSection(dm, §ion));
318: PetscCall(DMGetGlobalSection(dm, &globalSection));
319: PetscCall(PetscSectionGetConstrainedStorageSize(globalSection, &n));
320: PetscCall(PetscCalloc2(Nf, &func, Nf, &ctxs));
321: m = (dim * (dim + 1)) / 2;
322: PetscCall(VecCreate(comm, &mode[0]));
323: PetscCall(VecSetType(mode[0], dm->vectype));
324: PetscCall(VecSetSizes(mode[0], n, PETSC_DETERMINE));
325: PetscCall(VecSetUp(mode[0]));
326: PetscCall(VecGetSize(mode[0], &n));
327: mmin = PetscMin(m, n);
328: func[field] = DMPlexProjectRigidBody_Private;
329: for (i = 1; i < m; ++i) PetscCall(VecDuplicate(mode[0], &mode[i]));
330: for (d = 0; d < m; d++) {
331: PetscInt ctx[2];
333: ctxs[field] = (void *)(&ctx[0]);
334: ctx[0] = dimEmbed;
335: ctx[1] = d;
336: PetscCall(DMProjectFunction(dm, 0.0, func, ctxs, INSERT_VALUES, mode[d]));
337: }
338: /* Orthonormalize system */
339: for (i = 0; i < mmin; ++i) {
340: PetscScalar dots[6];
342: PetscCall(VecNormalize(mode[i], NULL));
343: PetscCall(VecMDot(mode[i], mmin - i - 1, mode + i + 1, dots + i + 1));
344: for (j = i + 1; j < mmin; ++j) {
345: dots[j] *= -1.0;
346: PetscCall(VecAXPY(mode[j], dots[j], mode[i]));
347: }
348: }
349: PetscCall(MatNullSpaceCreate(comm, PETSC_FALSE, mmin, mode, sp));
350: for (i = 0; i < m; ++i) PetscCall(VecDestroy(&mode[i]));
351: PetscCall(PetscFree2(func, ctxs));
352: PetscFunctionReturn(PETSC_SUCCESS);
353: }
355: /*@
356: DMPlexCreateRigidBodies - For the default global section, create rigid body modes by function space interpolation
358: Collective
360: Input Parameters:
361: + dm - the `DM`
362: . nb - The number of bodies
363: . label - The `DMLabel` marking each domain
364: . nids - The number of ids per body
365: - ids - An array of the label ids in sequence for each domain
367: Output Parameter:
368: . sp - the null space
370: Level: advanced
372: Note:
373: This is necessary to provide a suitable coarse space for algebraic multigrid
375: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `MatNullSpaceCreate()`
376: @*/
377: PetscErrorCode DMPlexCreateRigidBodies(DM dm, PetscInt nb, DMLabel label, const PetscInt nids[], const PetscInt ids[], MatNullSpace *sp)
378: {
379: MPI_Comm comm;
380: PetscSection section, globalSection;
381: Vec *mode;
382: PetscScalar *dots;
383: PetscInt dim, dimEmbed, n, m, b, d, i, j, off;
385: PetscFunctionBegin;
386: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
387: PetscCall(DMGetDimension(dm, &dim));
388: PetscCall(DMGetCoordinateDim(dm, &dimEmbed));
389: PetscCall(DMGetLocalSection(dm, §ion));
390: PetscCall(DMGetGlobalSection(dm, &globalSection));
391: PetscCall(PetscSectionGetConstrainedStorageSize(globalSection, &n));
392: m = nb * (dim * (dim + 1)) / 2;
393: PetscCall(PetscMalloc2(m, &mode, m, &dots));
394: PetscCall(VecCreate(comm, &mode[0]));
395: PetscCall(VecSetSizes(mode[0], n, PETSC_DETERMINE));
396: PetscCall(VecSetUp(mode[0]));
397: for (i = 1; i < m; ++i) PetscCall(VecDuplicate(mode[0], &mode[i]));
398: for (b = 0, off = 0; b < nb; ++b) {
399: for (d = 0; d < m / nb; ++d) {
400: PetscInt ctx[2];
401: PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal *, PetscInt, PetscScalar *, void *) = DMPlexProjectRigidBody_Private;
402: void *voidctx = (void *)(&ctx[0]);
404: ctx[0] = dimEmbed;
405: ctx[1] = d;
406: PetscCall(DMProjectFunctionLabel(dm, 0.0, label, nids[b], &ids[off], 0, NULL, &func, &voidctx, INSERT_VALUES, mode[d]));
407: off += nids[b];
408: }
409: }
410: /* Orthonormalize system */
411: for (i = 0; i < m; ++i) {
412: PetscScalar dots[6];
414: PetscCall(VecNormalize(mode[i], NULL));
415: PetscCall(VecMDot(mode[i], m - i - 1, mode + i + 1, dots + i + 1));
416: for (j = i + 1; j < m; ++j) {
417: dots[j] *= -1.0;
418: PetscCall(VecAXPY(mode[j], dots[j], mode[i]));
419: }
420: }
421: PetscCall(MatNullSpaceCreate(comm, PETSC_FALSE, m, mode, sp));
422: for (i = 0; i < m; ++i) PetscCall(VecDestroy(&mode[i]));
423: PetscCall(PetscFree2(mode, dots));
424: PetscFunctionReturn(PETSC_SUCCESS);
425: }
427: /*@
428: DMPlexSetMaxProjectionHeight - In DMPlexProjectXXXLocal() functions, the projected values of a basis function's dofs
429: are computed by associating the basis function with one of the mesh points in its transitively-closed support, and
430: evaluating the dual space basis of that point.
432: Input Parameters:
433: + dm - the `DMPLEX` object
434: - height - the maximum projection height >= 0
436: Level: advanced
438: Notes:
439: A basis function is associated with the point in its transitively-closed support whose mesh
440: height is highest (w.r.t. DAG height), but not greater than the maximum projection height,
441: which is set with this function. By default, the maximum projection height is zero, which
442: means that only mesh cells are used to project basis functions. A height of one, for
443: example, evaluates a cell-interior basis functions using its cells dual space basis, but all
444: other basis functions with the dual space basis of a face.
446: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetMaxProjectionHeight()`, `DMProjectFunctionLocal()`, `DMProjectFunctionLabelLocal()`
447: @*/
448: PetscErrorCode DMPlexSetMaxProjectionHeight(DM dm, PetscInt height)
449: {
450: DM_Plex *plex = (DM_Plex *)dm->data;
452: PetscFunctionBegin;
454: plex->maxProjectionHeight = height;
455: PetscFunctionReturn(PETSC_SUCCESS);
456: }
458: /*@
459: DMPlexGetMaxProjectionHeight - Get the maximum height (w.r.t. DAG) of mesh points used to evaluate dual bases in
460: DMPlexProjectXXXLocal() functions.
462: Input Parameter:
463: . dm - the `DMPLEX` object
465: Output Parameter:
466: . height - the maximum projection height
468: Level: intermediate
470: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSetMaxProjectionHeight()`, `DMProjectFunctionLocal()`, `DMProjectFunctionLabelLocal()`
471: @*/
472: PetscErrorCode DMPlexGetMaxProjectionHeight(DM dm, PetscInt *height)
473: {
474: DM_Plex *plex = (DM_Plex *)dm->data;
476: PetscFunctionBegin;
478: *height = plex->maxProjectionHeight;
479: PetscFunctionReturn(PETSC_SUCCESS);
480: }
482: typedef struct {
483: PetscReal alpha; /* The first Euler angle, and in 2D the only one */
484: PetscReal beta; /* The second Euler angle */
485: PetscReal gamma; /* The third Euler angle */
486: PetscInt dim; /* The dimension of R */
487: PetscScalar *R; /* The rotation matrix, transforming a vector in the local basis to the global basis */
488: PetscScalar *RT; /* The transposed rotation matrix, transforming a vector in the global basis to the local basis */
489: } RotCtx;
491: /*
492: Note: Following https://en.wikipedia.org/wiki/Euler_angles, we will specify Euler angles by extrinsic rotations, meaning that
493: we rotate with respect to a fixed initial coordinate system, the local basis (x-y-z). The global basis (X-Y-Z) is reached as follows:
494: $ The XYZ system rotates about the z axis by alpha. The X axis is now at angle alpha with respect to the x axis.
495: $ The XYZ system rotates again about the x axis by beta. The Z axis is now at angle beta with respect to the z axis.
496: $ The XYZ system rotates a third time about the z axis by gamma.
497: */
498: static PetscErrorCode DMPlexBasisTransformSetUp_Rotation_Internal(DM dm, void *ctx)
499: {
500: RotCtx *rc = (RotCtx *)ctx;
501: PetscInt dim = rc->dim;
502: PetscReal c1, s1, c2, s2, c3, s3;
504: PetscFunctionBegin;
505: PetscCall(PetscMalloc2(PetscSqr(dim), &rc->R, PetscSqr(dim), &rc->RT));
506: switch (dim) {
507: case 2:
508: c1 = PetscCosReal(rc->alpha);
509: s1 = PetscSinReal(rc->alpha);
510: rc->R[0] = c1;
511: rc->R[1] = s1;
512: rc->R[2] = -s1;
513: rc->R[3] = c1;
514: PetscCall(PetscArraycpy(rc->RT, rc->R, PetscSqr(dim)));
515: DMPlex_Transpose2D_Internal(rc->RT);
516: break;
517: case 3:
518: c1 = PetscCosReal(rc->alpha);
519: s1 = PetscSinReal(rc->alpha);
520: c2 = PetscCosReal(rc->beta);
521: s2 = PetscSinReal(rc->beta);
522: c3 = PetscCosReal(rc->gamma);
523: s3 = PetscSinReal(rc->gamma);
524: rc->R[0] = c1 * c3 - c2 * s1 * s3;
525: rc->R[1] = c3 * s1 + c1 * c2 * s3;
526: rc->R[2] = s2 * s3;
527: rc->R[3] = -c1 * s3 - c2 * c3 * s1;
528: rc->R[4] = c1 * c2 * c3 - s1 * s3;
529: rc->R[5] = c3 * s2;
530: rc->R[6] = s1 * s2;
531: rc->R[7] = -c1 * s2;
532: rc->R[8] = c2;
533: PetscCall(PetscArraycpy(rc->RT, rc->R, PetscSqr(dim)));
534: DMPlex_Transpose3D_Internal(rc->RT);
535: break;
536: default:
537: SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Dimension %" PetscInt_FMT " not supported", dim);
538: }
539: PetscFunctionReturn(PETSC_SUCCESS);
540: }
542: static PetscErrorCode DMPlexBasisTransformDestroy_Rotation_Internal(DM dm, void *ctx)
543: {
544: RotCtx *rc = (RotCtx *)ctx;
546: PetscFunctionBegin;
547: PetscCall(PetscFree2(rc->R, rc->RT));
548: PetscCall(PetscFree(rc));
549: PetscFunctionReturn(PETSC_SUCCESS);
550: }
552: static PetscErrorCode DMPlexBasisTransformGetMatrix_Rotation_Internal(DM dm, const PetscReal x[], PetscBool l2g, const PetscScalar **A, void *ctx)
553: {
554: RotCtx *rc = (RotCtx *)ctx;
556: PetscFunctionBeginHot;
557: PetscAssertPointer(ctx, 5);
558: if (l2g) {
559: *A = rc->R;
560: } else {
561: *A = rc->RT;
562: }
563: PetscFunctionReturn(PETSC_SUCCESS);
564: }
566: PetscErrorCode DMPlexBasisTransformApplyReal_Internal(DM dm, const PetscReal x[], PetscBool l2g, PetscInt dim, const PetscReal *y, PetscReal *z, void *ctx)
567: {
568: PetscFunctionBegin;
569: #if defined(PETSC_USE_COMPLEX)
570: switch (dim) {
571: case 2: {
572: PetscScalar yt[2] = {y[0], y[1]}, zt[2] = {0.0, 0.0};
574: PetscCall(DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, yt, zt, ctx));
575: z[0] = PetscRealPart(zt[0]);
576: z[1] = PetscRealPart(zt[1]);
577: } break;
578: case 3: {
579: PetscScalar yt[3] = {y[0], y[1], y[2]}, zt[3] = {0.0, 0.0, 0.0};
581: PetscCall(DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, yt, zt, ctx));
582: z[0] = PetscRealPart(zt[0]);
583: z[1] = PetscRealPart(zt[1]);
584: z[2] = PetscRealPart(zt[2]);
585: } break;
586: }
587: #else
588: PetscCall(DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, y, z, ctx));
589: #endif
590: PetscFunctionReturn(PETSC_SUCCESS);
591: }
593: PetscErrorCode DMPlexBasisTransformApply_Internal(DM dm, const PetscReal x[], PetscBool l2g, PetscInt dim, const PetscScalar *y, PetscScalar *z, void *ctx)
594: {
595: const PetscScalar *A;
597: PetscFunctionBeginHot;
598: PetscCall((*dm->transformGetMatrix)(dm, x, l2g, &A, ctx));
599: switch (dim) {
600: case 2:
601: DMPlex_Mult2D_Internal(A, 1, y, z);
602: break;
603: case 3:
604: DMPlex_Mult3D_Internal(A, 1, y, z);
605: break;
606: }
607: PetscFunctionReturn(PETSC_SUCCESS);
608: }
610: static PetscErrorCode DMPlexBasisTransformField_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscInt f, PetscBool l2g, PetscScalar *a)
611: {
612: PetscSection ts;
613: const PetscScalar *ta, *tva;
614: PetscInt dof;
616: PetscFunctionBeginHot;
617: PetscCall(DMGetLocalSection(tdm, &ts));
618: PetscCall(PetscSectionGetFieldDof(ts, p, f, &dof));
619: PetscCall(VecGetArrayRead(tv, &ta));
620: PetscCall(DMPlexPointLocalFieldRead(tdm, p, f, ta, &tva));
621: if (l2g) {
622: switch (dof) {
623: case 4:
624: DMPlex_Mult2D_Internal(tva, 1, a, a);
625: break;
626: case 9:
627: DMPlex_Mult3D_Internal(tva, 1, a, a);
628: break;
629: }
630: } else {
631: switch (dof) {
632: case 4:
633: DMPlex_MultTranspose2D_Internal(tva, 1, a, a);
634: break;
635: case 9:
636: DMPlex_MultTranspose3D_Internal(tva, 1, a, a);
637: break;
638: }
639: }
640: PetscCall(VecRestoreArrayRead(tv, &ta));
641: PetscFunctionReturn(PETSC_SUCCESS);
642: }
644: static PetscErrorCode DMPlexBasisTransformFieldTensor_Internal(DM dm, DM tdm, Vec tv, PetscInt pf, PetscInt f, PetscInt pg, PetscInt g, PetscBool l2g, PetscInt lda, PetscScalar *a)
645: {
646: PetscSection s, ts;
647: const PetscScalar *ta, *tvaf, *tvag;
648: PetscInt fdof, gdof, fpdof, gpdof;
650: PetscFunctionBeginHot;
651: PetscCall(DMGetLocalSection(dm, &s));
652: PetscCall(DMGetLocalSection(tdm, &ts));
653: PetscCall(PetscSectionGetFieldDof(s, pf, f, &fpdof));
654: PetscCall(PetscSectionGetFieldDof(s, pg, g, &gpdof));
655: PetscCall(PetscSectionGetFieldDof(ts, pf, f, &fdof));
656: PetscCall(PetscSectionGetFieldDof(ts, pg, g, &gdof));
657: PetscCall(VecGetArrayRead(tv, &ta));
658: PetscCall(DMPlexPointLocalFieldRead(tdm, pf, f, ta, &tvaf));
659: PetscCall(DMPlexPointLocalFieldRead(tdm, pg, g, ta, &tvag));
660: if (l2g) {
661: switch (fdof) {
662: case 4:
663: DMPlex_MatMult2D_Internal(tvaf, gpdof, lda, a, a);
664: break;
665: case 9:
666: DMPlex_MatMult3D_Internal(tvaf, gpdof, lda, a, a);
667: break;
668: }
669: switch (gdof) {
670: case 4:
671: DMPlex_MatMultTransposeLeft2D_Internal(tvag, fpdof, lda, a, a);
672: break;
673: case 9:
674: DMPlex_MatMultTransposeLeft3D_Internal(tvag, fpdof, lda, a, a);
675: break;
676: }
677: } else {
678: switch (fdof) {
679: case 4:
680: DMPlex_MatMultTranspose2D_Internal(tvaf, gpdof, lda, a, a);
681: break;
682: case 9:
683: DMPlex_MatMultTranspose3D_Internal(tvaf, gpdof, lda, a, a);
684: break;
685: }
686: switch (gdof) {
687: case 4:
688: DMPlex_MatMultLeft2D_Internal(tvag, fpdof, lda, a, a);
689: break;
690: case 9:
691: DMPlex_MatMultLeft3D_Internal(tvag, fpdof, lda, a, a);
692: break;
693: }
694: }
695: PetscCall(VecRestoreArrayRead(tv, &ta));
696: PetscFunctionReturn(PETSC_SUCCESS);
697: }
699: PetscErrorCode DMPlexBasisTransformPoint_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscBool fieldActive[], PetscBool l2g, PetscScalar *a)
700: {
701: PetscSection s;
702: PetscSection clSection;
703: IS clPoints;
704: const PetscInt *clp;
705: PetscInt *points = NULL;
706: PetscInt Nf, f, Np, cp, dof, d = 0;
708: PetscFunctionBegin;
709: PetscCall(DMGetLocalSection(dm, &s));
710: PetscCall(PetscSectionGetNumFields(s, &Nf));
711: PetscCall(DMPlexGetCompressedClosure(dm, s, p, 0, &Np, &points, &clSection, &clPoints, &clp));
712: for (f = 0; f < Nf; ++f) {
713: for (cp = 0; cp < Np * 2; cp += 2) {
714: PetscCall(PetscSectionGetFieldDof(s, points[cp], f, &dof));
715: if (!dof) continue;
716: if (fieldActive[f]) PetscCall(DMPlexBasisTransformField_Internal(dm, tdm, tv, points[cp], f, l2g, &a[d]));
717: d += dof;
718: }
719: }
720: PetscCall(DMPlexRestoreCompressedClosure(dm, s, p, &Np, &points, &clSection, &clPoints, &clp));
721: PetscFunctionReturn(PETSC_SUCCESS);
722: }
724: PetscErrorCode DMPlexBasisTransformPointTensor_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscBool l2g, PetscInt lda, PetscScalar *a)
725: {
726: PetscSection s;
727: PetscSection clSection;
728: IS clPoints;
729: const PetscInt *clp;
730: PetscInt *points = NULL;
731: PetscInt Nf, f, g, Np, cpf, cpg, fdof, gdof, r, c = 0;
733: PetscFunctionBegin;
734: PetscCall(DMGetLocalSection(dm, &s));
735: PetscCall(PetscSectionGetNumFields(s, &Nf));
736: PetscCall(DMPlexGetCompressedClosure(dm, s, p, 0, &Np, &points, &clSection, &clPoints, &clp));
737: for (f = 0, r = 0; f < Nf; ++f) {
738: for (cpf = 0; cpf < Np * 2; cpf += 2) {
739: PetscCall(PetscSectionGetFieldDof(s, points[cpf], f, &fdof));
740: for (g = 0, c = 0; g < Nf; ++g) {
741: for (cpg = 0; cpg < Np * 2; cpg += 2) {
742: PetscCall(PetscSectionGetFieldDof(s, points[cpg], g, &gdof));
743: PetscCall(DMPlexBasisTransformFieldTensor_Internal(dm, tdm, tv, points[cpf], f, points[cpg], g, l2g, lda, &a[r * lda + c]));
744: c += gdof;
745: }
746: }
747: PetscCheck(c == lda, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid number of columns %" PetscInt_FMT " should be %" PetscInt_FMT, c, lda);
748: r += fdof;
749: }
750: }
751: PetscCheck(r == lda, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid number of rows %" PetscInt_FMT " should be %" PetscInt_FMT, c, lda);
752: PetscCall(DMPlexRestoreCompressedClosure(dm, s, p, &Np, &points, &clSection, &clPoints, &clp));
753: PetscFunctionReturn(PETSC_SUCCESS);
754: }
756: static PetscErrorCode DMPlexBasisTransform_Internal(DM dm, Vec lv, PetscBool l2g)
757: {
758: DM tdm;
759: Vec tv;
760: PetscSection ts, s;
761: const PetscScalar *ta;
762: PetscScalar *a, *va;
763: PetscInt pStart, pEnd, p, Nf, f;
765: PetscFunctionBegin;
766: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
767: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
768: PetscCall(DMGetLocalSection(tdm, &ts));
769: PetscCall(DMGetLocalSection(dm, &s));
770: PetscCall(PetscSectionGetChart(s, &pStart, &pEnd));
771: PetscCall(PetscSectionGetNumFields(s, &Nf));
772: PetscCall(VecGetArray(lv, &a));
773: PetscCall(VecGetArrayRead(tv, &ta));
774: for (p = pStart; p < pEnd; ++p) {
775: for (f = 0; f < Nf; ++f) {
776: PetscCall(DMPlexPointLocalFieldRef(dm, p, f, a, &va));
777: PetscCall(DMPlexBasisTransformField_Internal(dm, tdm, tv, p, f, l2g, va));
778: }
779: }
780: PetscCall(VecRestoreArray(lv, &a));
781: PetscCall(VecRestoreArrayRead(tv, &ta));
782: PetscFunctionReturn(PETSC_SUCCESS);
783: }
785: /*@
786: DMPlexGlobalToLocalBasis - Transform the values in the given local vector from the global basis to the local basis
788: Input Parameters:
789: + dm - The `DM`
790: - lv - A local vector with values in the global basis
792: Output Parameter:
793: . lv - A local vector with values in the local basis
795: Level: developer
797: Note:
798: This method is only intended to be called inside `DMGlobalToLocal()`. It is unlikely that a user will have a local vector full of coefficients for the global basis unless they are reimplementing GlobalToLocal.
800: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexLocalToGlobalBasis()`, `DMGetLocalSection()`, `DMPlexCreateBasisRotation()`
801: @*/
802: PetscErrorCode DMPlexGlobalToLocalBasis(DM dm, Vec lv)
803: {
804: PetscFunctionBegin;
807: PetscCall(DMPlexBasisTransform_Internal(dm, lv, PETSC_FALSE));
808: PetscFunctionReturn(PETSC_SUCCESS);
809: }
811: /*@
812: DMPlexLocalToGlobalBasis - Transform the values in the given local vector from the local basis to the global basis
814: Input Parameters:
815: + dm - The `DM`
816: - lv - A local vector with values in the local basis
818: Output Parameter:
819: . lv - A local vector with values in the global basis
821: Level: developer
823: Note:
824: This method is only intended to be called inside `DMGlobalToLocal()`. It is unlikely that a user would want a local vector full of coefficients for the global basis unless they are reimplementing GlobalToLocal.
826: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGlobalToLocalBasis()`, `DMGetLocalSection()`, `DMPlexCreateBasisRotation()`
827: @*/
828: PetscErrorCode DMPlexLocalToGlobalBasis(DM dm, Vec lv)
829: {
830: PetscFunctionBegin;
833: PetscCall(DMPlexBasisTransform_Internal(dm, lv, PETSC_TRUE));
834: PetscFunctionReturn(PETSC_SUCCESS);
835: }
837: /*@
838: DMPlexCreateBasisRotation - Create an internal transformation from the global basis, used to specify boundary conditions
839: and global solutions, to a local basis, appropriate for discretization integrals and assembly.
841: Input Parameters:
842: + dm - The `DM`
843: . alpha - The first Euler angle, and in 2D the only one
844: . beta - The second Euler angle
845: - gamma - The third Euler angle
847: Level: developer
849: Note:
850: Following https://en.wikipedia.org/wiki/Euler_angles, we will specify Euler angles by extrinsic rotations, meaning that
851: we rotate with respect to a fixed initial coordinate system, the local basis (x-y-z). The global basis (X-Y-Z) is reached as follows
852: .vb
853: The XYZ system rotates about the z axis by alpha. The X axis is now at angle alpha with respect to the x axis.
854: The XYZ system rotates again about the x axis by beta. The Z axis is now at angle beta with respect to the z axis.
855: The XYZ system rotates a third time about the z axis by gamma.
856: .ve
858: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGlobalToLocalBasis()`, `DMPlexLocalToGlobalBasis()`
859: @*/
860: PetscErrorCode DMPlexCreateBasisRotation(DM dm, PetscReal alpha, PetscReal beta, PetscReal gamma)
861: {
862: RotCtx *rc;
863: PetscInt cdim;
865: PetscFunctionBegin;
866: PetscCall(DMGetCoordinateDim(dm, &cdim));
867: PetscCall(PetscMalloc1(1, &rc));
868: dm->transformCtx = rc;
869: dm->transformSetUp = DMPlexBasisTransformSetUp_Rotation_Internal;
870: dm->transformDestroy = DMPlexBasisTransformDestroy_Rotation_Internal;
871: dm->transformGetMatrix = DMPlexBasisTransformGetMatrix_Rotation_Internal;
872: rc->dim = cdim;
873: rc->alpha = alpha;
874: rc->beta = beta;
875: rc->gamma = gamma;
876: PetscCall((*dm->transformSetUp)(dm, dm->transformCtx));
877: PetscCall(DMConstructBasisTransform_Internal(dm));
878: PetscFunctionReturn(PETSC_SUCCESS);
879: }
881: /*@C
882: DMPlexInsertBoundaryValuesEssential - Insert boundary values into a local vector using a function of the coordinates
884: Input Parameters:
885: + dm - The `DM`, with a `PetscDS` that matches the problem being constrained
886: . time - The time
887: . field - The field to constrain
888: . Nc - The number of constrained field components, or 0 for all components
889: . comps - An array of constrained component numbers, or `NULL` for all components
890: . label - The `DMLabel` defining constrained points
891: . numids - The number of `DMLabel` ids for constrained points
892: . ids - An array of ids for constrained points
893: . func - A pointwise function giving boundary values
894: - ctx - An optional user context for bcFunc
896: Output Parameter:
897: . locX - A local vector to receives the boundary values
899: Level: developer
901: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMLabel`, `DMPlexInsertBoundaryValuesEssentialField()`, `DMPlexInsertBoundaryValuesEssentialBdField()`, `DMAddBoundary()`
902: @*/
903: PetscErrorCode DMPlexInsertBoundaryValuesEssential(DM dm, PetscReal time, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void *ctx, Vec locX)
904: {
905: PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal x[], PetscInt, PetscScalar *u, void *ctx);
906: void **ctxs;
907: PetscInt numFields;
909: PetscFunctionBegin;
910: PetscCall(DMGetNumFields(dm, &numFields));
911: PetscCall(PetscCalloc2(numFields, &funcs, numFields, &ctxs));
912: funcs[field] = func;
913: ctxs[field] = ctx;
914: PetscCall(DMProjectFunctionLabelLocal(dm, time, label, numids, ids, Nc, comps, funcs, ctxs, INSERT_BC_VALUES, locX));
915: PetscCall(PetscFree2(funcs, ctxs));
916: PetscFunctionReturn(PETSC_SUCCESS);
917: }
919: /*@C
920: DMPlexInsertBoundaryValuesEssentialField - Insert boundary values into a local vector using a function of the coordinates and field data
922: Input Parameters:
923: + dm - The `DM`, with a `PetscDS` that matches the problem being constrained
924: . time - The time
925: . locU - A local vector with the input solution values
926: . field - The field to constrain
927: . Nc - The number of constrained field components, or 0 for all components
928: . comps - An array of constrained component numbers, or `NULL` for all components
929: . label - The `DMLabel` defining constrained points
930: . numids - The number of `DMLabel` ids for constrained points
931: . ids - An array of ids for constrained points
932: . func - A pointwise function giving boundary values
933: - ctx - An optional user context for bcFunc
935: Output Parameter:
936: . locX - A local vector to receives the boundary values
938: Level: developer
940: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexInsertBoundaryValuesEssential()`, `DMPlexInsertBoundaryValuesEssentialBdField()`, `DMAddBoundary()`
941: @*/
942: PetscErrorCode DMPlexInsertBoundaryValuesEssentialField(DM dm, PetscReal time, Vec locU, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], void (*func)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void *ctx, Vec locX)
943: {
944: void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]);
945: void **ctxs;
946: PetscInt numFields;
948: PetscFunctionBegin;
949: PetscCall(DMGetNumFields(dm, &numFields));
950: PetscCall(PetscCalloc2(numFields, &funcs, numFields, &ctxs));
951: funcs[field] = func;
952: ctxs[field] = ctx;
953: PetscCall(DMProjectFieldLabelLocal(dm, time, label, numids, ids, Nc, comps, locU, funcs, INSERT_BC_VALUES, locX));
954: PetscCall(PetscFree2(funcs, ctxs));
955: PetscFunctionReturn(PETSC_SUCCESS);
956: }
958: /*@C
959: DMPlexInsertBoundaryValuesEssentialBdField - Insert boundary values into a local vector using a function of the coordinates and boundary field data
961: Collective
963: Input Parameters:
964: + dm - The `DM`, with a `PetscDS` that matches the problem being constrained
965: . time - The time
966: . locU - A local vector with the input solution values
967: . field - The field to constrain
968: . Nc - The number of constrained field components, or 0 for all components
969: . comps - An array of constrained component numbers, or `NULL` for all components
970: . label - The `DMLabel` defining constrained points
971: . numids - The number of `DMLabel` ids for constrained points
972: . ids - An array of ids for constrained points
973: . func - A pointwise function giving boundary values, the calling sequence is given in `DMProjectBdFieldLabelLocal()`
974: - ctx - An optional user context for `func`
976: Output Parameter:
977: . locX - A local vector to receive the boundary values
979: Level: developer
981: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectBdFieldLabelLocal()`, `DMPlexInsertBoundaryValuesEssential()`, `DMPlexInsertBoundaryValuesEssentialField()`, `DMAddBoundary()`
982: @*/
983: PetscErrorCode DMPlexInsertBoundaryValuesEssentialBdField(DM dm, PetscReal time, Vec locU, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], void (*func)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void *ctx, Vec locX)
984: {
985: void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]);
986: void **ctxs;
987: PetscInt numFields;
989: PetscFunctionBegin;
990: PetscCall(DMGetNumFields(dm, &numFields));
991: PetscCall(PetscCalloc2(numFields, &funcs, numFields, &ctxs));
992: funcs[field] = func;
993: ctxs[field] = ctx;
994: PetscCall(DMProjectBdFieldLabelLocal(dm, time, label, numids, ids, Nc, comps, locU, funcs, INSERT_BC_VALUES, locX));
995: PetscCall(PetscFree2(funcs, ctxs));
996: PetscFunctionReturn(PETSC_SUCCESS);
997: }
999: /*@C
1000: DMPlexInsertBoundaryValuesRiemann - Insert boundary values into a local vector
1002: Input Parameters:
1003: + dm - The `DM`, with a `PetscDS` that matches the problem being constrained
1004: . time - The time
1005: . faceGeometry - A vector with the FVM face geometry information
1006: . cellGeometry - A vector with the FVM cell geometry information
1007: . Grad - A vector with the FVM cell gradient information
1008: . field - The field to constrain
1009: . Nc - The number of constrained field components, or 0 for all components
1010: . comps - An array of constrained component numbers, or `NULL` for all components
1011: . label - The `DMLabel` defining constrained points
1012: . numids - The number of `DMLabel` ids for constrained points
1013: . ids - An array of ids for constrained points
1014: . func - A pointwise function giving boundary values
1015: - ctx - An optional user context for bcFunc
1017: Output Parameter:
1018: . locX - A local vector to receives the boundary values
1020: Level: developer
1022: Note:
1023: This implementation currently ignores the numcomps/comps argument from `DMAddBoundary()`
1025: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexInsertBoundaryValuesEssential()`, `DMPlexInsertBoundaryValuesEssentialField()`, `DMAddBoundary()`
1026: @*/
1027: PetscErrorCode DMPlexInsertBoundaryValuesRiemann(DM dm, PetscReal time, Vec faceGeometry, Vec cellGeometry, Vec Grad, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], PetscErrorCode (*func)(PetscReal, const PetscReal *, const PetscReal *, const PetscScalar *, PetscScalar *, void *), void *ctx, Vec locX)
1028: {
1029: PetscDS prob;
1030: PetscSF sf;
1031: DM dmFace, dmCell, dmGrad;
1032: const PetscScalar *facegeom, *cellgeom = NULL, *grad;
1033: const PetscInt *leaves;
1034: PetscScalar *x, *fx;
1035: PetscInt dim, nleaves, loc, fStart, fEnd, pdim, i;
1036: PetscErrorCode ierru = PETSC_SUCCESS;
1038: PetscFunctionBegin;
1039: PetscCall(DMGetPointSF(dm, &sf));
1040: PetscCall(PetscSFGetGraph(sf, NULL, &nleaves, &leaves, NULL));
1041: nleaves = PetscMax(0, nleaves);
1042: PetscCall(DMGetDimension(dm, &dim));
1043: PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
1044: PetscCall(DMGetDS(dm, &prob));
1045: PetscCall(VecGetDM(faceGeometry, &dmFace));
1046: PetscCall(VecGetArrayRead(faceGeometry, &facegeom));
1047: if (cellGeometry) {
1048: PetscCall(VecGetDM(cellGeometry, &dmCell));
1049: PetscCall(VecGetArrayRead(cellGeometry, &cellgeom));
1050: }
1051: if (Grad) {
1052: PetscFV fv;
1054: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fv));
1055: PetscCall(VecGetDM(Grad, &dmGrad));
1056: PetscCall(VecGetArrayRead(Grad, &grad));
1057: PetscCall(PetscFVGetNumComponents(fv, &pdim));
1058: PetscCall(DMGetWorkArray(dm, pdim, MPIU_SCALAR, &fx));
1059: }
1060: PetscCall(VecGetArray(locX, &x));
1061: for (i = 0; i < numids; ++i) {
1062: IS faceIS;
1063: const PetscInt *faces;
1064: PetscInt numFaces, f;
1066: PetscCall(DMLabelGetStratumIS(label, ids[i], &faceIS));
1067: if (!faceIS) continue; /* No points with that id on this process */
1068: PetscCall(ISGetLocalSize(faceIS, &numFaces));
1069: PetscCall(ISGetIndices(faceIS, &faces));
1070: for (f = 0; f < numFaces; ++f) {
1071: const PetscInt face = faces[f], *cells;
1072: PetscFVFaceGeom *fg;
1074: if ((face < fStart) || (face >= fEnd)) continue; /* Refinement adds non-faces to labels */
1075: PetscCall(PetscFindInt(face, nleaves, (PetscInt *)leaves, &loc));
1076: if (loc >= 0) continue;
1077: PetscCall(DMPlexPointLocalRead(dmFace, face, facegeom, &fg));
1078: PetscCall(DMPlexGetSupport(dm, face, &cells));
1079: if (Grad) {
1080: PetscFVCellGeom *cg;
1081: PetscScalar *cx, *cgrad;
1082: PetscScalar *xG;
1083: PetscReal dx[3];
1084: PetscInt d;
1086: PetscCall(DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cg));
1087: PetscCall(DMPlexPointLocalRead(dm, cells[0], x, &cx));
1088: PetscCall(DMPlexPointLocalRead(dmGrad, cells[0], grad, &cgrad));
1089: PetscCall(DMPlexPointLocalFieldRef(dm, cells[1], field, x, &xG));
1090: DMPlex_WaxpyD_Internal(dim, -1, cg->centroid, fg->centroid, dx);
1091: for (d = 0; d < pdim; ++d) fx[d] = cx[d] + DMPlex_DotD_Internal(dim, &cgrad[d * dim], dx);
1092: PetscCall((*func)(time, fg->centroid, fg->normal, fx, xG, ctx));
1093: } else {
1094: PetscScalar *xI;
1095: PetscScalar *xG;
1097: PetscCall(DMPlexPointLocalRead(dm, cells[0], x, &xI));
1098: PetscCall(DMPlexPointLocalFieldRef(dm, cells[1], field, x, &xG));
1099: ierru = (*func)(time, fg->centroid, fg->normal, xI, xG, ctx);
1100: if (ierru) {
1101: PetscCall(ISRestoreIndices(faceIS, &faces));
1102: PetscCall(ISDestroy(&faceIS));
1103: goto cleanup;
1104: }
1105: }
1106: }
1107: PetscCall(ISRestoreIndices(faceIS, &faces));
1108: PetscCall(ISDestroy(&faceIS));
1109: }
1110: cleanup:
1111: PetscCall(VecRestoreArray(locX, &x));
1112: if (Grad) {
1113: PetscCall(DMRestoreWorkArray(dm, pdim, MPIU_SCALAR, &fx));
1114: PetscCall(VecRestoreArrayRead(Grad, &grad));
1115: }
1116: if (cellGeometry) PetscCall(VecRestoreArrayRead(cellGeometry, &cellgeom));
1117: PetscCall(VecRestoreArrayRead(faceGeometry, &facegeom));
1118: PetscCall(ierru);
1119: PetscFunctionReturn(PETSC_SUCCESS);
1120: }
1122: static PetscErrorCode zero(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
1123: {
1124: PetscInt c;
1125: for (c = 0; c < Nc; ++c) u[c] = 0.0;
1126: return PETSC_SUCCESS;
1127: }
1129: PetscErrorCode DMPlexInsertBoundaryValues_Plex(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1130: {
1131: PetscObject isZero;
1132: PetscDS prob;
1133: PetscInt numBd, b;
1135: PetscFunctionBegin;
1136: PetscCall(DMGetDS(dm, &prob));
1137: PetscCall(PetscDSGetNumBoundary(prob, &numBd));
1138: PetscCall(PetscObjectQuery((PetscObject)locX, "__Vec_bc_zero__", &isZero));
1139: PetscCall(PetscDSUpdateBoundaryLabels(prob, dm));
1140: for (b = 0; b < numBd; ++b) {
1141: PetscWeakForm wf;
1142: DMBoundaryConditionType type;
1143: const char *name;
1144: DMLabel label;
1145: PetscInt field, Nc;
1146: const PetscInt *comps;
1147: PetscObject obj;
1148: PetscClassId id;
1149: void (*bvfunc)(void);
1150: PetscInt numids;
1151: const PetscInt *ids;
1152: void *ctx;
1154: PetscCall(PetscDSGetBoundary(prob, b, &wf, &type, &name, &label, &numids, &ids, &field, &Nc, &comps, &bvfunc, NULL, &ctx));
1155: if (insertEssential != (type & DM_BC_ESSENTIAL)) continue;
1156: PetscCall(DMGetField(dm, field, NULL, &obj));
1157: PetscCall(PetscObjectGetClassId(obj, &id));
1158: if (id == PETSCFE_CLASSID) {
1159: switch (type) {
1160: /* for FEM, there is no insertion to be done for non-essential boundary conditions */
1161: case DM_BC_ESSENTIAL: {
1162: PetscSimplePointFn *func = (PetscSimplePointFn *)bvfunc;
1164: if (isZero) func = zero;
1165: PetscCall(DMPlexLabelAddCells(dm, label));
1166: PetscCall(DMPlexInsertBoundaryValuesEssential(dm, time, field, Nc, comps, label, numids, ids, func, ctx, locX));
1167: PetscCall(DMPlexLabelClearCells(dm, label));
1168: } break;
1169: case DM_BC_ESSENTIAL_FIELD: {
1170: PetscPointFunc func = (PetscPointFunc)bvfunc;
1172: PetscCall(DMPlexLabelAddCells(dm, label));
1173: PetscCall(DMPlexInsertBoundaryValuesEssentialField(dm, time, locX, field, Nc, comps, label, numids, ids, func, ctx, locX));
1174: PetscCall(DMPlexLabelClearCells(dm, label));
1175: } break;
1176: default:
1177: break;
1178: }
1179: } else if (id == PETSCFV_CLASSID) {
1180: {
1181: PetscErrorCode (*func)(PetscReal, const PetscReal *, const PetscReal *, const PetscScalar *, PetscScalar *, void *) = (PetscErrorCode(*)(PetscReal, const PetscReal *, const PetscReal *, const PetscScalar *, PetscScalar *, void *))bvfunc;
1183: if (!faceGeomFVM) continue;
1184: PetscCall(DMPlexInsertBoundaryValuesRiemann(dm, time, faceGeomFVM, cellGeomFVM, gradFVM, field, Nc, comps, label, numids, ids, func, ctx, locX));
1185: }
1186: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1187: }
1188: PetscFunctionReturn(PETSC_SUCCESS);
1189: }
1191: PetscErrorCode DMPlexInsertTimeDerivativeBoundaryValues_Plex(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1192: {
1193: PetscObject isZero;
1194: PetscDS prob;
1195: PetscInt numBd, b;
1197: PetscFunctionBegin;
1198: if (!locX) PetscFunctionReturn(PETSC_SUCCESS);
1199: PetscCall(DMGetDS(dm, &prob));
1200: PetscCall(PetscDSGetNumBoundary(prob, &numBd));
1201: PetscCall(PetscObjectQuery((PetscObject)locX, "__Vec_bc_zero__", &isZero));
1202: for (b = 0; b < numBd; ++b) {
1203: PetscWeakForm wf;
1204: DMBoundaryConditionType type;
1205: const char *name;
1206: DMLabel label;
1207: PetscInt field, Nc;
1208: const PetscInt *comps;
1209: PetscObject obj;
1210: PetscClassId id;
1211: PetscInt numids;
1212: const PetscInt *ids;
1213: void (*bvfunc)(void);
1214: void *ctx;
1216: PetscCall(PetscDSGetBoundary(prob, b, &wf, &type, &name, &label, &numids, &ids, &field, &Nc, &comps, NULL, &bvfunc, &ctx));
1217: if (insertEssential != (type & DM_BC_ESSENTIAL)) continue;
1218: PetscCall(DMGetField(dm, field, NULL, &obj));
1219: PetscCall(PetscObjectGetClassId(obj, &id));
1220: if (id == PETSCFE_CLASSID) {
1221: switch (type) {
1222: /* for FEM, there is no insertion to be done for non-essential boundary conditions */
1223: case DM_BC_ESSENTIAL: {
1224: PetscSimplePointFn *func_t = (PetscSimplePointFn *)bvfunc;
1226: if (isZero) func_t = zero;
1227: PetscCall(DMPlexLabelAddCells(dm, label));
1228: PetscCall(DMPlexInsertBoundaryValuesEssential(dm, time, field, Nc, comps, label, numids, ids, func_t, ctx, locX));
1229: PetscCall(DMPlexLabelClearCells(dm, label));
1230: } break;
1231: case DM_BC_ESSENTIAL_FIELD: {
1232: PetscPointFunc func_t = (PetscPointFunc)bvfunc;
1234: PetscCall(DMPlexLabelAddCells(dm, label));
1235: PetscCall(DMPlexInsertBoundaryValuesEssentialField(dm, time, locX, field, Nc, comps, label, numids, ids, func_t, ctx, locX));
1236: PetscCall(DMPlexLabelClearCells(dm, label));
1237: } break;
1238: default:
1239: break;
1240: }
1241: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1242: }
1243: PetscFunctionReturn(PETSC_SUCCESS);
1244: }
1246: /*@
1247: DMPlexInsertBoundaryValues - Puts coefficients which represent boundary values into the local solution vector
1249: Not Collective
1251: Input Parameters:
1252: + dm - The `DM`
1253: . insertEssential - Should I insert essential (e.g. Dirichlet) or inessential (e.g. Neumann) boundary conditions
1254: . time - The time
1255: . faceGeomFVM - Face geometry data for FV discretizations
1256: . cellGeomFVM - Cell geometry data for FV discretizations
1257: - gradFVM - Gradient reconstruction data for FV discretizations
1259: Output Parameter:
1260: . locX - Solution updated with boundary values
1262: Level: intermediate
1264: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunctionLabelLocal()`, `DMAddBoundary()`
1265: @*/
1266: PetscErrorCode DMPlexInsertBoundaryValues(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1267: {
1268: PetscFunctionBegin;
1274: PetscTryMethod(dm, "DMPlexInsertBoundaryValues_C", (DM, PetscBool, Vec, PetscReal, Vec, Vec, Vec), (dm, insertEssential, locX, time, faceGeomFVM, cellGeomFVM, gradFVM));
1275: PetscFunctionReturn(PETSC_SUCCESS);
1276: }
1278: /*@
1279: DMPlexInsertTimeDerivativeBoundaryValues - Puts coefficients which represent boundary values of the time derivative into the local solution vector
1281: Input Parameters:
1282: + dm - The `DM`
1283: . insertEssential - Should I insert essential (e.g. Dirichlet) or inessential (e.g. Neumann) boundary conditions
1284: . time - The time
1285: . faceGeomFVM - Face geometry data for FV discretizations
1286: . cellGeomFVM - Cell geometry data for FV discretizations
1287: - gradFVM - Gradient reconstruction data for FV discretizations
1289: Output Parameter:
1290: . locX_t - Solution updated with boundary values
1292: Level: developer
1294: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunctionLabelLocal()`
1295: @*/
1296: PetscErrorCode DMPlexInsertTimeDerivativeBoundaryValues(DM dm, PetscBool insertEssential, Vec locX_t, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1297: {
1298: PetscFunctionBegin;
1304: PetscTryMethod(dm, "DMPlexInsertTimeDerivativeBoundaryValues_C", (DM, PetscBool, Vec, PetscReal, Vec, Vec, Vec), (dm, insertEssential, locX_t, time, faceGeomFVM, cellGeomFVM, gradFVM));
1305: PetscFunctionReturn(PETSC_SUCCESS);
1306: }
1308: // Handle non-essential (e.g. outflow) boundary values
1309: PetscErrorCode DMPlexInsertBoundaryValuesFVM(DM dm, PetscFV fv, Vec locX, PetscReal time, Vec *locGradient)
1310: {
1311: DM dmGrad;
1312: Vec cellGeometryFVM, faceGeometryFVM, locGrad = NULL;
1314: PetscFunctionBegin;
1318: if (locGradient) {
1319: PetscAssertPointer(locGradient, 5);
1320: *locGradient = NULL;
1321: }
1322: PetscCall(DMPlexGetGeometryFVM(dm, &faceGeometryFVM, &cellGeometryFVM, NULL));
1323: /* Reconstruct and limit cell gradients */
1324: PetscCall(DMPlexGetGradientDM(dm, fv, &dmGrad));
1325: if (dmGrad) {
1326: Vec grad;
1327: PetscInt fStart, fEnd;
1329: PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
1330: PetscCall(DMGetGlobalVector(dmGrad, &grad));
1331: PetscCall(DMPlexReconstructGradients_Internal(dm, fv, fStart, fEnd, faceGeometryFVM, cellGeometryFVM, locX, grad));
1332: /* Communicate gradient values */
1333: PetscCall(DMGetLocalVector(dmGrad, &locGrad));
1334: PetscCall(DMGlobalToLocalBegin(dmGrad, grad, INSERT_VALUES, locGrad));
1335: PetscCall(DMGlobalToLocalEnd(dmGrad, grad, INSERT_VALUES, locGrad));
1336: PetscCall(DMRestoreGlobalVector(dmGrad, &grad));
1337: }
1338: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_FALSE, locX, time, faceGeometryFVM, cellGeometryFVM, locGrad));
1339: if (locGradient) *locGradient = locGrad;
1340: else if (locGrad) PetscCall(DMRestoreLocalVector(dmGrad, &locGrad));
1341: PetscFunctionReturn(PETSC_SUCCESS);
1342: }
1344: PetscErrorCode DMComputeL2Diff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal *diff)
1345: {
1346: Vec localX;
1348: PetscFunctionBegin;
1349: PetscCall(DMGetLocalVector(dm, &localX));
1350: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, localX, time, NULL, NULL, NULL));
1351: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1352: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1353: PetscCall(DMPlexComputeL2DiffLocal(dm, time, funcs, ctxs, localX, diff));
1354: PetscCall(DMRestoreLocalVector(dm, &localX));
1355: PetscFunctionReturn(PETSC_SUCCESS);
1356: }
1358: /*@C
1359: DMPlexComputeL2DiffLocal - This function computes the L_2 difference between a function u and an FEM interpolant solution u_h.
