Actual source code: ex46.c
1: static char help[] = "Time dependent Navier-Stokes problem in 2d and 3d with finite elements.\n\
2: We solve the Navier-Stokes in a rectangular\n\
3: domain, using a parallel unstructured mesh (DMPLEX) to discretize it.\n\
4: This example supports discretized auxiliary fields (Re) as well as\n\
5: multilevel nonlinear solvers.\n\
6: Contributed by: Julian Andrej <juan@tf.uni-kiel.de>\n\n\n";
8: #include <petscdmplex.h>
9: #include <petscsnes.h>
10: #include <petscts.h>
11: #include <petscds.h>
13: /*
14: Navier-Stokes equation:
16: du/dt + u . grad u - \Delta u - grad p = f
17: div u = 0
18: */
20: typedef struct {
21: PetscInt mms;
22: } AppCtx;
24: #define REYN 400.0
26: /* MMS1
28: u = t + x^2 + y^2;
29: v = t + 2*x^2 - 2*x*y;
30: p = x + y - 1;
32: f_x = -2*t*(x + y) + 2*x*y^2 - 4*x^2*y - 2*x^3 + 4.0/Re - 1.0
33: f_y = -2*t*x + 2*y^3 - 4*x*y^2 - 2*x^2*y + 4.0/Re - 1.0
35: so that
37: u_t + u \cdot \nabla u - 1/Re \Delta u + \nabla p + f = <1, 1> + <t (2x + 2y) + 2x^3 + 4x^2y - 2xy^2, t 2x + 2x^2y + 4xy^2 - 2y^3> - 1/Re <4, 4> + <1, 1>
38: + <-t (2x + 2y) + 2xy^2 - 4x^2y - 2x^3 + 4/Re - 1, -2xt + 2y^3 - 4xy^2 - 2x^2y + 4/Re - 1> = 0
39: \nabla \cdot u = 2x - 2x = 0
41: where
43: <u, v> . <<u_x, v_x>, <u_y, v_y>> = <u u_x + v u_y, u v_x + v v_y>
44: */
45: PetscErrorCode mms1_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx)
46: {
47: u[0] = time + x[0] * x[0] + x[1] * x[1];
48: u[1] = time + 2.0 * x[0] * x[0] - 2.0 * x[0] * x[1];
49: return PETSC_SUCCESS;
50: }
52: PetscErrorCode mms1_p_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *p, void *ctx)
53: {
54: *p = x[0] + x[1] - 1.0;
55: return PETSC_SUCCESS;
56: }
58: /* MMS 2*/
60: static PetscErrorCode mms2_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx)
61: {
62: u[0] = PetscSinReal(time + x[0]) * PetscSinReal(time + x[1]);
63: u[1] = PetscCosReal(time + x[0]) * PetscCosReal(time + x[1]);
64: return PETSC_SUCCESS;
65: }
67: static PetscErrorCode mms2_p_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *p, void *ctx)
68: {
69: *p = PetscSinReal(time + x[0] - x[1]);
70: return PETSC_SUCCESS;
71: }
73: static void f0_mms1_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
74: {
75: const PetscReal Re = REYN;
76: const PetscInt Ncomp = dim;
77: PetscInt c, d;
79: for (c = 0; c < Ncomp; ++c) {
80: for (d = 0; d < dim; ++d) f0[c] += u[d] * u_x[c * dim + d];
81: }
82: f0[0] += u_t[0];
83: f0[1] += u_t[1];
85: f0[0] += -2.0 * t * (x[0] + x[1]) + 2.0 * x[0] * x[1] * x[1] - 4.0 * x[0] * x[0] * x[1] - 2.0 * x[0] * x[0] * x[0] + 4.0 / Re - 1.0;
86: f0[1] += -2.0 * t * x[0] + 2.0 * x[1] * x[1] * x[1] - 4.0 * x[0] * x[1] * x[1] - 2.0 * x[0] * x[0] * x[1] + 4.0 / Re - 1.0;
87: }
