Actual source code: psort.c
1: #include <petsc/private/petscimpl.h>
2: #include <petscis.h>
4: /* This is the bitonic merge that works on non-power-of-2 sizes found at http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/oddn.htm */
5: static PetscErrorCode PetscParallelSortInt_Bitonic_Merge(MPI_Comm comm, PetscMPIInt tag, PetscMPIInt rankStart, PetscMPIInt rankEnd, PetscMPIInt rank, PetscMPIInt n, PetscInt keys[], PetscInt buffer[], PetscBool forward)
6: {
7: PetscInt diff;
8: PetscInt split, mid, partner;
10: PetscFunctionBegin;
11: diff = rankEnd - rankStart;
12: if (diff <= 0) PetscFunctionReturn(PETSC_SUCCESS);
13: if (diff == 1) {
14: if (forward) {
15: PetscCall(PetscSortInt((PetscInt)n, keys));
16: } else {
17: PetscCall(PetscSortReverseInt((PetscInt)n, keys));
18: }
19: PetscFunctionReturn(PETSC_SUCCESS);
20: }
21: split = 1;
22: while (2 * split < diff) split *= 2;
23: mid = rankStart + split;
24: if (rank < mid) {
25: partner = rank + split;
26: } else {
27: partner = rank - split;
28: }
29: if (partner < rankEnd) {
30: PetscMPIInt i;
32: PetscCallMPI(MPI_Sendrecv(keys, n, MPIU_INT, partner, tag, buffer, n, MPIU_INT, partner, tag, comm, MPI_STATUS_IGNORE));
33: if ((rank < partner) == (forward == PETSC_TRUE)) {
34: for (i = 0; i < n; i++) keys[i] = (keys[i] <= buffer[i]) ? keys[i] : buffer[i];
35: } else {
36: for (i = 0; i < n; i++) keys[i] = (keys[i] > buffer[i]) ? keys[i] : buffer[i];
37: }
38: }
39: /* divide and conquer */
40: if (rank < mid) {
41: PetscCall(PetscParallelSortInt_Bitonic_Merge(comm, tag, rankStart, mid, rank, n, keys, buffer, forward));
42: } else {
43: PetscCall(PetscParallelSortInt_Bitonic_Merge(comm, tag, mid, rankEnd, rank, n, keys, buffer, forward));
44: }
45: PetscFunctionReturn(PETSC_SUCCESS);
46: }
48: /* This is the bitonic sort that works on non-power-of-2 sizes found at http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/oddn.htm */
49: static PetscErrorCode PetscParallelSortInt_Bitonic_Recursive(MPI_Comm comm, PetscMPIInt tag, PetscMPIInt rankStart, PetscMPIInt rankEnd, PetscMPIInt rank, PetscMPIInt n, PetscInt keys[], PetscInt buffer[], PetscBool forward)
50: {
51: PetscInt diff;
52: PetscInt mid;
54: PetscFunctionBegin;
55: diff = rankEnd - rankStart;
56: if (diff <= 0) PetscFunctionReturn(PETSC_SUCCESS);
57: if (diff == 1) {
58: if (forward) {
59: PetscCall(PetscSortInt(n, keys));
60: } else {
61: PetscCall(PetscSortReverseInt(n, keys));
62: }
63: PetscFunctionReturn(PETSC_SUCCESS);
64: }
65: mid = rankStart + diff / 2;
66: /* divide and conquer */
67: if (rank < mid) {
68: PetscCall(PetscParallelSortInt_Bitonic_Recursive(comm, tag, rankStart, mid, rank, n, keys, buffer, (PetscBool)!forward));
69: } else {
70: PetscCall(PetscParallelSortInt_Bitonic_Recursive(comm, tag, mid, rankEnd, rank, n, keys, buffer, forward));
71: }
72: /* bitonic merge */
73: PetscCall(PetscParallelSortInt_Bitonic_Merge(comm, tag, rankStart, rankEnd, rank, n, keys, buffer, forward));
74: PetscFunctionReturn(PETSC_SUCCESS);
75: }
77: static PetscErrorCode PetscParallelSortInt_Bitonic(MPI_Comm comm, PetscInt n, PetscInt keys[])
78: {