1361: Collective
1363: Input Parameters:
1364: + dm - The `DM`
1365: . time - The time
1366: . funcs - The functions to evaluate for each field component
1367: . ctxs - Optional array of contexts to pass to each function, or `NULL`.
1368: - localX - The coefficient vector u_h, a local vector
1370: Output Parameter:
1371: . diff - The diff ||u - u_h||_2
1373: Level: developer
1375: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
1376: @*/
1377: PetscErrorCode DMPlexComputeL2DiffLocal(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec localX, PetscReal *diff)
1378: {
1379: const PetscInt debug = ((DM_Plex *)dm->data)->printL2;
1380: DM tdm;
1381: Vec tv;
1382: PetscSection section;
1383: PetscQuadrature quad;
1384: PetscFEGeom fegeom;
1385: PetscScalar *funcVal, *interpolant;
1386: PetscReal *coords, *gcoords;
1387: PetscReal localDiff = 0.0;
1388: const PetscReal *quadWeights;
1389: PetscInt dim, coordDim, numFields, numComponents = 0, qNc, Nq, cellHeight, cStart, cEnd, c, field, fieldOffset;
1390: PetscBool transform;
1392: PetscFunctionBegin;
1393: PetscCall(DMGetDimension(dm, &dim));
1394: PetscCall(DMGetCoordinateDim(dm, &coordDim));
1395: fegeom.dimEmbed = coordDim;
1396: PetscCall(DMGetLocalSection(dm, §ion));
1397: PetscCall(PetscSectionGetNumFields(section, &numFields));
1398: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
1399: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
1400: PetscCall(DMHasBasisTransform(dm, &transform));
1401: PetscCheck(numFields, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fields is zero!");
1402: for (field = 0; field < numFields; ++field) {
1403: PetscObject obj;
1404: PetscClassId id;
1405: PetscInt Nc;
1407: PetscCall(DMGetField(dm, field, NULL, &obj));
1408: PetscCall(PetscObjectGetClassId(obj, &id));
1409: if (id == PETSCFE_CLASSID) {
1410: PetscFE fe = (PetscFE)obj;
1412: PetscCall(PetscFEGetQuadrature(fe, &quad));
1413: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1414: } else if (id == PETSCFV_CLASSID) {
1415: PetscFV fv = (PetscFV)obj;
1417: PetscCall(PetscFVGetQuadrature(fv, &quad));
1418: PetscCall(PetscFVGetNumComponents(fv, &Nc));
1419: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1420: numComponents += Nc;
1421: }
1422: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights));
1423: PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
1424: PetscCall(PetscMalloc6(numComponents, &funcVal, numComponents, &interpolant, coordDim * (Nq + 1), &coords, Nq, &fegeom.detJ, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ));
1425: PetscCall(DMPlexGetVTKCellHeight(dm, &cellHeight));
1426: PetscCall(DMPlexGetSimplexOrBoxCells(dm, cellHeight, &cStart, &cEnd));
1427: for (c = cStart; c < cEnd; ++c) {
1428: PetscScalar *x = NULL;
1429: PetscReal elemDiff = 0.0;
1430: PetscInt qc = 0;
1432: PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1433: PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, c, 0, NULL, &x));
1435: for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1436: PetscObject obj;
1437: PetscClassId id;
1438: void *const ctx = ctxs ? ctxs[field] : NULL;
1439: PetscInt Nb, Nc, q, fc;
1441: PetscCall(DMGetField(dm, field, NULL, &obj));
1442: PetscCall(PetscObjectGetClassId(obj, &id));
1443: if (id == PETSCFE_CLASSID) {
1444: PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
1445: PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
1446: } else if (id == PETSCFV_CLASSID) {
1447: PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
1448: Nb = 1;
1449: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1450: if (debug) {
1451: char title[1024];
1452: PetscCall(PetscSNPrintf(title, 1023, "Solution for Field %" PetscInt_FMT, field));
1453: PetscCall(DMPrintCellVector(c, title, Nb, &x[fieldOffset]));
1454: }
1455: for (q = 0; q < Nq; ++q) {
1456: PetscFEGeom qgeom;
1457: PetscErrorCode ierr;
1459: qgeom.dimEmbed = fegeom.dimEmbed;
1460: qgeom.J = &fegeom.J[q * coordDim * coordDim];
1461: qgeom.invJ = &fegeom.invJ[q * coordDim * coordDim];
1462: qgeom.detJ = &fegeom.detJ[q];
1463: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", point %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
1464: if (transform) {
1465: gcoords = &coords[coordDim * Nq];
1466: PetscCall(DMPlexBasisTransformApplyReal_Internal(dm, &coords[coordDim * q], PETSC_TRUE, coordDim, &coords[coordDim * q], gcoords, dm->transformCtx));
1467: } else {
1468: gcoords = &coords[coordDim * q];
1469: }
1470: PetscCall(PetscArrayzero(funcVal, Nc));
1471: ierr = (*funcs[field])(coordDim, time, gcoords, Nc, funcVal, ctx);
1472: if (ierr) {
1473: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1474: PetscCall(DMRestoreLocalVector(dm, &localX));
1475: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1476: }
1477: if (transform) PetscCall(DMPlexBasisTransformApply_Internal(dm, &coords[coordDim * q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx));
1478: if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[fieldOffset], &qgeom, q, interpolant));
1479: else if (id == PETSCFV_CLASSID) PetscCall(PetscFVInterpolate_Static((PetscFV)obj, &x[fieldOffset], q, interpolant));
1480: else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1481: for (fc = 0; fc < Nc; ++fc) {
1482: const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1483: if (debug)
1484: PetscCall(PetscPrintf(PETSC_COMM_SELF, " elem %" PetscInt_FMT " field %" PetscInt_FMT ",%" PetscInt_FMT " point %g %g %g diff %g (%g, %g)\n", c, field, fc, (double)(coordDim > 0 ? coords[coordDim * q] : 0.), (double)(coordDim > 1 ? coords[coordDim * q + 1] : 0.), (double)(coordDim > 2 ? coords[coordDim * q + 2] : 0.),
1485: (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q]), (double)PetscRealPart(interpolant[fc]), (double)PetscRealPart(funcVal[fc])));
1486: elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1487: }
1488: }
1489: fieldOffset += Nb;
1490: qc += Nc;
1491: }
1492: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1493: if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, " elem %" PetscInt_FMT " diff %g\n", c, (double)elemDiff));
1494: localDiff += elemDiff;
1495: }
1496: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1497: PetscCall(MPIU_Allreduce(&localDiff, diff, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
1498: *diff = PetscSqrtReal(*diff);
1499: PetscFunctionReturn(PETSC_SUCCESS);
1500: }
1502: PetscErrorCode DMComputeL2GradientDiff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, const PetscReal n[], PetscReal *diff)
1503: {
1504: const PetscInt debug = ((DM_Plex *)dm->data)->printL2;
1505: DM tdm;
1506: PetscSection section;
1507: PetscQuadrature quad;
1508: Vec localX, tv;
1509: PetscScalar *funcVal, *interpolant;
1510: const PetscReal *quadWeights;
1511: PetscFEGeom fegeom;
1512: PetscReal *coords, *gcoords;
1513: PetscReal localDiff = 0.0;
1514: PetscInt dim, coordDim, qNc = 0, Nq = 0, numFields, numComponents = 0, cStart, cEnd, c, field, fieldOffset;
1515: PetscBool transform;
1517: PetscFunctionBegin;
1518: PetscCall(DMGetDimension(dm, &dim));
1519: PetscCall(DMGetCoordinateDim(dm, &coordDim));
1520: fegeom.dimEmbed = coordDim;
1521: PetscCall(DMGetLocalSection(dm, §ion));
1522: PetscCall(PetscSectionGetNumFields(section, &numFields));
1523: PetscCall(DMGetLocalVector(dm, &localX));
1524: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1525: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1526: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
1527: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
1528: PetscCall(DMHasBasisTransform(dm, &transform));
1529: for (field = 0; field < numFields; ++field) {
1530: PetscFE fe;
1531: PetscInt Nc;
1533: PetscCall(DMGetField(dm, field, NULL, (PetscObject *)&fe));
1534: PetscCall(PetscFEGetQuadrature(fe, &quad));
1535: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1536: numComponents += Nc;
1537: }
1538: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights));
1539: PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
1540: /* PetscCall(DMProjectFunctionLocal(dm, fe, funcs, INSERT_BC_VALUES, localX)); */
1541: PetscCall(PetscMalloc6(numComponents, &funcVal, coordDim * (Nq + 1), &coords, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ, numComponents * coordDim, &interpolant, Nq, &fegeom.detJ));
1542: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1543: for (c = cStart; c < cEnd; ++c) {
1544: PetscScalar *x = NULL;
1545: PetscReal elemDiff = 0.0;
1546: PetscInt qc = 0;
1548: PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1549: PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, c, 0, NULL, &x));
1551: for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1552: PetscFE fe;
1553: void *const ctx = ctxs ? ctxs[field] : NULL;
1554: PetscInt Nb, Nc, q, fc;
1556: PetscCall(DMGetField(dm, field, NULL, (PetscObject *)&fe));
1557: PetscCall(PetscFEGetDimension(fe, &Nb));
1558: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1559: if (debug) {
1560: char title[1024];
1561: PetscCall(PetscSNPrintf(title, 1023, "Solution for Field %" PetscInt_FMT, field));
1562: PetscCall(DMPrintCellVector(c, title, Nb, &x[fieldOffset]));
1563: }
1564: for (q = 0; q < Nq; ++q) {
1565: PetscFEGeom qgeom;
1566: PetscErrorCode ierr;
1568: qgeom.dimEmbed = fegeom.dimEmbed;
1569: qgeom.J = &fegeom.J[q * coordDim * coordDim];
1570: qgeom.invJ = &fegeom.invJ[q * coordDim * coordDim];
1571: qgeom.detJ = &fegeom.detJ[q];
1572: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
1573: if (transform) {
1574: gcoords = &coords[coordDim * Nq];
1575: PetscCall(DMPlexBasisTransformApplyReal_Internal(dm, &coords[coordDim * q], PETSC_TRUE, coordDim, &coords[coordDim * q], gcoords, dm->transformCtx));
1576: } else {
1577: gcoords = &coords[coordDim * q];
1578: }
1579: PetscCall(PetscArrayzero(funcVal, Nc));
1580: ierr = (*funcs[field])(coordDim, time, gcoords, n, Nc, funcVal, ctx);
1581: if (ierr) {
1582: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1583: PetscCall(DMRestoreLocalVector(dm, &localX));
1584: PetscCall(PetscFree6(funcVal, coords, fegeom.J, fegeom.invJ, interpolant, fegeom.detJ));
1585: }
1586: if (transform) PetscCall(DMPlexBasisTransformApply_Internal(dm, &coords[coordDim * q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx));
1587: PetscCall(PetscFEInterpolateGradient_Static(fe, 1, &x[fieldOffset], &qgeom, q, interpolant));
1588: /* Overwrite with the dot product if the normal is given */
1589: if (n) {
1590: for (fc = 0; fc < Nc; ++fc) {
1591: PetscScalar sum = 0.0;
1592: PetscInt d;
1593: for (d = 0; d < dim; ++d) sum += interpolant[fc * dim + d] * n[d];
1594: interpolant[fc] = sum;
1595: }
1596: }
1597: for (fc = 0; fc < Nc; ++fc) {
1598: const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1599: if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, " elem %" PetscInt_FMT " fieldDer %" PetscInt_FMT ",%" PetscInt_FMT " diff %g\n", c, field, fc, (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q])));
1600: elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1601: }
1602: }
1603: fieldOffset += Nb;
1604: qc += Nc;
1605: }
1606: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1607: if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, " elem %" PetscInt_FMT " diff %g\n", c, (double)elemDiff));
1608: localDiff += elemDiff;
1609: }
1610: PetscCall(PetscFree6(funcVal, coords, fegeom.J, fegeom.invJ, interpolant, fegeom.detJ));
1611: PetscCall(DMRestoreLocalVector(dm, &localX));
1612: PetscCall(MPIU_Allreduce(&localDiff, diff, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
1613: *diff = PetscSqrtReal(*diff);
1614: PetscFunctionReturn(PETSC_SUCCESS);
1615: }
1617: PetscErrorCode DMComputeL2FieldDiff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal *diff)
1618: {
1619: const PetscInt debug = ((DM_Plex *)dm->data)->printL2;
1620: DM tdm;
1621: DMLabel depthLabel;
1622: PetscSection section;
1623: Vec localX, tv;
1624: PetscReal *localDiff;
1625: PetscInt dim, depth, dE, Nf, f, Nds, s;
1626: PetscBool transform;
1628: PetscFunctionBegin;
1629: PetscCall(DMGetDimension(dm, &dim));
1630: PetscCall(DMGetCoordinateDim(dm, &dE));
1631: PetscCall(DMGetLocalSection(dm, §ion));
1632: PetscCall(DMGetLocalVector(dm, &localX));
1633: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
1634: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
1635: PetscCall(DMHasBasisTransform(dm, &transform));
1636: PetscCall(DMGetNumFields(dm, &Nf));
1637: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
1638: PetscCall(DMLabelGetNumValues(depthLabel, &depth));
1640: PetscCall(VecSet(localX, 0.0));
1641: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1642: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1643: PetscCall(DMProjectFunctionLocal(dm, time, funcs, ctxs, INSERT_BC_VALUES, localX));
1644: PetscCall(DMGetNumDS(dm, &Nds));
1645: PetscCall(PetscCalloc1(Nf, &localDiff));
1646: for (s = 0; s < Nds; ++s) {
1647: PetscDS ds;
1648: DMLabel label;
1649: IS fieldIS, pointIS;
1650: const PetscInt *fields, *points = NULL;
1651: PetscQuadrature quad;
1652: const PetscReal *quadPoints, *quadWeights;
1653: PetscFEGeom fegeom;
1654: PetscReal *coords, *gcoords;
1655: PetscScalar *funcVal, *interpolant;
1656: PetscBool isCohesive;
1657: PetscInt qNc, Nq, totNc, cStart = 0, cEnd, c, dsNf;
1659: PetscCall(DMGetRegionNumDS(dm, s, &label, &fieldIS, &ds, NULL));
1660: PetscCall(ISGetIndices(fieldIS, &fields));
1661: PetscCall(PetscDSIsCohesive(ds, &isCohesive));
1662: PetscCall(PetscDSGetNumFields(ds, &dsNf));
1663: PetscCall(PetscDSGetTotalComponents(ds, &totNc));
1664: PetscCall(PetscDSGetQuadrature(ds, &quad));
1665: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
1666: PetscCheck(!(qNc != 1) || !(qNc != totNc), PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, totNc);
1667: PetscCall(PetscCalloc6(totNc, &funcVal, totNc, &interpolant, dE * (Nq + 1), &coords, Nq, &fegeom.detJ, dE * dE * Nq, &fegeom.J, dE * dE * Nq, &fegeom.invJ));
1668: if (!label) {
1669: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1670: } else {
1671: PetscCall(DMLabelGetStratumIS(label, 1, &pointIS));
1672: PetscCall(ISGetLocalSize(pointIS, &cEnd));
1673: PetscCall(ISGetIndices(pointIS, &points));
1674: }
1675: for (c = cStart; c < cEnd; ++c) {
1676: const PetscInt cell = points ? points[c] : c;
1677: PetscScalar *x = NULL;
1678: const PetscInt *cone;
1679: PetscInt qc = 0, fOff = 0, dep;
1681: PetscCall(DMLabelGetValue(depthLabel, cell, &dep));
1682: if (dep != depth - 1) continue;
1683: if (isCohesive) {
1684: PetscCall(DMPlexGetCone(dm, cell, &cone));
1685: PetscCall(DMPlexComputeCellGeometryFEM(dm, cone[0], quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1686: } else {
1687: PetscCall(DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1688: }
1689: PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, cell, 0, NULL, &x));
1690: for (f = 0; f < dsNf; ++f) {
1691: PetscObject obj;
1692: PetscClassId id;
1693: void *const ctx = ctxs ? ctxs[fields[f]] : NULL;
1694: PetscInt Nb, Nc, q, fc;
1695: PetscReal elemDiff = 0.0;
1696: PetscBool cohesive;
1698: PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
1699: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
1700: PetscCall(PetscObjectGetClassId(obj, &id));
1701: if (id == PETSCFE_CLASSID) {
1702: PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
1703: PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
1704: } else if (id == PETSCFV_CLASSID) {
1705: PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
1706: Nb = 1;
1707: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, fields[f]);
1708: if (isCohesive && !cohesive) {
1709: fOff += Nb * 2;
1710: qc += Nc;
1711: continue;
1712: }
1713: if (debug) {
1714: char title[1024];
1715: PetscCall(PetscSNPrintf(title, 1023, "Solution for Field %" PetscInt_FMT, fields[f]));
1716: PetscCall(DMPrintCellVector(cell, title, Nb, &x[fOff]));
1717: }
1718: for (q = 0; q < Nq; ++q) {
1719: PetscFEGeom qgeom;
1720: PetscErrorCode ierr;
1722: qgeom.dimEmbed = fegeom.dimEmbed;
1723: qgeom.J = &fegeom.J[q * dE * dE];
1724: qgeom.invJ = &fegeom.invJ[q * dE * dE];
1725: qgeom.detJ = &fegeom.detJ[q];
1726: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for cell %" PetscInt_FMT ", quadrature point %" PetscInt_FMT, (double)fegeom.detJ[q], cell, q);
1727: if (transform) {
1728: gcoords = &coords[dE * Nq];
1729: PetscCall(DMPlexBasisTransformApplyReal_Internal(dm, &coords[dE * q], PETSC_TRUE, dE, &coords[dE * q], gcoords, dm->transformCtx));
1730: } else {
1731: gcoords = &coords[dE * q];
1732: }
1733: for (fc = 0; fc < Nc; ++fc) funcVal[fc] = 0.;
1734: ierr = (*funcs[fields[f]])(dE, time, gcoords, Nc, funcVal, ctx);
1735: if (ierr) {
1736: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, cell, NULL, &x));
1737: PetscCall(DMRestoreLocalVector(dm, &localX));
1738: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1739: }
1740: if (transform) PetscCall(DMPlexBasisTransformApply_Internal(dm, &coords[dE * q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx));
1741: /* Call once for each face, except for lagrange field */
1742: if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[fOff], &qgeom, q, interpolant));
1743: else if (id == PETSCFV_CLASSID) PetscCall(PetscFVInterpolate_Static((PetscFV)obj, &x[fOff], q, interpolant));
1744: else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, fields[f]);
1745: for (fc = 0; fc < Nc; ++fc) {
1746: const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1747: if (debug)
1748: PetscCall(PetscPrintf(PETSC_COMM_SELF, " cell %" PetscInt_FMT " field %" PetscInt_FMT ",%" PetscInt_FMT " point %g %g %g diff %g\n", cell, fields[f], fc, (double)(dE > 0 ? coords[dE * q] : 0.), (double)(dE > 1 ? coords[dE * q + 1] : 0.), (double)(dE > 2 ? coords[dE * q + 2] : 0.),
1749: (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q])));
1750: elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1751: }
1752: }
1753: fOff += Nb;
1754: qc += Nc;
1755: localDiff[fields[f]] += elemDiff;
1756: if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, " cell %" PetscInt_FMT " field %" PetscInt_FMT " cum diff %g\n", cell, fields[f], (double)localDiff[fields[f]]));
1757: }
1758: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, cell, NULL, &x));
1759: }
1760: if (label) {
1761: PetscCall(ISRestoreIndices(pointIS, &points));
1762: PetscCall(ISDestroy(&pointIS));
1763: }
1764: PetscCall(ISRestoreIndices(fieldIS, &fields));
1765: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1766: }
1767: PetscCall(DMRestoreLocalVector(dm, &localX));
1768: PetscCall(MPIU_Allreduce(localDiff, diff, Nf, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
1769: PetscCall(PetscFree(localDiff));
1770: for (f = 0; f < Nf; ++f) diff[f] = PetscSqrtReal(diff[f]);
1771: PetscFunctionReturn(PETSC_SUCCESS);
1772: }
1774: /*@C
1775: DMPlexComputeL2DiffVec - This function computes the cellwise L_2 difference between a function u and an FEM interpolant solution u_h, and stores it in a Vec.
1777: Collective
1779: Input Parameters:
1780: + dm - The `DM`
1781: . time - The time
1782: . funcs - The functions to evaluate for each field component: `NULL` means that component does not contribute to error calculation
1783: . ctxs - Optional array of contexts to pass to each function, or `NULL`.
