Actual source code: ex1.c

  1: static char help[] = "Nonlinear Reaction Problem from Chemistry.\n";

  3: /*F

  5:      This directory contains examples based on the PDES/ODES given in the book
  6:       Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations by
  7:       W. Hundsdorf and J.G. Verwer

  9:      Page 3, Section 1.1 Nonlinear Reaction Problems from Chemistry

 11: \begin{eqnarray}
 12:                  {U_1}_t  - k U_1 U_2  & = & 0 \\
 13:                  {U_2}_t  - k U_1 U_2 & = & 0 \\
 14:                  {U_3}_t  - k U_1 U_2 & = & 0
 15: \end{eqnarray}

 17:      Helpful runtime monitoring options:
 18:          -ts_view                  -  prints information about the solver being used
 19:          -ts_monitor               -  prints the progress of the solver
 20:          -ts_adapt_monitor         -  prints the progress of the time-step adaptor
 21:          -ts_monitor_lg_timestep   -  plots the size of each timestep (at each time-step)
 22:          -ts_monitor_lg_solution   -  plots each component of the solution as a function of time (at each timestep)
 23:          -ts_monitor_lg_error      -  plots each component of the error in the solution as a function of time (at each timestep)
 24:          -draw_pause -2            -  hold the plots a the end of the solution process, enter a mouse press in each window to end the process

 26:          -ts_monitor_lg_timestep -1  -  plots the size of each timestep (at the end of the solution process)
 27:          -ts_monitor_lg_solution -1  -  plots each component of the solution as a function of time (at the end of the solution process)
 28:          -ts_monitor_lg_error -1     -  plots each component of the error in the solution as a function of time (at the end of the solution process)
 29:          -lg_use_markers false       -  do NOT show the data points on the plots
 30:          -draw_save                  -  save the timestep and solution plot as a .Gif image file

 32: F*/

 34: /*
 35:       Project: Generate a nicely formatted HTML page using
 36:          1) the HTML version of the source code and text in this file, use make html to generate the file ex1.c.html
 37:          2) the images (Draw_XXX_0_0.Gif Draw_YYY_0_0.Gif Draw_$_1_0.Gif) and
 38:          3) the text output (output.txt) generated by running the following commands.
 39:          4) <iframe src="generated_topics.html" scrolling="no" frameborder="0"  width=600 height=300></iframe>

 41:       rm -rf *.Gif
 42:       ./ex1 -ts_monitor_lg_error -1 -ts_monitor_lg_solution -1   -draw_pause -2 -ts_max_steps 100 -ts_monitor_lg_timestep -1 -draw_save -draw_virtual -ts_monitor -ts_adapt_monitor -ts_view  > output.txt

 44:       For example something like
 45: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
 46: <html>
 47:   <head>
 48:     <meta http-equiv="content-type" content="text/html;charset=utf-8">
 49:     <title>PETSc Example -- Nonlinear Reaction Problem from Chemistry</title>
 50:   </head>
 51:   <body>
 52:   <iframe src="ex1.c.html" scrolling="yes" frameborder="1"  width=2000 height=400></iframe>
 53:   <img alt="" src="Draw_0x84000000_0_0.Gif"/><img alt="" src="Draw_0x84000001_0_0.Gif"/><img alt="" src="Draw_0x84000001_1_0.Gif"/>
 54:   <iframe src="output.txt" scrolling="yes" frameborder="1"  width=2000 height=1000></iframe>
 55:   </body>
 56: </html>

 58: */

 60: /*
 61:    Include "petscts.h" so that we can use TS solvers.  Note that this
 62:    file automatically includes:
 63:      petscsys.h       - base PETSc routines   petscvec.h - vectors
 64:      petscmat.h - matrices
 65:      petscis.h     - index sets            petscksp.h - Krylov subspace methods
 66:      petscviewer.h - viewers               petscpc.h  - preconditioners
 67:      petscksp.h   - linear solvers
 68: */

 70: #include <petscts.h>

 72: typedef struct {
 73:   PetscScalar k;
 74:   Vec         initialsolution;
 75: } AppCtx;

 77: PetscErrorCode IFunctionView(AppCtx *ctx, PetscViewer v)
 78: {
 79:   PetscFunctionBegin;
 80:   PetscCall(PetscViewerBinaryWrite(v, &ctx->k, 1, PETSC_SCALAR));
 81:   PetscFunctionReturn(PETSC_SUCCESS);
 82: }

 84: PetscErrorCode IFunctionLoad(AppCtx **ctx, PetscViewer v)
 85: {
 86:   PetscFunctionBegin;
 87:   PetscCall(PetscNew(ctx));
 88:   PetscCall(PetscViewerBinaryRead(v, &(*ctx)->k, 1, NULL, PETSC_SCALAR));
 89:   PetscFunctionReturn(PETSC_SUCCESS);
 90: }

 92: /*
 93:      Defines the ODE passed to the ODE solver
 94: */
 95: PetscErrorCode IFunction(TS ts, PetscReal t, Vec U, Vec Udot, Vec F, AppCtx *ctx)
 96: {
 97:   PetscScalar       *f;
 98:   const PetscScalar *u, *udot;