79: PetscMPIInt size, rank, tag, mpin;
80: PetscInt *buffer;
82: PetscFunctionBegin;
83: PetscAssertPointer(keys, 3);
84: PetscCall(PetscCommGetNewTag(comm, &tag));
85: PetscCallMPI(MPI_Comm_size(comm, &size));
86: PetscCallMPI(MPI_Comm_rank(comm, &rank));
87: PetscCall(PetscMPIIntCast(n, &mpin));
88: PetscCall(PetscMalloc1(n, &buffer));
89: PetscCall(PetscParallelSortInt_Bitonic_Recursive(comm, tag, 0, size, rank, mpin, keys, buffer, PETSC_TRUE));
90: PetscCall(PetscFree(buffer));
91: PetscFunctionReturn(PETSC_SUCCESS);
92: }
94: static PetscErrorCode PetscParallelSampleSelect(PetscLayout mapin, PetscLayout mapout, PetscInt keysin[], PetscInt *outpivots[])
95: {
96: PetscMPIInt size, rank;
97: PetscInt *pivots, *finalpivots, i;
98: PetscInt non_empty, my_first, count;
99: PetscMPIInt *keys_per, max_keys_per;
101: PetscFunctionBegin;
102: PetscCallMPI(MPI_Comm_size(mapin->comm, &size));
103: PetscCallMPI(MPI_Comm_rank(mapin->comm, &rank));
105: /* Choose P - 1 pivots that would be ideal for the distribution on this process */
106: PetscCall(PetscMalloc1(size - 1, &pivots));
107: for (i = 0; i < size - 1; i++) {
108: PetscInt index;
110: if (!mapin->n) {
111: /* if this rank is empty, put "infinity" in the list. each process knows how many empty
112: * processes are in the layout, so those values will be ignored from the end of the sorted
113: * pivots */
114: pivots[i] = PETSC_MAX_INT;
115: } else {
116: /* match the distribution to the desired output described by mapout by getting the index
117: * that is approximately the appropriate fraction through the list */
118: index = ((PetscReal)mapout->range[i + 1]) * ((PetscReal)mapin->n) / ((PetscReal)mapout->N);
119: index = PetscMin(index, (mapin->n - 1));
120: index = PetscMax(index, 0);
121: pivots[i] = keysin[index];
122: }
123: }
124: /* sort the pivots in parallel */
125: PetscCall(PetscParallelSortInt_Bitonic(mapin->comm, size - 1, pivots));
126: if (PetscDefined(USE_DEBUG)) {
127: PetscBool sorted;
129: PetscCall(PetscParallelSortedInt(mapin->comm, size - 1, pivots, &sorted));
130: PetscCheck(sorted, mapin->comm, PETSC_ERR_PLIB, "bitonic sort failed");
131: }
133: /* if there are Z nonempty processes, we have (P - 1) * Z real pivots, and we want to select
134: * at indices Z - 1, 2*Z - 1, ... (P - 1) * Z - 1 */
135: non_empty = size;
136: for (i = 0; i < size; i++)
137: if (mapout->range[i] == mapout->range[i + 1]) non_empty--;
138: PetscCall(PetscCalloc1(size + 1, &keys_per));
139: my_first = -1;
140: if (non_empty) {
141: for (i = 0; i < size - 1; i++) {
142: size_t sample = (i + 1) * non_empty - 1;
143: size_t sample_rank = sample / (size - 1);
145: keys_per[sample_rank]++;
146: if (my_first < 0 && (PetscMPIInt)sample_rank == rank) my_first = (PetscInt)(sample - sample_rank * (size - 1));
147: }
148: }
149: for (i = 0, max_keys_per = 0; i < size; i++) max_keys_per = PetscMax(keys_per[i], max_keys_per);
150: PetscCall(PetscMalloc1(size * max_keys_per, &finalpivots));
151: /* now that we know how many pivots each process will provide, gather the selected pivots at the start of the array
152: * and allgather them */