1784: - X - The coefficient vector u_h
1786: Output Parameter:
1787: . D - A `Vec` which holds the difference ||u - u_h||_2 for each cell
1789: Level: developer
1791: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
1792: @*/
1793: PetscErrorCode DMPlexComputeL2DiffVec(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, Vec D)
1794: {
1795: PetscSection section;
1796: PetscQuadrature quad;
1797: Vec localX;
1798: PetscFEGeom fegeom;
1799: PetscScalar *funcVal, *interpolant;
1800: PetscReal *coords;
1801: const PetscReal *quadPoints, *quadWeights;
1802: PetscInt dim, coordDim, numFields, numComponents = 0, qNc, Nq, cStart, cEnd, c, field, fieldOffset;
1804: PetscFunctionBegin;
1805: PetscCall(VecSet(D, 0.0));
1806: PetscCall(DMGetDimension(dm, &dim));
1807: PetscCall(DMGetCoordinateDim(dm, &coordDim));
1808: PetscCall(DMGetLocalSection(dm, §ion));
1809: PetscCall(PetscSectionGetNumFields(section, &numFields));
1810: PetscCall(DMGetLocalVector(dm, &localX));
1811: PetscCall(DMProjectFunctionLocal(dm, time, funcs, ctxs, INSERT_BC_VALUES, localX));
1812: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1813: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1814: for (field = 0; field < numFields; ++field) {
1815: PetscObject obj;
1816: PetscClassId id;
1817: PetscInt Nc;
1819: PetscCall(DMGetField(dm, field, NULL, &obj));
1820: PetscCall(PetscObjectGetClassId(obj, &id));
1821: if (id == PETSCFE_CLASSID) {
1822: PetscFE fe = (PetscFE)obj;
1824: PetscCall(PetscFEGetQuadrature(fe, &quad));
1825: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1826: } else if (id == PETSCFV_CLASSID) {
1827: PetscFV fv = (PetscFV)obj;
1829: PetscCall(PetscFVGetQuadrature(fv, &quad));
1830: PetscCall(PetscFVGetNumComponents(fv, &Nc));
1831: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1832: numComponents += Nc;
1833: }
1834: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
1835: PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
1836: PetscCall(PetscMalloc6(numComponents, &funcVal, numComponents, &interpolant, coordDim * Nq, &coords, Nq, &fegeom.detJ, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ));
1837: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1838: for (c = cStart; c < cEnd; ++c) {
1839: PetscScalar *x = NULL;
1840: PetscScalar elemDiff = 0.0;
1841: PetscInt qc = 0;
1843: PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1844: PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, c, 0, NULL, &x));
1846: for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1847: PetscObject obj;
1848: PetscClassId id;
1849: void *const ctx = ctxs ? ctxs[field] : NULL;
1850: PetscInt Nb, Nc, q, fc;
1852: PetscCall(DMGetField(dm, field, NULL, &obj));
1853: PetscCall(PetscObjectGetClassId(obj, &id));
1854: if (id == PETSCFE_CLASSID) {
1855: PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
1856: PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
1857: } else if (id == PETSCFV_CLASSID) {
1858: PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
1859: Nb = 1;
1860: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1861: if (funcs[field]) {
1862: for (q = 0; q < Nq; ++q) {
1863: PetscFEGeom qgeom;
1865: qgeom.dimEmbed = fegeom.dimEmbed;
1866: qgeom.J = &fegeom.J[q * coordDim * coordDim];
1867: qgeom.invJ = &fegeom.invJ[q * coordDim * coordDim];
1868: qgeom.detJ = &fegeom.detJ[q];
1869: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
1870: PetscCall((*funcs[field])(coordDim, time, &coords[q * coordDim], Nc, funcVal, ctx));
1871: #if defined(needs_fix_with_return_code_argument)
1872: if (ierr) {
1873: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1874: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1875: PetscCall(DMRestoreLocalVector(dm, &localX));
1876: }
1877: #endif
1878: if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[fieldOffset], &qgeom, q, interpolant));
1879: else if (id == PETSCFV_CLASSID) PetscCall(PetscFVInterpolate_Static((PetscFV)obj, &x[fieldOffset], q, interpolant));
1880: else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1881: for (fc = 0; fc < Nc; ++fc) {
1882: const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1883: elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1884: }
1885: }
1886: }
1887: fieldOffset += Nb;
1888: qc += Nc;
1889: }
1890: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1891: PetscCall(VecSetValue(D, c - cStart, elemDiff, INSERT_VALUES));
1892: }
1893: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1894: PetscCall(DMRestoreLocalVector(dm, &localX));
1895: PetscCall(VecSqrtAbs(D));
1896: PetscFunctionReturn(PETSC_SUCCESS);
1897: }
1899: /*@
1900: DMPlexComputeClementInterpolant - This function computes the L2 projection of the cellwise values of a function u onto P1
1902: Collective
1904: Input Parameters:
1905: + dm - The `DM`
1906: - locX - The coefficient vector u_h
1908: Output Parameter:
1909: . locC - A `Vec` which holds the Clement interpolant of the function
1911: Level: developer
1913: Note:
1914: $ u_h(v_i) = \sum_{T_i \in support(v_i)} |T_i| u_h(T_i) / \sum_{T_i \in support(v_i)} |T_i| $ where $ |T_i| $ is the cell volume
1916: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
1917: @*/
1918: PetscErrorCode DMPlexComputeClementInterpolant(DM dm, Vec locX, Vec locC)
1919: {
1920: PetscInt debug = ((DM_Plex *)dm->data)->printFEM;
1921: DM dmc;
1922: PetscQuadrature quad;
1923: PetscScalar *interpolant, *valsum;
1924: PetscFEGeom fegeom;
1925: PetscReal *coords;
1926: const PetscReal *quadPoints, *quadWeights;
1927: PetscInt dim, cdim, Nf, f, Nc = 0, Nq, qNc, cStart, cEnd, vStart, vEnd, v;
1929: PetscFunctionBegin;
1930: PetscCall(PetscCitationsRegister(ClementCitation, &Clementcite));
1931: PetscCall(VecGetDM(locC, &dmc));
1932: PetscCall(VecSet(locC, 0.0));
1933: PetscCall(DMGetDimension(dm, &dim));
1934: PetscCall(DMGetCoordinateDim(dm, &cdim));
1935: fegeom.dimEmbed = cdim;
1936: PetscCall(DMGetNumFields(dm, &Nf));
1937: PetscCheck(Nf > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fields is zero!");
1938: for (f = 0; f < Nf; ++f) {
1939: PetscObject obj;
1940: PetscClassId id;
1941: PetscInt fNc;
1943: PetscCall(DMGetField(dm, f, NULL, &obj));
1944: PetscCall(PetscObjectGetClassId(obj, &id));
1945: if (id == PETSCFE_CLASSID) {
1946: PetscFE fe = (PetscFE)obj;
1948: PetscCall(PetscFEGetQuadrature(fe, &quad));
1949: PetscCall(PetscFEGetNumComponents(fe, &fNc));
1950: } else if (id == PETSCFV_CLASSID) {
1951: PetscFV fv = (PetscFV)obj;
1953: PetscCall(PetscFVGetQuadrature(fv, &quad));
1954: PetscCall(PetscFVGetNumComponents(fv, &fNc));
1955: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
1956: Nc += fNc;
1957: }
1958: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
1959: PetscCheck(qNc == 1, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " > 1", qNc);
1960: PetscCall(PetscMalloc6(Nc * 2, &valsum, Nc, &interpolant, cdim * Nq, &coords, Nq, &fegeom.detJ, cdim * cdim * Nq, &fegeom.J, cdim * cdim * Nq, &fegeom.invJ));
1961: PetscCall(DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd));
1962: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1963: for (v = vStart; v < vEnd; ++v) {
1964: PetscScalar volsum = 0.0;
1965: PetscInt *star = NULL;
1966: PetscInt starSize, st, fc;
1968: PetscCall(PetscArrayzero(valsum, Nc));
1969: PetscCall(DMPlexGetTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
1970: for (st = 0; st < starSize * 2; st += 2) {
1971: const PetscInt cell = star[st];
1972: PetscScalar *val = &valsum[Nc];
1973: PetscScalar *x = NULL;
1974: PetscReal vol = 0.0;
1975: PetscInt foff = 0;
1977: if ((cell < cStart) || (cell >= cEnd)) continue;
1978: PetscCall(DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1979: PetscCall(DMPlexVecGetClosure(dm, NULL, locX, cell, NULL, &x));
1980: for (f = 0; f < Nf; ++f) {
1981: PetscObject obj;
1982: PetscClassId id;
1983: PetscInt Nb, fNc, q;
1985: PetscCall(PetscArrayzero(val, Nc));
1986: PetscCall(DMGetField(dm, f, NULL, &obj));
1987: PetscCall(PetscObjectGetClassId(obj, &id));
1988: if (id == PETSCFE_CLASSID) {
1989: PetscCall(PetscFEGetNumComponents((PetscFE)obj, &fNc));
1990: PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
1991: } else if (id == PETSCFV_CLASSID) {
1992: PetscCall(PetscFVGetNumComponents((PetscFV)obj, &fNc));
1993: Nb = 1;
1994: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
1995: for (q = 0; q < Nq; ++q) {
1996: const PetscReal wt = quadWeights[q] * fegeom.detJ[q];
1997: PetscFEGeom qgeom;
1999: qgeom.dimEmbed = fegeom.dimEmbed;
2000: qgeom.J = &fegeom.J[q * cdim * cdim];
2001: qgeom.invJ = &fegeom.invJ[q * cdim * cdim];
2002: qgeom.detJ = &fegeom.detJ[q];
2003: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], cell, q);
2004: if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[foff], &qgeom, q, interpolant));
2005: else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2006: for (fc = 0; fc < fNc; ++fc) val[foff + fc] += interpolant[fc] * wt;
2007: vol += wt;
2008: }
2009: foff += Nb;
2010: }
2011: PetscCall(DMPlexVecRestoreClosure(dm, NULL, locX, cell, NULL, &x));
2012: for (fc = 0; fc < Nc; ++fc) valsum[fc] += val[fc];
2013: volsum += vol;
2014: if (debug) {
2015: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Vertex %" PetscInt_FMT " Cell %" PetscInt_FMT " value: [", v, cell));
2016: for (fc = 0; fc < Nc; ++fc) {
2017: if (fc) PetscCall(PetscPrintf(PETSC_COMM_SELF, ", "));
2018: PetscCall(PetscPrintf(PETSC_COMM_SELF, "%g", (double)PetscRealPart(val[fc])));
2019: }
2020: PetscCall(PetscPrintf(PETSC_COMM_SELF, "]\n"));
2021: }
2022: }
2023: for (fc = 0; fc < Nc; ++fc) valsum[fc] /= volsum;
2024: PetscCall(DMPlexRestoreTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2025: PetscCall(DMPlexVecSetClosure(dmc, NULL, locC, v, valsum, INSERT_VALUES));
2026: }
2027: PetscCall(PetscFree6(valsum, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
2028: PetscFunctionReturn(PETSC_SUCCESS);
2029: }
2031: /*@
2032: DMPlexComputeGradientClementInterpolant - This function computes the L2 projection of the cellwise gradient of a function u onto P1
2034: Collective
2036: Input Parameters:
2037: + dm - The `DM`
2038: - locX - The coefficient vector u_h
2040: Output Parameter:
2041: . locC - A `Vec` which holds the Clement interpolant of the gradient
2043: Level: developer
2045: Note:
2046: $\nabla u_h(v_i) = \sum_{T_i \in support(v_i)} |T_i| \nabla u_h(T_i) / \sum_{T_i \in support(v_i)} |T_i| $ where $ |T_i| $ is the cell volume
2048: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
2049: @*/
2050: PetscErrorCode DMPlexComputeGradientClementInterpolant(DM dm, Vec locX, Vec locC)
2051: {
2052: DM_Plex *mesh = (DM_Plex *)dm->data;
2053: PetscInt debug = mesh->printFEM;
2054: DM dmC;
2055: PetscQuadrature quad;
2056: PetscScalar *interpolant, *gradsum;
2057: PetscFEGeom fegeom;
2058: PetscReal *coords;
2059: const PetscReal *quadPoints, *quadWeights;
2060: PetscInt dim, coordDim, numFields, numComponents = 0, qNc, Nq, cStart, cEnd, vStart, vEnd, v, field, fieldOffset;
2062: PetscFunctionBegin;
2063: PetscCall(PetscCitationsRegister(ClementCitation, &Clementcite));
2064: PetscCall(VecGetDM(locC, &dmC));
2065: PetscCall(VecSet(locC, 0.0));
2066: PetscCall(DMGetDimension(dm, &dim));
2067: PetscCall(DMGetCoordinateDim(dm, &coordDim));
2068: fegeom.dimEmbed = coordDim;
2069: PetscCall(DMGetNumFields(dm, &numFields));
2070: PetscCheck(numFields, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fields is zero!");
2071: for (field = 0; field < numFields; ++field) {
2072: PetscObject obj;
2073: PetscClassId id;
2074: PetscInt Nc;
2076: PetscCall(DMGetField(dm, field, NULL, &obj));
2077: PetscCall(PetscObjectGetClassId(obj, &id));
2078: if (id == PETSCFE_CLASSID) {
2079: PetscFE fe = (PetscFE)obj;
2081: PetscCall(PetscFEGetQuadrature(fe, &quad));
2082: PetscCall(PetscFEGetNumComponents(fe, &Nc));
2083: } else if (id == PETSCFV_CLASSID) {
2084: PetscFV fv = (PetscFV)obj;
2086: PetscCall(PetscFVGetQuadrature(fv, &quad));
2087: PetscCall(PetscFVGetNumComponents(fv, &Nc));
2088: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
2089: numComponents += Nc;
2090: }
2091: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
2092: PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
2093: PetscCall(PetscMalloc6(coordDim * numComponents * 2, &gradsum, coordDim * numComponents, &interpolant, coordDim * Nq, &coords, Nq, &fegeom.detJ, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ));
2094: PetscCall(DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd));
2095: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
2096: for (v = vStart; v < vEnd; ++v) {
2097: PetscScalar volsum = 0.0;
2098: PetscInt *star = NULL;
2099: PetscInt starSize, st, d, fc;
2101: PetscCall(PetscArrayzero(gradsum, coordDim * numComponents));
2102: PetscCall(DMPlexGetTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2103: for (st = 0; st < starSize * 2; st += 2) {
2104: const PetscInt cell = star[st];
2105: PetscScalar *grad = &gradsum[coordDim * numComponents];
2106: PetscScalar *x = NULL;
2107: PetscReal vol = 0.0;
2109: if ((cell < cStart) || (cell >= cEnd)) continue;
2110: PetscCall(DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
2111: PetscCall(DMPlexVecGetClosure(dm, NULL, locX, cell, NULL, &x));
2112: for (field = 0, fieldOffset = 0; field < numFields; ++field) {
2113: PetscObject obj;
2114: PetscClassId id;
2115: PetscInt Nb, Nc, q, qc = 0;
2117: PetscCall(PetscArrayzero(grad, coordDim * numComponents));
2118: PetscCall(DMGetField(dm, field, NULL, &obj));
2119: PetscCall(PetscObjectGetClassId(obj, &id));
2120: if (id == PETSCFE_CLASSID) {
2121: PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
2122: PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
2123: } else if (id == PETSCFV_CLASSID) {
2124: PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
2125: Nb = 1;
2126: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
2127: for (q = 0; q < Nq; ++q) {
2128: PetscFEGeom qgeom;
2130: qgeom.dimEmbed = fegeom.dimEmbed;
2131: qgeom.J = &fegeom.J[q * coordDim * coordDim];
2132: qgeom.invJ = &fegeom.invJ[q * coordDim * coordDim];
2133: qgeom.detJ = &fegeom.detJ[q];
2134: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], cell, q);
2135: if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolateGradient_Static((PetscFE)obj, 1, &x[fieldOffset], &qgeom, q, interpolant));
2136: else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
2137: for (fc = 0; fc < Nc; ++fc) {
2138: const PetscReal wt = quadWeights[q * qNc + qc];
2140: for (d = 0; d < coordDim; ++d) grad[fc * coordDim + d] += interpolant[fc * dim + d] * wt * fegeom.detJ[q];
2141: }
2142: vol += quadWeights[q * qNc] * fegeom.detJ[q];
2143: }
2144: fieldOffset += Nb;
2145: qc += Nc;
2146: }
2147: PetscCall(DMPlexVecRestoreClosure(dm, NULL, locX, cell, NULL, &x));
2148: for (fc = 0; fc < numComponents; ++fc) {
2149: for (d = 0; d < coordDim; ++d) gradsum[fc * coordDim + d] += grad[fc * coordDim + d];
2150: }
2151: volsum += vol;
2152: if (debug) {
2153: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Vertex %" PetscInt_FMT " Cell %" PetscInt_FMT " gradient: [", v, cell));
2154: for (fc = 0; fc < numComponents; ++fc) {
2155: for (d = 0; d < coordDim; ++d) {
2156: if (fc || d > 0) PetscCall(PetscPrintf(PETSC_COMM_SELF, ", "));
2157: PetscCall(PetscPrintf(PETSC_COMM_SELF, "%g", (double)PetscRealPart(grad[fc * coordDim + d])));
2158: }
2159: }
2160: PetscCall(PetscPrintf(PETSC_COMM_SELF, "]\n"));
2161: }
2162: }
2163: for (fc = 0; fc < numComponents; ++fc) {
2164: for (d = 0; d < coordDim; ++d) gradsum[fc * coordDim + d] /= volsum;
2165: }
2166: PetscCall(DMPlexRestoreTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2167: PetscCall(DMPlexVecSetClosure(dmC, NULL, locC, v, gradsum, INSERT_VALUES));
2168: }
2169: PetscCall(PetscFree6(gradsum, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
2170: PetscFunctionReturn(PETSC_SUCCESS);
2171: }
2173: PetscErrorCode DMPlexComputeIntegral_Internal(DM dm, Vec locX, PetscInt cStart, PetscInt cEnd, PetscScalar *cintegral, void *user)
2174: {
2175: DM dmAux = NULL, plexA = NULL;
2176: PetscDS prob, probAux = NULL;
2177: PetscSection section, sectionAux;
2178: Vec locA;
2179: PetscInt dim, numCells = cEnd - cStart, c, f;
2180: PetscBool useFVM = PETSC_FALSE;
2181: /* DS */
2182: PetscInt Nf, totDim, *uOff, *uOff_x, numConstants;
2183: PetscInt NfAux, totDimAux, *aOff;
2184: PetscScalar *u, *a = NULL;
2185: const PetscScalar *constants;
2186: /* Geometry */
2187: PetscFEGeom *cgeomFEM;
2188: DM dmGrad;
2189: PetscQuadrature affineQuad = NULL;
2190: Vec cellGeometryFVM = NULL, faceGeometryFVM = NULL, locGrad = NULL;
2191: PetscFVCellGeom *cgeomFVM;
2192: const PetscScalar *lgrad;
2193: PetscInt maxDegree;
2194: DMField coordField;
2195: IS cellIS;
2197: PetscFunctionBegin;
2198: PetscCall(DMGetDS(dm, &prob));
2199: PetscCall(DMGetDimension(dm, &dim));
2200: PetscCall(DMGetLocalSection(dm, §ion));
2201: PetscCall(DMGetNumFields(dm, &Nf));
2202: /* Determine which discretizations we have */
2203: for (f = 0; f < Nf; ++f) {
2204: PetscObject obj;
2205: PetscClassId id;
2207: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2208: PetscCall(PetscObjectGetClassId(obj, &id));
2209: if (id == PETSCFV_CLASSID) useFVM = PETSC_TRUE;
2210: }
2211: /* Read DS information */
2212: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
2213: PetscCall(PetscDSGetComponentOffsets(prob, &uOff));
2214: PetscCall(PetscDSGetComponentDerivativeOffsets(prob, &uOff_x));
2215: PetscCall(ISCreateStride(PETSC_COMM_SELF, numCells, cStart, 1, &cellIS));
2216: PetscCall(PetscDSGetConstants(prob, &numConstants, &constants));
2217: /* Read Auxiliary DS information */
2218: PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &locA));
2219: if (locA) {
2220: PetscCall(VecGetDM(locA, &dmAux));
2221: PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
2222: PetscCall(DMGetDS(dmAux, &probAux));
2223: PetscCall(PetscDSGetNumFields(probAux, &NfAux));
2224: PetscCall(DMGetLocalSection(dmAux, §ionAux));
2225: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
2226: PetscCall(PetscDSGetComponentOffsets(probAux, &aOff));
2227: }
2228: /* Allocate data arrays */
2229: PetscCall(PetscCalloc1(numCells * totDim, &u));
2230: if (dmAux) PetscCall(PetscMalloc1(numCells * totDimAux, &a));
2231: /* Read out geometry */
2232: PetscCall(DMGetCoordinateField(dm, &coordField));
2233: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
2234: if (maxDegree <= 1) {
2235: PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &affineQuad));
2236: if (affineQuad) PetscCall(DMFieldCreateFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &cgeomFEM));
2237: }
2238: if (useFVM) {
2239: PetscFV fv = NULL;
2240: Vec grad;
2241: PetscInt fStart, fEnd;
2242: PetscBool compGrad;
2244: for (f = 0; f < Nf; ++f) {
2245: PetscObject obj;
2246: PetscClassId id;
2248: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2249: PetscCall(PetscObjectGetClassId(obj, &id));
2250: if (id == PETSCFV_CLASSID) {
2251: fv = (PetscFV)obj;
2252: break;
2253: }
2254: }
2255: PetscCall(PetscFVGetComputeGradients(fv, &compGrad));
2256: PetscCall(PetscFVSetComputeGradients(fv, PETSC_TRUE));
2257: PetscCall(DMPlexComputeGeometryFVM(dm, &cellGeometryFVM, &faceGeometryFVM));
2258: PetscCall(DMPlexComputeGradientFVM(dm, fv, faceGeometryFVM, cellGeometryFVM, &dmGrad));
2259: PetscCall(PetscFVSetComputeGradients(fv, compGrad));
2260: PetscCall(VecGetArrayRead(cellGeometryFVM, (const PetscScalar **)&cgeomFVM));
2261: /* Reconstruct and limit cell gradients */
2262: PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
2263: PetscCall(DMGetGlobalVector(dmGrad, &grad));
2264: PetscCall(DMPlexReconstructGradients_Internal(dm, fv, fStart, fEnd, faceGeometryFVM, cellGeometryFVM, locX, grad));
2265: /* Communicate gradient values */
2266: PetscCall(DMGetLocalVector(dmGrad, &locGrad));
2267: PetscCall(DMGlobalToLocalBegin(dmGrad, grad, INSERT_VALUES, locGrad));
2268: PetscCall(DMGlobalToLocalEnd(dmGrad, grad, INSERT_VALUES, locGrad));
2269: PetscCall(DMRestoreGlobalVector(dmGrad, &grad));
2270: /* Handle non-essential (e.g. outflow) boundary values */
2271: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_FALSE, locX, 0.0, faceGeometryFVM, cellGeometryFVM, locGrad));
2272: PetscCall(VecGetArrayRead(locGrad, &lgrad));
2273: }
2274: /* Read out data from inputs */
2275: for (c = cStart; c < cEnd; ++c) {
2276: PetscScalar *x = NULL;
2277: PetscInt i;
2279: PetscCall(DMPlexVecGetClosure(dm, section, locX, c, NULL, &x));
2280: for (i = 0; i < totDim; ++i) u[c * totDim + i] = x[i];
2281: PetscCall(DMPlexVecRestoreClosure(dm, section, locX, c, NULL, &x));
2282: if (dmAux) {
2283: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, c, NULL, &x));
2284: for (i = 0; i < totDimAux; ++i) a[c * totDimAux + i] = x[i];
2285: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, c, NULL, &x));
2286: }
2287: }
2288: /* Do integration for each field */
2289: for (f = 0; f < Nf; ++f) {
2290: PetscObject obj;
2291: PetscClassId id;
2292: PetscInt numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;
2294: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2295: PetscCall(PetscObjectGetClassId(obj, &id));
2296: if (id == PETSCFE_CLASSID) {
2297: PetscFE fe = (PetscFE)obj;
2298: PetscQuadrature q;
2299: PetscFEGeom *chunkGeom = NULL;
2300: PetscInt Nq, Nb;
2302: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
2303: PetscCall(PetscFEGetQuadrature(fe, &q));
2304: PetscCall(PetscQuadratureGetData(q, NULL, NULL, &Nq, NULL, NULL));
2305: PetscCall(PetscFEGetDimension(fe, &Nb));
2306: blockSize = Nb * Nq;
2307: batchSize = numBlocks * blockSize;
2308: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
2309: numChunks = numCells / (numBatches * batchSize);
2310: Ne = numChunks * numBatches * batchSize;
2311: Nr = numCells % (numBatches * batchSize);
2312: offset = numCells - Nr;
2313: if (!affineQuad) PetscCall(DMFieldCreateFEGeom(coordField, cellIS, q, PETSC_FALSE, &cgeomFEM));
2314: PetscCall(PetscFEGeomGetChunk(cgeomFEM, 0, offset, &chunkGeom));
2315: PetscCall(PetscFEIntegrate(prob, f, Ne, chunkGeom, u, probAux, a, cintegral));
2316: PetscCall(PetscFEGeomGetChunk(cgeomFEM, offset, numCells, &chunkGeom));
2317: PetscCall(PetscFEIntegrate(prob, f, Nr, chunkGeom, &u[offset * totDim], probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), &cintegral[offset * Nf]));
2318: PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, offset, numCells, &chunkGeom));
2319: if (!affineQuad) PetscCall(PetscFEGeomDestroy(&cgeomFEM));
2320: } else if (id == PETSCFV_CLASSID) {
2321: PetscInt foff;
2322: PetscPointFunc obj_func;
2324: PetscCall(PetscDSGetObjective(prob, f, &obj_func));
2325: PetscCall(PetscDSGetFieldOffset(prob, f, &foff));
2326: if (obj_func) {
2327: for (c = 0; c < numCells; ++c) {
2328: PetscScalar *u_x;
2329: PetscScalar lint = 0.;
2331: PetscCall(DMPlexPointLocalRead(dmGrad, c, lgrad, &u_x));
2332: obj_func(dim, Nf, NfAux, uOff, uOff_x, &u[totDim * c + foff], NULL, u_x, aOff, NULL, &a[totDimAux * c], NULL, NULL, 0.0, cgeomFVM[c].centroid, numConstants, constants, &lint);
2333: cintegral[c * Nf + f] += PetscRealPart(lint) * cgeomFVM[c].volume;
2334: }
2335: }
2336: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2337: }
2338: /* Cleanup data arrays */
2339: if (useFVM) {
2340: PetscCall(VecRestoreArrayRead(locGrad, &lgrad));
2341: PetscCall(VecRestoreArrayRead(cellGeometryFVM, (const PetscScalar **)&cgeomFVM));
2342: PetscCall(DMRestoreLocalVector(dmGrad, &locGrad));
2343: PetscCall(VecDestroy(&faceGeometryFVM));
2344: PetscCall(VecDestroy(&cellGeometryFVM));
2345: PetscCall(DMDestroy(&dmGrad));
2346: }
2347: if (dmAux) PetscCall(PetscFree(a));
2348: PetscCall(DMDestroy(&plexA));
2349: PetscCall(PetscFree(u));
2350: /* Cleanup */
2351: if (affineQuad) PetscCall(PetscFEGeomDestroy(&cgeomFEM));
2352: PetscCall(PetscQuadratureDestroy(&affineQuad));
2353: PetscCall(ISDestroy(&cellIS));
2354: PetscFunctionReturn(PETSC_SUCCESS);
2355: }
2357: /*@
2358: DMPlexComputeIntegralFEM - Form the integral over the domain from the global input X using pointwise functions specified by the user
2360: Input Parameters:
2361: + dm - The mesh
2362: . X - Global input vector
2363: - user - The user context
2365: Output Parameter:
2366: . integral - Integral for each field
2368: Level: developer
2370: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSNESComputeResidualFEM()`
2371: @*/
2372: PetscErrorCode DMPlexComputeIntegralFEM(DM dm, Vec X, PetscScalar *integral, void *user)
2373: {
2374: PetscInt printFEM;
2375: PetscScalar *cintegral, *lintegral;
2376: PetscInt Nf, f, cellHeight, cStart, cEnd, cell;
2377: Vec locX;
2379: PetscFunctionBegin;
2382: PetscAssertPointer(integral, 3);
2383: PetscCall(PetscLogEventBegin(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2384: PetscCall(DMPlexConvertPlex(dm, &dm, PETSC_TRUE));
2385: PetscCall(DMGetNumFields(dm, &Nf));
2386: PetscCall(DMPlexGetVTKCellHeight(dm, &cellHeight));
2387: PetscCall(DMPlexGetSimplexOrBoxCells(dm, cellHeight, &cStart, &cEnd));
2388: /* TODO Introduce a loop over large chunks (right now this is a single chunk) */
2389: PetscCall(PetscCalloc2(Nf, &lintegral, (cEnd - cStart) * Nf, &cintegral));
2390: /* Get local solution with boundary values */
2391: PetscCall(DMGetLocalVector(dm, &locX));
2392: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL));
2393: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX));
2394: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX));
2395: PetscCall(DMPlexComputeIntegral_Internal(dm, locX, cStart, cEnd, cintegral, user));
2396: PetscCall(DMRestoreLocalVector(dm, &locX));
2397: printFEM = ((DM_Plex *)dm->data)->printFEM;
2398: /* Sum up values */
2399: for (cell = cStart; cell < cEnd; ++cell) {
2400: const PetscInt c = cell - cStart;
2402: if (printFEM > 1) PetscCall(DMPrintCellVector(cell, "Cell Integral", Nf, &cintegral[c * Nf]));
2403: for (f = 0; f < Nf; ++f) lintegral[f] += cintegral[c * Nf + f];
2404: }
2405: PetscCall(MPIU_Allreduce(lintegral, integral, Nf, MPIU_SCALAR, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
2406: if (printFEM) {
2407: PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), "Integral:"));
2408: for (f = 0; f < Nf; ++f) PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), " %g", (double)PetscRealPart(integral[f])));
2409: PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), "\n"));
2410: }
2411: PetscCall(PetscFree2(lintegral, cintegral));
2412: PetscCall(PetscLogEventEnd(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2413: PetscCall(DMDestroy(&dm));
2414: PetscFunctionReturn(PETSC_SUCCESS);
2415: }
2417: /*@
2418: DMPlexComputeCellwiseIntegralFEM - Form the vector of cellwise integrals F from the global input X using pointwise functions specified by the user
2420: Input Parameters:
2421: + dm - The mesh
2422: . X - Global input vector
2423: - user - The user context
2425: Output Parameter:
2426: . F - Cellwise integrals for each field
2428: Level: developer
2430: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSNESComputeResidualFEM()`
2431: @*/
2432: PetscErrorCode DMPlexComputeCellwiseIntegralFEM(DM dm, Vec X, Vec F, void *user)
2433: {
2434: PetscInt printFEM;
2435: DM dmF;
2436: PetscSection sectionF = NULL;
2437: PetscScalar *cintegral, *af;
2438: PetscInt Nf, f, cellHeight, cStart, cEnd, cell, n;
2439: Vec locX;
2441: PetscFunctionBegin;
2445: PetscCall(PetscLogEventBegin(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2446: PetscCall(DMPlexConvertPlex(dm, &dm, PETSC_TRUE));
2447: PetscCall(DMGetNumFields(dm, &Nf));
2448: PetscCall(DMPlexGetVTKCellHeight(dm, &cellHeight));
2449: PetscCall(DMPlexGetSimplexOrBoxCells(dm, cellHeight, &cStart, &cEnd));
2450: /* TODO Introduce a loop over large chunks (right now this is a single chunk) */
2451: PetscCall(PetscCalloc1((cEnd - cStart) * Nf, &cintegral));
2452: /* Get local solution with boundary values */
2453: PetscCall(DMGetLocalVector(dm, &locX));
2454: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL));
2455: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX));
2456: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX));
2457: PetscCall(DMPlexComputeIntegral_Internal(dm, locX, cStart, cEnd, cintegral, user));
2458: PetscCall(DMRestoreLocalVector(dm, &locX));
2459: /* Put values in F */
2460: PetscCall(VecGetArray(F, &af));
2461: PetscCall(VecGetDM(F, &dmF));
2462: if (dmF) PetscCall(DMGetLocalSection(dmF, §ionF));
2463: PetscCall(VecGetLocalSize(F, &n));
2464: PetscCheck(n >= (cEnd - cStart) * Nf, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Vector size %" PetscInt_FMT " < %" PetscInt_FMT, n, (cEnd - cStart) * Nf);
2465: printFEM = ((DM_Plex *)dm->data)->printFEM;
2466: for (cell = cStart; cell < cEnd; ++cell) {
2467: const PetscInt c = cell - cStart;
2468: PetscInt dof = Nf, off = c * Nf;
2470: if (printFEM > 1) PetscCall(DMPrintCellVector(cell, "Cell Integral", Nf, &cintegral[c * Nf]));
2471: if (sectionF) {
2472: PetscCall(PetscSectionGetDof(sectionF, cell, &dof));
2473: PetscCall(PetscSectionGetOffset(sectionF, cell, &off));
2474: }
2475: PetscCheck(dof == Nf, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "The number of cell dofs %" PetscInt_FMT " != %" PetscInt_FMT, dof, Nf);
2476: for (f = 0; f < Nf; ++f) af[off + f] = cintegral[c * Nf + f];
2477: }
2478: PetscCall(VecRestoreArray(F, &af));
2479: PetscCall(PetscFree(cintegral));
2480: PetscCall(PetscLogEventEnd(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2481: PetscCall(DMDestroy(&dm));
2482: PetscFunctionReturn(PETSC_SUCCESS);
2483: }
2485: static PetscErrorCode DMPlexComputeBdIntegral_Internal(DM dm, Vec locX, IS pointIS, void (*func)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), PetscScalar *fintegral, void *user)
2486: {
2487: DM plex = NULL, plexA = NULL;
2488: DMEnclosureType encAux;
2489: PetscDS prob, probAux = NULL;
2490: PetscSection section, sectionAux = NULL;
2491: Vec locA = NULL;
2492: DMField coordField;
2493: PetscInt Nf, totDim, *uOff, *uOff_x;
2494: PetscInt NfAux = 0, totDimAux = 0, *aOff = NULL;
2495: PetscScalar *u, *a = NULL;
2496: const PetscScalar *constants;
2497: PetscInt numConstants, f;
2499: PetscFunctionBegin;
2500: PetscCall(DMGetCoordinateField(dm, &coordField));
2501: PetscCall(DMConvert(dm, DMPLEX, &plex));
2502: PetscCall(DMGetDS(dm, &prob));
2503: PetscCall(DMGetLocalSection(dm, §ion));
2504: PetscCall(PetscSectionGetNumFields(section, &Nf));
2505: /* Determine which discretizations we have */
2506: for (f = 0; f < Nf; ++f) {
2507: PetscObject obj;
2508: PetscClassId id;
2510: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2511: PetscCall(PetscObjectGetClassId(obj, &id));
2512: PetscCheck(id != PETSCFV_CLASSID, PetscObjectComm((PetscObject)dm), PETSC_ERR_SUP, "Not supported for FVM (field %" PetscInt_FMT ")", f);
2513: }
2514: /* Read DS information */
2515: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
2516: PetscCall(PetscDSGetComponentOffsets(prob, &uOff));
2517: PetscCall(PetscDSGetComponentDerivativeOffsets(prob, &uOff_x));
2518: PetscCall(PetscDSGetConstants(prob, &numConstants, &constants));
2519: /* Read Auxiliary DS information */
2520: PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &locA));
2521: if (locA) {
2522: DM dmAux;
2524: PetscCall(VecGetDM(locA, &dmAux));
2525: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
2526: PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
2527: PetscCall(DMGetDS(dmAux, &probAux));
2528: PetscCall(PetscDSGetNumFields(probAux, &NfAux));
2529: PetscCall(DMGetLocalSection(dmAux, §ionAux));
2530: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
2531: PetscCall(PetscDSGetComponentOffsets(probAux, &aOff));
2532: }
2533: /* Integrate over points */
2534: {
2535: PetscFEGeom *fgeom, *chunkGeom = NULL;
2536: PetscInt maxDegree;
2537: PetscQuadrature qGeom = NULL;
2538: const PetscInt *points;
2539: PetscInt numFaces, face, Nq, field;
2540: PetscInt numChunks, chunkSize, chunk, Nr, offset;
2542: PetscCall(ISGetLocalSize(pointIS, &numFaces));
2543: PetscCall(ISGetIndices(pointIS, &points));
2544: PetscCall(PetscCalloc2(numFaces * totDim, &u, locA ? numFaces * totDimAux : 0, &a));
2545: PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
2546: for (field = 0; field < Nf; ++field) {
2547: PetscFE fe;
2549: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
2550: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &qGeom));
2551: if (!qGeom) {
2552: PetscCall(PetscFEGetFaceQuadrature(fe, &qGeom));
2553: PetscCall(PetscObjectReference((PetscObject)qGeom));
2554: }
2555: PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
2556: PetscCall(DMPlexGetFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
2557: for (face = 0; face < numFaces; ++face) {
2558: const PetscInt point = points[face], *support;
2559: PetscScalar *x = NULL;
2560: PetscInt i;
2562: PetscCall(DMPlexGetSupport(dm, point, &support));
2563: PetscCall(DMPlexVecGetClosure(plex, section, locX, support[0], NULL, &x));
2564: for (i = 0; i < totDim; ++i) u[face * totDim + i] = x[i];
2565: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, support[0], NULL, &x));
2566: if (locA) {
2567: PetscInt subp;
2568: PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, support[0], &subp));
2569: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subp, NULL, &x));
2570: for (i = 0; i < totDimAux; ++i) a[f * totDimAux + i] = x[i];
2571: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subp, NULL, &x));
2572: }
2573: }
2574: /* Get blocking */
2575: {
2576: PetscQuadrature q;
2577: PetscInt numBatches, batchSize, numBlocks, blockSize;
2578: PetscInt Nq, Nb;
2580: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
2581: PetscCall(PetscFEGetQuadrature(fe, &q));
2582: PetscCall(PetscQuadratureGetData(q, NULL, NULL, &Nq, NULL, NULL));
2583: PetscCall(PetscFEGetDimension(fe, &Nb));
2584: blockSize = Nb * Nq;
2585: batchSize = numBlocks * blockSize;
2586: chunkSize = numBatches * batchSize;
2587: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
2588: numChunks = numFaces / chunkSize;
2589: Nr = numFaces % chunkSize;
2590: offset = numFaces - Nr;
2591: }
2592: /* Do integration for each field */
2593: for (chunk = 0; chunk < numChunks; ++chunk) {
2594: PetscCall(PetscFEGeomGetChunk(fgeom, chunk * chunkSize, (chunk + 1) * chunkSize, &chunkGeom));
2595: PetscCall(PetscFEIntegrateBd(prob, field, func, chunkSize, chunkGeom, u, probAux, a, fintegral));
2596: PetscCall(PetscFEGeomRestoreChunk(fgeom, 0, offset, &chunkGeom));
2597: }
2598: PetscCall(PetscFEGeomGetChunk(fgeom, offset, numFaces, &chunkGeom));
2599: PetscCall(PetscFEIntegrateBd(prob, field, func, Nr, chunkGeom, &u[offset * totDim], probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), &fintegral[offset * Nf]));
2600: PetscCall(PetscFEGeomRestoreChunk(fgeom, offset, numFaces, &chunkGeom));
2601: /* Cleanup data arrays */
2602: PetscCall(DMPlexRestoreFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
2603: PetscCall(PetscQuadratureDestroy(&qGeom));
2604: PetscCall(PetscFree2(u, a));
2605: PetscCall(ISRestoreIndices(pointIS, &points));
2606: }
2607: }
2608: if (plex) PetscCall(DMDestroy(&plex));
2609: if (plexA) PetscCall(DMDestroy(&plexA));
2610: PetscFunctionReturn(PETSC_SUCCESS);
2611: }
2613: /*@C
2614: DMPlexComputeBdIntegral - Form the integral over the specified boundary from the global input X using pointwise functions specified by the user
2616: Input Parameters:
2617: + dm - The mesh
2618: . X - Global input vector
2619: . label - The boundary `DMLabel`
2620: . numVals - The number of label values to use, or `PETSC_DETERMINE` for all values
2621: . vals - The label values to use, or NULL for all values
2622: . func - The function to integrate along the boundary
2623: - user - The user context
2625: Output Parameter:
2626: . integral - Integral for each field
2628: Level: developer
2630: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeIntegralFEM()`, `DMPlexComputeBdResidualFEM()`
2631: @*/
2632: PetscErrorCode DMPlexComputeBdIntegral(DM dm, Vec X, DMLabel label, PetscInt numVals, const PetscInt vals[], void (*func)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), PetscScalar *integral, void *user)
2633: {
2634: Vec locX;
2635: PetscSection section;
2636: DMLabel depthLabel;
2637: IS facetIS;
2638: PetscInt dim, Nf, f, v;
2640: PetscFunctionBegin;
2644: if (vals) PetscAssertPointer(vals, 5);
2645: PetscAssertPointer(integral, 7);
2646: PetscCall(PetscLogEventBegin(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2647: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
2648: PetscCall(DMGetDimension(dm, &dim));
2649: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
2650: PetscCall(DMGetLocalSection(dm, §ion));
2651: PetscCall(PetscSectionGetNumFields(section, &Nf));
2652: /* Get local solution with boundary values */
2653: PetscCall(DMGetLocalVector(dm, &locX));
2654: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL));
2655: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX));
2656: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX));
2657: /* Loop over label values */
2658: PetscCall(PetscArrayzero(integral, Nf));
2659: for (v = 0; v < numVals; ++v) {
2660: IS pointIS;
2661: PetscInt numFaces, face;
2662: PetscScalar *fintegral;
2664: PetscCall(DMLabelGetStratumIS(label, vals[v], &pointIS));
2665: if (!pointIS) continue; /* No points with that id on this process */
2666: {
2667: IS isectIS;
2669: /* TODO: Special cases of ISIntersect where it is quick to check a priori if one is a superset of the other */
2670: PetscCall(ISIntersect_Caching_Internal(facetIS, pointIS, &isectIS));
2671: PetscCall(ISDestroy(&pointIS));
2672: pointIS = isectIS;
2673: }
2674: PetscCall(ISGetLocalSize(pointIS, &numFaces));
2675: PetscCall(PetscCalloc1(numFaces * Nf, &fintegral));
2676: PetscCall(DMPlexComputeBdIntegral_Internal(dm, locX, pointIS, func, fintegral, user));
2677: /* Sum point contributions into integral */
2678: for (f = 0; f < Nf; ++f)
2679: for (face = 0; face < numFaces; ++face) integral[f] += fintegral[face * Nf + f];
2680: PetscCall(PetscFree(fintegral));
2681: PetscCall(ISDestroy(&pointIS));
2682: }
2683: PetscCall(DMRestoreLocalVector(dm, &locX));
2684: PetscCall(ISDestroy(&facetIS));
2685: PetscCall(PetscLogEventEnd(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2686: PetscFunctionReturn(PETSC_SUCCESS);
2687: }
2689: /*@
2690: DMPlexComputeInterpolatorNested - Form the local portion of the interpolation matrix from the coarse `DM` to a uniformly refined `DM`.