89: static void f0_mms2_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
90: {
91: const PetscReal Re = REYN;
92: const PetscInt Ncomp = dim;
93: PetscInt c, d;
95: for (c = 0; c < Ncomp; ++c) {
96: for (d = 0; d < dim; ++d) f0[c] += u[d] * u_x[c * dim + d];
97: }
98: f0[0] += u_t[0];
99: f0[1] += u_t[1];
101: f0[0] -= (Re * ((1.0L / 2.0L) * PetscSinReal(2 * t + 2 * x[0]) + PetscSinReal(2 * t + x[0] + x[1]) + PetscCosReal(t + x[0] - x[1])) + 2.0 * PetscSinReal(t + x[0]) * PetscSinReal(t + x[1])) / Re;
102: f0[1] -= (-Re * ((1.0L / 2.0L) * PetscSinReal(2 * t + 2 * x[1]) + PetscSinReal(2 * t + x[0] + x[1]) + PetscCosReal(t + x[0] - x[1])) + 2.0 * PetscCosReal(t + x[0]) * PetscCosReal(t + x[1])) / Re;
103: }
105: static void f1_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
106: {
107: const PetscReal Re = REYN;
108: const PetscInt Ncomp = dim;
109: PetscInt comp, d;
111: for (comp = 0; comp < Ncomp; ++comp) {
112: for (d = 0; d < dim; ++d) f1[comp * dim + d] = 1.0 / Re * u_x[comp * dim + d];
113: f1[comp * dim + comp] -= u[Ncomp];
114: }
115: }
117: static void f0_p(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
118: {
119: PetscInt d;
120: for (d = 0, f0[0] = 0.0; d < dim; ++d) f0[0] += u_x[d * dim + d];
121: }
123: static void f1_p(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
124: {
125: PetscInt d;
126: for (d = 0; d < dim; ++d) f1[d] = 0.0;
127: }
129: /*
130: (psi_i, u_j grad_j u_i) ==> (\psi_i, \phi_j grad_j u_i)
131: */
132: static void g0_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[])
133: {
134: PetscInt NcI = dim, NcJ = dim;
135: PetscInt fc, gc;
136: PetscInt d;
138: for (d = 0; d < dim; ++d) g0[d * dim + d] = u_tShift;
140: for (fc = 0; fc < NcI; ++fc) {
141: for (gc = 0; gc < NcJ; ++gc) g0[fc * NcJ + gc] += u_x[fc * NcJ + gc];
142: }
143: }
145: /*
146: (psi_i, u_j grad_j u_i) ==> (\psi_i, \u_j grad_j \phi_i)
147: */
148: static void g1_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[])
149: {
150: PetscInt NcI = dim;
151: PetscInt NcJ = dim;
152: PetscInt fc, gc, dg;
153: for (fc = 0; fc < NcI; ++fc) {
154: for (gc = 0; gc < NcJ; ++gc) {
155: for (dg = 0; dg < dim; ++dg) {
156: /* kronecker delta */
157: if (fc == gc) g1[(fc * NcJ + gc) * dim + dg] += u[dg];
158: }
159: }
160: }
161: }
163: /* < q, \nabla\cdot u >
164: NcompI = 1, NcompJ = dim */
165: static void g1_pu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[])
166: {
167: PetscInt d;
168: for (d = 0; d < dim; ++d) g1[d * dim + d] = 1.0; /* \frac{\partial\phi^{u_d}}{\partial x_d} */
169: }
171: /* -< \nabla\cdot v, p >
172: NcompI = dim, NcompJ = 1 */
173: static void g2_up(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[])
174: {
175: PetscInt d;
176: for (d = 0; d < dim; ++d) g2[d * dim + d] = -1.0; /* \frac{\partial\psi^{u_d}}{\partial x_d} */