153: for (i = 0; i < keys_per[rank]; i++) pivots[i] = pivots[my_first + i * non_empty];
154: for (i = keys_per[rank]; i < max_keys_per; i++) pivots[i] = PETSC_MAX_INT;
155: PetscCallMPI(MPI_Allgather(pivots, max_keys_per, MPIU_INT, finalpivots, max_keys_per, MPIU_INT, mapin->comm));
156: for (i = 0, count = 0; i < size; i++) {
157: PetscInt j;
159: for (j = 0; j < max_keys_per; j++) {
160: if (j < keys_per[i]) finalpivots[count++] = finalpivots[i * max_keys_per + j];
161: }
162: }
163: *outpivots = finalpivots;
164: PetscCall(PetscFree(keys_per));
165: PetscCall(PetscFree(pivots));
166: PetscFunctionReturn(PETSC_SUCCESS);
167: }
169: static PetscErrorCode PetscParallelRedistribute(PetscLayout map, PetscInt n, PetscInt arrayin[], PetscInt arrayout[])
170: {
171: PetscMPIInt size, rank;
172: PetscInt myOffset, nextOffset;
173: PetscInt i;
174: PetscMPIInt total, filled;
175: PetscMPIInt sender, nfirst, nsecond;
176: PetscMPIInt firsttag, secondtag;
177: MPI_Request firstreqrcv;
178: MPI_Request *firstreqs;
179: MPI_Request *secondreqs;
180: MPI_Status firststatus;
182: PetscFunctionBegin;
183: PetscCallMPI(MPI_Comm_size(map->comm, &size));
184: PetscCallMPI(MPI_Comm_rank(map->comm, &rank));
185: PetscCall(PetscCommGetNewTag(map->comm, &firsttag));
186: PetscCall(PetscCommGetNewTag(map->comm, &secondtag));
187: myOffset = 0;
188: PetscCall(PetscMalloc2(size, &firstreqs, size, &secondreqs));
189: PetscCallMPI(MPI_Scan(&n, &nextOffset, 1, MPIU_INT, MPI_SUM, map->comm));
190: myOffset = nextOffset - n;
191: total = map->range[rank + 1] - map->range[rank];
192: if (total > 0) PetscCallMPI(MPI_Irecv(arrayout, total, MPIU_INT, MPI_ANY_SOURCE, firsttag, map->comm, &firstreqrcv));
193: for (i = 0, nsecond = 0, nfirst = 0; i < size; i++) {
194: PetscInt itotal;
195: PetscInt overlap, oStart, oEnd;
197: itotal = map->range[i + 1] - map->range[i];
198: if (itotal <= 0) continue;
199: oStart = PetscMax(myOffset, map->range[i]);
200: oEnd = PetscMin(nextOffset, map->range[i + 1]);
201: overlap = oEnd - oStart;
202: if (map->range[i] >= myOffset && map->range[i] < nextOffset) {
203: /* send first message */
204: PetscCallMPI(MPI_Isend(&arrayin[map->range[i] - myOffset], overlap, MPIU_INT, i, firsttag, map->comm, &(firstreqs[nfirst++])));
205: } else if (overlap > 0) {
206: /* send second message */
207: PetscCallMPI(MPI_Isend(&arrayin[oStart - myOffset], overlap, MPIU_INT, i, secondtag, map->comm, &(secondreqs[nsecond++])));
208: } else if (overlap == 0 && myOffset > map->range[i] && myOffset < map->range[i + 1]) {
209: /* send empty second message */
210: PetscCallMPI(MPI_Isend(&arrayin[oStart - myOffset], 0, MPIU_INT, i, secondtag, map->comm, &(secondreqs[nsecond++])));
211: }
212: }
213: filled = 0;
214: sender = -1;
215: if (total > 0) {
216: PetscCallMPI(MPI_Wait(&firstreqrcv, &firststatus));
217: sender = firststatus.MPI_SOURCE;
218: PetscCallMPI(MPI_Get_count(&firststatus, MPIU_INT, &filled));
219: }
220: while (filled < total) {
221: PetscMPIInt mfilled;
222: MPI_Status stat;
224: sender++;
225: PetscCallMPI(MPI_Recv(&arrayout[filled], total - filled, MPIU_INT, sender, secondtag, map->comm, &stat));