2692: Input Parameters:
2693: + dmc - The coarse mesh
2694: . dmf - The fine mesh
2695: . isRefined - Flag indicating regular refinement, rather than the same topology
2696: - user - The user context
2698: Output Parameter:
2699: . In - The interpolation matrix
2701: Level: developer
2703: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeInterpolatorGeneral()`, `DMPlexComputeJacobianFEM()`
2704: @*/
2705: PetscErrorCode DMPlexComputeInterpolatorNested(DM dmc, DM dmf, PetscBool isRefined, Mat In, void *user)
2706: {
2707: DM_Plex *mesh = (DM_Plex *)dmc->data;
2708: const char *name = "Interpolator";
2709: PetscFE *feRef;
2710: PetscFV *fvRef;
2711: PetscSection fsection, fglobalSection;
2712: PetscSection csection, cglobalSection;
2713: PetscScalar *elemMat;
2714: PetscInt dim, Nf, f, fieldI, fieldJ, offsetI, offsetJ, cStart, cEnd, c;
2715: PetscInt cTotDim = 0, rTotDim = 0;
2717: PetscFunctionBegin;
2718: PetscCall(PetscLogEventBegin(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
2719: PetscCall(DMGetDimension(dmf, &dim));
2720: PetscCall(DMGetLocalSection(dmf, &fsection));
2721: PetscCall(DMGetGlobalSection(dmf, &fglobalSection));
2722: PetscCall(DMGetLocalSection(dmc, &csection));
2723: PetscCall(DMGetGlobalSection(dmc, &cglobalSection));
2724: PetscCall(PetscSectionGetNumFields(fsection, &Nf));
2725: PetscCall(DMPlexGetSimplexOrBoxCells(dmc, 0, &cStart, &cEnd));
2726: PetscCall(PetscCalloc2(Nf, &feRef, Nf, &fvRef));
2727: for (f = 0; f < Nf; ++f) {
2728: PetscObject obj, objc;
2729: PetscClassId id, idc;
2730: PetscInt rNb = 0, Nc = 0, cNb = 0;
2732: PetscCall(DMGetField(dmf, f, NULL, &obj));
2733: PetscCall(PetscObjectGetClassId(obj, &id));
2734: if (id == PETSCFE_CLASSID) {
2735: PetscFE fe = (PetscFE)obj;
2737: if (isRefined) {
2738: PetscCall(PetscFERefine(fe, &feRef[f]));
2739: } else {
2740: PetscCall(PetscObjectReference((PetscObject)fe));
2741: feRef[f] = fe;
2742: }
2743: PetscCall(PetscFEGetDimension(feRef[f], &rNb));
2744: PetscCall(PetscFEGetNumComponents(fe, &Nc));
2745: } else if (id == PETSCFV_CLASSID) {
2746: PetscFV fv = (PetscFV)obj;
2747: PetscDualSpace Q;
2749: if (isRefined) {
2750: PetscCall(PetscFVRefine(fv, &fvRef[f]));
2751: } else {
2752: PetscCall(PetscObjectReference((PetscObject)fv));
2753: fvRef[f] = fv;
2754: }
2755: PetscCall(PetscFVGetDualSpace(fvRef[f], &Q));
2756: PetscCall(PetscDualSpaceGetDimension(Q, &rNb));
2757: PetscCall(PetscFVGetDualSpace(fv, &Q));
2758: PetscCall(PetscFVGetNumComponents(fv, &Nc));
2759: }
2760: PetscCall(DMGetField(dmc, f, NULL, &objc));
2761: PetscCall(PetscObjectGetClassId(objc, &idc));
2762: if (idc == PETSCFE_CLASSID) {
2763: PetscFE fe = (PetscFE)objc;
2765: PetscCall(PetscFEGetDimension(fe, &cNb));
2766: } else if (id == PETSCFV_CLASSID) {
2767: PetscFV fv = (PetscFV)obj;
2768: PetscDualSpace Q;
2770: PetscCall(PetscFVGetDualSpace(fv, &Q));
2771: PetscCall(PetscDualSpaceGetDimension(Q, &cNb));
2772: }
2773: rTotDim += rNb;
2774: cTotDim += cNb;
2775: }
2776: PetscCall(PetscMalloc1(rTotDim * cTotDim, &elemMat));
2777: PetscCall(PetscArrayzero(elemMat, rTotDim * cTotDim));
2778: for (fieldI = 0, offsetI = 0; fieldI < Nf; ++fieldI) {
2779: PetscDualSpace Qref;
2780: PetscQuadrature f;
2781: const PetscReal *qpoints, *qweights;
2782: PetscReal *points;
2783: PetscInt npoints = 0, Nc, Np, fpdim, i, k, p, d;
2785: /* Compose points from all dual basis functionals */
2786: if (feRef[fieldI]) {
2787: PetscCall(PetscFEGetDualSpace(feRef[fieldI], &Qref));
2788: PetscCall(PetscFEGetNumComponents(feRef[fieldI], &Nc));
2789: } else {
2790: PetscCall(PetscFVGetDualSpace(fvRef[fieldI], &Qref));
2791: PetscCall(PetscFVGetNumComponents(fvRef[fieldI], &Nc));
2792: }
2793: PetscCall(PetscDualSpaceGetDimension(Qref, &fpdim));
2794: for (i = 0; i < fpdim; ++i) {
2795: PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
2796: PetscCall(PetscQuadratureGetData(f, NULL, NULL, &Np, NULL, NULL));
2797: npoints += Np;
2798: }
2799: PetscCall(PetscMalloc1(npoints * dim, &points));
2800: for (i = 0, k = 0; i < fpdim; ++i) {
2801: PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
2802: PetscCall(PetscQuadratureGetData(f, NULL, NULL, &Np, &qpoints, NULL));
2803: for (p = 0; p < Np; ++p, ++k)
2804: for (d = 0; d < dim; ++d) points[k * dim + d] = qpoints[p * dim + d];
2805: }
2807: for (fieldJ = 0, offsetJ = 0; fieldJ < Nf; ++fieldJ) {
2808: PetscObject obj;
2809: PetscClassId id;
2810: PetscInt NcJ = 0, cpdim = 0, j, qNc;
2812: PetscCall(DMGetField(dmc, fieldJ, NULL, &obj));
2813: PetscCall(PetscObjectGetClassId(obj, &id));
2814: if (id == PETSCFE_CLASSID) {
2815: PetscFE fe = (PetscFE)obj;
2816: PetscTabulation T = NULL;
2818: /* Evaluate basis at points */
2819: PetscCall(PetscFEGetNumComponents(fe, &NcJ));
2820: PetscCall(PetscFEGetDimension(fe, &cpdim));
2821: /* For now, fields only interpolate themselves */
2822: if (fieldI == fieldJ) {
2823: PetscCheck(Nc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, Nc, NcJ);
2824: PetscCall(PetscFECreateTabulation(fe, 1, npoints, points, 0, &T));
2825: for (i = 0, k = 0; i < fpdim; ++i) {
2826: PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
2827: PetscCall(PetscQuadratureGetData(f, NULL, &qNc, &Np, NULL, &qweights));
2828: PetscCheck(qNc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, qNc, NcJ);
2829: for (p = 0; p < Np; ++p, ++k) {
2830: for (j = 0; j < cpdim; ++j) {
2831: /*
2832: cTotDim: Total columns in element interpolation matrix, sum of number of dual basis functionals in each field
2833: offsetI, offsetJ: Offsets into the larger element interpolation matrix for different fields
2834: fpdim, i, cpdim, j: Dofs for fine and coarse grids, correspond to dual space basis functionals
2835: qNC, Nc, Ncj, c: Number of components in this field
2836: Np, p: Number of quad points in the fine grid functional i
2837: k: i*Np + p, overall point number for the interpolation
2838: */
2839: for (c = 0; c < Nc; ++c) elemMat[(offsetI + i) * cTotDim + offsetJ + j] += T->T[0][k * cpdim * NcJ + j * Nc + c] * qweights[p * qNc + c];
2840: }
2841: }
2842: }
2843: PetscCall(PetscTabulationDestroy(&T));
2844: }
2845: } else if (id == PETSCFV_CLASSID) {
2846: PetscFV fv = (PetscFV)obj;
2848: /* Evaluate constant function at points */
2849: PetscCall(PetscFVGetNumComponents(fv, &NcJ));
2850: cpdim = 1;
2851: /* For now, fields only interpolate themselves */
2852: if (fieldI == fieldJ) {
2853: PetscCheck(Nc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, Nc, NcJ);
2854: for (i = 0, k = 0; i < fpdim; ++i) {
2855: PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
2856: PetscCall(PetscQuadratureGetData(f, NULL, &qNc, &Np, NULL, &qweights));
2857: PetscCheck(qNc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, qNc, NcJ);
2858: for (p = 0; p < Np; ++p, ++k) {
2859: for (j = 0; j < cpdim; ++j) {
2860: for (c = 0; c < Nc; ++c) elemMat[(offsetI + i) * cTotDim + offsetJ + j] += 1.0 * qweights[p * qNc + c];
2861: }
2862: }
2863: }
2864: }
2865: }
2866: offsetJ += cpdim;
2867: }
2868: offsetI += fpdim;
2869: PetscCall(PetscFree(points));
2870: }
2871: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(0, name, rTotDim, cTotDim, elemMat));
2872: /* Preallocate matrix */
2873: {
2874: Mat preallocator;
2875: PetscScalar *vals;
2876: PetscInt *cellCIndices, *cellFIndices;
2877: PetscInt locRows, locCols, cell;
2879: PetscCall(MatGetLocalSize(In, &locRows, &locCols));
2880: PetscCall(MatCreate(PetscObjectComm((PetscObject)In), &preallocator));
2881: PetscCall(MatSetType(preallocator, MATPREALLOCATOR));
2882: PetscCall(MatSetSizes(preallocator, locRows, locCols, PETSC_DETERMINE, PETSC_DETERMINE));
2883: PetscCall(MatSetUp(preallocator));
2884: PetscCall(PetscCalloc3(rTotDim * cTotDim, &vals, cTotDim, &cellCIndices, rTotDim, &cellFIndices));
2885: for (cell = cStart; cell < cEnd; ++cell) {
2886: if (isRefined) {
2887: PetscCall(DMPlexMatGetClosureIndicesRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, cell, cellCIndices, cellFIndices));
2888: PetscCall(MatSetValues(preallocator, rTotDim, cellFIndices, cTotDim, cellCIndices, vals, INSERT_VALUES));
2889: } else {
2890: PetscCall(DMPlexMatSetClosureGeneral(dmf, fsection, fglobalSection, PETSC_FALSE, dmc, csection, cglobalSection, PETSC_FALSE, preallocator, cell, vals, INSERT_VALUES));
2891: }
2892: }
2893: PetscCall(PetscFree3(vals, cellCIndices, cellFIndices));
2894: PetscCall(MatAssemblyBegin(preallocator, MAT_FINAL_ASSEMBLY));
2895: PetscCall(MatAssemblyEnd(preallocator, MAT_FINAL_ASSEMBLY));
2896: PetscCall(MatPreallocatorPreallocate(preallocator, PETSC_TRUE, In));
2897: PetscCall(MatDestroy(&preallocator));
2898: }
2899: /* Fill matrix */
2900: PetscCall(MatZeroEntries(In));
2901: for (c = cStart; c < cEnd; ++c) {
2902: if (isRefined) {
2903: PetscCall(DMPlexMatSetClosureRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, In, c, elemMat, INSERT_VALUES));
2904: } else {
2905: PetscCall(DMPlexMatSetClosureGeneral(dmf, fsection, fglobalSection, PETSC_FALSE, dmc, csection, cglobalSection, PETSC_FALSE, In, c, elemMat, INSERT_VALUES));
2906: }
2907: }
2908: for (f = 0; f < Nf; ++f) PetscCall(PetscFEDestroy(&feRef[f]));
2909: PetscCall(PetscFree2(feRef, fvRef));
2910: PetscCall(PetscFree(elemMat));
2911: PetscCall(MatAssemblyBegin(In, MAT_FINAL_ASSEMBLY));
2912: PetscCall(MatAssemblyEnd(In, MAT_FINAL_ASSEMBLY));
2913: if (mesh->printFEM > 1) {
2914: PetscCall(PetscPrintf(PetscObjectComm((PetscObject)In), "%s:\n", name));
2915: PetscCall(MatFilter(In, 1.0e-10, PETSC_FALSE, PETSC_FALSE));
2916: PetscCall(MatView(In, NULL));
2917: }
2918: PetscCall(PetscLogEventEnd(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
2919: PetscFunctionReturn(PETSC_SUCCESS);
2920: }
2922: PetscErrorCode DMPlexComputeMassMatrixNested(DM dmc, DM dmf, Mat mass, void *user)
2923: {
2924: SETERRQ(PetscObjectComm((PetscObject)dmc), PETSC_ERR_SUP, "Laziness");
2925: }
2927: /*@
2928: DMPlexComputeInterpolatorGeneral - Form the local portion of the interpolation matrix from the coarse `DM` to a non-nested fine `DM`.
2930: Input Parameters:
2931: + dmf - The fine mesh
2932: . dmc - The coarse mesh
2933: - user - The user context
2935: Output Parameter:
2936: . In - The interpolation matrix
2938: Level: developer
2940: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeInterpolatorNested()`, `DMPlexComputeJacobianFEM()`
2941: @*/
2942: PetscErrorCode DMPlexComputeInterpolatorGeneral(DM dmc, DM dmf, Mat In, void *user)
2943: {
2944: DM_Plex *mesh = (DM_Plex *)dmf->data;
2945: const char *name = "Interpolator";
2946: PetscDS prob;
2947: Mat interp;
2948: PetscSection fsection, globalFSection;
2949: PetscSection csection, globalCSection;
2950: PetscInt locRows, locCols;
2951: PetscReal *x, *v0, *J, *invJ, detJ;
2952: PetscReal *v0c, *Jc, *invJc, detJc;
2953: PetscScalar *elemMat;
2954: PetscInt dim, Nf, field, totDim, cStart, cEnd, cell, ccell, s;
2956: PetscFunctionBegin;
2957: PetscCall(PetscLogEventBegin(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
2958: PetscCall(DMGetCoordinateDim(dmc, &dim));
2959: PetscCall(DMGetDS(dmc, &prob));
2960: PetscCall(PetscDSGetWorkspace(prob, &x, NULL, NULL, NULL, NULL));
2961: PetscCall(PetscDSGetNumFields(prob, &Nf));
2962: PetscCall(PetscMalloc3(dim, &v0, dim * dim, &J, dim * dim, &invJ));
2963: PetscCall(PetscMalloc3(dim, &v0c, dim * dim, &Jc, dim * dim, &invJc));
2964: PetscCall(DMGetLocalSection(dmf, &fsection));
2965: PetscCall(DMGetGlobalSection(dmf, &globalFSection));
2966: PetscCall(DMGetLocalSection(dmc, &csection));
2967: PetscCall(DMGetGlobalSection(dmc, &globalCSection));
2968: PetscCall(DMPlexGetSimplexOrBoxCells(dmf, 0, &cStart, &cEnd));
2969: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
2970: PetscCall(PetscMalloc1(totDim, &elemMat));
2972: PetscCall(MatGetLocalSize(In, &locRows, &locCols));
2973: PetscCall(MatCreate(PetscObjectComm((PetscObject)In), &interp));
2974: PetscCall(MatSetType(interp, MATPREALLOCATOR));
2975: PetscCall(MatSetSizes(interp, locRows, locCols, PETSC_DETERMINE, PETSC_DETERMINE));
2976: PetscCall(MatSetUp(interp));
2977: for (s = 0; s < 2; ++s) {
2978: for (field = 0; field < Nf; ++field) {
2979: PetscObject obj;
2980: PetscClassId id;
2981: PetscDualSpace Q = NULL;
2982: PetscTabulation T = NULL;
2983: PetscQuadrature f;
2984: const PetscReal *qpoints, *qweights;
2985: PetscInt Nc, qNc, Np, fpdim, off, i, d;
2987: PetscCall(PetscDSGetFieldOffset(prob, field, &off));
2988: PetscCall(PetscDSGetDiscretization(prob, field, &obj));
2989: PetscCall(PetscObjectGetClassId(obj, &id));
2990: if (id == PETSCFE_CLASSID) {
2991: PetscFE fe = (PetscFE)obj;
2993: PetscCall(PetscFEGetDualSpace(fe, &Q));
2994: PetscCall(PetscFEGetNumComponents(fe, &Nc));
2995: if (s) PetscCall(PetscFECreateTabulation(fe, 1, 1, x, 0, &T));
2996: } else if (id == PETSCFV_CLASSID) {
2997: PetscFV fv = (PetscFV)obj;
2999: PetscCall(PetscFVGetDualSpace(fv, &Q));
3000: Nc = 1;
3001: } else SETERRQ(PetscObjectComm((PetscObject)dmc), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
3002: PetscCall(PetscDualSpaceGetDimension(Q, &fpdim));
3003: /* For each fine grid cell */
3004: for (cell = cStart; cell < cEnd; ++cell) {
3005: PetscInt *findices, *cindices;
3006: PetscInt numFIndices, numCIndices;
3008: PetscCall(DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3009: PetscCall(DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ));
3010: PetscCheck(numFIndices == totDim, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fine indices %" PetscInt_FMT " != %" PetscInt_FMT " dual basis vecs", numFIndices, totDim);
3011: for (i = 0; i < fpdim; ++i) {
3012: Vec pointVec;
3013: PetscScalar *pV;
3014: PetscSF coarseCellSF = NULL;
3015: const PetscSFNode *coarseCells;
3016: PetscInt numCoarseCells, cpdim, row = findices[i + off], q, c, j;
3018: /* Get points from the dual basis functional quadrature */
3019: PetscCall(PetscDualSpaceGetFunctional(Q, i, &f));
3020: PetscCall(PetscQuadratureGetData(f, NULL, &qNc, &Np, &qpoints, &qweights));
3021: PetscCheck(qNc == Nc, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, qNc, Nc);
3022: PetscCall(VecCreateSeq(PETSC_COMM_SELF, Np * dim, &pointVec));
3023: PetscCall(VecSetBlockSize(pointVec, dim));
3024: PetscCall(VecGetArray(pointVec, &pV));
3025: for (q = 0; q < Np; ++q) {
3026: const PetscReal xi0[3] = {-1., -1., -1.};
3028: /* Transform point to real space */
3029: CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q * dim], x);
3030: for (d = 0; d < dim; ++d) pV[q * dim + d] = x[d];
3031: }
3032: PetscCall(VecRestoreArray(pointVec, &pV));
3033: /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
3034: /* OPT: Read this out from preallocation information */
3035: PetscCall(DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF));
3036: /* Update preallocation info */
3037: PetscCall(PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells));
3038: PetscCheck(numCoarseCells == Np, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not all closure points located");
3039: PetscCall(VecGetArray(pointVec, &pV));
3040: for (ccell = 0; ccell < numCoarseCells; ++ccell) {
3041: PetscReal pVReal[3];
3042: const PetscReal xi0[3] = {-1., -1., -1.};
3044: PetscCall(DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3045: if (id == PETSCFE_CLASSID) PetscCall(PetscFEGetDimension((PetscFE)obj, &cpdim));
3046: else cpdim = 1;
3048: if (s) {
3049: /* Transform points from real space to coarse reference space */
3050: PetscCall(DMPlexComputeCellGeometryFEM(dmc, coarseCells[ccell].index, NULL, v0c, Jc, invJc, &detJc));
3051: for (d = 0; d < dim; ++d) pVReal[d] = PetscRealPart(pV[ccell * dim + d]);
3052: CoordinatesRealToRef(dim, dim, xi0, v0c, invJc, pVReal, x);
3054: if (id == PETSCFE_CLASSID) {
3055: /* Evaluate coarse basis on contained point */
3056: PetscCall(PetscFEComputeTabulation((PetscFE)obj, 1, x, 0, T));
3057: PetscCall(PetscArrayzero(elemMat, cpdim));
3058: /* Get elemMat entries by multiplying by weight */
3059: for (j = 0; j < cpdim; ++j) {
3060: for (c = 0; c < Nc; ++c) elemMat[j] += T->T[0][j * Nc + c] * qweights[ccell * qNc + c];
3061: }
3062: } else {
3063: for (j = 0; j < cpdim; ++j) {
3064: for (c = 0; c < Nc; ++c) elemMat[j] += 1.0 * qweights[ccell * qNc + c];
3065: }
3066: }
3067: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat));
3068: }
3069: /* Update interpolator */
3070: PetscCheck(numCIndices == totDim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %" PetscInt_FMT " != %" PetscInt_FMT, numCIndices, totDim);
3071: PetscCall(MatSetValues(interp, 1, &row, cpdim, &cindices[off], elemMat, INSERT_VALUES));
3072: PetscCall(DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3073: }
3074: PetscCall(VecRestoreArray(pointVec, &pV));
3075: PetscCall(PetscSFDestroy(&coarseCellSF));
3076: PetscCall(VecDestroy(&pointVec));
3077: }
3078: PetscCall(DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3079: }
3080: if (s && id == PETSCFE_CLASSID) PetscCall(PetscTabulationDestroy(&T));
3081: }
3082: if (!s) {
3083: PetscCall(MatAssemblyBegin(interp, MAT_FINAL_ASSEMBLY));
3084: PetscCall(MatAssemblyEnd(interp, MAT_FINAL_ASSEMBLY));
3085: PetscCall(MatPreallocatorPreallocate(interp, PETSC_TRUE, In));
3086: PetscCall(MatDestroy(&interp));
3087: interp = In;
3088: }
3089: }
3090: PetscCall(PetscFree3(v0, J, invJ));
3091: PetscCall(PetscFree3(v0c, Jc, invJc));
3092: PetscCall(PetscFree(elemMat));
3093: PetscCall(MatAssemblyBegin(In, MAT_FINAL_ASSEMBLY));
3094: PetscCall(MatAssemblyEnd(In, MAT_FINAL_ASSEMBLY));
3095: PetscCall(PetscLogEventEnd(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
3096: PetscFunctionReturn(PETSC_SUCCESS);
3097: }
3099: /*@
3100: DMPlexComputeMassMatrixGeneral - Form the local portion of the mass matrix from the coarse `DM` to a non-nested fine `DM`.
3102: Input Parameters:
3103: + dmf - The fine mesh
3104: . dmc - The coarse mesh
3105: - user - The user context
3107: Output Parameter:
3108: . mass - The mass matrix
3110: Level: developer
3112: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeMassMatrixNested()`, `DMPlexComputeInterpolatorNested()`, `DMPlexComputeInterpolatorGeneral()`, `DMPlexComputeJacobianFEM()`
3113: @*/
3114: PetscErrorCode DMPlexComputeMassMatrixGeneral(DM dmc, DM dmf, Mat mass, void *user)
3115: {
3116: DM_Plex *mesh = (DM_Plex *)dmf->data;
3117: const char *name = "Mass Matrix";
3118: PetscDS prob;
3119: PetscSection fsection, csection, globalFSection, globalCSection;
3120: PetscHSetIJ ht;
3121: PetscLayout rLayout;
3122: PetscInt *dnz, *onz;
3123: PetscInt locRows, rStart, rEnd;
3124: PetscReal *x, *v0, *J, *invJ, detJ;
3125: PetscReal *v0c, *Jc, *invJc, detJc;
3126: PetscScalar *elemMat;
3127: PetscInt dim, Nf, field, totDim, cStart, cEnd, cell, ccell;
3129: PetscFunctionBegin;
3130: PetscCall(DMGetCoordinateDim(dmc, &dim));
3131: PetscCall(DMGetDS(dmc, &prob));
3132: PetscCall(PetscDSGetWorkspace(prob, &x, NULL, NULL, NULL, NULL));
3133: PetscCall(PetscDSGetNumFields(prob, &Nf));
3134: PetscCall(PetscMalloc3(dim, &v0, dim * dim, &J, dim * dim, &invJ));
3135: PetscCall(PetscMalloc3(dim, &v0c, dim * dim, &Jc, dim * dim, &invJc));
3136: PetscCall(DMGetLocalSection(dmf, &fsection));
3137: PetscCall(DMGetGlobalSection(dmf, &globalFSection));
3138: PetscCall(DMGetLocalSection(dmc, &csection));
3139: PetscCall(DMGetGlobalSection(dmc, &globalCSection));
3140: PetscCall(DMPlexGetHeightStratum(dmf, 0, &cStart, &cEnd));
3141: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
3142: PetscCall(PetscMalloc1(totDim, &elemMat));
3144: PetscCall(MatGetLocalSize(mass, &locRows, NULL));
3145: PetscCall(PetscLayoutCreate(PetscObjectComm((PetscObject)mass), &rLayout));
3146: PetscCall(PetscLayoutSetLocalSize(rLayout, locRows));
3147: PetscCall(PetscLayoutSetBlockSize(rLayout, 1));
3148: PetscCall(PetscLayoutSetUp(rLayout));
3149: PetscCall(PetscLayoutGetRange(rLayout, &rStart, &rEnd));
3150: PetscCall(PetscLayoutDestroy(&rLayout));
3151: PetscCall(PetscCalloc2(locRows, &dnz, locRows, &onz));
3152: PetscCall(PetscHSetIJCreate(&ht));
3153: for (field = 0; field < Nf; ++field) {
3154: PetscObject obj;
3155: PetscClassId id;
3156: PetscQuadrature quad;
3157: const PetscReal *qpoints;
3158: PetscInt Nq, Nc, i, d;
3160: PetscCall(PetscDSGetDiscretization(prob, field, &obj));
3161: PetscCall(PetscObjectGetClassId(obj, &id));
3162: if (id == PETSCFE_CLASSID) PetscCall(PetscFEGetQuadrature((PetscFE)obj, &quad));
3163: else PetscCall(PetscFVGetQuadrature((PetscFV)obj, &quad));
3164: PetscCall(PetscQuadratureGetData(quad, NULL, &Nc, &Nq, &qpoints, NULL));
3165: /* For each fine grid cell */
3166: for (cell = cStart; cell < cEnd; ++cell) {
3167: Vec pointVec;
3168: PetscScalar *pV;
3169: PetscSF coarseCellSF = NULL;
3170: const PetscSFNode *coarseCells;
3171: PetscInt numCoarseCells, q, c;
3172: PetscInt *findices, *cindices;
3173: PetscInt numFIndices, numCIndices;
3175: PetscCall(DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3176: PetscCall(DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ));
3177: /* Get points from the quadrature */
3178: PetscCall(VecCreateSeq(PETSC_COMM_SELF, Nq * dim, &pointVec));
3179: PetscCall(VecSetBlockSize(pointVec, dim));
3180: PetscCall(VecGetArray(pointVec, &pV));
3181: for (q = 0; q < Nq; ++q) {
3182: const PetscReal xi0[3] = {-1., -1., -1.};
3184: /* Transform point to real space */
3185: CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q * dim], x);
3186: for (d = 0; d < dim; ++d) pV[q * dim + d] = x[d];
3187: }
3188: PetscCall(VecRestoreArray(pointVec, &pV));
3189: /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
3190: PetscCall(DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF));
3191: PetscCall(PetscSFViewFromOptions(coarseCellSF, NULL, "-interp_sf_view"));
3192: /* Update preallocation info */
3193: PetscCall(PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells));
3194: PetscCheck(numCoarseCells == Nq, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not all closure points located");
3195: {
3196: PetscHashIJKey key;
3197: PetscBool missing;
3199: for (i = 0; i < numFIndices; ++i) {
3200: key.i = findices[i];
3201: if (key.i >= 0) {
3202: /* Get indices for coarse elements */
3203: for (ccell = 0; ccell < numCoarseCells; ++ccell) {
3204: PetscCall(DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3205: for (c = 0; c < numCIndices; ++c) {
3206: key.j = cindices[c];
3207: if (key.j < 0) continue;
3208: PetscCall(PetscHSetIJQueryAdd(ht, key, &missing));
3209: if (missing) {
3210: if ((key.j >= rStart) && (key.j < rEnd)) ++dnz[key.i - rStart];
3211: else ++onz[key.i - rStart];
3212: }
3213: }
3214: PetscCall(DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3215: }
3216: }
3217: }
3218: }
3219: PetscCall(PetscSFDestroy(&coarseCellSF));
3220: PetscCall(VecDestroy(&pointVec));
3221: PetscCall(DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3222: }
3223: }
3224: PetscCall(PetscHSetIJDestroy(&ht));
3225: PetscCall(MatXAIJSetPreallocation(mass, 1, dnz, onz, NULL, NULL));
3226: PetscCall(MatSetOption(mass, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_TRUE));
3227: PetscCall(PetscFree2(dnz, onz));
3228: for (field = 0; field < Nf; ++field) {
3229: PetscObject obj;
3230: PetscClassId id;
3231: PetscTabulation T, Tfine;
3232: PetscQuadrature quad;
3233: const PetscReal *qpoints, *qweights;
3234: PetscInt Nq, Nc, i, d;
3236: PetscCall(PetscDSGetDiscretization(prob, field, &obj));
3237: PetscCall(PetscObjectGetClassId(obj, &id));
3238: if (id == PETSCFE_CLASSID) {
3239: PetscCall(PetscFEGetQuadrature((PetscFE)obj, &quad));
3240: PetscCall(PetscFEGetCellTabulation((PetscFE)obj, 1, &Tfine));
3241: PetscCall(PetscFECreateTabulation((PetscFE)obj, 1, 1, x, 0, &T));
3242: } else {
3243: PetscCall(PetscFVGetQuadrature((PetscFV)obj, &quad));
3244: }
3245: PetscCall(PetscQuadratureGetData(quad, NULL, &Nc, &Nq, &qpoints, &qweights));
3246: /* For each fine grid cell */
3247: for (cell = cStart; cell < cEnd; ++cell) {
3248: Vec pointVec;
3249: PetscScalar *pV;
3250: PetscSF coarseCellSF = NULL;
3251: const PetscSFNode *coarseCells;
3252: PetscInt numCoarseCells, cpdim, q, c, j;
3253: PetscInt *findices, *cindices;
3254: PetscInt numFIndices, numCIndices;
3256: PetscCall(DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3257: PetscCall(DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ));
3258: /* Get points from the quadrature */
3259: PetscCall(VecCreateSeq(PETSC_COMM_SELF, Nq * dim, &pointVec));
3260: PetscCall(VecSetBlockSize(pointVec, dim));
3261: PetscCall(VecGetArray(pointVec, &pV));
3262: for (q = 0; q < Nq; ++q) {
3263: const PetscReal xi0[3] = {-1., -1., -1.};
3265: /* Transform point to real space */
3266: CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q * dim], x);
3267: for (d = 0; d < dim; ++d) pV[q * dim + d] = x[d];
3268: }
3269: PetscCall(VecRestoreArray(pointVec, &pV));
3270: /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
3271: PetscCall(DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF));
3272: /* Update matrix */
3273: PetscCall(PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells));
3274: PetscCheck(numCoarseCells == Nq, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not all closure points located");
3275: PetscCall(VecGetArray(pointVec, &pV));
3276: for (ccell = 0; ccell < numCoarseCells; ++ccell) {
3277: PetscReal pVReal[3];
3278: const PetscReal xi0[3] = {-1., -1., -1.};
3280: PetscCall(DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3281: /* Transform points from real space to coarse reference space */
3282: PetscCall(DMPlexComputeCellGeometryFEM(dmc, coarseCells[ccell].index, NULL, v0c, Jc, invJc, &detJc));
3283: for (d = 0; d < dim; ++d) pVReal[d] = PetscRealPart(pV[ccell * dim + d]);
3284: CoordinatesRealToRef(dim, dim, xi0, v0c, invJc, pVReal, x);
3286: if (id == PETSCFE_CLASSID) {
3287: PetscFE fe = (PetscFE)obj;
3289: /* Evaluate coarse basis on contained point */
3290: PetscCall(PetscFEGetDimension(fe, &cpdim));
3291: PetscCall(PetscFEComputeTabulation(fe, 1, x, 0, T));
3292: /* Get elemMat entries by multiplying by weight */
3293: for (i = 0; i < numFIndices; ++i) {
3294: PetscCall(PetscArrayzero(elemMat, cpdim));
3295: for (j = 0; j < cpdim; ++j) {
3296: for (c = 0; c < Nc; ++c) elemMat[j] += T->T[0][j * Nc + c] * Tfine->T[0][(ccell * numFIndices + i) * Nc + c] * qweights[ccell * Nc + c] * detJ;
3297: }
3298: /* Update interpolator */
3299: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat));
3300: PetscCheck(numCIndices == cpdim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %" PetscInt_FMT " != %" PetscInt_FMT, numCIndices, cpdim);
3301: PetscCall(MatSetValues(mass, 1, &findices[i], numCIndices, cindices, elemMat, ADD_VALUES));
3302: }
3303: } else {
3304: cpdim = 1;
3305: for (i = 0; i < numFIndices; ++i) {
3306: PetscCall(PetscArrayzero(elemMat, cpdim));
3307: for (j = 0; j < cpdim; ++j) {
3308: for (c = 0; c < Nc; ++c) elemMat[j] += 1.0 * 1.0 * qweights[ccell * Nc + c] * detJ;
3309: }
3310: /* Update interpolator */
3311: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat));
3312: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Nq: %" PetscInt_FMT " %" PetscInt_FMT " Nf: %" PetscInt_FMT " %" PetscInt_FMT " Nc: %" PetscInt_FMT " %" PetscInt_FMT "\n", ccell, Nq, i, numFIndices, j, numCIndices));
3313: PetscCheck(numCIndices == cpdim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %" PetscInt_FMT " != %" PetscInt_FMT, numCIndices, cpdim);
3314: PetscCall(MatSetValues(mass, 1, &findices[i], numCIndices, cindices, elemMat, ADD_VALUES));
3315: }
3316: }
3317: PetscCall(DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3318: }
3319: PetscCall(VecRestoreArray(pointVec, &pV));
3320: PetscCall(PetscSFDestroy(&coarseCellSF));
3321: PetscCall(VecDestroy(&pointVec));
3322: PetscCall(DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3323: }
3324: if (id == PETSCFE_CLASSID) PetscCall(PetscTabulationDestroy(&T));
3325: }
3326: PetscCall(PetscFree3(v0, J, invJ));
3327: PetscCall(PetscFree3(v0c, Jc, invJc));
3328: PetscCall(PetscFree(elemMat));
3329: PetscCall(MatAssemblyBegin(mass, MAT_FINAL_ASSEMBLY));
3330: PetscCall(MatAssemblyEnd(mass, MAT_FINAL_ASSEMBLY));
3331: PetscFunctionReturn(PETSC_SUCCESS);
3332: }
3334: /*@
3335: DMPlexComputeInjectorFEM - Compute a mapping from coarse unknowns to fine unknowns
3337: Input Parameters:
3338: + dmc - The coarse mesh
3339: . dmf - The fine mesh
3340: - user - The user context
3342: Output Parameter:
3343: . sc - The mapping
3345: Level: developer
3347: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeInterpolatorNested()`, `DMPlexComputeJacobianFEM()`
3348: @*/
3349: PetscErrorCode DMPlexComputeInjectorFEM(DM dmc, DM dmf, VecScatter *sc, void *user)
3350: {
3351: PetscDS prob;
3352: PetscFE *feRef;
3353: PetscFV *fvRef;
3354: Vec fv, cv;
3355: IS fis, cis;
3356: PetscSection fsection, fglobalSection, csection, cglobalSection;
3357: PetscInt *cmap, *cellCIndices, *cellFIndices, *cindices, *findices;
3358: PetscInt cTotDim, fTotDim = 0, Nf, f, field, cStart, cEnd, c, dim, d, startC, endC, offsetC, offsetF, m;
3359: PetscBool *needAvg;
3361: PetscFunctionBegin;
3362: PetscCall(PetscLogEventBegin(DMPLEX_InjectorFEM, dmc, dmf, 0, 0));
3363: PetscCall(DMGetDimension(dmf, &dim));
3364: PetscCall(DMGetLocalSection(dmf, &fsection));
3365: PetscCall(DMGetGlobalSection(dmf, &fglobalSection));
3366: PetscCall(DMGetLocalSection(dmc, &csection));
3367: PetscCall(DMGetGlobalSection(dmc, &cglobalSection));
3368: PetscCall(PetscSectionGetNumFields(fsection, &Nf));
3369: PetscCall(DMPlexGetSimplexOrBoxCells(dmc, 0, &cStart, &cEnd));
3370: PetscCall(DMGetDS(dmc, &prob));
3371: PetscCall(PetscCalloc3(Nf, &feRef, Nf, &fvRef, Nf, &needAvg));
3372: for (f = 0; f < Nf; ++f) {
3373: PetscObject obj;
3374: PetscClassId id;
3375: PetscInt fNb = 0, Nc = 0;
3377: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
3378: PetscCall(PetscObjectGetClassId(obj, &id));
3379: if (id == PETSCFE_CLASSID) {
3380: PetscFE fe = (PetscFE)obj;
3381: PetscSpace sp;
3382: PetscInt maxDegree;
3384: PetscCall(PetscFERefine(fe, &feRef[f]));
3385: PetscCall(PetscFEGetDimension(feRef[f], &fNb));
3386: PetscCall(PetscFEGetNumComponents(fe, &Nc));
3387: PetscCall(PetscFEGetBasisSpace(fe, &sp));
3388: PetscCall(PetscSpaceGetDegree(sp, NULL, &maxDegree));
3389: if (!maxDegree) needAvg[f] = PETSC_TRUE;
3390: } else if (id == PETSCFV_CLASSID) {
3391: PetscFV fv = (PetscFV)obj;
3392: PetscDualSpace Q;
3394: PetscCall(PetscFVRefine(fv, &fvRef[f]));
3395: PetscCall(PetscFVGetDualSpace(fvRef[f], &Q));
3396: PetscCall(PetscDualSpaceGetDimension(Q, &fNb));
3397: PetscCall(PetscFVGetNumComponents(fv, &Nc));
3398: needAvg[f] = PETSC_TRUE;
3399: }
3400: fTotDim += fNb;
3401: }
3402: PetscCall(PetscDSGetTotalDimension(prob, &cTotDim));
3403: PetscCall(PetscMalloc1(cTotDim, &cmap));
3404: for (field = 0, offsetC = 0, offsetF = 0; field < Nf; ++field) {
3405: PetscFE feC;
3406: PetscFV fvC;
3407: PetscDualSpace QF, QC;
3408: PetscInt order = -1, NcF, NcC, fpdim, cpdim;
3410: if (feRef[field]) {
3411: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&feC));
3412: PetscCall(PetscFEGetNumComponents(feC, &NcC));
3413: PetscCall(PetscFEGetNumComponents(feRef[field], &NcF));
3414: PetscCall(PetscFEGetDualSpace(feRef[field], &QF));
3415: PetscCall(PetscDualSpaceGetOrder(QF, &order));
3416: PetscCall(PetscDualSpaceGetDimension(QF, &fpdim));
3417: PetscCall(PetscFEGetDualSpace(feC, &QC));
3418: PetscCall(PetscDualSpaceGetDimension(QC, &cpdim));
3419: } else {
3420: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fvC));
3421: PetscCall(PetscFVGetNumComponents(fvC, &NcC));
3422: PetscCall(PetscFVGetNumComponents(fvRef[field], &NcF));
3423: PetscCall(PetscFVGetDualSpace(fvRef[field], &QF));
3424: PetscCall(PetscDualSpaceGetDimension(QF, &fpdim));
3425: PetscCall(PetscFVGetDualSpace(fvC, &QC));
3426: PetscCall(PetscDualSpaceGetDimension(QC, &cpdim));
3427: }
3428: PetscCheck(NcF == NcC, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, NcF, NcC);
3429: for (c = 0; c < cpdim; ++c) {
3430: PetscQuadrature cfunc;
3431: const PetscReal *cqpoints, *cqweights;
3432: PetscInt NqcC, NpC;
3433: PetscBool found = PETSC_FALSE;
3435: PetscCall(PetscDualSpaceGetFunctional(QC, c, &cfunc));
3436: PetscCall(PetscQuadratureGetData(cfunc, NULL, &NqcC, &NpC, &cqpoints, &cqweights));
3437: PetscCheck(NqcC == NcC, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of quadrature components %" PetscInt_FMT " must match number of field components %" PetscInt_FMT, NqcC, NcC);
3438: PetscCheck(NpC == 1 || !feRef[field], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Do not know how to do injection for moments");
3439: for (f = 0; f < fpdim; ++f) {
3440: PetscQuadrature ffunc;
3441: const PetscReal *fqpoints, *fqweights;
3442: PetscReal sum = 0.0;
3443: PetscInt NqcF, NpF;
3445: PetscCall(PetscDualSpaceGetFunctional(QF, f, &ffunc));
3446: PetscCall(PetscQuadratureGetData(ffunc, NULL, &NqcF, &NpF, &fqpoints, &fqweights));
3447: PetscCheck(NqcF == NcF, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of quadrature components %" PetscInt_FMT " must match number of field components %" PetscInt_FMT, NqcF, NcF);
3448: if (NpC != NpF) continue;
3449: for (d = 0; d < dim; ++d) sum += PetscAbsReal(cqpoints[d] - fqpoints[d]);
3450: if (sum > 1.0e-9) continue;
3451: for (d = 0; d < NcC; ++d) sum += PetscAbsReal(cqweights[d] * fqweights[d]);
3452: if (sum < 1.0e-9) continue;
3453: cmap[offsetC + c] = offsetF + f;
3454: found = PETSC_TRUE;
3455: break;
3456: }
3457: if (!found) {
3458: /* TODO We really want the average here, but some asshole put VecScatter in the interface */
3459: if (fvRef[field] || (feRef[field] && order == 0)) {
3460: cmap[offsetC + c] = offsetF + 0;
3461: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Could not locate matching functional for injection");