177: }
179: /* < \nabla v, \nabla u + {\nabla u}^T >
180: This just gives \nabla u, give the perdiagonal for the transpose */
181: static void g3_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
182: {
183: const PetscReal Re = REYN;
184: const PetscInt Ncomp = dim;
185: PetscInt compI, d;
187: for (compI = 0; compI < Ncomp; ++compI) {
188: for (d = 0; d < dim; ++d) g3[((compI * Ncomp + compI) * dim + d) * dim + d] = 1.0 / Re;
189: }
190: }
192: static PetscErrorCode ProcessOptions(MPI_Comm comm, AppCtx *options)
193: {
194: PetscFunctionBeginUser;
195: options->mms = 1;
197: PetscOptionsBegin(comm, "", "Navier-Stokes Equation Options", "DMPLEX");
198: PetscCall(PetscOptionsInt("-mms", "The manufactured solution to use", "ex46.c", options->mms, &options->mms, NULL));
199: PetscOptionsEnd();
200: PetscFunctionReturn(PETSC_SUCCESS);
201: }
203: static PetscErrorCode CreateMesh(MPI_Comm comm, DM *dm, AppCtx *ctx)
204: {
205: PetscFunctionBeginUser;
206: PetscCall(DMCreate(comm, dm));
207: PetscCall(DMSetType(*dm, DMPLEX));
208: PetscCall(DMSetFromOptions(*dm));
209: PetscCall(DMViewFromOptions(*dm, NULL, "-dm_view"));
210: PetscFunctionReturn(PETSC_SUCCESS);
211: }
213: static PetscErrorCode SetupProblem(DM dm, AppCtx *ctx)
214: {
215: PetscDS ds;
216: DMLabel label;
217: const PetscInt id = 1;
218: PetscInt dim;
220: PetscFunctionBeginUser;
221: PetscCall(DMGetDimension(dm, &dim));
222: PetscCall(DMGetDS(dm, &ds));
223: PetscCall(DMGetLabel(dm, "marker", &label));
224: switch (dim) {
225: case 2:
226: switch (ctx->mms) {
227: case 1:
228: PetscCall(PetscDSSetResidual(ds, 0, f0_mms1_u, f1_u));
229: PetscCall(PetscDSSetResidual(ds, 1, f0_p, f1_p));
230: PetscCall(PetscDSSetJacobian(ds, 0, 0, g0_uu, g1_uu, NULL, g3_uu));
231: PetscCall(PetscDSSetJacobian(ds, 0, 1, NULL, NULL, g2_up, NULL));
232: PetscCall(PetscDSSetJacobian(ds, 1, 0, NULL, g1_pu, NULL, NULL));
233: PetscCall(PetscDSSetExactSolution(ds, 0, mms1_u_2d, ctx));
234: PetscCall(PetscDSSetExactSolution(ds, 1, mms1_p_2d, ctx));
235: PetscCall(DMAddBoundary(dm, DM_BC_ESSENTIAL, "wall", label, 1, &id, 0, 0, NULL, (void (*)(void))mms1_u_2d, NULL, ctx, NULL));
236: break;
237: case 2:
238: PetscCall(PetscDSSetResidual(ds, 0, f0_mms2_u, f1_u));
239: PetscCall(PetscDSSetResidual(ds, 1, f0_p, f1_p));
240: PetscCall(PetscDSSetJacobian(ds, 0, 0, g0_uu, g1_uu, NULL, g3_uu));
241: PetscCall(PetscDSSetJacobian(ds, 0, 1, NULL, NULL, g2_up, NULL));
242: PetscCall(PetscDSSetJacobian(ds, 1, 0, NULL, g1_pu, NULL, NULL));
243: PetscCall(PetscDSSetExactSolution(ds, 0, mms2_u_2d, ctx));
244: PetscCall(PetscDSSetExactSolution(ds, 1, mms2_p_2d, ctx));
245: PetscCall(DMAddBoundary(dm, DM_BC_ESSENTIAL, "wall", label, 1, &id, 0, 0, NULL, (void (*)(void))mms2_u_2d, NULL, ctx, NULL));