226: PetscCallMPI(MPI_Get_count(&stat, MPIU_INT, &mfilled));
227: filled += mfilled;
228: }
229: PetscCallMPI(MPI_Waitall(nfirst, firstreqs, MPI_STATUSES_IGNORE));
230: PetscCallMPI(MPI_Waitall(nsecond, secondreqs, MPI_STATUSES_IGNORE));
231: PetscCall(PetscFree2(firstreqs, secondreqs));
232: PetscFunctionReturn(PETSC_SUCCESS);
233: }
235: static PetscErrorCode PetscParallelSortInt_Samplesort(PetscLayout mapin, PetscLayout mapout, PetscInt keysin[], PetscInt keysout[])
236: {
237: PetscMPIInt size, rank;
238: PetscInt *pivots = NULL, *buffer;
239: PetscInt i, j;
240: PetscMPIInt *keys_per_snd, *keys_per_rcv, *offsets_snd, *offsets_rcv, nrecv;
242: PetscFunctionBegin;
243: PetscCallMPI(MPI_Comm_size(mapin->comm, &size));
244: PetscCallMPI(MPI_Comm_rank(mapin->comm, &rank));
245: PetscCall(PetscMalloc4(size, &keys_per_snd, size, &keys_per_rcv, size + 1, &offsets_snd, size + 1, &offsets_rcv));
246: /* sort locally */
247: PetscCall(PetscSortInt(mapin->n, keysin));
248: /* get P - 1 pivots */
249: PetscCall(PetscParallelSampleSelect(mapin, mapout, keysin, &pivots));
250: /* determine which entries in the sorted array go to which other processes based on the pivots */
251: for (i = 0, j = 0; i < size - 1; i++) {
252: PetscInt prev = j;
254: while ((j < mapin->n) && (keysin[j] < pivots[i])) j++;
255: offsets_snd[i] = prev;
256: keys_per_snd[i] = j - prev;
257: }
258: offsets_snd[size - 1] = j;
259: keys_per_snd[size - 1] = mapin->n - j;
260: offsets_snd[size] = mapin->n;
261: /* get the incoming sizes */
262: PetscCallMPI(MPI_Alltoall(keys_per_snd, 1, MPI_INT, keys_per_rcv, 1, MPI_INT, mapin->comm));
263: offsets_rcv[0] = 0;
264: for (i = 0; i < size; i++) offsets_rcv[i + 1] = offsets_rcv[i] + keys_per_rcv[i];
265: nrecv = offsets_rcv[size];
266: /* all to all exchange */
267: PetscCall(PetscMalloc1(nrecv, &buffer));
268: PetscCallMPI(MPI_Alltoallv(keysin, keys_per_snd, offsets_snd, MPIU_INT, buffer, keys_per_rcv, offsets_rcv, MPIU_INT, mapin->comm));
269: PetscCall(PetscFree(pivots));
270: PetscCall(PetscFree4(keys_per_snd, keys_per_rcv, offsets_snd, offsets_rcv));
272: /* local sort */
273: PetscCall(PetscSortInt(nrecv, buffer));
274: #if defined(PETSC_USE_DEBUG)
275: {
276: PetscBool sorted;
278: PetscCall(PetscParallelSortedInt(mapin->comm, nrecv, buffer, &sorted));
279: PetscCheck(sorted, mapin->comm, PETSC_ERR_PLIB, "samplesort (pre-redistribute) sort failed");
280: }
281: #endif
283: /* redistribute to the desired order */
284: PetscCall(PetscParallelRedistribute(mapout, nrecv, buffer, keysout));
285: PetscCall(PetscFree(buffer));
286: PetscFunctionReturn(PETSC_SUCCESS);
287: }
289: /*@
290: PetscParallelSortInt - Globally sort a distributed array of integers
292: Collective
294: Input Parameters:
295: + mapin - `PetscLayout` describing the distribution of the input keys
296: . mapout - `PetscLayout` describing the desired distribution of the output keys
297: - keysin - the pre-sorted array of integers
299: Output Parameter:
300: . keysout - the array in which the sorted integers will be stored. If mapin == mapout, then keysin may be equal to keysout.