3462: }
3463: }
3464: offsetC += cpdim;
3465: offsetF += fpdim;
3466: }
3467: for (f = 0; f < Nf; ++f) {
3468: PetscCall(PetscFEDestroy(&feRef[f]));
3469: PetscCall(PetscFVDestroy(&fvRef[f]));
3470: }
3471: PetscCall(PetscFree3(feRef, fvRef, needAvg));
3473: PetscCall(DMGetGlobalVector(dmf, &fv));
3474: PetscCall(DMGetGlobalVector(dmc, &cv));
3475: PetscCall(VecGetOwnershipRange(cv, &startC, &endC));
3476: PetscCall(PetscSectionGetConstrainedStorageSize(cglobalSection, &m));
3477: PetscCall(PetscMalloc2(cTotDim, &cellCIndices, fTotDim, &cellFIndices));
3478: PetscCall(PetscMalloc1(m, &cindices));
3479: PetscCall(PetscMalloc1(m, &findices));
3480: for (d = 0; d < m; ++d) cindices[d] = findices[d] = -1;
3481: for (c = cStart; c < cEnd; ++c) {
3482: PetscCall(DMPlexMatGetClosureIndicesRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, c, cellCIndices, cellFIndices));
3483: for (d = 0; d < cTotDim; ++d) {
3484: if ((cellCIndices[d] < startC) || (cellCIndices[d] >= endC)) continue;
3485: PetscCheck(!(findices[cellCIndices[d] - startC] >= 0) || !(findices[cellCIndices[d] - startC] != cellFIndices[cmap[d]]), PETSC_COMM_SELF, PETSC_ERR_PLIB, "Cell %" PetscInt_FMT " Coarse dof %" PetscInt_FMT " maps to both %" PetscInt_FMT " and %" PetscInt_FMT, c, cindices[cellCIndices[d] - startC], findices[cellCIndices[d] - startC], cellFIndices[cmap[d]]);
3486: cindices[cellCIndices[d] - startC] = cellCIndices[d];
3487: findices[cellCIndices[d] - startC] = cellFIndices[cmap[d]];
3488: }
3489: }
3490: PetscCall(PetscFree(cmap));
3491: PetscCall(PetscFree2(cellCIndices, cellFIndices));
3493: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, m, cindices, PETSC_OWN_POINTER, &cis));
3494: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, m, findices, PETSC_OWN_POINTER, &fis));
3495: PetscCall(VecScatterCreate(cv, cis, fv, fis, sc));
3496: PetscCall(ISDestroy(&cis));
3497: PetscCall(ISDestroy(&fis));
3498: PetscCall(DMRestoreGlobalVector(dmf, &fv));
3499: PetscCall(DMRestoreGlobalVector(dmc, &cv));
3500: PetscCall(PetscLogEventEnd(DMPLEX_InjectorFEM, dmc, dmf, 0, 0));
3501: PetscFunctionReturn(PETSC_SUCCESS);
3502: }
3504: /*@C
3505: DMPlexGetCellFields - Retrieve the field values values for a chunk of cells
3507: Input Parameters:
3508: + dm - The `DM`
3509: . cellIS - The cells to include
3510: . locX - A local vector with the solution fields
3511: . locX_t - A local vector with solution field time derivatives, or NULL
3512: - locA - A local vector with auxiliary fields, or NULL
3514: Output Parameters:
3515: + u - The field coefficients
3516: . u_t - The fields derivative coefficients
3517: - a - The auxiliary field coefficients
3519: Level: developer
3521: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
3522: @*/
3523: PetscErrorCode DMPlexGetCellFields(DM dm, IS cellIS, Vec locX, Vec locX_t, Vec locA, PetscScalar **u, PetscScalar **u_t, PetscScalar **a)
3524: {
3525: DM plex, plexA = NULL;
3526: DMEnclosureType encAux;
3527: PetscSection section, sectionAux;
3528: PetscDS prob;
3529: const PetscInt *cells;
3530: PetscInt cStart, cEnd, numCells, totDim, totDimAux, c;
3532: PetscFunctionBegin;
3537: PetscAssertPointer(u, 6);
3538: PetscAssertPointer(u_t, 7);
3539: PetscAssertPointer(a, 8);
3540: PetscCall(DMPlexConvertPlex(dm, &plex, PETSC_FALSE));
3541: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
3542: PetscCall(DMGetLocalSection(dm, §ion));
3543: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &prob, NULL));
3544: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
3545: if (locA) {
3546: DM dmAux;
3547: PetscDS probAux;
3549: PetscCall(VecGetDM(locA, &dmAux));
3550: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
3551: PetscCall(DMPlexConvertPlex(dmAux, &plexA, PETSC_FALSE));
3552: PetscCall(DMGetLocalSection(dmAux, §ionAux));
3553: PetscCall(DMGetDS(dmAux, &probAux));
3554: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
3555: }
3556: numCells = cEnd - cStart;
3557: PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u));
3558: if (locX_t) PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u_t));
3559: else *u_t = NULL;
3560: if (locA) PetscCall(DMGetWorkArray(dm, numCells * totDimAux, MPIU_SCALAR, a));
3561: else *a = NULL;
3562: for (c = cStart; c < cEnd; ++c) {
3563: const PetscInt cell = cells ? cells[c] : c;
3564: const PetscInt cind = c - cStart;
3565: PetscScalar *x = NULL, *x_t = NULL, *ul = *u, *ul_t = *u_t, *al = *a;
3566: PetscInt i;
3568: PetscCall(DMPlexVecGetClosure(plex, section, locX, cell, NULL, &x));
3569: for (i = 0; i < totDim; ++i) ul[cind * totDim + i] = x[i];
3570: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, cell, NULL, &x));
3571: if (locX_t) {
3572: PetscCall(DMPlexVecGetClosure(plex, section, locX_t, cell, NULL, &x_t));
3573: for (i = 0; i < totDim; ++i) ul_t[cind * totDim + i] = x_t[i];
3574: PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, cell, NULL, &x_t));
3575: }
3576: if (locA) {
3577: PetscInt subcell;
3578: PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, cell, &subcell));
3579: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subcell, NULL, &x));
3580: for (i = 0; i < totDimAux; ++i) al[cind * totDimAux + i] = x[i];
3581: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subcell, NULL, &x));
3582: }
3583: }
3584: PetscCall(DMDestroy(&plex));
3585: if (locA) PetscCall(DMDestroy(&plexA));
3586: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
3587: PetscFunctionReturn(PETSC_SUCCESS);
3588: }
3590: /*@C
3591: DMPlexRestoreCellFields - Restore the field values values for a chunk of cells
3593: Input Parameters:
3594: + dm - The `DM`
3595: . cellIS - The cells to include
3596: . locX - A local vector with the solution fields
3597: . locX_t - A local vector with solution field time derivatives, or NULL
3598: - locA - A local vector with auxiliary fields, or NULL
3600: Output Parameters:
3601: + u - The field coefficients
3602: . u_t - The fields derivative coefficients
3603: - a - The auxiliary field coefficients
3605: Level: developer
3607: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
3608: @*/
3609: PetscErrorCode DMPlexRestoreCellFields(DM dm, IS cellIS, Vec locX, Vec locX_t, Vec locA, PetscScalar **u, PetscScalar **u_t, PetscScalar **a)
3610: {
3611: PetscFunctionBegin;
3612: PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, u));
3613: if (locX_t) PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, u_t));
3614: if (locA) PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, a));
3615: PetscFunctionReturn(PETSC_SUCCESS);
3616: }
3618: static PetscErrorCode DMPlexGetHybridCellFields(DM dm, IS cellIS, Vec locX, Vec locX_t, Vec locA, PetscScalar **u, PetscScalar **u_t, PetscScalar **a)
3619: {
3620: DM plex, plexA = NULL;
3621: DMEnclosureType encAux;
3622: PetscSection section, sectionAux;
3623: PetscDS ds, dsIn;
3624: const PetscInt *cells;
3625: PetscInt cStart, cEnd, numCells, c, totDim, totDimAux, Nf, f;
3627: PetscFunctionBegin;
3633: PetscAssertPointer(u, 6);
3634: PetscAssertPointer(u_t, 7);
3635: PetscAssertPointer(a, 8);
3636: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
3637: numCells = cEnd - cStart;
3638: PetscCall(DMPlexConvertPlex(dm, &plex, PETSC_FALSE));
3639: PetscCall(DMGetLocalSection(dm, §ion));
3640: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, &dsIn));
3641: PetscCall(PetscDSGetNumFields(dsIn, &Nf));
3642: PetscCall(PetscDSGetTotalDimension(dsIn, &totDim));
3643: if (locA) {
3644: DM dmAux;
3645: PetscDS probAux;
3647: PetscCall(VecGetDM(locA, &dmAux));
3648: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
3649: PetscCall(DMPlexConvertPlex(dmAux, &plexA, PETSC_FALSE));
3650: PetscCall(DMGetLocalSection(dmAux, §ionAux));
3651: PetscCall(DMGetDS(dmAux, &probAux));
3652: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
3653: }
3654: PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u));
3655: if (locX_t) PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u_t));
3656: else {
3657: *u_t = NULL;
3658: }
3659: if (locA) PetscCall(DMGetWorkArray(dm, numCells * totDimAux, MPIU_SCALAR, a));
3660: else {
3661: *a = NULL;
3662: }
3663: // Loop over cohesive cells
3664: for (c = cStart; c < cEnd; ++c) {
3665: const PetscInt cell = cells ? cells[c] : c;
3666: const PetscInt cind = c - cStart;
3667: PetscScalar *xf = NULL, *xc = NULL, *x = NULL, *xf_t = NULL, *xc_t = NULL;
3668: PetscScalar *ul = &(*u)[cind * totDim], *ul_t = PetscSafePointerPlusOffset(*u_t, cind * totDim);
3669: const PetscInt *cone, *ornt;
3670: PetscInt Nx = 0, Nxf, s;
3672: PetscCall(DMPlexGetCone(dm, cell, &cone));
3673: PetscCall(DMPlexGetConeOrientation(dm, cell, &ornt));
3674: // Put in cohesive unknowns
3675: PetscCall(DMPlexVecGetClosure(plex, section, locX, cell, &Nxf, &xf));
3676: if (locX_t) PetscCall(DMPlexVecGetClosure(plex, section, locX_t, cell, NULL, &xf_t));
3677: for (f = 0; f < Nf; ++f) {
3678: PetscInt fdofIn, foff, foffIn;
3679: PetscBool cohesive;
3681: PetscCall(PetscDSGetCohesive(dsIn, f, &cohesive));
3682: if (!cohesive) continue;
3683: PetscCall(PetscDSGetFieldSize(dsIn, f, &fdofIn));
3684: PetscCall(PetscDSGetFieldOffsetCohesive(ds, f, &foff));
3685: PetscCall(PetscDSGetFieldOffsetCohesive(dsIn, f, &foffIn));
3686: for (PetscInt i = 0; i < fdofIn; ++i) ul[foffIn + i] = xf[foff + i];
3687: if (locX_t)
3688: for (PetscInt i = 0; i < fdofIn; ++i) ul_t[foffIn + i] = xf_t[foff + i];
3689: Nx += fdofIn;
3690: }
3691: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, cell, &Nxf, &xf));
3692: if (locX_t) PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, cell, NULL, &xf_t));
3693: // Loop over sides of surface
3694: for (s = 0; s < 2; ++s) {
3695: const PetscInt *support;
3696: const PetscInt face = cone[s];
3697: PetscInt ssize, ncell, Nxc;
3699: // I don't think I need the face to have 0 orientation in the hybrid cell
3700: //PetscCheck(!ornt[s], PETSC_COMM_SELF, PETSC_ERR_SUP, "Face %" PetscInt_FMT " in hybrid cell %" PetscInt_FMT " has orientation %" PetscInt_FMT " != 0", face, cell, ornt[s]);
3701: PetscCall(DMPlexGetSupport(dm, face, &support));
3702: PetscCall(DMPlexGetSupportSize(dm, face, &ssize));
3703: if (support[0] == cell) ncell = support[1];
3704: else if (support[1] == cell) ncell = support[0];
3705: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", face, cell);
3706: // Get closure of both face and cell, stick in cell for normal fields and face for cohesive fields
3707: PetscCall(DMPlexVecGetClosure(plex, section, locX, ncell, &Nxc, &xc));
3708: if (locX_t) PetscCall(DMPlexVecGetClosure(plex, section, locX_t, ncell, NULL, &xc_t));
3709: for (f = 0; f < Nf; ++f) {
3710: PetscInt fdofIn, foffIn;
3711: PetscBool cohesive;
3713: PetscCall(PetscDSGetCohesive(dsIn, f, &cohesive));
3714: if (cohesive) continue;
3715: PetscCall(PetscDSGetFieldSize(dsIn, f, &fdofIn));
3716: PetscCall(PetscDSGetFieldOffsetCohesive(dsIn, f, &foffIn));
3717: for (PetscInt i = 0; i < fdofIn; ++i) ul[foffIn + s * fdofIn + i] = xc[foffIn + i];
3718: if (locX_t)
3719: for (PetscInt i = 0; i < fdofIn; ++i) ul_t[foffIn + s * fdofIn + i] = xc_t[foffIn + i];
3720: Nx += fdofIn;
3721: }
3722: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, ncell, &Nxc, &xc));
3723: if (locX_t) PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, ncell, NULL, &xc_t));
3724: }
3725: PetscCheck(Nx == totDim, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Closure size %" PetscInt_FMT " for cell %" PetscInt_FMT " does not match DS size %" PetscInt_FMT, Nx, cell, totDim);
3727: if (locA) {
3728: PetscScalar *al = &(*a)[cind * totDimAux];
3729: PetscInt subcell;
3731: PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, cell, &subcell));
3732: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subcell, &Nx, &x));
3733: PetscCheck(Nx == totDimAux, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Closure size %" PetscInt_FMT " for subcell %" PetscInt_FMT "does not match DS size %" PetscInt_FMT, Nx, subcell, totDimAux);
3734: for (PetscInt i = 0; i < totDimAux; ++i) al[i] = x[i];
3735: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subcell, &Nx, &x));
3736: }
3737: }
3738: PetscCall(DMDestroy(&plex));
3739: PetscCall(DMDestroy(&plexA));
3740: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
3741: PetscFunctionReturn(PETSC_SUCCESS);
3742: }
3744: /*
3745: DMPlexGetHybridFields - Get the field values for the negative side (s = 0) and positive side (s = 1) of the interface
3747: Input Parameters:
3748: + dm - The full domain DM
3749: . dmX - An array of DM for the field, say an auxiliary DM, indexed by s
3750: . dsX - An array of PetscDS for the field, indexed by s
3751: . cellIS - The interface cells for which we want values
3752: . locX - An array of local vectors with the field values, indexed by s
3753: - useCell - Flag to have values come from neighboring cell rather than endcap face
3755: Output Parameter:
3756: . x - An array of field values, indexed by s
3758: Note:
3759: The arrays in `x` will be allocated using `DMGetWorkArray()`, and must be returned using `DMPlexRestoreHybridFields()`.
3761: Level: advanced
3763: .seealso: `DMPlexRestoreHybridFields()`, `DMGetWorkArray()`
3764: */
3765: static PetscErrorCode DMPlexGetHybridFields(DM dm, DM dmX[], PetscDS dsX[], IS cellIS, Vec locX[], PetscBool useCell, PetscScalar *x[])
3766: {
3767: DM plexX[2];
3768: DMEnclosureType encX[2];
3769: PetscSection sectionX[2];
3770: const PetscInt *cells;
3771: PetscInt cStart, cEnd, numCells, c, s, totDimX[2];
3773: PetscFunctionBegin;
3774: PetscAssertPointer(locX, 5);
3775: if (!locX[0] || !locX[1]) PetscFunctionReturn(PETSC_SUCCESS);
3776: PetscAssertPointer(dmX, 2);
3777: PetscAssertPointer(dsX, 3);
3779: PetscAssertPointer(x, 7);
3780: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
3781: numCells = cEnd - cStart;
3782: for (s = 0; s < 2; ++s) {
3786: PetscCall(DMPlexConvertPlex(dmX[s], &plexX[s], PETSC_FALSE));
3787: PetscCall(DMGetEnclosureRelation(dmX[s], dm, &encX[s]));
3788: PetscCall(DMGetLocalSection(dmX[s], §ionX[s]));
3789: PetscCall(PetscDSGetTotalDimension(dsX[s], &totDimX[s]));
3790: PetscCall(DMGetWorkArray(dmX[s], numCells * totDimX[s], MPIU_SCALAR, &x[s]));
3791: }
3792: for (c = cStart; c < cEnd; ++c) {
3793: const PetscInt cell = cells ? cells[c] : c;
3794: const PetscInt cind = c - cStart;
3795: const PetscInt *cone, *ornt;
3797: PetscCall(DMPlexGetCone(dm, cell, &cone));
3798: PetscCall(DMPlexGetConeOrientation(dm, cell, &ornt));
3799: //PetscCheck(!ornt[0], PETSC_COMM_SELF, PETSC_ERR_SUP, "Face %" PetscInt_FMT " in hybrid cell %" PetscInt_FMT " has orientation %" PetscInt_FMT " != 0", cone[0], cell, ornt[0]);
3800: for (s = 0; s < 2; ++s) {
3801: const PetscInt tdX = totDimX[s];
3802: PetscScalar *closure = NULL, *xl = &x[s][cind * tdX];
3803: PetscInt face = cone[s], point = face, subpoint, Nx, i;
3805: if (useCell) {
3806: const PetscInt *support;
3807: PetscInt ssize;
3809: PetscCall(DMPlexGetSupport(dm, face, &support));
3810: PetscCall(DMPlexGetSupportSize(dm, face, &ssize));
3811: PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", face, cell, ssize);
3812: if (support[0] == cell) point = support[1];
3813: else if (support[1] == cell) point = support[0];
3814: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", face, cell);
3815: }
3816: PetscCall(DMGetEnclosurePoint(plexX[s], dm, encX[s], point, &subpoint));
3817: PetscCall(DMPlexVecGetOrientedClosure_Internal(plexX[s], sectionX[s], PETSC_FALSE, locX[s], subpoint, ornt[s], &Nx, &closure));
3818: PetscCheck(Nx == tdX, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Closure size %" PetscInt_FMT " for subpoint %" PetscInt_FMT " does not match DS size %" PetscInt_FMT, Nx, subpoint, tdX);
3819: for (i = 0; i < Nx; ++i) xl[i] = closure[i];
3820: PetscCall(DMPlexVecRestoreClosure(plexX[s], sectionX[s], locX[s], subpoint, &Nx, &closure));
3821: }
3822: }
3823: for (s = 0; s < 2; ++s) PetscCall(DMDestroy(&plexX[s]));
3824: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
3825: PetscFunctionReturn(PETSC_SUCCESS);
3826: }
3828: static PetscErrorCode DMPlexRestoreHybridFields(DM dm, DM dmX[], PetscDS dsX[], IS cellIS, Vec locX[], PetscBool useCell, PetscScalar *x[])
3829: {
3830: PetscFunctionBegin;
3831: if (!locX[0] || !locX[1]) PetscFunctionReturn(PETSC_SUCCESS);
3832: PetscCall(DMRestoreWorkArray(dmX[0], 0, MPIU_SCALAR, &x[0]));
3833: PetscCall(DMRestoreWorkArray(dmX[1], 0, MPIU_SCALAR, &x[1]));
3834: PetscFunctionReturn(PETSC_SUCCESS);
3835: }
3837: /*@C
3838: DMPlexGetFaceFields - Retrieve the field values values for a chunk of faces
3840: Input Parameters:
3841: + dm - The `DM`
3842: . fStart - The first face to include
3843: . fEnd - The first face to exclude
3844: . locX - A local vector with the solution fields
3845: . locX_t - A local vector with solution field time derivatives, or NULL
3846: . faceGeometry - A local vector with face geometry
3847: . cellGeometry - A local vector with cell geometry
3848: - locGrad - A local vector with field gradients, or NULL
3850: Output Parameters:
3851: + Nface - The number of faces with field values
3852: . uL - The field values at the left side of the face
3853: - uR - The field values at the right side of the face
3855: Level: developer
3857: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetCellFields()`
3858: @*/
3859: PetscErrorCode DMPlexGetFaceFields(DM dm, PetscInt fStart, PetscInt fEnd, Vec locX, Vec locX_t, Vec faceGeometry, Vec cellGeometry, Vec locGrad, PetscInt *Nface, PetscScalar **uL, PetscScalar **uR)
3860: {
3861: DM dmFace, dmCell, dmGrad = NULL;
3862: PetscSection section;
3863: PetscDS prob;
3864: DMLabel ghostLabel;
3865: const PetscScalar *facegeom, *cellgeom, *x, *lgrad;
3866: PetscBool *isFE;
3867: PetscInt dim, Nf, f, Nc, numFaces = fEnd - fStart, iface, face;
3869: PetscFunctionBegin;
3876: PetscAssertPointer(uL, 10);
3877: PetscAssertPointer(uR, 11);
3878: PetscCall(DMGetDimension(dm, &dim));
3879: PetscCall(DMGetDS(dm, &prob));
3880: PetscCall(DMGetLocalSection(dm, §ion));
3881: PetscCall(PetscDSGetNumFields(prob, &Nf));
3882: PetscCall(PetscDSGetTotalComponents(prob, &Nc));
3883: PetscCall(PetscMalloc1(Nf, &isFE));
3884: for (f = 0; f < Nf; ++f) {
3885: PetscObject obj;
3886: PetscClassId id;
3888: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
3889: PetscCall(PetscObjectGetClassId(obj, &id));
3890: if (id == PETSCFE_CLASSID) {
3891: isFE[f] = PETSC_TRUE;
3892: } else if (id == PETSCFV_CLASSID) {
3893: isFE[f] = PETSC_FALSE;
3894: } else {
3895: isFE[f] = PETSC_FALSE;
3896: }
3897: }
3898: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
3899: PetscCall(VecGetArrayRead(locX, &x));
3900: PetscCall(VecGetDM(faceGeometry, &dmFace));
3901: PetscCall(VecGetArrayRead(faceGeometry, &facegeom));
3902: PetscCall(VecGetDM(cellGeometry, &dmCell));
3903: PetscCall(VecGetArrayRead(cellGeometry, &cellgeom));
3904: if (locGrad) {
3905: PetscCall(VecGetDM(locGrad, &dmGrad));
3906: PetscCall(VecGetArrayRead(locGrad, &lgrad));
3907: }
3908: PetscCall(DMGetWorkArray(dm, numFaces * Nc, MPIU_SCALAR, uL));
3909: PetscCall(DMGetWorkArray(dm, numFaces * Nc, MPIU_SCALAR, uR));
3910: /* Right now just eat the extra work for FE (could make a cell loop) */
3911: for (face = fStart, iface = 0; face < fEnd; ++face) {
3912: const PetscInt *cells;
3913: PetscFVFaceGeom *fg;
3914: PetscFVCellGeom *cgL, *cgR;
3915: PetscScalar *xL, *xR, *gL, *gR;
3916: PetscScalar *uLl = *uL, *uRl = *uR;
3917: PetscInt ghost, nsupp, nchild;
3919: PetscCall(DMLabelGetValue(ghostLabel, face, &ghost));
3920: PetscCall(DMPlexGetSupportSize(dm, face, &nsupp));
3921: PetscCall(DMPlexGetTreeChildren(dm, face, &nchild, NULL));
3922: if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
3923: PetscCall(DMPlexPointLocalRead(dmFace, face, facegeom, &fg));
3924: PetscCall(DMPlexGetSupport(dm, face, &cells));
3925: PetscCall(DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cgL));
3926: PetscCall(DMPlexPointLocalRead(dmCell, cells[1], cellgeom, &cgR));
3927: for (f = 0; f < Nf; ++f) {
3928: PetscInt off;
3930: PetscCall(PetscDSGetComponentOffset(prob, f, &off));
3931: if (isFE[f]) {
3932: const PetscInt *cone;
3933: PetscInt comp, coneSizeL, coneSizeR, faceLocL, faceLocR, ldof, rdof, d;
3935: xL = xR = NULL;
3936: PetscCall(PetscSectionGetFieldComponents(section, f, &comp));
3937: PetscCall(DMPlexVecGetClosure(dm, section, locX, cells[0], &ldof, (PetscScalar **)&xL));
3938: PetscCall(DMPlexVecGetClosure(dm, section, locX, cells[1], &rdof, (PetscScalar **)&xR));
3939: PetscCall(DMPlexGetCone(dm, cells[0], &cone));
3940: PetscCall(DMPlexGetConeSize(dm, cells[0], &coneSizeL));
3941: for (faceLocL = 0; faceLocL < coneSizeL; ++faceLocL)
3942: if (cone[faceLocL] == face) break;
3943: PetscCall(DMPlexGetCone(dm, cells[1], &cone));
3944: PetscCall(DMPlexGetConeSize(dm, cells[1], &coneSizeR));
3945: for (faceLocR = 0; faceLocR < coneSizeR; ++faceLocR)
3946: if (cone[faceLocR] == face) break;
3947: PetscCheck(faceLocL != coneSizeL || faceLocR != coneSizeR, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Could not find face %" PetscInt_FMT " in cone of cell %" PetscInt_FMT " or cell %" PetscInt_FMT, face, cells[0], cells[1]);
3948: /* Check that FEM field has values in the right cell (sometimes its an FV ghost cell) */
3949: /* TODO: this is a hack that might not be right for nonconforming */
3950: if (faceLocL < coneSizeL) {
3951: PetscCall(PetscFEEvaluateFaceFields_Internal(prob, f, faceLocL, xL, &uLl[iface * Nc + off]));
3952: if (rdof == ldof && faceLocR < coneSizeR) PetscCall(PetscFEEvaluateFaceFields_Internal(prob, f, faceLocR, xR, &uRl[iface * Nc + off]));
3953: else {
3954: for (d = 0; d < comp; ++d) uRl[iface * Nc + off + d] = uLl[iface * Nc + off + d];
3955: }
3956: } else {
3957: PetscCall(PetscFEEvaluateFaceFields_Internal(prob, f, faceLocR, xR, &uRl[iface * Nc + off]));
3958: PetscCall(PetscSectionGetFieldComponents(section, f, &comp));
3959: for (d = 0; d < comp; ++d) uLl[iface * Nc + off + d] = uRl[iface * Nc + off + d];
3960: }
3961: PetscCall(DMPlexVecRestoreClosure(dm, section, locX, cells[0], &ldof, (PetscScalar **)&xL));
3962: PetscCall(DMPlexVecRestoreClosure(dm, section, locX, cells[1], &rdof, (PetscScalar **)&xR));
3963: } else {
3964: PetscFV fv;
3965: PetscInt numComp, c;
3967: PetscCall(PetscDSGetDiscretization(prob, f, (PetscObject *)&fv));
3968: PetscCall(PetscFVGetNumComponents(fv, &numComp));
3969: PetscCall(DMPlexPointLocalFieldRead(dm, cells[0], f, x, &xL));
3970: PetscCall(DMPlexPointLocalFieldRead(dm, cells[1], f, x, &xR));
3971: if (dmGrad) {
3972: PetscReal dxL[3], dxR[3];
3974: PetscCall(DMPlexPointLocalRead(dmGrad, cells[0], lgrad, &gL));
3975: PetscCall(DMPlexPointLocalRead(dmGrad, cells[1], lgrad, &gR));
3976: DMPlex_WaxpyD_Internal(dim, -1, cgL->centroid, fg->centroid, dxL);
3977: DMPlex_WaxpyD_Internal(dim, -1, cgR->centroid, fg->centroid, dxR);
3978: for (c = 0; c < numComp; ++c) {
3979: uLl[iface * Nc + off + c] = xL[c] + DMPlex_DotD_Internal(dim, &gL[c * dim], dxL);
3980: uRl[iface * Nc + off + c] = xR[c] + DMPlex_DotD_Internal(dim, &gR[c * dim], dxR);
3981: }
3982: } else {
3983: for (c = 0; c < numComp; ++c) {
3984: uLl[iface * Nc + off + c] = xL[c];
3985: uRl[iface * Nc + off + c] = xR[c];
3986: }
3987: }
3988: }
3989: }
3990: ++iface;
3991: }
3992: *Nface = iface;
3993: PetscCall(VecRestoreArrayRead(locX, &x));
3994: PetscCall(VecRestoreArrayRead(faceGeometry, &facegeom));
3995: PetscCall(VecRestoreArrayRead(cellGeometry, &cellgeom));
3996: if (locGrad) PetscCall(VecRestoreArrayRead(locGrad, &lgrad));
3997: PetscCall(PetscFree(isFE));
3998: PetscFunctionReturn(PETSC_SUCCESS);
3999: }
4001: /*@C
4002: DMPlexRestoreFaceFields - Restore the field values values for a chunk of faces
4004: Input Parameters:
4005: + dm - The `DM`
4006: . fStart - The first face to include
4007: . fEnd - The first face to exclude
4008: . locX - A local vector with the solution fields
4009: . locX_t - A local vector with solution field time derivatives, or NULL
4010: . faceGeometry - A local vector with face geometry
4011: . cellGeometry - A local vector with cell geometry
4012: - locGrad - A local vector with field gradients, or NULL
4014: Output Parameters:
4015: + Nface - The number of faces with field values
4016: . uL - The field values at the left side of the face
4017: - uR - The field values at the right side of the face
4019: Level: developer
4021: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
4022: @*/
4023: PetscErrorCode DMPlexRestoreFaceFields(DM dm, PetscInt fStart, PetscInt fEnd, Vec locX, Vec locX_t, Vec faceGeometry, Vec cellGeometry, Vec locGrad, PetscInt *Nface, PetscScalar **uL, PetscScalar **uR)
4024: {
4025: PetscFunctionBegin;
4026: PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, uL));
4027: PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, uR));
4028: PetscFunctionReturn(PETSC_SUCCESS);
4029: }
4031: /*@C
4032: DMPlexGetFaceGeometry - Retrieve the geometric values for a chunk of faces
4034: Input Parameters:
4035: + dm - The `DM`
4036: . fStart - The first face to include
4037: . fEnd - The first face to exclude
4038: . faceGeometry - A local vector with face geometry
4039: - cellGeometry - A local vector with cell geometry
4041: Output Parameters:
4042: + Nface - The number of faces with field values
4043: . fgeom - The extract the face centroid and normal
4044: - vol - The cell volume
4046: Level: developer
4048: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetCellFields()`
4049: @*/
4050: PetscErrorCode DMPlexGetFaceGeometry(DM dm, PetscInt fStart, PetscInt fEnd, Vec faceGeometry, Vec cellGeometry, PetscInt *Nface, PetscFVFaceGeom **fgeom, PetscReal **vol)
4051: {
4052: DM dmFace, dmCell;
4053: DMLabel ghostLabel;
4054: const PetscScalar *facegeom, *cellgeom;
4055: PetscInt dim, numFaces = fEnd - fStart, iface, face;
4057: PetscFunctionBegin;
4061: PetscAssertPointer(fgeom, 7);
4062: PetscAssertPointer(vol, 8);
4063: PetscCall(DMGetDimension(dm, &dim));
4064: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
4065: PetscCall(VecGetDM(faceGeometry, &dmFace));
4066: PetscCall(VecGetArrayRead(faceGeometry, &facegeom));
4067: PetscCall(VecGetDM(cellGeometry, &dmCell));
4068: PetscCall(VecGetArrayRead(cellGeometry, &cellgeom));
4069: PetscCall(PetscMalloc1(numFaces, fgeom));
4070: PetscCall(DMGetWorkArray(dm, numFaces * 2, MPIU_SCALAR, vol));
4071: for (face = fStart, iface = 0; face < fEnd; ++face) {
4072: const PetscInt *cells;
4073: PetscFVFaceGeom *fg;
4074: PetscFVCellGeom *cgL, *cgR;
4075: PetscFVFaceGeom *fgeoml = *fgeom;
4076: PetscReal *voll = *vol;
4077: PetscInt ghost, d, nchild, nsupp;
4079: PetscCall(DMLabelGetValue(ghostLabel, face, &ghost));
4080: PetscCall(DMPlexGetSupportSize(dm, face, &nsupp));
4081: PetscCall(DMPlexGetTreeChildren(dm, face, &nchild, NULL));
4082: if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
4083: PetscCall(DMPlexPointLocalRead(dmFace, face, facegeom, &fg));
4084: PetscCall(DMPlexGetSupport(dm, face, &cells));
4085: PetscCall(DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cgL));
4086: PetscCall(DMPlexPointLocalRead(dmCell, cells[1], cellgeom, &cgR));
4087: for (d = 0; d < dim; ++d) {
4088: fgeoml[iface].centroid[d] = fg->centroid[d];
4089: fgeoml[iface].normal[d] = fg->normal[d];
4090: }
4091: voll[iface * 2 + 0] = cgL->volume;
4092: voll[iface * 2 + 1] = cgR->volume;
4093: ++iface;
4094: }
4095: *Nface = iface;
4096: PetscCall(VecRestoreArrayRead(faceGeometry, &facegeom));
4097: PetscCall(VecRestoreArrayRead(cellGeometry, &cellgeom));
4098: PetscFunctionReturn(PETSC_SUCCESS);
4099: }
4101: /*@C
4102: DMPlexRestoreFaceGeometry - Restore the field values values for a chunk of faces
4104: Input Parameters:
4105: + dm - The `DM`
4106: . fStart - The first face to include
4107: . fEnd - The first face to exclude
4108: . faceGeometry - A local vector with face geometry
4109: - cellGeometry - A local vector with cell geometry
4111: Output Parameters:
4112: + Nface - The number of faces with field values
4113: . fgeom - The extract the face centroid and normal
4114: - vol - The cell volume
4116: Level: developer
4118: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
4119: @*/
4120: PetscErrorCode DMPlexRestoreFaceGeometry(DM dm, PetscInt fStart, PetscInt fEnd, Vec faceGeometry, Vec cellGeometry, PetscInt *Nface, PetscFVFaceGeom **fgeom, PetscReal **vol)
4121: {
4122: PetscFunctionBegin;
4123: PetscCall(PetscFree(*fgeom));
4124: PetscCall(DMRestoreWorkArray(dm, 0, MPIU_REAL, vol));
4125: PetscFunctionReturn(PETSC_SUCCESS);
4126: }
4128: PetscErrorCode DMSNESGetFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
4129: {
4130: char composeStr[33] = {0};
4131: PetscObjectId id;
4132: PetscContainer container;
4134: PetscFunctionBegin;
4135: PetscCall(PetscObjectGetId((PetscObject)quad, &id));
4136: PetscCall(PetscSNPrintf(composeStr, 32, "DMSNESGetFEGeom_%" PetscInt64_FMT "\n", id));
4137: PetscCall(PetscObjectQuery((PetscObject)pointIS, composeStr, (PetscObject *)&container));
4138: if (container) {
4139: PetscCall(PetscContainerGetPointer(container, (void **)geom));
4140: } else {
4141: PetscCall(DMFieldCreateFEGeom(coordField, pointIS, quad, faceData, geom));
4142: PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
4143: PetscCall(PetscContainerSetPointer(container, (void *)*geom));
4144: PetscCall(PetscContainerSetUserDestroy(container, PetscContainerUserDestroy_PetscFEGeom));
4145: PetscCall(PetscObjectCompose((PetscObject)pointIS, composeStr, (PetscObject)container));
4146: PetscCall(PetscContainerDestroy(&container));
4147: }
4148: PetscFunctionReturn(PETSC_SUCCESS);
4149: }
4151: PetscErrorCode DMSNESRestoreFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
4152: {
4153: PetscFunctionBegin;
4154: *geom = NULL;
4155: PetscFunctionReturn(PETSC_SUCCESS);
4156: }
4158: PetscErrorCode DMPlexComputeResidual_Patch_Internal(DM dm, PetscSection section, IS cellIS, PetscReal t, Vec locX, Vec locX_t, Vec locF, void *user)
4159: {
4160: DM_Plex *mesh = (DM_Plex *)dm->data;
4161: const char *name = "Residual";
4162: DM dmAux = NULL;
4163: DMLabel ghostLabel = NULL;
4164: PetscDS prob = NULL;
4165: PetscDS probAux = NULL;
4166: PetscBool useFEM = PETSC_FALSE;
4167: PetscBool isImplicit = (locX_t || t == PETSC_MIN_REAL) ? PETSC_TRUE : PETSC_FALSE;
4168: DMField coordField = NULL;
4169: Vec locA;
4170: PetscScalar *u = NULL, *u_t, *a, *uL = NULL, *uR = NULL;
4171: IS chunkIS;
4172: const PetscInt *cells;
4173: PetscInt cStart, cEnd, numCells;
4174: PetscInt Nf, f, totDim, totDimAux, numChunks, cellChunkSize, chunk, fStart, fEnd;
4175: PetscInt maxDegree = PETSC_MAX_INT;
4176: PetscFormKey key;
4177: PetscQuadrature affineQuad = NULL, *quads = NULL;
4178: PetscFEGeom *affineGeom = NULL, **geoms = NULL;
4180: PetscFunctionBegin;
4181: PetscCall(PetscLogEventBegin(DMPLEX_ResidualFEM, dm, 0, 0, 0));
4182: /* FEM+FVM */
4183: /* 1: Get sizes from dm and dmAux */
4184: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
4185: PetscCall(DMGetDS(dm, &prob));
4186: PetscCall(PetscDSGetNumFields(prob, &Nf));
4187: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
4188: PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &locA));
4189: if (locA) {
4190: PetscCall(VecGetDM(locA, &dmAux));
4191: PetscCall(DMGetDS(dmAux, &probAux));
4192: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
4193: }
4194: /* 2: Get geometric data */
4195: for (f = 0; f < Nf; ++f) {
4196: PetscObject obj;
4197: PetscClassId id;
4198: PetscBool fimp;
4200: PetscCall(PetscDSGetImplicit(prob, f, &fimp));
4201: if (isImplicit != fimp) continue;
4202: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4203: PetscCall(PetscObjectGetClassId(obj, &id));
4204: if (id == PETSCFE_CLASSID) useFEM = PETSC_TRUE;
4205: PetscCheck(id != PETSCFV_CLASSID, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Use of FVM with PCPATCH not yet implemented");
4206: }
4207: if (useFEM) {
4208: PetscCall(DMGetCoordinateField(dm, &coordField));
4209: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
4210: if (maxDegree <= 1) {
4211: PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &affineQuad));
4212: if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
4213: } else {
4214: PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
4215: for (f = 0; f < Nf; ++f) {
4216: PetscObject obj;
4217: PetscClassId id;
4218: PetscBool fimp;
4220: PetscCall(PetscDSGetImplicit(prob, f, &fimp));
4221: if (isImplicit != fimp) continue;
4222: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4223: PetscCall(PetscObjectGetClassId(obj, &id));
4224: if (id == PETSCFE_CLASSID) {
4225: PetscFE fe = (PetscFE)obj;
4227: PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
4228: PetscCall(PetscObjectReference((PetscObject)quads[f]));
4229: PetscCall(DMSNESGetFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
4230: }
4231: }
4232: }
4233: }
4234: /* Loop over chunks */
4235: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
4236: PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
4237: if (useFEM) PetscCall(ISCreate(PETSC_COMM_SELF, &chunkIS));
4238: numCells = cEnd - cStart;
4239: numChunks = 1;
4240: cellChunkSize = numCells / numChunks;
4241: numChunks = PetscMin(1, numCells);
4242: key.label = NULL;
4243: key.value = 0;
4244: key.part = 0;
4245: for (chunk = 0; chunk < numChunks; ++chunk) {
4246: PetscScalar *elemVec, *fluxL = NULL, *fluxR = NULL;
4247: PetscReal *vol = NULL;
4248: PetscFVFaceGeom *fgeom = NULL;
4249: PetscInt cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;
4250: PetscInt numFaces = 0;
4252: /* Extract field coefficients */
4253: if (useFEM) {
4254: PetscCall(ISGetPointSubrange(chunkIS, cS, cE, cells));
4255: PetscCall(DMPlexGetCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