246: break;
247: default:
248: SETERRQ(PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Invalid MMS %" PetscInt_FMT, ctx->mms);
249: }
250: break;
251: default:
252: SETERRQ(PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Invalid dimension %" PetscInt_FMT, dim);
253: }
254: PetscFunctionReturn(PETSC_SUCCESS);
255: }
257: static PetscErrorCode SetupDiscretization(DM dm, AppCtx *ctx)
258: {
259: MPI_Comm comm;
260: DM cdm = dm;
261: PetscFE fe[2];
262: PetscInt dim;
263: PetscBool simplex;
265: PetscFunctionBeginUser;
266: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
267: PetscCall(DMGetDimension(dm, &dim));
268: PetscCall(DMPlexIsSimplex(dm, &simplex));
269: PetscCall(PetscFECreateDefault(comm, dim, dim, simplex, "vel_", PETSC_DEFAULT, &fe[0]));
270: PetscCall(PetscObjectSetName((PetscObject)fe[0], "velocity"));
271: PetscCall(PetscFECreateDefault(comm, dim, 1, simplex, "pres_", PETSC_DEFAULT, &fe[1]));
272: PetscCall(PetscFECopyQuadrature(fe[0], fe[1]));
273: PetscCall(PetscObjectSetName((PetscObject)fe[1], "pressure"));
274: /* Set discretization and boundary conditions for each mesh */
275: PetscCall(DMSetField(dm, 0, NULL, (PetscObject)fe[0]));
276: PetscCall(DMSetField(dm, 1, NULL, (PetscObject)fe[1]));
277: PetscCall(DMCreateDS(dm));
278: PetscCall(SetupProblem(dm, ctx));
279: while (cdm) {
280: PetscObject pressure;
281: MatNullSpace nsp;
283: PetscCall(DMGetField(cdm, 1, NULL, &pressure));
284: PetscCall(MatNullSpaceCreate(PetscObjectComm(pressure), PETSC_TRUE, 0, NULL, &nsp));
285: PetscCall(PetscObjectCompose(pressure, "nullspace", (PetscObject)nsp));
286: PetscCall(MatNullSpaceDestroy(&nsp));
288: PetscCall(DMCopyDisc(dm, cdm));
289: PetscCall(DMGetCoarseDM(cdm, &cdm));
290: }
291: PetscCall(PetscFEDestroy(&fe[0]));
292: PetscCall(PetscFEDestroy(&fe[1]));
293: PetscFunctionReturn(PETSC_SUCCESS);
294: }
296: static PetscErrorCode MonitorError(TS ts, PetscInt step, PetscReal crtime, Vec u, void *ctx)
297: {
298: PetscSimplePointFunc funcs[2];
299: void *ctxs[2];
300: DM dm;
301: PetscDS ds;
302: PetscReal ferrors[2];
304: PetscFunctionBeginUser;
305: PetscCall(TSGetDM(ts, &dm));
306: PetscCall(DMGetDS(dm, &ds));
307: PetscCall(PetscDSGetExactSolution(ds, 0, &funcs[0], &ctxs[0]));
308: PetscCall(PetscDSGetExactSolution(ds, 1, &funcs[1], &ctxs[1]));
309: PetscCall(DMComputeL2FieldDiff(dm, crtime, funcs, ctxs, u, ferrors));
310: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Timestep: %04d time = %-8.4g \t L_2 Error: [%2.3g, %2.3g]\n", (int)step, (double)crtime, (double)ferrors[0], (double)ferrors[1]));
311: PetscFunctionReturn(PETSC_SUCCESS);
312: }
314: int main(int argc, char **argv)
315: {
316: AppCtx ctx;
317: DM dm;
318: TS ts;
319: Vec u, r;