302: Level: developer
304: Notes:
306: This implements a distributed samplesort, which, with local array sizes n_in and n_out,
307: global size N, and global number of MPI processes P, does\:
308: .vb
309: - sorts locally
310: - chooses pivots by sorting (in parallel) (P-1) pivot suggestions from each process using bitonic sort and allgathering a subset of (P-1) of those
311: - using to the pivots to repartition the keys by all-to-all exchange
312: - sorting the repartitioned keys locally (the array is now globally sorted, but does not match the mapout layout)
313: - redistributing to match the mapout layout
314: .ve
316: If `keysin` != `keysout`, then `keysin` will not be changed during `PetscParallelSortInt()`.
318: .seealso: `PetscSortInt()`, `PetscParallelSortedInt()`
319: @*/
320: PetscErrorCode PetscParallelSortInt(PetscLayout mapin, PetscLayout mapout, PetscInt keysin[], PetscInt keysout[])
321: {
322: PetscMPIInt size;
323: PetscMPIInt result;
324: PetscInt *keysincopy = NULL;
326: PetscFunctionBegin;
327: PetscAssertPointer(mapin, 1);
328: PetscAssertPointer(mapout, 2);
329: PetscCallMPI(MPI_Comm_compare(mapin->comm, mapout->comm, &result));
330: PetscCheck(result == MPI_IDENT || result == MPI_CONGRUENT, mapin->comm, PETSC_ERR_ARG_NOTSAMECOMM, "layouts are not on the same communicator");
331: PetscCall(PetscLayoutSetUp(mapin));
332: PetscCall(PetscLayoutSetUp(mapout));
333: if (mapin->n) PetscAssertPointer(keysin, 3);
334: if (mapout->n) PetscAssertPointer(keysout, 4);
335: PetscCheck(mapin->N == mapout->N, mapin->comm, PETSC_ERR_ARG_SIZ, "Input and output layouts have different global sizes (%" PetscInt_FMT " != %" PetscInt_FMT ")", mapin->N, mapout->N);
336: PetscCallMPI(MPI_Comm_size(mapin->comm, &size));
337: if (size == 1) {
338: if (keysout != keysin) PetscCall(PetscMemcpy(keysout, keysin, mapin->n * sizeof(PetscInt)));
339: PetscCall(PetscSortInt(mapout->n, keysout));
340: if (size == 1) PetscFunctionReturn(PETSC_SUCCESS);
341: }
342: if (keysout != keysin) {
343: PetscCall(PetscMalloc1(mapin->n, &keysincopy));
344: PetscCall(PetscMemcpy(keysincopy, keysin, mapin->n * sizeof(PetscInt)));
345: keysin = keysincopy;
346: }
347: PetscCall(PetscParallelSortInt_Samplesort(mapin, mapout, keysin, keysout));
348: #if defined(PETSC_USE_DEBUG)
349: {
350: PetscBool sorted;
352: PetscCall(PetscParallelSortedInt(mapout->comm, mapout->n, keysout, &sorted));
353: PetscCheck(sorted, mapout->comm, PETSC_ERR_PLIB, "samplesort sort failed");
354: }
355: #endif
356: PetscCall(PetscFree(keysincopy));
357: PetscFunctionReturn(PETSC_SUCCESS);
358: }