4256: PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
4257: PetscCall(PetscArrayzero(elemVec, numCells * totDim));
4258: }
4259: /* TODO We will interlace both our field coefficients (u, u_t, uL, uR, etc.) and our output (elemVec, fL, fR). I think this works */
4260: /* Loop over fields */
4261: for (f = 0; f < Nf; ++f) {
4262: PetscObject obj;
4263: PetscClassId id;
4264: PetscBool fimp;
4265: PetscInt numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;
4267: key.field = f;
4268: PetscCall(PetscDSGetImplicit(prob, f, &fimp));
4269: if (isImplicit != fimp) continue;
4270: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4271: PetscCall(PetscObjectGetClassId(obj, &id));
4272: if (id == PETSCFE_CLASSID) {
4273: PetscFE fe = (PetscFE)obj;
4274: PetscFEGeom *geom = affineGeom ? affineGeom : geoms[f];
4275: PetscFEGeom *chunkGeom = NULL;
4276: PetscQuadrature quad = affineQuad ? affineQuad : quads[f];
4277: PetscInt Nq, Nb;
4279: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
4280: PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
4281: PetscCall(PetscFEGetDimension(fe, &Nb));
4282: blockSize = Nb;
4283: batchSize = numBlocks * blockSize;
4284: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
4285: numChunks = numCells / (numBatches * batchSize);
4286: Ne = numChunks * numBatches * batchSize;
4287: Nr = numCells % (numBatches * batchSize);
4288: offset = numCells - Nr;
4289: /* Integrate FE residual to get elemVec (need fields at quadrature points) */
4290: /* For FV, I think we use a P0 basis and the cell coefficients (for subdivided cells, we can tweak the basis tabulation to be the indicator function) */
4291: PetscCall(PetscFEGeomGetChunk(geom, 0, offset, &chunkGeom));
4292: PetscCall(PetscFEIntegrateResidual(prob, key, Ne, chunkGeom, u, u_t, probAux, a, t, elemVec));
4293: PetscCall(PetscFEGeomGetChunk(geom, offset, numCells, &chunkGeom));
4294: PetscCall(PetscFEIntegrateResidual(prob, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, &a[offset * totDimAux], t, &elemVec[offset * totDim]));
4295: PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &chunkGeom));
4296: } else if (id == PETSCFV_CLASSID) {
4297: PetscFV fv = (PetscFV)obj;
4299: Ne = numFaces;
4300: /* Riemann solve over faces (need fields at face centroids) */
4301: /* We need to evaluate FE fields at those coordinates */
4302: PetscCall(PetscFVIntegrateRHSFunction(fv, prob, f, Ne, fgeom, vol, uL, uR, fluxL, fluxR));
4303: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
4304: }
4305: /* Loop over domain */
4306: if (useFEM) {
4307: /* Add elemVec to locX */
4308: for (c = cS; c < cE; ++c) {
4309: const PetscInt cell = cells ? cells[c] : c;
4310: const PetscInt cind = c - cStart;
4312: if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(cell, name, totDim, &elemVec[cind * totDim]));
4313: if (ghostLabel) {
4314: PetscInt ghostVal;
4316: PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
4317: if (ghostVal > 0) continue;
4318: }
4319: PetscCall(DMPlexVecSetClosure(dm, section, locF, cell, &elemVec[cind * totDim], ADD_ALL_VALUES));
4320: }
4321: }
4322: /* Handle time derivative */
4323: if (locX_t) {
4324: PetscScalar *x_t, *fa;
4326: PetscCall(VecGetArray(locF, &fa));
4327: PetscCall(VecGetArray(locX_t, &x_t));
4328: for (f = 0; f < Nf; ++f) {
4329: PetscFV fv;
4330: PetscObject obj;
4331: PetscClassId id;
4332: PetscInt pdim, d;
4334: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4335: PetscCall(PetscObjectGetClassId(obj, &id));
4336: if (id != PETSCFV_CLASSID) continue;
4337: fv = (PetscFV)obj;
4338: PetscCall(PetscFVGetNumComponents(fv, &pdim));
4339: for (c = cS; c < cE; ++c) {
4340: const PetscInt cell = cells ? cells[c] : c;
4341: PetscScalar *u_t, *r;
4343: if (ghostLabel) {
4344: PetscInt ghostVal;
4346: PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
4347: if (ghostVal > 0) continue;
4348: }
4349: PetscCall(DMPlexPointLocalFieldRead(dm, cell, f, x_t, &u_t));
4350: PetscCall(DMPlexPointLocalFieldRef(dm, cell, f, fa, &r));
4351: for (d = 0; d < pdim; ++d) r[d] += u_t[d];
4352: }
4353: }
4354: PetscCall(VecRestoreArray(locX_t, &x_t));
4355: PetscCall(VecRestoreArray(locF, &fa));
4356: }
4357: if (useFEM) {
4358: PetscCall(DMPlexRestoreCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
4359: PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
4360: }
4361: }
4362: if (useFEM) PetscCall(ISDestroy(&chunkIS));
4363: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
4364: /* TODO Could include boundary residual here (see DMPlexComputeResidual_Internal) */
4365: if (useFEM) {
4366: if (maxDegree <= 1) {
4367: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
4368: PetscCall(PetscQuadratureDestroy(&affineQuad));
4369: } else {
4370: for (f = 0; f < Nf; ++f) {
4371: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
4372: PetscCall(PetscQuadratureDestroy(&quads[f]));
4373: }
4374: PetscCall(PetscFree2(quads, geoms));
4375: }
4376: }
4377: PetscCall(PetscLogEventEnd(DMPLEX_ResidualFEM, dm, 0, 0, 0));
4378: PetscFunctionReturn(PETSC_SUCCESS);
4379: }
4381: /*
4382: We always assemble JacP, and if the matrix is different from Jac and two different sets of point functions are provided, we also assemble Jac
4384: X - The local solution vector
4385: X_t - The local solution time derivative vector, or NULL
4386: */
4387: PetscErrorCode DMPlexComputeJacobian_Patch_Internal(DM dm, PetscSection section, PetscSection globalSection, IS cellIS, PetscReal t, PetscReal X_tShift, Vec X, Vec X_t, Mat Jac, Mat JacP, void *ctx)
4388: {
4389: DM_Plex *mesh = (DM_Plex *)dm->data;
4390: const char *name = "Jacobian", *nameP = "JacobianPre";
4391: DM dmAux = NULL;
4392: PetscDS prob, probAux = NULL;
4393: PetscSection sectionAux = NULL;
4394: Vec A;
4395: DMField coordField;
4396: PetscFEGeom *cgeomFEM;
4397: PetscQuadrature qGeom = NULL;
4398: Mat J = Jac, JP = JacP;
4399: PetscScalar *work, *u = NULL, *u_t = NULL, *a = NULL, *elemMat = NULL, *elemMatP = NULL, *elemMatD = NULL;
4400: PetscBool hasJac, hasPrec, hasDyn, assembleJac, *isFE, hasFV = PETSC_FALSE;
4401: const PetscInt *cells;
4402: PetscFormKey key;
4403: PetscInt Nf, fieldI, fieldJ, maxDegree, numCells, cStart, cEnd, numChunks, chunkSize, chunk, totDim, totDimAux = 0, sz, wsz, off = 0, offCell = 0;
4405: PetscFunctionBegin;
4406: PetscCall(ISGetLocalSize(cellIS, &numCells));
4407: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
4408: PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
4409: PetscCall(DMGetDS(dm, &prob));
4410: PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &A));
4411: if (A) {
4412: PetscCall(VecGetDM(A, &dmAux));
4413: PetscCall(DMGetLocalSection(dmAux, §ionAux));
4414: PetscCall(DMGetDS(dmAux, &probAux));
4415: }
4416: /* Get flags */
4417: PetscCall(PetscDSGetNumFields(prob, &Nf));
4418: PetscCall(DMGetWorkArray(dm, Nf, MPIU_BOOL, &isFE));
4419: for (fieldI = 0; fieldI < Nf; ++fieldI) {
4420: PetscObject disc;
4421: PetscClassId id;
4422: PetscCall(PetscDSGetDiscretization(prob, fieldI, &disc));
4423: PetscCall(PetscObjectGetClassId(disc, &id));
4424: if (id == PETSCFE_CLASSID) {
4425: isFE[fieldI] = PETSC_TRUE;
4426: } else if (id == PETSCFV_CLASSID) {
4427: hasFV = PETSC_TRUE;
4428: isFE[fieldI] = PETSC_FALSE;
4429: }
4430: }
4431: PetscCall(PetscDSHasJacobian(prob, &hasJac));
4432: PetscCall(PetscDSHasJacobianPreconditioner(prob, &hasPrec));
4433: PetscCall(PetscDSHasDynamicJacobian(prob, &hasDyn));
4434: assembleJac = hasJac && hasPrec && (Jac != JacP) ? PETSC_TRUE : PETSC_FALSE;
4435: hasDyn = hasDyn && (X_tShift != 0.0) ? PETSC_TRUE : PETSC_FALSE;
4436: if (hasFV) PetscCall(MatSetOption(JP, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE)); /* No allocated space for FV stuff, so ignore the zero entries */
4437: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
4438: if (probAux) PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
4439: /* Compute batch sizes */
4440: if (isFE[0]) {
4441: PetscFE fe;
4442: PetscQuadrature q;
4443: PetscInt numQuadPoints, numBatches, batchSize, numBlocks, blockSize, Nb;
4445: PetscCall(PetscDSGetDiscretization(prob, 0, (PetscObject *)&fe));
4446: PetscCall(PetscFEGetQuadrature(fe, &q));
4447: PetscCall(PetscQuadratureGetData(q, NULL, NULL, &numQuadPoints, NULL, NULL));
4448: PetscCall(PetscFEGetDimension(fe, &Nb));
4449: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
4450: blockSize = Nb * numQuadPoints;
4451: batchSize = numBlocks * blockSize;
4452: chunkSize = numBatches * batchSize;
4453: numChunks = numCells / chunkSize + numCells % chunkSize;
4454: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
4455: } else {
4456: chunkSize = numCells;
4457: numChunks = 1;
4458: }
4459: /* Get work space */
4460: wsz = (((X ? 1 : 0) + (X_t ? 1 : 0) + (dmAux ? 1 : 0)) * totDim + ((hasJac ? 1 : 0) + (hasPrec ? 1 : 0) + (hasDyn ? 1 : 0)) * totDim * totDim) * chunkSize;
4461: PetscCall(DMGetWorkArray(dm, wsz, MPIU_SCALAR, &work));
4462: PetscCall(PetscArrayzero(work, wsz));
4463: off = 0;
4464: u = X ? (sz = chunkSize * totDim, off += sz, work + off - sz) : NULL;
4465: u_t = X_t ? (sz = chunkSize * totDim, off += sz, work + off - sz) : NULL;
4466: a = dmAux ? (sz = chunkSize * totDimAux, off += sz, work + off - sz) : NULL;
4467: elemMat = hasJac ? (sz = chunkSize * totDim * totDim, off += sz, work + off - sz) : NULL;
4468: elemMatP = hasPrec ? (sz = chunkSize * totDim * totDim, off += sz, work + off - sz) : NULL;
4469: elemMatD = hasDyn ? (sz = chunkSize * totDim * totDim, off += sz, work + off - sz) : NULL;
4470: PetscCheck(off == wsz, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Error is workspace size %" PetscInt_FMT " should be %" PetscInt_FMT, off, wsz);
4471: /* Setup geometry */
4472: PetscCall(DMGetCoordinateField(dm, &coordField));
4473: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
4474: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &qGeom));
4475: if (!qGeom) {
4476: PetscFE fe;
4478: PetscCall(PetscDSGetDiscretization(prob, 0, (PetscObject *)&fe));
4479: PetscCall(PetscFEGetQuadrature(fe, &qGeom));
4480: PetscCall(PetscObjectReference((PetscObject)qGeom));
4481: }
4482: PetscCall(DMSNESGetFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
4483: /* Compute volume integrals */
4484: if (assembleJac) PetscCall(MatZeroEntries(J));
4485: PetscCall(MatZeroEntries(JP));
4486: key.label = NULL;
4487: key.value = 0;
4488: key.part = 0;
4489: for (chunk = 0; chunk < numChunks; ++chunk, offCell += chunkSize) {
4490: const PetscInt Ncell = PetscMin(chunkSize, numCells - offCell);
4491: PetscInt c;
4493: /* Extract values */
4494: for (c = 0; c < Ncell; ++c) {
4495: const PetscInt cell = cells ? cells[c + offCell] : c + offCell;
4496: PetscScalar *x = NULL, *x_t = NULL;
4497: PetscInt i;
4499: if (X) {
4500: PetscCall(DMPlexVecGetClosure(dm, section, X, cell, NULL, &x));
4501: for (i = 0; i < totDim; ++i) u[c * totDim + i] = x[i];
4502: PetscCall(DMPlexVecRestoreClosure(dm, section, X, cell, NULL, &x));
4503: }
4504: if (X_t) {
4505: PetscCall(DMPlexVecGetClosure(dm, section, X_t, cell, NULL, &x_t));
4506: for (i = 0; i < totDim; ++i) u_t[c * totDim + i] = x_t[i];
4507: PetscCall(DMPlexVecRestoreClosure(dm, section, X_t, cell, NULL, &x_t));
4508: }
4509: if (dmAux) {
4510: PetscCall(DMPlexVecGetClosure(dmAux, sectionAux, A, cell, NULL, &x));
4511: for (i = 0; i < totDimAux; ++i) a[c * totDimAux + i] = x[i];
4512: PetscCall(DMPlexVecRestoreClosure(dmAux, sectionAux, A, cell, NULL, &x));
4513: }
4514: }
4515: for (fieldI = 0; fieldI < Nf; ++fieldI) {
4516: PetscFE fe;
4517: PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fe));
4518: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
4519: key.field = fieldI * Nf + fieldJ;
4520: if (hasJac) PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMat));
4521: if (hasPrec) PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_PRE, key, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMatP));
4522: if (hasDyn) PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMatD));
4523: }
4524: /* For finite volume, add the identity */
4525: if (!isFE[fieldI]) {
4526: PetscFV fv;
4527: PetscInt eOffset = 0, Nc, fc, foff;
4529: PetscCall(PetscDSGetFieldOffset(prob, fieldI, &foff));
4530: PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fv));
4531: PetscCall(PetscFVGetNumComponents(fv, &Nc));
4532: for (c = 0; c < chunkSize; ++c, eOffset += totDim * totDim) {
4533: for (fc = 0; fc < Nc; ++fc) {
4534: const PetscInt i = foff + fc;
4535: if (hasJac) elemMat[eOffset + i * totDim + i] = 1.0;
4536: if (hasPrec) elemMatP[eOffset + i * totDim + i] = 1.0;
4537: }
4538: }
4539: }
4540: }
4541: /* Add contribution from X_t */
4542: if (hasDyn) {
4543: for (c = 0; c < chunkSize * totDim * totDim; ++c) elemMat[c] += X_tShift * elemMatD[c];
4544: }
4545: /* Insert values into matrix */
4546: for (c = 0; c < Ncell; ++c) {
4547: const PetscInt cell = cells ? cells[c + offCell] : c + offCell;
4548: if (mesh->printFEM > 1) {
4549: if (hasJac) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMat[(c - cStart) * totDim * totDim]));
4550: if (hasPrec) PetscCall(DMPrintCellMatrix(cell, nameP, totDim, totDim, &elemMatP[(c - cStart) * totDim * totDim]));
4551: }
4552: if (assembleJac) PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, Jac, cell, &elemMat[(c - cStart) * totDim * totDim], ADD_VALUES));
4553: PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, JP, cell, &elemMat[(c - cStart) * totDim * totDim], ADD_VALUES));
4554: }
4555: }
4556: /* Cleanup */
4557: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
4558: PetscCall(PetscQuadratureDestroy(&qGeom));
4559: if (hasFV) PetscCall(MatSetOption(JacP, MAT_IGNORE_ZERO_ENTRIES, PETSC_FALSE));
4560: PetscCall(DMRestoreWorkArray(dm, Nf, MPIU_BOOL, &isFE));
4561: PetscCall(DMRestoreWorkArray(dm, ((1 + (X_t ? 1 : 0) + (dmAux ? 1 : 0)) * totDim + ((hasJac ? 1 : 0) + (hasPrec ? 1 : 0) + (hasDyn ? 1 : 0)) * totDim * totDim) * chunkSize, MPIU_SCALAR, &work));
4562: /* Compute boundary integrals */
4563: /* PetscCall(DMPlexComputeBdJacobian_Internal(dm, X, X_t, t, X_tShift, Jac, JacP, ctx)); */
4564: /* Assemble matrix */
4565: if (assembleJac) {
4566: PetscCall(MatAssemblyBegin(Jac, MAT_FINAL_ASSEMBLY));
4567: PetscCall(MatAssemblyEnd(Jac, MAT_FINAL_ASSEMBLY));
4568: }
4569: PetscCall(MatAssemblyBegin(JacP, MAT_FINAL_ASSEMBLY));
4570: PetscCall(MatAssemblyEnd(JacP, MAT_FINAL_ASSEMBLY));
4571: PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
4572: PetscFunctionReturn(PETSC_SUCCESS);
4573: }
4575: /******** FEM Assembly Function ********/
4577: static PetscErrorCode DMConvertPlex_Internal(DM dm, DM *plex, PetscBool copy)
4578: {
4579: PetscBool isPlex;
4581: PetscFunctionBegin;
4582: PetscCall(PetscObjectTypeCompare((PetscObject)dm, DMPLEX, &isPlex));
4583: if (isPlex) {
4584: *plex = dm;
4585: PetscCall(PetscObjectReference((PetscObject)dm));
4586: } else {
4587: PetscCall(PetscObjectQuery((PetscObject)dm, "dm_plex", (PetscObject *)plex));
4588: if (!*plex) {
4589: PetscCall(DMConvert(dm, DMPLEX, plex));
4590: PetscCall(PetscObjectCompose((PetscObject)dm, "dm_plex", (PetscObject)*plex));
4591: } else {
4592: PetscCall(PetscObjectReference((PetscObject)*plex));
4593: }
4594: if (copy) PetscCall(DMCopyAuxiliaryVec(dm, *plex));
4595: }
4596: PetscFunctionReturn(PETSC_SUCCESS);
4597: }
4599: /*@
4600: DMPlexGetGeometryFVM - Return precomputed geometric data
4602: Collective
4604: Input Parameter:
4605: . dm - The `DM`
4607: Output Parameters:
4608: + facegeom - The values precomputed from face geometry
4609: . cellgeom - The values precomputed from cell geometry
4610: - minRadius - The minimum radius over the mesh of an inscribed sphere in a cell
4612: Level: developer
4614: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMTSSetRHSFunctionLocal()`
4615: @*/
4616: PetscErrorCode DMPlexGetGeometryFVM(DM dm, Vec *facegeom, Vec *cellgeom, PetscReal *minRadius)
4617: {
4618: DM plex;
4620: PetscFunctionBegin;
4622: PetscCall(DMConvertPlex_Internal(dm, &plex, PETSC_TRUE));
4623: PetscCall(DMPlexGetDataFVM(plex, NULL, cellgeom, facegeom, NULL));
4624: if (minRadius) PetscCall(DMPlexGetMinRadius(plex, minRadius));
4625: PetscCall(DMDestroy(&plex));
4626: PetscFunctionReturn(PETSC_SUCCESS);
4627: }
4629: /*@
4630: DMPlexGetGradientDM - Return gradient data layout
4632: Collective
4634: Input Parameters:
4635: + dm - The `DM`
4636: - fv - The `PetscFV`
4638: Output Parameter:
4639: . dmGrad - The layout for gradient values
4641: Level: developer
4643: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetGeometryFVM()`
4644: @*/
4645: PetscErrorCode DMPlexGetGradientDM(DM dm, PetscFV fv, DM *dmGrad)
4646: {
4647: DM plex;
4648: PetscBool computeGradients;
4650: PetscFunctionBegin;
4653: PetscAssertPointer(dmGrad, 3);
4654: PetscCall(PetscFVGetComputeGradients(fv, &computeGradients));
4655: if (!computeGradients) {
4656: *dmGrad = NULL;
4657: PetscFunctionReturn(PETSC_SUCCESS);
4658: }
4659: PetscCall(DMConvertPlex_Internal(dm, &plex, PETSC_TRUE));
4660: PetscCall(DMPlexGetDataFVM(plex, fv, NULL, NULL, dmGrad));
4661: PetscCall(DMDestroy(&plex));
4662: PetscFunctionReturn(PETSC_SUCCESS);
4663: }
4665: static PetscErrorCode DMPlexComputeBdResidual_Single_Internal(DM dm, PetscReal t, PetscWeakForm wf, PetscFormKey key, Vec locX, Vec locX_t, Vec locF, DMField coordField, IS facetIS)
4666: {
4667: DM_Plex *mesh = (DM_Plex *)dm->data;
4668: DM plex = NULL, plexA = NULL;
4669: const char *name = "BdResidual";
4670: DMEnclosureType encAux;
4671: PetscDS prob, probAux = NULL;
4672: PetscSection section, sectionAux = NULL;
4673: Vec locA = NULL;
4674: PetscScalar *u = NULL, *u_t = NULL, *a = NULL, *elemVec = NULL;
4675: PetscInt totDim, totDimAux = 0;
4677: PetscFunctionBegin;
4678: PetscCall(DMConvert(dm, DMPLEX, &plex));
4679: PetscCall(DMGetLocalSection(dm, §ion));
4680: PetscCall(DMGetDS(dm, &prob));
4681: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
4682: PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &locA));
4683: if (locA) {
4684: DM dmAux;
4686: PetscCall(VecGetDM(locA, &dmAux));
4687: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
4688: PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
4689: PetscCall(DMGetDS(plexA, &probAux));
4690: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
4691: PetscCall(DMGetLocalSection(plexA, §ionAux));
4692: }
4693: {
4694: PetscFEGeom *fgeom;
4695: PetscInt maxDegree;
4696: PetscQuadrature qGeom = NULL;
4697: IS pointIS;
4698: const PetscInt *points;
4699: PetscInt numFaces, face, Nq;
4701: PetscCall(DMLabelGetStratumIS(key.label, key.value, &pointIS));
4702: if (!pointIS) goto end; /* No points with that id on this process */
4703: {
4704: IS isectIS;
4706: /* TODO: Special cases of ISIntersect where it is quick to check a priori if one is a superset of the other */
4707: PetscCall(ISIntersect_Caching_Internal(facetIS, pointIS, &isectIS));
4708: PetscCall(ISDestroy(&pointIS));
4709: pointIS = isectIS;
4710: }
4711: PetscCall(ISGetLocalSize(pointIS, &numFaces));
4712: PetscCall(ISGetIndices(pointIS, &points));
4713: PetscCall(PetscMalloc4(numFaces * totDim, &u, locX_t ? numFaces * totDim : 0, &u_t, numFaces * totDim, &elemVec, locA ? numFaces * totDimAux : 0, &a));
4714: PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
4715: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &qGeom));
4716: if (!qGeom) {
4717: PetscFE fe;
4719: PetscCall(PetscDSGetDiscretization(prob, key.field, (PetscObject *)&fe));
4720: PetscCall(PetscFEGetFaceQuadrature(fe, &qGeom));
4721: PetscCall(PetscObjectReference((PetscObject)qGeom));
4722: }
4723: PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
4724: PetscCall(DMSNESGetFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
4725: for (face = 0; face < numFaces; ++face) {
4726: const PetscInt point = points[face], *support;
4727: PetscScalar *x = NULL;
4728: PetscInt i;
4730: PetscCall(DMPlexGetSupport(dm, point, &support));
4731: PetscCall(DMPlexVecGetClosure(plex, section, locX, support[0], NULL, &x));
4732: for (i = 0; i < totDim; ++i) u[face * totDim + i] = x[i];
4733: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, support[0], NULL, &x));
4734: if (locX_t) {
4735: PetscCall(DMPlexVecGetClosure(plex, section, locX_t, support[0], NULL, &x));
4736: for (i = 0; i < totDim; ++i) u_t[face * totDim + i] = x[i];
4737: PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, support[0], NULL, &x));
4738: }
4739: if (locA) {
4740: PetscInt subp;
4742: PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, support[0], &subp));
4743: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subp, NULL, &x));
4744: for (i = 0; i < totDimAux; ++i) a[face * totDimAux + i] = x[i];
4745: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subp, NULL, &x));
4746: }
4747: }
4748: PetscCall(PetscArrayzero(elemVec, numFaces * totDim));
4749: {
4750: PetscFE fe;
4751: PetscInt Nb;
4752: PetscFEGeom *chunkGeom = NULL;
4753: /* Conforming batches */
4754: PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
4755: /* Remainder */
4756: PetscInt Nr, offset;
4758: PetscCall(PetscDSGetDiscretization(prob, key.field, (PetscObject *)&fe));
4759: PetscCall(PetscFEGetDimension(fe, &Nb));
4760: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
4761: /* TODO: documentation is unclear about what is going on with these numbers: how should Nb / Nq factor in ? */
4762: blockSize = Nb;
4763: batchSize = numBlocks * blockSize;
4764: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
4765: numChunks = numFaces / (numBatches * batchSize);
4766: Ne = numChunks * numBatches * batchSize;
4767: Nr = numFaces % (numBatches * batchSize);
4768: offset = numFaces - Nr;
4769: PetscCall(PetscFEGeomGetChunk(fgeom, 0, offset, &chunkGeom));
4770: PetscCall(PetscFEIntegrateBdResidual(prob, wf, key, Ne, chunkGeom, u, u_t, probAux, a, t, elemVec));
4771: PetscCall(PetscFEGeomRestoreChunk(fgeom, 0, offset, &chunkGeom));
4772: PetscCall(PetscFEGeomGetChunk(fgeom, offset, numFaces, &chunkGeom));
4773: PetscCall(PetscFEIntegrateBdResidual(prob, wf, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, &elemVec[offset * totDim]));
4774: PetscCall(PetscFEGeomRestoreChunk(fgeom, offset, numFaces, &chunkGeom));
4775: }
4776: for (face = 0; face < numFaces; ++face) {
4777: const PetscInt point = points[face], *support;
4779: if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(point, name, totDim, &elemVec[face * totDim]));
4780: PetscCall(DMPlexGetSupport(plex, point, &support));
4781: PetscCall(DMPlexVecSetClosure(plex, NULL, locF, support[0], &elemVec[face * totDim], ADD_ALL_VALUES));
4782: }
4783: PetscCall(DMSNESRestoreFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
4784: PetscCall(PetscQuadratureDestroy(&qGeom));
4785: PetscCall(ISRestoreIndices(pointIS, &points));
4786: PetscCall(ISDestroy(&pointIS));
4787: PetscCall(PetscFree4(u, u_t, elemVec, a));
4788: }
4789: end:
4790: if (mesh->printFEM) {
4791: PetscSection s;
4792: Vec locFbc;
4793: PetscInt pStart, pEnd, maxDof;
4794: PetscScalar *zeroes;
4796: PetscCall(DMGetLocalSection(dm, &s));
4797: PetscCall(VecDuplicate(locF, &locFbc));
4798: PetscCall(VecCopy(locF, locFbc));
4799: PetscCall(PetscSectionGetChart(s, &pStart, &pEnd));
4800: PetscCall(PetscSectionGetMaxDof(s, &maxDof));
4801: PetscCall(PetscCalloc1(maxDof, &zeroes));
4802: for (PetscInt p = pStart; p < pEnd; p++) PetscCall(VecSetValuesSection(locFbc, s, p, zeroes, INSERT_BC_VALUES));
4803: PetscCall(PetscFree(zeroes));
4804: PetscCall(DMPrintLocalVec(dm, name, mesh->printTol, locFbc));
4805: PetscCall(VecDestroy(&locFbc));
4806: }
4807: PetscCall(DMDestroy(&plex));
4808: PetscCall(DMDestroy(&plexA));
4809: PetscFunctionReturn(PETSC_SUCCESS);
4810: }
4812: PetscErrorCode DMPlexComputeBdResidualSingle(DM dm, PetscReal t, PetscWeakForm wf, PetscFormKey key, Vec locX, Vec locX_t, Vec locF)
4813: {
4814: DMField coordField;
4815: DMLabel depthLabel;
4816: IS facetIS;
4817: PetscInt dim;
4819: PetscFunctionBegin;
4820: PetscCall(DMGetDimension(dm, &dim));
4821: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
4822: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
4823: PetscCall(DMGetCoordinateField(dm, &coordField));
4824: PetscCall(DMPlexComputeBdResidual_Single_Internal(dm, t, wf, key, locX, locX_t, locF, coordField, facetIS));
4825: PetscCall(ISDestroy(&facetIS));
4826: PetscFunctionReturn(PETSC_SUCCESS);
4827: }
4829: static PetscErrorCode DMPlexComputeBdResidual_Internal(DM dm, Vec locX, Vec locX_t, PetscReal t, Vec locF, void *user)
4830: {
4831: PetscDS prob;
4832: PetscInt numBd, bd;
4833: DMField coordField = NULL;
4834: IS facetIS = NULL;
4835: DMLabel depthLabel;
4836: PetscInt dim;
4838: PetscFunctionBegin;
4839: PetscCall(DMGetDS(dm, &prob));
4840: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
4841: PetscCall(DMGetDimension(dm, &dim));
4842: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
4843: PetscCall(PetscDSGetNumBoundary(prob, &numBd));
4844: for (bd = 0; bd < numBd; ++bd) {
4845: PetscWeakForm wf;
4846: DMBoundaryConditionType type;
4847: DMLabel label;
4848: const PetscInt *values;
4849: PetscInt field, numValues, v;
4850: PetscObject obj;
4851: PetscClassId id;
4852: PetscFormKey key;
4854: PetscCall(PetscDSGetBoundary(prob, bd, &wf, &type, NULL, &label, &numValues, &values, &field, NULL, NULL, NULL, NULL, NULL));
4855: if (type & DM_BC_ESSENTIAL) continue;
4856: PetscCall(PetscDSGetDiscretization(prob, field, &obj));
4857: PetscCall(PetscObjectGetClassId(obj, &id));
4858: if (id != PETSCFE_CLASSID) continue;
4859: if (!facetIS) {
4860: DMLabel depthLabel;
4861: PetscInt dim;
4863: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
4864: PetscCall(DMGetDimension(dm, &dim));
4865: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
4866: }
4867: PetscCall(DMGetCoordinateField(dm, &coordField));
4868: for (v = 0; v < numValues; ++v) {
4869: key.label = label;
4870: key.value = values[v];
4871: key.field = field;
4872: key.part = 0;
4873: PetscCall(DMPlexComputeBdResidual_Single_Internal(dm, t, wf, key, locX, locX_t, locF, coordField, facetIS));
4874: }
4875: }
4876: PetscCall(ISDestroy(&facetIS));
4877: PetscFunctionReturn(PETSC_SUCCESS);
4878: }
4880: PetscErrorCode DMPlexComputeResidual_Internal(DM dm, PetscFormKey key, IS cellIS, PetscReal time, Vec locX, Vec locX_t, PetscReal t, Vec locF, void *user)
4881: {
4882: DM_Plex *mesh = (DM_Plex *)dm->data;
4883: const char *name = "Residual";
4884: DM dmAux = NULL;
4885: DM dmGrad = NULL;
4886: DMLabel ghostLabel = NULL;
4887: PetscDS ds = NULL;
4888: PetscDS dsAux = NULL;
4889: PetscSection section = NULL;
4890: PetscBool useFEM = PETSC_FALSE;
4891: PetscBool useFVM = PETSC_FALSE;
4892: PetscBool isImplicit = (locX_t || time == PETSC_MIN_REAL) ? PETSC_TRUE : PETSC_FALSE;
4893: PetscFV fvm = NULL;
4894: DMField coordField = NULL;
4895: Vec locA, cellGeometryFVM = NULL, faceGeometryFVM = NULL, locGrad = NULL;
4896: PetscScalar *u = NULL, *u_t, *a, *uL, *uR;
4897: IS chunkIS;
4898: const PetscInt *cells;
4899: PetscInt cStart, cEnd, numCells;
4900: PetscInt Nf, f, totDim, totDimAux, numChunks, cellChunkSize, faceChunkSize, chunk, fStart, fEnd;
4901: PetscInt maxDegree = PETSC_MAX_INT;
4902: PetscQuadrature affineQuad = NULL, *quads = NULL;
4903: PetscFEGeom *affineGeom = NULL, **geoms = NULL;
4905: PetscFunctionBegin;
4906: PetscCall(PetscLogEventBegin(DMPLEX_ResidualFEM, dm, 0, 0, 0));
4907: if (!cellIS) goto end;
4908: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
4909: if (cStart >= cEnd) goto end;
4910: /* TODO The places where we have to use isFE are probably the member functions for the PetscDisc class */
4911: /* TODO The FVM geometry is over-manipulated. Make the precalc functions return exactly what we need */
4912: /* FEM+FVM */
4913: PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
4914: /* 1: Get sizes from dm and dmAux */
4915: PetscCall(DMGetLocalSection(dm, §ion));
4916: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
4917: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, NULL));
4918: PetscCall(PetscDSGetNumFields(ds, &Nf));
4919: PetscCall(PetscDSGetTotalDimension(ds, &totDim));
4920: PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &locA));
4921: if (locA) {
4922: PetscInt subcell;
4923: PetscCall(VecGetDM(locA, &dmAux));
4924: PetscCall(DMGetEnclosurePoint(dmAux, dm, DM_ENC_UNKNOWN, cells ? cells[cStart] : cStart, &subcell));
4925: PetscCall(DMGetCellDS(dmAux, subcell, &dsAux, NULL));
4926: PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
4927: }
4928: /* 2: Get geometric data */
4929: for (f = 0; f < Nf; ++f) {
4930: PetscObject obj;
4931: PetscClassId id;
4932: PetscBool fimp;
4934: PetscCall(PetscDSGetImplicit(ds, f, &fimp));
4935: if (isImplicit != fimp) continue;
4936: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
4937: PetscCall(PetscObjectGetClassId(obj, &id));
4938: if (id == PETSCFE_CLASSID) useFEM = PETSC_TRUE;
4939: if (id == PETSCFV_CLASSID) {
4940: useFVM = PETSC_TRUE;
4941: fvm = (PetscFV)obj;
4942: }
4943: }
4944: if (useFEM) {
4945: PetscCall(DMGetCoordinateField(dm, &coordField));
4946: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
4947: if (maxDegree <= 1) {
4948: PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &affineQuad));
4949: if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
4950: } else {
4951: PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
4952: for (f = 0; f < Nf; ++f) {
4953: PetscObject obj;
4954: PetscClassId id;
4955: PetscBool fimp;
4957: PetscCall(PetscDSGetImplicit(ds, f, &fimp));
4958: if (isImplicit != fimp) continue;
4959: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
4960: PetscCall(PetscObjectGetClassId(obj, &id));
4961: if (id == PETSCFE_CLASSID) {
4962: PetscFE fe = (PetscFE)obj;
4964: PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
4965: PetscCall(PetscObjectReference((PetscObject)quads[f]));
4966: PetscCall(DMSNESGetFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
4967: }
4968: }
4969: }
4970: }
4971: // Handle non-essential (e.g. outflow) boundary values
4972: if (useFVM) {
4973: PetscCall(DMPlexInsertBoundaryValuesFVM(dm, fvm, locX, time, &locGrad));
4974: PetscCall(DMPlexGetGeometryFVM(dm, &faceGeometryFVM, &cellGeometryFVM, NULL));
4975: PetscCall(DMPlexGetGradientDM(dm, fvm, &dmGrad));
4976: }
4977: /* Loop over chunks */
4978: if (useFEM) PetscCall(ISCreate(PETSC_COMM_SELF, &chunkIS));
4979: numCells = cEnd - cStart;
4980: numChunks = 1;
4981: cellChunkSize = numCells / numChunks;
4982: faceChunkSize = (fEnd - fStart) / numChunks;
4983: numChunks = PetscMin(1, numCells);
4984: for (chunk = 0; chunk < numChunks; ++chunk) {
4985: PetscScalar *elemVec, *fluxL, *fluxR;
4986: PetscReal *vol;
4987: PetscFVFaceGeom *fgeom;
4988: PetscInt cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;
4989: PetscInt fS = fStart + chunk * faceChunkSize, fE = PetscMin(fS + faceChunkSize, fEnd), numFaces = 0, face;
4991: /* Extract field coefficients */
4992: if (useFEM) {
4993: PetscCall(ISGetPointSubrange(chunkIS, cS, cE, cells));
4994: PetscCall(DMPlexGetCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
4995: PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
4996: PetscCall(PetscArrayzero(elemVec, numCells * totDim));
4997: }
4998: if (useFVM) {
4999: PetscCall(DMPlexGetFaceFields(dm, fS, fE, locX, locX_t, faceGeometryFVM, cellGeometryFVM, locGrad, &numFaces, &uL, &uR));
5000: PetscCall(DMPlexGetFaceGeometry(dm, fS, fE, faceGeometryFVM, cellGeometryFVM, &numFaces, &fgeom, &vol));
5001: PetscCall(DMGetWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxL));
5002: PetscCall(DMGetWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxR));
5003: PetscCall(PetscArrayzero(fluxL, numFaces * totDim));
5004: PetscCall(PetscArrayzero(fluxR, numFaces * totDim));
5005: }
5006: /* TODO We will interlace both our field coefficients (u, u_t, uL, uR, etc.) and our output (elemVec, fL, fR). I think this works */
5007: /* Loop over fields */
5008: for (f = 0; f < Nf; ++f) {
5009: PetscObject obj;
5010: PetscClassId id;
5011: PetscBool fimp;
5012: PetscInt numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;
5014: key.field = f;
5015: PetscCall(PetscDSGetImplicit(ds, f, &fimp));
5016: if (isImplicit != fimp) continue;
5017: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5018: PetscCall(PetscObjectGetClassId(obj, &id));
5019: if (id == PETSCFE_CLASSID) {
5020: PetscFE fe = (PetscFE)obj;
5021: PetscFEGeom *geom = affineGeom ? affineGeom : geoms[f];
5022: PetscFEGeom *chunkGeom = NULL;
5023: PetscQuadrature quad = affineQuad ? affineQuad : quads[f];
5024: PetscInt Nq, Nb;
5026: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5027: PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
5028: PetscCall(PetscFEGetDimension(fe, &Nb));
5029: blockSize = Nb;
5030: batchSize = numBlocks * blockSize;
5031: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
5032: numChunks = numCells / (numBatches * batchSize);
5033: Ne = numChunks * numBatches * batchSize;
5034: Nr = numCells % (numBatches * batchSize);
5035: offset = numCells - Nr;
5036: /* Integrate FE residual to get elemVec (need fields at quadrature points) */
5037: /* For FV, I think we use a P0 basis and the cell coefficients (for subdivided cells, we can tweak the basis tabulation to be the indicator function) */
5038: PetscCall(PetscFEGeomGetChunk(geom, 0, offset, &chunkGeom));
5039: PetscCall(PetscFEIntegrateResidual(ds, key, Ne, chunkGeom, u, u_t, dsAux, a, t, elemVec));
5040: PetscCall(PetscFEGeomGetChunk(geom, offset, numCells, &chunkGeom));
5041: PetscCall(PetscFEIntegrateResidual(ds, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), dsAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, &elemVec[offset * totDim]));