321: PetscFunctionBeginUser;
322: PetscCall(PetscInitialize(&argc, &argv, NULL, help));
323: PetscCall(ProcessOptions(PETSC_COMM_WORLD, &ctx));
324: PetscCall(CreateMesh(PETSC_COMM_WORLD, &dm, &ctx));
325: PetscCall(DMSetApplicationContext(dm, &ctx));
326: PetscCall(SetupDiscretization(dm, &ctx));
327: PetscCall(DMPlexCreateClosureIndex(dm, NULL));
329: PetscCall(DMCreateGlobalVector(dm, &u));
330: PetscCall(VecDuplicate(u, &r));
332: PetscCall(TSCreate(PETSC_COMM_WORLD, &ts));
333: PetscCall(TSMonitorSet(ts, MonitorError, &ctx, NULL));
334: PetscCall(TSSetDM(ts, dm));
335: PetscCall(DMTSSetBoundaryLocal(dm, DMPlexTSComputeBoundary, &ctx));
336: PetscCall(DMTSSetIFunctionLocal(dm, DMPlexTSComputeIFunctionFEM, &ctx));
337: PetscCall(DMTSSetIJacobianLocal(dm, DMPlexTSComputeIJacobianFEM, &ctx));
338: PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));
339: PetscCall(TSSetFromOptions(ts));
340: PetscCall(DMTSCheckFromOptions(ts, u));
342: {
343: PetscSimplePointFunc funcs[2];
344: void *ctxs[2];
345: PetscDS ds;
347: PetscCall(DMGetDS(dm, &ds));
348: PetscCall(PetscDSGetExactSolution(ds, 0, &funcs[0], &ctxs[0]));
349: PetscCall(PetscDSGetExactSolution(ds, 1, &funcs[1], &ctxs[1]));
350: PetscCall(DMProjectFunction(dm, 0.0, funcs, ctxs, INSERT_ALL_VALUES, u));
351: }
352: PetscCall(TSSolve(ts, u));
353: PetscCall(VecViewFromOptions(u, NULL, "-sol_vec_view"));
355: PetscCall(VecDestroy(&u));
356: PetscCall(VecDestroy(&r));
357: PetscCall(TSDestroy(&ts));
358: PetscCall(DMDestroy(&dm));
359: PetscCall(PetscFinalize());
360: return 0;
361: }
363: /*TEST
365: # Full solves
366: test:
367: suffix: 2d_p2p1_r1
368: requires: !single triangle
369: filter: sed -e "s~ATOL~RTOL~g" -e "s~ABS~RELATIVE~g"
370: args: -dm_refine 1 -vel_petscspace_degree 2 -pres_petscspace_degree 1 \
371: -ts_type beuler -ts_max_steps 10 -ts_dt 0.1 -ts_monitor -dmts_check \
372: -snes_monitor_short -snes_converged_reason \
373: -ksp_monitor_short -ksp_converged_reason \
374: -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full \
375: -fieldsplit_velocity_pc_type lu \
376: -fieldsplit_pressure_ksp_rtol 1.0e-10 -fieldsplit_pressure_pc_type jacobi
378: test:
379: suffix: 2d_q2q1_r1
380: requires: !single
381: filter: sed -e "s~ATOL~RTOL~g" -e "s~ABS~RELATIVE~g" -e "s~ 0\]~ 0.0\]~g"
382: args: -dm_plex_simplex 0 -dm_refine 1 -vel_petscspace_degree 2 -pres_petscspace_degree 1 \
383: -ts_type beuler -ts_max_steps 10 -ts_dt 0.1 -ts_monitor -dmts_check \
384: -snes_monitor_short -snes_converged_reason \
385: -ksp_monitor_short -ksp_converged_reason \
386: -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full \
387: -fieldsplit_velocity_pc_type lu \
388: -fieldsplit_pressure_ksp_rtol 1.0e-10 -fieldsplit_pressure_pc_type jacobi
390: TEST*/