5042: PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &chunkGeom));
5043: } else if (id == PETSCFV_CLASSID) {
5044: PetscFV fv = (PetscFV)obj;
5046: Ne = numFaces;
5047: /* Riemann solve over faces (need fields at face centroids) */
5048: /* We need to evaluate FE fields at those coordinates */
5049: PetscCall(PetscFVIntegrateRHSFunction(fv, ds, f, Ne, fgeom, vol, uL, uR, fluxL, fluxR));
5050: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
5051: }
5052: /* Loop over domain */
5053: if (useFEM) {
5054: /* Add elemVec to locX */
5055: for (c = cS; c < cE; ++c) {
5056: const PetscInt cell = cells ? cells[c] : c;
5057: const PetscInt cind = c - cStart;
5059: if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(cell, name, totDim, &elemVec[cind * totDim]));
5060: if (ghostLabel) {
5061: PetscInt ghostVal;
5063: PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
5064: if (ghostVal > 0) continue;
5065: }
5066: PetscCall(DMPlexVecSetClosure(dm, section, locF, cell, &elemVec[cind * totDim], ADD_ALL_VALUES));
5067: }
5068: }
5069: if (useFVM) {
5070: PetscScalar *fa;
5071: PetscInt iface;
5073: PetscCall(VecGetArray(locF, &fa));
5074: for (f = 0; f < Nf; ++f) {
5075: PetscFV fv;
5076: PetscObject obj;
5077: PetscClassId id;
5078: PetscInt cdim, foff, pdim;
5080: PetscCall(DMGetCoordinateDim(dm, &cdim));
5081: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5082: PetscCall(PetscDSGetFieldOffset(ds, f, &foff));
5083: PetscCall(PetscObjectGetClassId(obj, &id));
5084: if (id != PETSCFV_CLASSID) continue;
5085: fv = (PetscFV)obj;
5086: PetscCall(PetscFVGetNumComponents(fv, &pdim));
5087: /* Accumulate fluxes to cells */
5088: for (face = fS, iface = 0; face < fE; ++face) {
5089: const PetscInt *scells;
5090: PetscScalar *fL = NULL, *fR = NULL;
5091: PetscInt ghost, d, nsupp, nchild;
5093: PetscCall(DMLabelGetValue(ghostLabel, face, &ghost));
5094: PetscCall(DMPlexGetSupportSize(dm, face, &nsupp));
5095: PetscCall(DMPlexGetTreeChildren(dm, face, &nchild, NULL));
5096: if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
5097: PetscCall(DMPlexGetSupport(dm, face, &scells));
5098: PetscCall(DMLabelGetValue(ghostLabel, scells[0], &ghost));
5099: if (ghost <= 0) PetscCall(DMPlexPointLocalFieldRef(dm, scells[0], f, fa, &fL));
5100: PetscCall(DMLabelGetValue(ghostLabel, scells[1], &ghost));
5101: if (ghost <= 0) PetscCall(DMPlexPointLocalFieldRef(dm, scells[1], f, fa, &fR));
5102: if (mesh->printFVM > 1) {
5103: PetscCall(DMPrintCellVectorReal(face, "Residual: normal", cdim, fgeom[iface].normal));
5104: PetscCall(DMPrintCellVector(face, "Residual: left state", pdim, &uL[iface * totDim + foff]));
5105: PetscCall(DMPrintCellVector(face, "Residual: right state", pdim, &uR[iface * totDim + foff]));
5106: PetscCall(DMPrintCellVector(face, "Residual: left flux", pdim, &fluxL[iface * totDim + foff]));
5107: PetscCall(DMPrintCellVector(face, "Residual: right flux", pdim, &fluxR[iface * totDim + foff]));
5108: }
5109: for (d = 0; d < pdim; ++d) {
5110: if (fL) fL[d] -= fluxL[iface * totDim + foff + d];
5111: if (fR) fR[d] += fluxR[iface * totDim + foff + d];
5112: }
5113: ++iface;
5114: }
5115: }
5116: PetscCall(VecRestoreArray(locF, &fa));
5117: }
5118: /* Handle time derivative */
5119: if (locX_t) {
5120: PetscScalar *x_t, *fa;
5122: PetscCall(VecGetArray(locF, &fa));
5123: PetscCall(VecGetArray(locX_t, &x_t));
5124: for (f = 0; f < Nf; ++f) {
5125: PetscFV fv;
5126: PetscObject obj;
5127: PetscClassId id;
5128: PetscInt pdim, d;
5130: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5131: PetscCall(PetscObjectGetClassId(obj, &id));
5132: if (id != PETSCFV_CLASSID) continue;
5133: fv = (PetscFV)obj;
5134: PetscCall(PetscFVGetNumComponents(fv, &pdim));
5135: for (c = cS; c < cE; ++c) {
5136: const PetscInt cell = cells ? cells[c] : c;
5137: PetscScalar *u_t, *r;
5139: if (ghostLabel) {
5140: PetscInt ghostVal;
5142: PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
5143: if (ghostVal > 0) continue;
5144: }
5145: PetscCall(DMPlexPointLocalFieldRead(dm, cell, f, x_t, &u_t));
5146: PetscCall(DMPlexPointLocalFieldRef(dm, cell, f, fa, &r));
5147: for (d = 0; d < pdim; ++d) r[d] += u_t[d];
5148: }
5149: }
5150: PetscCall(VecRestoreArray(locX_t, &x_t));
5151: PetscCall(VecRestoreArray(locF, &fa));
5152: }
5153: if (useFEM) {
5154: PetscCall(DMPlexRestoreCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
5155: PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
5156: }
5157: if (useFVM) {
5158: PetscCall(DMPlexRestoreFaceFields(dm, fS, fE, locX, locX_t, faceGeometryFVM, cellGeometryFVM, locGrad, &numFaces, &uL, &uR));
5159: PetscCall(DMPlexRestoreFaceGeometry(dm, fS, fE, faceGeometryFVM, cellGeometryFVM, &numFaces, &fgeom, &vol));
5160: PetscCall(DMRestoreWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxL));
5161: PetscCall(DMRestoreWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxR));
5162: if (dmGrad) PetscCall(DMRestoreLocalVector(dmGrad, &locGrad));
5163: }
5164: }
5165: if (useFEM) PetscCall(ISDestroy(&chunkIS));
5166: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
5168: if (useFEM) {
5169: PetscCall(DMPlexComputeBdResidual_Internal(dm, locX, locX_t, t, locF, user));
5171: if (maxDegree <= 1) {
5172: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
5173: PetscCall(PetscQuadratureDestroy(&affineQuad));
5174: } else {
5175: for (f = 0; f < Nf; ++f) {
5176: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
5177: PetscCall(PetscQuadratureDestroy(&quads[f]));
5178: }
5179: PetscCall(PetscFree2(quads, geoms));
5180: }
5181: }
5183: /* FEM */
5184: /* 1: Get sizes from dm and dmAux */
5185: /* 2: Get geometric data */
5186: /* 3: Handle boundary values */
5187: /* 4: Loop over domain */
5188: /* Extract coefficients */
5189: /* Loop over fields */
5190: /* Set tiling for FE*/
5191: /* Integrate FE residual to get elemVec */
5192: /* Loop over subdomain */
5193: /* Loop over quad points */
5194: /* Transform coords to real space */
5195: /* Evaluate field and aux fields at point */
5196: /* Evaluate residual at point */
5197: /* Transform residual to real space */
5198: /* Add residual to elemVec */
5199: /* Loop over domain */
5200: /* Add elemVec to locX */
5202: /* FVM */
5203: /* Get geometric data */
5204: /* If using gradients */
5205: /* Compute gradient data */
5206: /* Loop over domain faces */
5207: /* Count computational faces */
5208: /* Reconstruct cell gradient */
5209: /* Loop over domain cells */
5210: /* Limit cell gradients */
5211: /* Handle boundary values */
5212: /* Loop over domain faces */
5213: /* Read out field, centroid, normal, volume for each side of face */
5214: /* Riemann solve over faces */
5215: /* Loop over domain faces */
5216: /* Accumulate fluxes to cells */
5217: /* TODO Change printFEM to printDisc here */
5218: if (mesh->printFEM) {
5219: Vec locFbc;
5220: PetscInt pStart, pEnd, p, maxDof;
5221: PetscScalar *zeroes;
5223: PetscCall(VecDuplicate(locF, &locFbc));
5224: PetscCall(VecCopy(locF, locFbc));
5225: PetscCall(PetscSectionGetChart(section, &pStart, &pEnd));
5226: PetscCall(PetscSectionGetMaxDof(section, &maxDof));
5227: PetscCall(PetscCalloc1(maxDof, &zeroes));
5228: for (p = pStart; p < pEnd; p++) PetscCall(VecSetValuesSection(locFbc, section, p, zeroes, INSERT_BC_VALUES));
5229: PetscCall(PetscFree(zeroes));
5230: PetscCall(DMPrintLocalVec(dm, name, mesh->printTol, locFbc));
5231: PetscCall(VecDestroy(&locFbc));
5232: }
5233: end:
5234: PetscCall(PetscLogEventEnd(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5235: PetscFunctionReturn(PETSC_SUCCESS);
5236: }
5238: /*
5239: 1) Allow multiple kernels for BdResidual for hybrid DS
5241: DONE 2) Get out dsAux for either side at the same time as cohesive cell dsAux
5243: DONE 3) Change DMGetCellFields() to get different aux data a[] for each side
5244: - I think I just need to replace a[] with the closure from each face
5246: 4) Run both kernels for each non-hybrid field with correct dsAux, and then hybrid field as before
5247: */
5248: PetscErrorCode DMPlexComputeResidual_Hybrid_Internal(DM dm, PetscFormKey key[], IS cellIS, PetscReal time, Vec locX, Vec locX_t, PetscReal t, Vec locF, void *user)
5249: {
5250: DM_Plex *mesh = (DM_Plex *)dm->data;
5251: const char *name = "Hybrid Residual";
5252: DM dmAux[3] = {NULL, NULL, NULL};
5253: DMLabel ghostLabel = NULL;
5254: PetscDS ds = NULL;
5255: PetscDS dsIn = NULL;
5256: PetscDS dsAux[3] = {NULL, NULL, NULL};
5257: Vec locA[3] = {NULL, NULL, NULL};
5258: DM dmScale[3] = {NULL, NULL, NULL};
5259: PetscDS dsScale[3] = {NULL, NULL, NULL};
5260: Vec locS[3] = {NULL, NULL, NULL};
5261: PetscSection section = NULL;
5262: DMField coordField = NULL;
5263: PetscScalar *a[3] = {NULL, NULL, NULL};
5264: PetscScalar *s[3] = {NULL, NULL, NULL};
5265: PetscScalar *u = NULL, *u_t;
5266: PetscScalar *elemVecNeg, *elemVecPos, *elemVecCoh;
5267: IS chunkIS;
5268: const PetscInt *cells;
5269: PetscInt *faces;
5270: PetscInt cStart, cEnd, numCells;
5271: PetscInt Nf, f, totDim, totDimIn, totDimAux[3], totDimScale[3], numChunks, cellChunkSize, chunk;
5272: PetscInt maxDegree = PETSC_MAX_INT;
5273: PetscQuadrature affineQuad = NULL, *quads = NULL;
5274: PetscFEGeom *affineGeom = NULL, **geoms = NULL;
5276: PetscFunctionBegin;
5277: PetscCall(PetscLogEventBegin(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5278: if (!cellIS) goto end;
5279: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
5280: PetscCall(ISGetLocalSize(cellIS, &numCells));
5281: if (cStart >= cEnd) goto end;
5282: if ((key[0].label == key[1].label) && (key[0].value == key[1].value) && (key[0].part == key[1].part)) {
5283: const char *name;
5284: PetscCall(PetscObjectGetName((PetscObject)key[0].label, &name));
5285: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Form keys for each side of a cohesive surface must be different (%s, %" PetscInt_FMT ", %" PetscInt_FMT ")", name, key[0].value, key[0].part);
5286: }
5287: /* TODO The places where we have to use isFE are probably the member functions for the PetscDisc class */
5288: /* FEM */
5289: /* 1: Get sizes from dm and dmAux */
5290: PetscCall(DMGetSection(dm, §ion));
5291: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
5292: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, &dsIn));
5293: PetscCall(PetscDSGetNumFields(ds, &Nf));
5294: PetscCall(PetscDSGetTotalDimension(ds, &totDim));
5295: PetscCall(PetscDSGetTotalDimension(dsIn, &totDimIn));
5296: PetscCall(DMGetAuxiliaryVec(dm, key[2].label, key[2].value, key[2].part, &locA[2]));
5297: if (locA[2]) {
5298: const PetscInt cellStart = cells ? cells[cStart] : cStart;
5300: PetscCall(VecGetDM(locA[2], &dmAux[2]));
5301: PetscCall(DMGetCellDS(dmAux[2], cellStart, &dsAux[2], NULL));
5302: PetscCall(PetscDSGetTotalDimension(dsAux[2], &totDimAux[2]));
5303: {
5304: const PetscInt *cone;
5305: PetscInt c;
5307: PetscCall(DMPlexGetCone(dm, cellStart, &cone));
5308: for (c = 0; c < 2; ++c) {
5309: const PetscInt *support;
5310: PetscInt ssize, s;
5312: PetscCall(DMPlexGetSupport(dm, cone[c], &support));
5313: PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
5314: PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
5315: if (support[0] == cellStart) s = 1;
5316: else if (support[1] == cellStart) s = 0;
5317: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
5318: PetscCall(DMGetAuxiliaryVec(dm, key[c].label, key[c].value, key[c].part, &locA[c]));
5319: PetscCheck(locA[c], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must have auxiliary vector for (%p, %" PetscInt_FMT ", %" PetscInt_FMT ")", (void *)key[c].label, key[c].value, key[c].part);
5320: if (locA[c]) PetscCall(VecGetDM(locA[c], &dmAux[c]));
5321: else dmAux[c] = dmAux[2];
5322: PetscCall(DMGetCellDS(dmAux[c], support[s], &dsAux[c], NULL));
5323: PetscCall(PetscDSGetTotalDimension(dsAux[c], &totDimAux[c]));
5324: }
5325: }
5326: }
5327: /* Handle mass matrix scaling
5328: The field in key[2] is the field to be scaled, and the scaling field is the first in the dsScale */
5329: PetscCall(DMGetAuxiliaryVec(dm, key[2].label, -key[2].value, key[2].part, &locS[2]));
5330: if (locS[2]) {
5331: const PetscInt cellStart = cells ? cells[cStart] : cStart;
5332: PetscInt Nb, Nbs;
5334: PetscCall(VecGetDM(locS[2], &dmScale[2]));
5335: PetscCall(DMGetCellDS(dmScale[2], cellStart, &dsScale[2], NULL));
5336: PetscCall(PetscDSGetTotalDimension(dsScale[2], &totDimScale[2]));
5337: // BRAD: This is not set correctly
5338: key[2].field = 2;
5339: PetscCall(PetscDSGetFieldSize(ds, key[2].field, &Nb));
5340: PetscCall(PetscDSGetFieldSize(dsScale[2], 0, &Nbs));
5341: PetscCheck(Nb == Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Field %" PetscInt_FMT " of size %" PetscInt_FMT " cannot be scaled by field of size %" PetscInt_FMT, key[2].field, Nb, Nbs);
5342: {
5343: const PetscInt *cone;
5344: PetscInt c;
5346: locS[1] = locS[0] = locS[2];
5347: dmScale[1] = dmScale[0] = dmScale[2];
5348: PetscCall(DMPlexGetCone(dm, cellStart, &cone));
5349: for (c = 0; c < 2; ++c) {
5350: const PetscInt *support;
5351: PetscInt ssize, s;
5353: PetscCall(DMPlexGetSupport(dm, cone[c], &support));
5354: PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
5355: PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
5356: if (support[0] == cellStart) s = 1;
5357: else if (support[1] == cellStart) s = 0;
5358: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
5359: PetscCall(DMGetCellDS(dmScale[c], support[s], &dsScale[c], NULL));
5360: PetscCall(PetscDSGetTotalDimension(dsScale[c], &totDimScale[c]));
5361: }
5362: }
5363: }
5364: /* 2: Setup geometric data */
5365: PetscCall(DMGetCoordinateField(dm, &coordField));
5366: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
5367: if (maxDegree > 1) {
5368: PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
5369: for (f = 0; f < Nf; ++f) {
5370: PetscFE fe;
5372: PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
5373: if (fe) {
5374: PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
5375: PetscCall(PetscObjectReference((PetscObject)quads[f]));
5376: }
5377: }
5378: }
5379: /* Loop over chunks */
5380: cellChunkSize = numCells;
5381: numChunks = !numCells ? 0 : PetscCeilReal(((PetscReal)numCells) / cellChunkSize);
5382: PetscCall(PetscCalloc1(2 * cellChunkSize, &faces));
5383: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, 2 * cellChunkSize, faces, PETSC_USE_POINTER, &chunkIS));
5384: /* Extract field coefficients */
5385: /* NOTE This needs the end cap faces to have identical orientations */
5386: PetscCall(DMPlexGetHybridCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
5387: PetscCall(DMPlexGetHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
5388: PetscCall(DMPlexGetHybridFields(dm, dmScale, dsScale, cellIS, locS, PETSC_TRUE, s));
5389: PetscCall(DMGetWorkArray(dm, cellChunkSize * totDim, MPIU_SCALAR, &elemVecNeg));
5390: PetscCall(DMGetWorkArray(dm, cellChunkSize * totDim, MPIU_SCALAR, &elemVecPos));
5391: PetscCall(DMGetWorkArray(dm, cellChunkSize * totDim, MPIU_SCALAR, &elemVecCoh));
5392: for (chunk = 0; chunk < numChunks; ++chunk) {
5393: PetscInt cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;
5395: PetscCall(PetscArrayzero(elemVecNeg, cellChunkSize * totDim));
5396: PetscCall(PetscArrayzero(elemVecPos, cellChunkSize * totDim));
5397: PetscCall(PetscArrayzero(elemVecCoh, cellChunkSize * totDim));
5398: /* Get faces */
5399: for (c = cS; c < cE; ++c) {
5400: const PetscInt cell = cells ? cells[c] : c;
5401: const PetscInt *cone;
5402: PetscCall(DMPlexGetCone(dm, cell, &cone));
5403: faces[(c - cS) * 2 + 0] = cone[0];
5404: faces[(c - cS) * 2 + 1] = cone[1];
5405: }
5406: PetscCall(ISGeneralSetIndices(chunkIS, 2 * cellChunkSize, faces, PETSC_USE_POINTER));
5407: /* Get geometric data */
5408: if (maxDegree <= 1) {
5409: if (!affineQuad) PetscCall(DMFieldCreateDefaultQuadrature(coordField, chunkIS, &affineQuad));
5410: if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, chunkIS, affineQuad, PETSC_TRUE, &affineGeom));
5411: } else {
5412: for (f = 0; f < Nf; ++f) {
5413: if (quads[f]) PetscCall(DMSNESGetFEGeom(coordField, chunkIS, quads[f], PETSC_TRUE, &geoms[f]));
5414: }
5415: }
5416: /* Loop over fields */
5417: for (f = 0; f < Nf; ++f) {
5418: PetscFE fe;
5419: PetscFEGeom *geom = affineGeom ? affineGeom : geoms[f];
5420: PetscFEGeom *chunkGeom = NULL, *remGeom = NULL;
5421: PetscQuadrature quad = affineQuad ? affineQuad : quads[f];
5422: PetscInt numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset, Nq, Nb;
5423: PetscBool isCohesiveField;
5425: PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
5426: if (!fe) continue;
5427: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5428: PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
5429: PetscCall(PetscFEGetDimension(fe, &Nb));
5430: blockSize = Nb;
5431: batchSize = numBlocks * blockSize;
5432: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
5433: numChunks = numCells / (numBatches * batchSize);
5434: Ne = numChunks * numBatches * batchSize;
5435: Nr = numCells % (numBatches * batchSize);
5436: offset = numCells - Nr;
5437: PetscCall(PetscFEGeomGetChunk(geom, 0, offset * 2, &chunkGeom));
5438: PetscCall(PetscFEGeomGetChunk(geom, offset * 2, numCells * 2, &remGeom));
5439: PetscCall(PetscDSGetCohesive(ds, f, &isCohesiveField));
5440: chunkGeom->isCohesive = remGeom->isCohesive = PETSC_TRUE;
5441: key[0].field = f;
5442: key[1].field = f;
5443: key[2].field = f;
5444: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[0], 0, Ne, chunkGeom, u, u_t, dsAux[0], a[0], t, elemVecNeg));
5445: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[0], 0, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[0], PetscSafePointerPlusOffset(a[0], offset * totDimAux[0]), t, &elemVecNeg[offset * totDim]));
5446: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[1], 1, Ne, chunkGeom, u, u_t, dsAux[1], a[1], t, elemVecPos));
5447: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[1], 1, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[1], PetscSafePointerPlusOffset(a[1], offset * totDimAux[1]), t, &elemVecPos[offset * totDim]));
5448: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[2], 2, Ne, chunkGeom, u, u_t, dsAux[2], a[2], t, elemVecCoh));
5449: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[2], 2, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[2], PetscSafePointerPlusOffset(a[2], offset * totDimAux[2]), t, &elemVecCoh[offset * totDim]));
5450: PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &remGeom));
5451: PetscCall(PetscFEGeomRestoreChunk(geom, 0, offset, &chunkGeom));
5452: }
5453: /* Add elemVec to locX */
5454: for (c = cS; c < cE; ++c) {
5455: const PetscInt cell = cells ? cells[c] : c;
5456: const PetscInt cind = c - cStart;
5457: PetscInt i;
5459: /* Scale element values */
5460: if (locS[0]) {
5461: PetscInt Nb, off = cind * totDim, soff = cind * totDimScale[0];
5462: PetscBool cohesive;
5464: for (f = 0; f < Nf; ++f) {
5465: PetscCall(PetscDSGetFieldSize(ds, f, &Nb));
5466: PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
5467: if (f == key[2].field) {
5468: PetscCheck(cohesive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Scaling should not happen for face fields");
5469: // No cohesive scaling field is currently input
5470: for (i = 0; i < Nb; ++i) elemVecCoh[off + i] += s[0][soff + i] * elemVecNeg[off + i] + s[1][soff + i] * elemVecPos[off + i];
5471: off += Nb;
5472: } else {
5473: const PetscInt N = cohesive ? Nb : Nb * 2;
5475: for (i = 0; i < N; ++i) elemVecCoh[off + i] += elemVecNeg[off + i] + elemVecPos[off + i];
5476: off += N;
5477: }
5478: }
5479: } else {
5480: for (i = cind * totDim; i < (cind + 1) * totDim; ++i) elemVecCoh[i] += elemVecNeg[i] + elemVecPos[i];
5481: }
5482: if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(cell, name, totDim, &elemVecCoh[cind * totDim]));
5483: if (ghostLabel) {
5484: PetscInt ghostVal;
5486: PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
5487: if (ghostVal > 0) continue;
5488: }
5489: PetscCall(DMPlexVecSetClosure(dm, section, locF, cell, &elemVecCoh[cind * totDim], ADD_ALL_VALUES));
5490: }
5491: }
5492: PetscCall(DMPlexRestoreCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
5493: PetscCall(DMPlexRestoreHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
5494: PetscCall(DMPlexRestoreHybridFields(dm, dmScale, dsScale, cellIS, locS, PETSC_TRUE, s));
5495: PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVecNeg));
5496: PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVecPos));
5497: PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVecCoh));
5498: PetscCall(PetscFree(faces));
5499: PetscCall(ISDestroy(&chunkIS));
5500: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
5501: if (maxDegree <= 1) {
5502: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
5503: PetscCall(PetscQuadratureDestroy(&affineQuad));
5504: } else {
5505: for (f = 0; f < Nf; ++f) {
5506: if (geoms) PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
5507: if (quads) PetscCall(PetscQuadratureDestroy(&quads[f]));
5508: }
5509: PetscCall(PetscFree2(quads, geoms));
5510: }
5511: if (mesh->printFEM) {
5512: Vec locFbc;
5513: PetscInt pStart, pEnd, p, maxDof;
5514: PetscScalar *zeroes;
5516: PetscCall(VecDuplicate(locF, &locFbc));
5517: PetscCall(VecCopy(locF, locFbc));
5518: PetscCall(PetscSectionGetChart(section, &pStart, &pEnd));
5519: PetscCall(PetscSectionGetMaxDof(section, &maxDof));
5520: PetscCall(PetscCalloc1(maxDof, &zeroes));
5521: for (p = pStart; p < pEnd; p++) PetscCall(VecSetValuesSection(locFbc, section, p, zeroes, INSERT_BC_VALUES));
5522: PetscCall(PetscFree(zeroes));
5523: PetscCall(DMPrintLocalVec(dm, name, mesh->printTol, locFbc));
5524: PetscCall(VecDestroy(&locFbc));
5525: }
5526: end:
5527: PetscCall(PetscLogEventEnd(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5528: PetscFunctionReturn(PETSC_SUCCESS);
5529: }
5531: static PetscErrorCode DMPlexComputeBdJacobian_Single_Internal(DM dm, PetscReal t, PetscWeakForm wf, DMLabel label, PetscInt numValues, const PetscInt values[], PetscInt fieldI, Vec locX, Vec locX_t, PetscReal X_tShift, Mat Jac, Mat JacP, DMField coordField, IS facetIS)
5532: {
5533: DM_Plex *mesh = (DM_Plex *)dm->data;
5534: DM plex = NULL, plexA = NULL, tdm;
5535: DMEnclosureType encAux;
5536: PetscDS ds, dsAux = NULL;
5537: PetscSection section, sectionAux = NULL;
5538: PetscSection globalSection;
5539: Vec locA = NULL, tv;
5540: PetscScalar *u = NULL, *u_t = NULL, *a = NULL, *elemMat = NULL, *elemMatP = NULL;
5541: PetscInt v;
5542: PetscInt Nf, totDim, totDimAux = 0;
5543: PetscBool hasJac = PETSC_FALSE, hasPrec = PETSC_FALSE, transform;
5545: PetscFunctionBegin;
5546: PetscCall(DMHasBasisTransform(dm, &transform));
5547: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
5548: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
5549: PetscCall(DMGetLocalSection(dm, §ion));
5550: PetscCall(DMGetDS(dm, &ds));
5551: PetscCall(PetscDSGetNumFields(ds, &Nf));
5552: PetscCall(PetscDSGetTotalDimension(ds, &totDim));
5553: PetscCall(PetscWeakFormHasBdJacobian(wf, &hasJac));
5554: PetscCall(PetscWeakFormHasBdJacobianPreconditioner(wf, &hasPrec));
5555: if (!hasJac && !hasPrec) PetscFunctionReturn(PETSC_SUCCESS);
5556: PetscCall(DMConvert(dm, DMPLEX, &plex));
5557: PetscCall(DMGetAuxiliaryVec(dm, label, values[0], 0, &locA));
5558: if (locA) {
5559: DM dmAux;
5561: PetscCall(VecGetDM(locA, &dmAux));
5562: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
5563: PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
5564: PetscCall(DMGetDS(plexA, &dsAux));
5565: PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
5566: PetscCall(DMGetLocalSection(plexA, §ionAux));
5567: }
5569: PetscCall(DMGetGlobalSection(dm, &globalSection));
5570: for (v = 0; v < numValues; ++v) {
5571: PetscFEGeom *fgeom;
5572: PetscInt maxDegree;
5573: PetscQuadrature qGeom = NULL;
5574: IS pointIS;
5575: const PetscInt *points;
5576: PetscFormKey key;
5577: PetscInt numFaces, face, Nq;
5579: key.label = label;
5580: key.value = values[v];
5581: key.part = 0;
5582: PetscCall(DMLabelGetStratumIS(label, values[v], &pointIS));
5583: if (!pointIS) continue; /* No points with that id on this process */
5584: {
5585: IS isectIS;
5587: /* TODO: Special cases of ISIntersect where it is quick to check a prior if one is a superset of the other */
5588: PetscCall(ISIntersect_Caching_Internal(facetIS, pointIS, &isectIS));
5589: PetscCall(ISDestroy(&pointIS));
5590: pointIS = isectIS;
5591: }
5592: PetscCall(ISGetLocalSize(pointIS, &numFaces));
5593: PetscCall(ISGetIndices(pointIS, &points));
5594: PetscCall(PetscMalloc5(numFaces * totDim, &u, locX_t ? numFaces * totDim : 0, &u_t, hasJac ? numFaces * totDim * totDim : 0, &elemMat, hasPrec ? numFaces * totDim * totDim : 0, &elemMatP, locA ? numFaces * totDimAux : 0, &a));
5595: PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
5596: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &qGeom));
5597: if (!qGeom) {
5598: PetscFE fe;
5600: PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&fe));
5601: PetscCall(PetscFEGetFaceQuadrature(fe, &qGeom));
5602: PetscCall(PetscObjectReference((PetscObject)qGeom));
5603: }
5604: PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
5605: PetscCall(DMSNESGetFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
5606: for (face = 0; face < numFaces; ++face) {
5607: const PetscInt point = points[face], *support;
5608: PetscScalar *x = NULL;
5609: PetscInt i;
5611: PetscCall(DMPlexGetSupport(dm, point, &support));
5612: PetscCall(DMPlexVecGetClosure(plex, section, locX, support[0], NULL, &x));
5613: for (i = 0; i < totDim; ++i) u[face * totDim + i] = x[i];
5614: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, support[0], NULL, &x));
5615: if (locX_t) {
5616: PetscCall(DMPlexVecGetClosure(plex, section, locX_t, support[0], NULL, &x));
5617: for (i = 0; i < totDim; ++i) u_t[face * totDim + i] = x[i];
5618: PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, support[0], NULL, &x));
5619: }
5620: if (locA) {
5621: PetscInt subp;
5622: PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, support[0], &subp));
5623: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subp, NULL, &x));
5624: for (i = 0; i < totDimAux; ++i) a[face * totDimAux + i] = x[i];
5625: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subp, NULL, &x));
5626: }
5627: }
5628: if (elemMat) PetscCall(PetscArrayzero(elemMat, numFaces * totDim * totDim));
5629: if (elemMatP) PetscCall(PetscArrayzero(elemMatP, numFaces * totDim * totDim));
5630: {
5631: PetscFE fe;
5632: PetscInt Nb;
5633: /* Conforming batches */
5634: PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
5635: /* Remainder */
5636: PetscFEGeom *chunkGeom = NULL;
5637: PetscInt fieldJ, Nr, offset;
5639: PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&fe));
5640: PetscCall(PetscFEGetDimension(fe, &Nb));
5641: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5642: blockSize = Nb;
5643: batchSize = numBlocks * blockSize;
5644: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
5645: numChunks = numFaces / (numBatches * batchSize);
5646: Ne = numChunks * numBatches * batchSize;
5647: Nr = numFaces % (numBatches * batchSize);
5648: offset = numFaces - Nr;
5649: PetscCall(PetscFEGeomGetChunk(fgeom, 0, offset, &chunkGeom));
5650: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
5651: key.field = fieldI * Nf + fieldJ;
5652: if (hasJac) PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN, key, Ne, chunkGeom, u, u_t, dsAux, a, t, X_tShift, elemMat));
5653: if (hasPrec) PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN_PRE, key, Ne, chunkGeom, u, u_t, dsAux, a, t, X_tShift, elemMatP));
5654: }
5655: PetscCall(PetscFEGeomGetChunk(fgeom, offset, numFaces, &chunkGeom));
5656: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
5657: key.field = fieldI * Nf + fieldJ;
5658: if (hasJac)
5659: PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), dsAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMat[offset * totDim * totDim]));
5660: if (hasPrec)
5661: PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN_PRE, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), dsAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMatP[offset * totDim * totDim]));
5662: }
5663: PetscCall(PetscFEGeomRestoreChunk(fgeom, offset, numFaces, &chunkGeom));
5664: }
5665: for (face = 0; face < numFaces; ++face) {
5666: const PetscInt point = points[face], *support;
5668: /* Transform to global basis before insertion in Jacobian */
5669: PetscCall(DMPlexGetSupport(plex, point, &support));
5670: if (hasJac && transform) PetscCall(DMPlexBasisTransformPointTensor_Internal(dm, tdm, tv, support[0], PETSC_TRUE, totDim, &elemMat[face * totDim * totDim]));
5671: if (hasPrec && transform) PetscCall(DMPlexBasisTransformPointTensor_Internal(dm, tdm, tv, support[0], PETSC_TRUE, totDim, &elemMatP[face * totDim * totDim]));
5672: if (hasPrec) {
5673: if (hasJac) {
5674: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(point, "BdJacobian", totDim, totDim, &elemMat[face * totDim * totDim]));
5675: PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, Jac, support[0], &elemMat[face * totDim * totDim], ADD_VALUES));
5676: }
5677: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(point, "BdJacobian", totDim, totDim, &elemMatP[face * totDim * totDim]));
5678: PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, JacP, support[0], &elemMatP[face * totDim * totDim], ADD_VALUES));
5679: } else {
5680: if (hasJac) {
5681: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(point, "BdJacobian", totDim, totDim, &elemMat[face * totDim * totDim]));
5682: PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, Jac, support[0], &elemMat[face * totDim * totDim], ADD_VALUES));
5683: }
5684: }
5685: }
5686: PetscCall(DMSNESRestoreFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
5687: PetscCall(PetscQuadratureDestroy(&qGeom));
5688: PetscCall(ISRestoreIndices(pointIS, &points));
5689: PetscCall(ISDestroy(&pointIS));
5690: PetscCall(PetscFree5(u, u_t, elemMat, elemMatP, a));
5691: }
5692: if (plex) PetscCall(DMDestroy(&plex));
5693: if (plexA) PetscCall(DMDestroy(&plexA));
5694: PetscFunctionReturn(PETSC_SUCCESS);
5695: }
5697: PetscErrorCode DMPlexComputeBdJacobianSingle(DM dm, PetscReal t, PetscWeakForm wf, DMLabel label, PetscInt numValues, const PetscInt values[], PetscInt field, Vec locX, Vec locX_t, PetscReal X_tShift, Mat Jac, Mat JacP)
5698: {
5699: DMField coordField;
5700: DMLabel depthLabel;
5701: IS facetIS;
5702: PetscInt dim;
5704: PetscFunctionBegin;
5705: PetscCall(DMGetDimension(dm, &dim));
5706: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
5707: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
5708: PetscCall(DMGetCoordinateField(dm, &coordField));
5709: PetscCall(DMPlexComputeBdJacobian_Single_Internal(dm, t, wf, label, numValues, values, field, locX, locX_t, X_tShift, Jac, JacP, coordField, facetIS));
5710: PetscCall(ISDestroy(&facetIS));
5711: PetscFunctionReturn(PETSC_SUCCESS);
5712: }
5714: static PetscErrorCode DMPlexComputeBdJacobian_Internal(DM dm, Vec locX, Vec locX_t, PetscReal t, PetscReal X_tShift, Mat Jac, Mat JacP, void *user)
5715: {
5716: PetscDS prob;
5717: PetscInt dim, numBd, bd;
5718: DMLabel depthLabel;
5719: DMField coordField = NULL;
5720: IS facetIS;
5722: PetscFunctionBegin;
5723: PetscCall(DMGetDS(dm, &prob));
5724: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
5725: PetscCall(DMGetDimension(dm, &dim));
5726: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
5727: PetscCall(PetscDSGetNumBoundary(prob, &numBd));
5728: PetscCall(DMGetCoordinateField(dm, &coordField));
5729: for (bd = 0; bd < numBd; ++bd) {
5730: PetscWeakForm wf;
5731: DMBoundaryConditionType type;
5732: DMLabel label;
5733: const PetscInt *values;
5734: PetscInt fieldI, numValues;
5735: PetscObject obj;
5736: PetscClassId id;
5738: PetscCall(PetscDSGetBoundary(prob, bd, &wf, &type, NULL, &label, &numValues, &values, &fieldI, NULL, NULL, NULL, NULL, NULL));
5739: if (type & DM_BC_ESSENTIAL) continue;
5740: PetscCall(PetscDSGetDiscretization(prob, fieldI, &obj));
5741: PetscCall(PetscObjectGetClassId(obj, &id));
5742: if (id != PETSCFE_CLASSID) continue;
5743: PetscCall(DMPlexComputeBdJacobian_Single_Internal(dm, t, wf, label, numValues, values, fieldI, locX, locX_t, X_tShift, Jac, JacP, coordField, facetIS));
5744: }
5745: PetscCall(ISDestroy(&facetIS));
5746: PetscFunctionReturn(PETSC_SUCCESS);
5747: }
5749: PetscErrorCode DMPlexComputeJacobian_Internal(DM dm, PetscFormKey key, IS cellIS, PetscReal t, PetscReal X_tShift, Vec X, Vec X_t, Mat Jac, Mat JacP, void *user)
5750: {
5751: DM_Plex *mesh = (DM_Plex *)dm->data;
5752: const char *name = "Jacobian";
5753: DM dmAux = NULL, plex, tdm;
5754: DMEnclosureType encAux;
5755: Vec A, tv;
5756: DMField coordField;
5757: PetscDS prob, probAux = NULL;
5758: PetscSection section, globalSection, sectionAux;
5759: PetscScalar *elemMat, *elemMatP, *elemMatD, *u, *u_t, *a = NULL;
5760: const PetscInt *cells;
5761: PetscInt Nf, fieldI, fieldJ;
5762: PetscInt totDim, totDimAux = 0, cStart, cEnd, numCells, c;
5763: PetscBool hasJac = PETSC_FALSE, hasPrec = PETSC_FALSE, hasDyn, hasFV = PETSC_FALSE, transform;
5765: PetscFunctionBegin;
5766: PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
5767: if (!cellIS) goto end;
5768: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
5769: PetscCall(ISGetLocalSize(cellIS, &numCells));
5770: if (cStart >= cEnd) goto end;
5771: PetscCall(DMHasBasisTransform(dm, &transform));
5772: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
5773: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
5774: PetscCall(DMGetLocalSection(dm, §ion));
5775: PetscCall(DMGetGlobalSection(dm, &globalSection));
5776: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &prob, NULL));
5777: PetscCall(PetscDSGetNumFields(prob, &Nf));
5778: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
5779: PetscCall(PetscDSHasJacobian(prob, &hasJac));
5780: PetscCall(PetscDSHasJacobianPreconditioner(prob, &hasPrec));
5781: /* user passed in the same matrix, avoid double contributions and
5782: only assemble the Jacobian */
5783: if (hasJac && Jac == JacP) hasPrec = PETSC_FALSE;
5784: PetscCall(PetscDSHasDynamicJacobian(prob, &hasDyn));
5785: hasDyn = hasDyn && (X_tShift != 0.0) ? PETSC_TRUE : PETSC_FALSE;
5786: PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &A));
5787: if (A) {
5788: PetscCall(VecGetDM(A, &dmAux));
5789: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
5790: PetscCall(DMConvert(dmAux, DMPLEX, &plex));
5791: PetscCall(DMGetLocalSection(plex, §ionAux));
5792: PetscCall(DMGetDS(dmAux, &probAux));
5793: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
5794: }
5795: PetscCall(PetscMalloc5(numCells * totDim, &u, X_t ? numCells * totDim : 0, &u_t, hasJac ? numCells * totDim * totDim : 0, &elemMat, hasPrec ? numCells * totDim * totDim : 0, &elemMatP, hasDyn ? numCells * totDim * totDim : 0, &elemMatD));
5796: if (dmAux) PetscCall(PetscMalloc1(numCells * totDimAux, &a));
5797: PetscCall(DMGetCoordinateField(dm, &coordField));
5798: for (c = cStart; c < cEnd; ++c) {
5799: const PetscInt cell = cells ? cells[c] : c;
5800: const PetscInt cind = c - cStart;
5801: PetscScalar *x = NULL, *x_t = NULL;
5802: PetscInt i;
5804: PetscCall(DMPlexVecGetClosure(dm, section, X, cell, NULL, &x));
5805: for (i = 0; i < totDim; ++i) u[cind * totDim + i] = x[i];
5806: PetscCall(DMPlexVecRestoreClosure(dm, section, X, cell, NULL, &x));
5807: if (X_t) {
5808: PetscCall(DMPlexVecGetClosure(dm, section, X_t, cell, NULL, &x_t));
5809: for (i = 0; i < totDim; ++i) u_t[cind * totDim + i] = x_t[i];
5810: PetscCall(DMPlexVecRestoreClosure(dm, section, X_t, cell, NULL, &x_t));
5811: }
5812: if (dmAux) {
5813: PetscInt subcell;
5814: PetscCall(DMGetEnclosurePoint(dmAux, dm, encAux, cell, &subcell));
5815: PetscCall(DMPlexVecGetClosure(plex, sectionAux, A, subcell, NULL, &x));
5816: for (i = 0; i < totDimAux; ++i) a[cind * totDimAux + i] = x[i];
5817: PetscCall(DMPlexVecRestoreClosure(plex, sectionAux, A, subcell, NULL, &x));
5818: }
5819: }
5820: if (hasJac) PetscCall(PetscArrayzero(elemMat, numCells * totDim * totDim));
5821: if (hasPrec) PetscCall(PetscArrayzero(elemMatP, numCells * totDim * totDim));
5822: if (hasDyn) PetscCall(PetscArrayzero(elemMatD, numCells * totDim * totDim));
5823: for (fieldI = 0; fieldI < Nf; ++fieldI) {
5824: PetscClassId id;
5825: PetscFE fe;
5826: PetscQuadrature qGeom = NULL;
5827: PetscInt Nb;
5828: /* Conforming batches */
5829: PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
5830: /* Remainder */
5831: PetscInt Nr, offset, Nq;
5832: PetscInt maxDegree;
5833: PetscFEGeom *cgeomFEM, *chunkGeom = NULL, *remGeom = NULL;
5835: PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fe));
5836: PetscCall(PetscObjectGetClassId((PetscObject)fe, &id));
5837: if (id == PETSCFV_CLASSID) {
5838: hasFV = PETSC_TRUE;
5839: continue;
5840: }
5841: PetscCall(PetscFEGetDimension(fe, &Nb));
5842: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5843: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
5844: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &qGeom));
5845: if (!qGeom) {
5846: PetscCall(PetscFEGetQuadrature(fe, &qGeom));
5847: PetscCall(PetscObjectReference((PetscObject)qGeom));
5848: }
5849: PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
5850: PetscCall(DMSNESGetFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
5851: blockSize = Nb;
5852: batchSize = numBlocks * blockSize;
5853: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
5854: numChunks = numCells / (numBatches * batchSize);
5855: Ne = numChunks * numBatches * batchSize;
5856: Nr = numCells % (numBatches * batchSize);
5857: offset = numCells - Nr;
5858: PetscCall(PetscFEGeomGetChunk(cgeomFEM, 0, offset, &chunkGeom));
5859: PetscCall(PetscFEGeomGetChunk(cgeomFEM, offset, numCells, &remGeom));
5860: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
5861: key.field = fieldI * Nf + fieldJ;
5862: if (hasJac) {
5863: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMat));
5864: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMat[offset * totDim * totDim]));
5865: }
5866: if (hasPrec) {
5867: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_PRE, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMatP));
5868: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_PRE, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMatP[offset * totDim * totDim]));
5869: }
5870: if (hasDyn) {
5871: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMatD));
5872: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMatD[offset * totDim * totDim]));
5873: }
5874: }
5875: PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, offset, numCells, &remGeom));
5876: PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, 0, offset, &chunkGeom));
5877: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
5878: PetscCall(PetscQuadratureDestroy(&qGeom));
5879: }
5880: /* Add contribution from X_t */
5881: if (hasDyn) {
5882: for (c = 0; c < numCells * totDim * totDim; ++c) elemMat[c] += X_tShift * elemMatD[c];
5883: }
5884: if (hasFV) {
5885: PetscClassId id;
5886: PetscFV fv;
5887: PetscInt offsetI, NcI, NbI = 1, fc, f;
5889: for (fieldI = 0; fieldI < Nf; ++fieldI) {
5890: PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fv));
5891: PetscCall(PetscDSGetFieldOffset(prob, fieldI, &offsetI));
5892: PetscCall(PetscObjectGetClassId((PetscObject)fv, &id));
5893: if (id != PETSCFV_CLASSID) continue;
5894: /* Put in the weighted identity */
5895: PetscCall(PetscFVGetNumComponents(fv, &NcI));
5896: for (c = cStart; c < cEnd; ++c) {
5897: const PetscInt cind = c - cStart;
5898: const PetscInt eOffset = cind * totDim * totDim;
5899: PetscReal vol;
5901: PetscCall(DMPlexComputeCellGeometryFVM(dm, c, &vol, NULL, NULL));
5902: for (fc = 0; fc < NcI; ++fc) {
5903: for (f = 0; f < NbI; ++f) {
5904: const PetscInt i = offsetI + f * NcI + fc;
5905: if (hasPrec) {
5906: if (hasJac) elemMat[eOffset + i * totDim + i] = vol;
5907: elemMatP[eOffset + i * totDim + i] = vol;
5908: } else {
5909: elemMat[eOffset + i * totDim + i] = vol;
5910: }
5911: }
5912: }
5913: }
5914: }
5915: /* No allocated space for FV stuff, so ignore the zero entries */
5916: PetscCall(MatSetOption(JacP, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE));
5917: }
5918: /* Insert values into matrix */
5919: for (c = cStart; c < cEnd; ++c) {
5920: const PetscInt cell = cells ? cells[c] : c;
5921: const PetscInt cind = c - cStart;
5923: /* Transform to global basis before insertion in Jacobian */
5924: if (transform) PetscCall(DMPlexBasisTransformPointTensor_Internal(dm, tdm, tv, cell, PETSC_TRUE, totDim, &elemMat[cind * totDim * totDim]));
5925: if (hasPrec) {
5926: if (hasJac) {
5927: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMat[cind * totDim * totDim]));
5928: PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, Jac, cell, &elemMat[cind * totDim * totDim], ADD_VALUES));
5929: }
5930: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatP[cind * totDim * totDim]));
5931: PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, JacP, cell, &elemMatP[cind * totDim * totDim], ADD_VALUES));
5932: } else {
5933: if (hasJac) {
5934: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMat[cind * totDim * totDim]));
5935: PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, JacP, cell, &elemMat[cind * totDim * totDim], ADD_VALUES));
5936: }
5937: }
5938: }
5939: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
5940: if (hasFV) PetscCall(MatSetOption(JacP, MAT_IGNORE_ZERO_ENTRIES, PETSC_FALSE));
5941: PetscCall(PetscFree5(u, u_t, elemMat, elemMatP, elemMatD));
5942: if (dmAux) {
5943: PetscCall(PetscFree(a));
5944: PetscCall(DMDestroy(&plex));
5945: }
5946: /* Compute boundary integrals */
5947: PetscCall(DMPlexComputeBdJacobian_Internal(dm, X, X_t, t, X_tShift, Jac, JacP, user));
5948: /* Assemble matrix */
5949: end: {
5950: PetscBool assOp = hasJac && hasPrec ? PETSC_TRUE : PETSC_FALSE, gassOp;
5952: PetscCall(MPIU_Allreduce(&assOp, &gassOp, 1, MPIU_BOOL, MPI_LOR, PetscObjectComm((PetscObject)dm)));
5953: if (hasJac && hasPrec) {
5954: PetscCall(MatAssemblyBegin(Jac, MAT_FINAL_ASSEMBLY));
5955: PetscCall(MatAssemblyEnd(Jac, MAT_FINAL_ASSEMBLY));
5956: }
5957: }
5958: PetscCall(MatAssemblyBegin(JacP, MAT_FINAL_ASSEMBLY));
5959: PetscCall(MatAssemblyEnd(JacP, MAT_FINAL_ASSEMBLY));
5960: PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
5961: PetscFunctionReturn(PETSC_SUCCESS);
5962: }
5964: PetscErrorCode DMPlexComputeJacobian_Hybrid_Internal(DM dm, PetscFormKey key[], IS cellIS, PetscReal t, PetscReal X_tShift, Vec locX, Vec locX_t, Mat Jac, Mat JacP, void *user)
5965: {
5966: DM_Plex *mesh = (DM_Plex *)dm->data;
5967: const char *name = "Hybrid Jacobian";
5968: DM dmAux[3] = {NULL, NULL, NULL};
5969: DMLabel ghostLabel = NULL;
5970: DM plex = NULL;
5971: DM plexA = NULL;
5972: PetscDS ds = NULL;
5973: PetscDS dsIn = NULL;
5974: PetscDS dsAux[3] = {NULL, NULL, NULL};
5975: Vec locA[3] = {NULL, NULL, NULL};
5976: DM dmScale[3] = {NULL, NULL, NULL};
5977: PetscDS dsScale[3] = {NULL, NULL, NULL};
5978: Vec locS[3] = {NULL, NULL, NULL};
5979: PetscSection section = NULL;
5980: PetscSection sectionAux[3] = {NULL, NULL, NULL};
5981: DMField coordField = NULL;
5982: PetscScalar *a[3] = {NULL, NULL, NULL};
5983: PetscScalar *s[3] = {NULL, NULL, NULL};
5984: PetscScalar *u = NULL, *u_t;
5985: PetscScalar *elemMatNeg, *elemMatPos, *elemMatCoh;
5986: PetscScalar *elemMatNegP, *elemMatPosP, *elemMatCohP;
5987: PetscSection globalSection;
5988: IS chunkIS;
5989: const PetscInt *cells;
5990: PetscInt *faces;
5991: PetscInt cStart, cEnd, numCells;
5992: PetscInt Nf, fieldI, fieldJ, totDim, totDimIn, totDimAux[3], totDimScale[3], numChunks, cellChunkSize, chunk;
5993: PetscInt maxDegree = PETSC_MAX_INT;
5994: PetscQuadrature affineQuad = NULL, *quads = NULL;
5995: PetscFEGeom *affineGeom = NULL, **geoms = NULL;
5996: PetscBool hasBdJac, hasBdPrec;
5998: PetscFunctionBegin;
5999: PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6000: if (!cellIS) goto end;
6001: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
6002: PetscCall(ISGetLocalSize(cellIS, &numCells));
6003: if (cStart >= cEnd) goto end;
6004: if ((key[0].label == key[1].label) && (key[0].value == key[1].value) && (key[0].part == key[1].part)) {
6005: const char *name;
6006: PetscCall(PetscObjectGetName((PetscObject)key[0].label, &name));
6007: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Form keys for each side of a cohesive surface must be different (%s, %" PetscInt_FMT ", %" PetscInt_FMT ")", name, key[0].value, key[0].part);
6008: }
6009: PetscCall(DMConvert(dm, DMPLEX, &plex));
6010: PetscCall(DMGetSection(dm, §ion));
6011: PetscCall(DMGetGlobalSection(dm, &globalSection));
6012: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
6013: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, &dsIn));
6014: PetscCall(PetscDSGetNumFields(ds, &Nf));
6015: PetscCall(PetscDSGetTotalDimension(ds, &totDim));
6016: PetscCall(PetscDSGetTotalDimension(dsIn, &totDimIn));
6017: PetscCall(PetscDSHasBdJacobian(ds, &hasBdJac));
6018: PetscCall(PetscDSHasBdJacobianPreconditioner(ds, &hasBdPrec));
6019: PetscCall(DMGetAuxiliaryVec(dm, key[2].label, key[2].value, key[2].part, &locA[2]));
6020: if (locA[2]) {
6021: const PetscInt cellStart = cells ? cells[cStart] : cStart;
6023: PetscCall(VecGetDM(locA[2], &dmAux[2]));
6024: PetscCall(DMConvert(dmAux[2], DMPLEX, &plexA));
6025: PetscCall(DMGetSection(dmAux[2], §ionAux[2]));
6026: PetscCall(DMGetCellDS(dmAux[2], cellStart, &dsAux[2], NULL));
6027: PetscCall(PetscDSGetTotalDimension(dsAux[2], &totDimAux[2]));
6028: {
6029: const PetscInt *cone;
6030: PetscInt c;
6032: PetscCall(DMPlexGetCone(dm, cellStart, &cone));
6033: for (c = 0; c < 2; ++c) {
6034: const PetscInt *support;
6035: PetscInt ssize, s;
6037: PetscCall(DMPlexGetSupport(dm, cone[c], &support));
6038: PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
6039: PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
6040: if (support[0] == cellStart) s = 1;
6041: else if (support[1] == cellStart) s = 0;
6042: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
6043: PetscCall(DMGetAuxiliaryVec(dm, key[c].label, key[c].value, key[c].part, &locA[c]));
6044: if (locA[c]) PetscCall(VecGetDM(locA[c], &dmAux[c]));
6045: else dmAux[c] = dmAux[2];
6046: PetscCall(DMGetCellDS(dmAux[c], support[s], &dsAux[c], NULL));
6047: PetscCall(PetscDSGetTotalDimension(dsAux[c], &totDimAux[c]));
6048: }
6049: }
6050: }
6051: /* Handle mass matrix scaling
6052: The field in key[2] is the field to be scaled, and the scaling field is the first in the dsScale */
6053: PetscCall(DMGetAuxiliaryVec(dm, key[2].label, -key[2].value, key[2].part, &locS[2]));
6054: if (locS[2]) {
6055: const PetscInt cellStart = cells ? cells[cStart] : cStart;
6056: PetscInt Nb, Nbs;
6058: PetscCall(VecGetDM(locS[2], &dmScale[2]));
6059: PetscCall(DMGetCellDS(dmScale[2], cells ? cells[cStart] : cStart, &dsScale[2], NULL));
6060: PetscCall(PetscDSGetTotalDimension(dsScale[2], &totDimScale[2]));
6061: // BRAD: This is not set correctly
6062: key[2].field = 2;
6063: PetscCall(PetscDSGetFieldSize(ds, key[2].field, &Nb));
6064: PetscCall(PetscDSGetFieldSize(dsScale[2], 0, &Nbs));
6065: PetscCheck(Nb == Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Field %" PetscInt_FMT " of size %" PetscInt_FMT " cannot be scaled by field of size %" PetscInt_FMT, key[2].field, Nb, Nbs);
6066: {
6067: const PetscInt *cone;
6068: PetscInt c;
6070: locS[1] = locS[0] = locS[2];
6071: dmScale[1] = dmScale[0] = dmScale[2];
6072: PetscCall(DMPlexGetCone(dm, cellStart, &cone));
6073: for (c = 0; c < 2; ++c) {
6074: const PetscInt *support;
6075: PetscInt ssize, s;
6077: PetscCall(DMPlexGetSupport(dm, cone[c], &support));
6078: PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
6079: PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
6080: if (support[0] == cellStart) s = 1;
6081: else if (support[1] == cellStart) s = 0;
6082: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
6083: PetscCall(DMGetCellDS(dmScale[c], support[s], &dsScale[c], NULL));
6084: PetscCall(PetscDSGetTotalDimension(dsScale[c], &totDimScale[c]));
6085: }
6086: }
6087: }
6088: /* 2: Setup geometric data */
6089: PetscCall(DMGetCoordinateField(dm, &coordField));
6090: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
6091: if (maxDegree > 1) {
6092: PetscInt f;
6093: PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
6094: for (f = 0; f < Nf; ++f) {
6095: PetscFE fe;
6097: PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
6098: if (fe) {
6099: PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
6100: PetscCall(PetscObjectReference((PetscObject)quads[f]));
6101: }
6102: }
6103: }
6104: /* Loop over chunks */
6105: cellChunkSize = numCells;
6106: numChunks = !numCells ? 0 : PetscCeilReal(((PetscReal)numCells) / cellChunkSize);
6107: PetscCall(PetscCalloc1(2 * cellChunkSize, &faces));
6108: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, 1 * cellChunkSize, faces, PETSC_USE_POINTER, &chunkIS));
6109: /* Extract field coefficients */
6110: /* NOTE This needs the end cap faces to have identical orientations */
6111: PetscCall(DMPlexGetHybridCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
6112: PetscCall(DMPlexGetHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
6113: PetscCall(DMPlexGetHybridFields(dm, dmScale, dsScale, cellIS, locS, PETSC_TRUE, s));
6114: PetscCall(DMGetWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNeg));
6115: PetscCall(DMGetWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPos));
6116: PetscCall(DMGetWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCoh));
6117: PetscCall(DMGetWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNegP));
6118: PetscCall(DMGetWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPosP));
6119: PetscCall(DMGetWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCohP));
6120: for (chunk = 0; chunk < numChunks; ++chunk) {
6121: PetscInt cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;
6123: if (hasBdJac) {
6124: PetscCall(PetscArrayzero(elemMatNeg, cellChunkSize * totDim * totDim));
6125: PetscCall(PetscArrayzero(elemMatPos, cellChunkSize * totDim * totDim));
6126: PetscCall(PetscArrayzero(elemMatCoh, cellChunkSize * totDim * totDim));
6127: }
6128: if (hasBdPrec) {
6129: PetscCall(PetscArrayzero(elemMatNegP, cellChunkSize * totDim * totDim));
6130: PetscCall(PetscArrayzero(elemMatPosP, cellChunkSize * totDim * totDim));
6131: PetscCall(PetscArrayzero(elemMatCohP, cellChunkSize * totDim * totDim));
6132: }
6133: /* Get faces */
6134: for (c = cS; c < cE; ++c) {
6135: const PetscInt cell = cells ? cells[c] : c;
6136: const PetscInt *cone;
6137: PetscCall(DMPlexGetCone(plex, cell, &cone));
6138: faces[(c - cS) * 2 + 0] = cone[0];
6139: faces[(c - cS) * 2 + 1] = cone[1];
6140: }
6141: PetscCall(ISGeneralSetIndices(chunkIS, 2 * cellChunkSize, faces, PETSC_USE_POINTER));
6142: if (maxDegree <= 1) {
6143: if (!affineQuad) PetscCall(DMFieldCreateDefaultQuadrature(coordField, chunkIS, &affineQuad));
6144: if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, chunkIS, affineQuad, PETSC_TRUE, &affineGeom));
6145: } else {
6146: PetscInt f;
6147: for (f = 0; f < Nf; ++f) {
6148: if (quads[f]) PetscCall(DMSNESGetFEGeom(coordField, chunkIS, quads[f], PETSC_TRUE, &geoms[f]));
6149: }
6150: }
6152: for (fieldI = 0; fieldI < Nf; ++fieldI) {
6153: PetscFE feI;
6154: PetscFEGeom *geom = affineGeom ? affineGeom : geoms[fieldI];
6155: PetscFEGeom *chunkGeom = NULL, *remGeom = NULL;
6156: PetscQuadrature quad = affineQuad ? affineQuad : quads[fieldI];
6157: PetscInt numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset, Nq, Nb;
6158: PetscBool isCohesiveField;
6160: PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&feI));
6161: if (!feI) continue;
6162: PetscCall(PetscFEGetTileSizes(feI, NULL, &numBlocks, NULL, &numBatches));
6163: PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
6164: PetscCall(PetscFEGetDimension(feI, &Nb));
6165: blockSize = Nb;
6166: batchSize = numBlocks * blockSize;
6167: PetscCall(PetscFESetTileSizes(feI, blockSize, numBlocks, batchSize, numBatches));
6168: numChunks = numCells / (numBatches * batchSize);
6169: Ne = numChunks * numBatches * batchSize;
6170: Nr = numCells % (numBatches * batchSize);
6171: offset = numCells - Nr;
6172: PetscCall(PetscFEGeomGetChunk(geom, 0, offset * 2, &chunkGeom));
6173: PetscCall(PetscFEGeomGetChunk(geom, offset * 2, numCells * 2, &remGeom));
6174: PetscCall(PetscDSGetCohesive(ds, fieldI, &isCohesiveField));
6175: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
6176: PetscFE feJ;
6178: PetscCall(PetscDSGetDiscretization(ds, fieldJ, (PetscObject *)&feJ));
6179: if (!feJ) continue;
6180: key[0].field = fieldI * Nf + fieldJ;
6181: key[1].field = fieldI * Nf + fieldJ;
6182: key[2].field = fieldI * Nf + fieldJ;
6183: if (hasBdJac) {
6184: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[0], 0, Ne, chunkGeom, u, u_t, dsAux[0], a[0], t, X_tShift, elemMatNeg));
6185: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[0], 0, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[0], PetscSafePointerPlusOffset(a[0], offset * totDimAux[0]), t, X_tShift, &elemMatNeg[offset * totDim * totDim]));
6186: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[1], 1, Ne, chunkGeom, u, u_t, dsAux[1], a[1], t, X_tShift, elemMatPos));
6187: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[1], 1, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[1], PetscSafePointerPlusOffset(a[1], offset * totDimAux[1]), t, X_tShift, &elemMatPos[offset * totDim * totDim]));
6188: }
6189: if (hasBdPrec) {
6190: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[0], 0, Ne, chunkGeom, u, u_t, dsAux[0], a[0], t, X_tShift, elemMatNegP));
6191: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[0], 0, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[0], &a[0][offset * totDimAux[0]], t, X_tShift, &elemMatNegP[offset * totDim * totDim]));
6192: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[1], 1, Ne, chunkGeom, u, u_t, dsAux[1], a[1], t, X_tShift, elemMatPosP));
6193: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[1], 1, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[1], &a[1][offset * totDimAux[1]], t, X_tShift, &elemMatPosP[offset * totDim * totDim]));
6194: }
6195: if (hasBdJac) {
6196: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[2], 2, Ne, chunkGeom, u, u_t, dsAux[2], a[2], t, X_tShift, elemMatCoh));
6197: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[2], 2, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[2], PetscSafePointerPlusOffset(a[2], offset * totDimAux[2]), t, X_tShift, &elemMatCoh[offset * totDim * totDim]));
6198: }
6199: if (hasBdPrec) {
6200: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[2], 2, Ne, chunkGeom, u, u_t, dsAux[2], a[2], t, X_tShift, elemMatCohP));
6201: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[2], 2, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[2], &a[2][offset * totDimAux[2]], t, X_tShift, &elemMatCohP[offset * totDim * totDim]));
6202: }
6203: }
6204: PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &remGeom));
6205: PetscCall(PetscFEGeomRestoreChunk(geom, 0, offset, &chunkGeom));
6206: }
6207: /* Insert values into matrix */
6208: for (c = cS; c < cE; ++c) {
6209: const PetscInt cell = cells ? cells[c] : c;
6210: const PetscInt cind = c - cS, coff = cind * totDim * totDim;
6211: PetscInt i, j;
6213: /* Scale element values */
6214: if (locS[0]) {
6215: PetscInt Nb, soff = cind * totDimScale[0], off = 0;
6216: PetscBool cohesive;
6218: for (fieldI = 0; fieldI < Nf; ++fieldI) {
6219: PetscCall(PetscDSGetFieldSize(ds, fieldI, &Nb));
6220: PetscCall(PetscDSGetCohesive(ds, fieldI, &cohesive));
6222: if (fieldI == key[2].field) {
6223: PetscCheck(cohesive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Scaling should not happen for face fields");
6224: for (i = 0; i < Nb; ++i) {
6225: for (j = 0; j < totDim; ++j) elemMatCoh[coff + (off + i) * totDim + j] += s[0][soff + i] * elemMatNeg[coff + (off + i) * totDim + j] + s[1][soff + i] * elemMatPos[coff + (off + i) * totDim + j];
6226: if (hasBdPrec)
6227: for (j = 0; j < totDim; ++j) elemMatCohP[coff + (off + i) * totDim + j] += s[0][soff + i] * elemMatNegP[coff + (off + i) * totDim + j] + s[1][soff + i] * elemMatPosP[coff + (off + i) * totDim + j];
6228: }
6229: off += Nb;
6230: } else {
6231: const PetscInt N = cohesive ? Nb : Nb * 2;
6233: for (i = 0; i < N; ++i) {
6234: for (j = 0; j < totDim; ++j) elemMatCoh[coff + (off + i) * totDim + j] += elemMatNeg[coff + (off + i) * totDim + j] + elemMatPos[coff + (off + i) * totDim + j];
6235: if (hasBdPrec)
6236: for (j = 0; j < totDim; ++j) elemMatCohP[coff + (off + i) * totDim + j] += elemMatNegP[coff + (off + i) * totDim + j] + elemMatPosP[coff + (off + i) * totDim + j];
6237: }
6238: off += N;
6239: }
6240: }
6241: } else {
6242: for (i = 0; i < totDim * totDim; ++i) elemMatCoh[coff + i] += elemMatNeg[coff + i] + elemMatPos[coff + i];
6243: if (hasBdPrec)
6244: for (i = 0; i < totDim * totDim; ++i) elemMatCohP[coff + i] += elemMatNegP[coff + i] + elemMatPosP[coff + i];
6245: }
6246: if (hasBdPrec) {
6247: if (hasBdJac) {
6248: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatCoh[cind * totDim * totDim]));
6249: PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, Jac, cell, &elemMatCoh[cind * totDim * totDim], ADD_VALUES));
6250: }
6251: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatCohP[cind * totDim * totDim]));
6252: PetscCall(DMPlexMatSetClosure(plex, section, globalSection, JacP, cell, &elemMatCohP[cind * totDim * totDim], ADD_VALUES));
6253: } else if (hasBdJac) {
6254: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatCoh[cind * totDim * totDim]));
6255: PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, JacP, cell, &elemMatCoh[cind * totDim * totDim], ADD_VALUES));
6256: }
6257: }
6258: }
6259: PetscCall(DMPlexRestoreCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
6260: PetscCall(DMPlexRestoreHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
6261: PetscCall(DMRestoreWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNeg));
6262: PetscCall(DMRestoreWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPos));
6263: PetscCall(DMRestoreWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCoh));
6264: PetscCall(DMRestoreWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNegP));
6265: PetscCall(DMRestoreWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPosP));
6266: PetscCall(DMRestoreWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCohP));
6267: PetscCall(PetscFree(faces));
6268: PetscCall(ISDestroy(&chunkIS));
6269: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
6270: if (maxDegree <= 1) {
6271: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
6272: PetscCall(PetscQuadratureDestroy(&affineQuad));
6273: } else {
6274: PetscInt f;
6275: for (f = 0; f < Nf; ++f) {
6276: if (geoms) PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
6277: if (quads) PetscCall(PetscQuadratureDestroy(&quads[f]));
6278: }
6279: PetscCall(PetscFree2(quads, geoms));
6280: }
6281: if (dmAux[2]) PetscCall(DMDestroy(&plexA));
6282: PetscCall(DMDestroy(&plex));
6283: end:
6284: PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6285: PetscFunctionReturn(PETSC_SUCCESS);
6286: }
6288: /*
6289: DMPlexComputeJacobian_Action_Internal - Form the local portion of the Jacobian action Z = J(X) Y at the local solution X using pointwise functions specified by the user.
6291: Input Parameters:
6292: + dm - The mesh
6293: . key - The PetscWeakFormKey indicating where integration should happen
6294: . cellIS - The cells to integrate over
6295: . t - The time
6296: . X_tShift - The multiplier for the Jacobian with respect to X_t
6297: . X - Local solution vector
6298: . X_t - Time-derivative of the local solution vector
6299: . Y - Local input vector
6300: - user - the user context
6302: Output Parameter:
6303: . Z - Local output vector
6305: Note:
6306: We form the residual one batch of elements at a time. This allows us to offload work onto an accelerator,
6307: like a GPU, or vectorize on a multicore machine.
6308: */
6309: PetscErrorCode DMPlexComputeJacobian_Action_Internal(DM dm, PetscFormKey key, IS cellIS, PetscReal t, PetscReal X_tShift, Vec X, Vec X_t, Vec Y, Vec Z, void *user)
6310: {
6311: DM_Plex *mesh = (DM_Plex *)dm->data;
6312: const char *name = "Jacobian";
6313: DM dmAux = NULL, plex, plexAux = NULL;
6314: DMEnclosureType encAux;
6315: Vec A;
6316: DMField coordField;
6317: PetscDS prob, probAux = NULL;
6318: PetscQuadrature quad;
6319: PetscSection section, globalSection, sectionAux;
6320: PetscScalar *elemMat, *elemMatD, *u, *u_t, *a = NULL, *y, *z;
6321: const PetscInt *cells;
6322: PetscInt Nf, fieldI, fieldJ;
6323: PetscInt totDim, totDimAux = 0, cStart, cEnd, numCells, c;
6324: PetscBool hasDyn;
6326: PetscFunctionBegin;
6327: if (!cellIS) PetscFunctionReturn(PETSC_SUCCESS);
6328: PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6329: PetscCall(DMConvert(dm, DMPLEX, &plex));
6330: PetscCall(ISGetLocalSize(cellIS, &numCells));
6331: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
6332: PetscCall(DMGetLocalSection(dm, §ion));
6333: PetscCall(DMGetGlobalSection(dm, &globalSection));
6334: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &prob, NULL));
6335: PetscCall(PetscDSGetNumFields(prob, &Nf));
6336: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
6337: PetscCall(PetscDSHasDynamicJacobian(prob, &hasDyn));
6338: hasDyn = hasDyn && (X_tShift != 0.0) ? PETSC_TRUE : PETSC_FALSE;
6339: PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &A));
6340: if (A) {
6341: PetscCall(VecGetDM(A, &dmAux));
6342: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
6343: PetscCall(DMConvert(dmAux, DMPLEX, &plexAux));
6344: PetscCall(DMGetLocalSection(plexAux, §ionAux));
6345: PetscCall(DMGetDS(dmAux, &probAux));
6346: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
6347: }
6348: PetscCall(VecSet(Z, 0.0));
6349: PetscCall(PetscMalloc6(numCells * totDim, &u, X_t ? numCells * totDim : 0, &u_t, numCells * totDim * totDim, &elemMat, hasDyn ? numCells * totDim * totDim : 0, &elemMatD, numCells * totDim, &y, totDim, &z));
6350: if (dmAux) PetscCall(PetscMalloc1(numCells * totDimAux, &a));
6351: PetscCall(DMGetCoordinateField(dm, &coordField));
6352: for (c = cStart; c < cEnd; ++c) {
6353: const PetscInt cell = cells ? cells[c] : c;
6354: const PetscInt cind = c - cStart;
6355: PetscScalar *x = NULL, *x_t = NULL;
6356: PetscInt i;
6358: PetscCall(DMPlexVecGetClosure(plex, section, X, cell, NULL, &x));
6359: for (i = 0; i < totDim; ++i) u[cind * totDim + i] = x[i];
6360: PetscCall(DMPlexVecRestoreClosure(plex, section, X, cell, NULL, &x));
6361: if (X_t) {
6362: PetscCall(DMPlexVecGetClosure(plex, section, X_t, cell, NULL, &x_t));
6363: for (i = 0; i < totDim; ++i) u_t[cind * totDim + i] = x_t[i];
6364: PetscCall(DMPlexVecRestoreClosure(plex, section, X_t, cell, NULL, &x_t));
6365: }
6366: if (dmAux) {
6367: PetscInt subcell;
6368: PetscCall(DMGetEnclosurePoint(dmAux, dm, encAux, cell, &subcell));
6369: PetscCall(DMPlexVecGetClosure(plexAux, sectionAux, A, subcell, NULL, &x));
6370: for (i = 0; i < totDimAux; ++i) a[cind * totDimAux + i] = x[i];
6371: PetscCall(DMPlexVecRestoreClosure(plexAux, sectionAux, A, subcell, NULL, &x));
6372: }
6373: PetscCall(DMPlexVecGetClosure(plex, section, Y, cell, NULL, &x));
6374: for (i = 0; i < totDim; ++i) y[cind * totDim + i] = x[i];
6375: PetscCall(DMPlexVecRestoreClosure(plex, section, Y, cell, NULL, &x));
6376: }
6377: PetscCall(PetscArrayzero(elemMat, numCells * totDim * totDim));
6378: if (hasDyn) PetscCall(PetscArrayzero(elemMatD, numCells * totDim * totDim));
6379: for (fieldI = 0; fieldI < Nf; ++fieldI) {
6380: PetscFE fe;
6381: PetscInt Nb;
6382: /* Conforming batches */
6383: PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
6384: /* Remainder */
6385: PetscInt Nr, offset, Nq;
6386: PetscQuadrature qGeom = NULL;
6387: PetscInt maxDegree;
6388: PetscFEGeom *cgeomFEM, *chunkGeom = NULL, *remGeom = NULL;
6390: PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fe));
6391: PetscCall(PetscFEGetQuadrature(fe, &quad));
6392: PetscCall(PetscFEGetDimension(fe, &Nb));
6393: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
6394: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
6395: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &qGeom));
6396: if (!qGeom) {
6397: PetscCall(PetscFEGetQuadrature(fe, &qGeom));
6398: PetscCall(PetscObjectReference((PetscObject)qGeom));
6399: }
6400: PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
6401: PetscCall(DMSNESGetFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
6402: blockSize = Nb;
6403: batchSize = numBlocks * blockSize;
6404: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
6405: numChunks = numCells / (numBatches * batchSize);
6406: Ne = numChunks * numBatches * batchSize;
6407: Nr = numCells % (numBatches * batchSize);
6408: offset = numCells - Nr;
6409: PetscCall(PetscFEGeomGetChunk(cgeomFEM, 0, offset, &chunkGeom));
6410: PetscCall(PetscFEGeomGetChunk(cgeomFEM, offset, numCells, &remGeom));
6411: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
6412: key.field = fieldI * Nf + fieldJ;
6413: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMat));
6414: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMat[offset * totDim * totDim]));
6415: if (hasDyn) {
6416: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMatD));
6417: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, &a[offset * totDimAux], t, X_tShift, &elemMatD[offset * totDim * totDim]));
6418: }
6419: }
6420: PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, offset, numCells, &remGeom));
6421: PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, 0, offset, &chunkGeom));
6422: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
6423: PetscCall(PetscQuadratureDestroy(&qGeom));
6424: }
6425: if (hasDyn) {
6426: for (c = 0; c < numCells * totDim * totDim; ++c) elemMat[c] += X_tShift * elemMatD[c];
6427: }
6428: for (c = cStart; c < cEnd; ++c) {
6429: const PetscInt cell = cells ? cells[c] : c;
6430: const PetscInt cind = c - cStart;
6431: const PetscBLASInt M = totDim, one = 1;
6432: const PetscScalar a = 1.0, b = 0.0;
6434: PetscCallBLAS("BLASgemv", BLASgemv_("N", &M, &M, &a, &elemMat[cind * totDim * totDim], &M, &y[cind * totDim], &one, &b, z, &one));
6435: if (mesh->printFEM > 1) {
6436: PetscCall(DMPrintCellMatrix(c, name, totDim, totDim, &elemMat[cind * totDim * totDim]));
6437: PetscCall(DMPrintCellVector(c, "Y", totDim, &y[cind * totDim]));
6438: PetscCall(DMPrintCellVector(c, "Z", totDim, z));
6439: }
6440: PetscCall(DMPlexVecSetClosure(dm, section, Z, cell, z, ADD_VALUES));
6441: }
6442: PetscCall(PetscFree6(u, u_t, elemMat, elemMatD, y, z));
6443: if (mesh->printFEM) {
6444: PetscCall(PetscPrintf(PetscObjectComm((PetscObject)Z), "Z:\n"));
6445: PetscCall(VecView(Z, NULL));
6446: }
6447: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
6448: PetscCall(PetscFree(a));
6449: PetscCall(DMDestroy(&plexAux));
6450: PetscCall(DMDestroy(&plex));
6451: PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6452: PetscFunctionReturn(PETSC_SUCCESS);
6453: }