100:   PetscFunctionBegin;
101:   /*  The next three lines allow us to access the entries of the vectors directly */
102:   PetscCall(VecGetArrayRead(U, &u));
103:   PetscCall(VecGetArrayRead(Udot, &udot));
104:   PetscCall(VecGetArrayWrite(F, &f));
105:   f[0] = udot[0] + ctx->k * u[0] * u[1];
106:   f[1] = udot[1] + ctx->k * u[0] * u[1];
107:   f[2] = udot[2] - ctx->k * u[0] * u[1];
108:   PetscCall(VecRestoreArrayRead(U, &u));
109:   PetscCall(VecRestoreArrayRead(Udot, &udot));
110:   PetscCall(VecRestoreArrayWrite(F, &f));
111:   PetscFunctionReturn(PETSC_SUCCESS);
112: }

114: /*
115:      Defines the Jacobian of the ODE passed to the ODE solver. See TSSetIJacobian() for the meaning of a and the Jacobian.
116: */
117: PetscErrorCode IJacobian(TS ts, PetscReal t, Vec U, Vec Udot, PetscReal a, Mat A, Mat B, AppCtx *ctx)
118: {
119:   PetscInt           rowcol[] = {0, 1, 2};
120:   PetscScalar        J[3][3];
121:   const PetscScalar *u, *udot;

123:   PetscFunctionBegin;
124:   PetscCall(VecGetArrayRead(U, &u));
125:   PetscCall(VecGetArrayRead(Udot, &udot));
126:   J[0][0] = a + ctx->k * u[1];
127:   J[0][1] = ctx->k * u[0];
128:   J[0][2] = 0.0;
129:   J[1][0] = ctx->k * u[1];
130:   J[1][1] = a + ctx->k * u[0];
131:   J[1][2] = 0.0;
132:   J[2][0] = -ctx->k * u[1];
133:   J[2][1] = -ctx->k * u[0];
134:   J[2][2] = a;
135:   PetscCall(MatSetValues(B, 3, rowcol, 3, rowcol, &J[0][0], INSERT_VALUES));
136:   PetscCall(VecRestoreArrayRead(U, &u));
137:   PetscCall(VecRestoreArrayRead(Udot, &udot));

139:   PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
140:   PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
141:   if (A != B) {
142:     PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
143:     PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
144:   }
145:   PetscFunctionReturn(PETSC_SUCCESS);
146: }

148: /*
149:      Defines the exact (analytic) solution to the ODE
150: */
151: static PetscErrorCode Solution(TS ts, PetscReal t, Vec U, AppCtx *ctx)
152: {
153:   const PetscScalar *uinit;
154:   PetscScalar       *u, d0, q;

156:   PetscFunctionBegin;
157:   PetscCall(VecGetArrayRead(ctx->initialsolution, &uinit));
158:   PetscCall(VecGetArrayWrite(U, &u));
159:   d0 = uinit[0] - uinit[1];
160:   if (d0 == 0.0) q = ctx->k * t;
161:   else q = (1.0 - PetscExpScalar(-ctx->k * t * d0)) / d0;
162:   u[0] = uinit[0] / (1.0 + uinit[1] * q);
163:   u[1] = u[0] - d0;
164:   u[2] = uinit[1] + uinit[2] - u[1];
165:   PetscCall(VecRestoreArrayWrite(U, &u));
166:   PetscCall(VecRestoreArrayRead(ctx->initialsolution, &uinit));
167:   PetscFunctionReturn(PETSC_SUCCESS);
168: }

170: int main(int argc, char **argv)
171: {
172:   TS                ts; /* ODE integrator */
173:   Vec               U;  /* solution will be stored here */
174:   Mat               A;  /* Jacobian matrix */
175:   PetscMPIInt       size;
176:   PetscInt          n = 3;
177:   AppCtx            ctx;
178:   PetscScalar      *u;
179:   const char *const names[] = {"U1", "U2", "U3", NULL};

181:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
182:      Initialize program
183:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
184:   PetscFunctionBeginUser;
185:   PetscCall(PetscInitialize(&argc, &argv, (char *)0, help));
186:   PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD, &size));
187:   PetscCheck(size == 1, PETSC_COMM_WORLD, PETSC_ERR_WRONG_MPI_SIZE, "Only for sequential runs");

189:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
190:     Create necessary matrix and vectors
191:     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
192:   PetscCall(MatCreate(PETSC_COMM_WORLD, &A));
193:   PetscCall(MatSetSizes(A, n, n, PETSC_DETERMINE, PETSC_DETERMINE));
194:   PetscCall(MatSetFromOptions(A));
195:   PetscCall(MatSetUp(A));

197:   PetscCall(MatCreateVecs(A, &U, NULL));

199:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
200:     Set runtime options
201:     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
202:   ctx.k = .9;
203:   PetscCall(PetscOptionsGetScalar(NULL, NULL, "-k", &ctx.k, NULL));
204:   PetscCall(VecDuplicate(U, &ctx.initialsolution));
205:   PetscCall(VecGetArrayWrite(ctx.initialsolution, &u));
206:   u[0] = 1;
207:   u[1] = .7;
208:   u[2] = 0;
209:   PetscCall(VecRestoreArrayWrite(ctx.initialsolution, &u));
210:   PetscCall(PetscOptionsGetVec(NULL, NULL, "-initial", ctx.initialsolution, NULL));

212:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
213:      Create timestepping solver context
214:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
215:   PetscCall(TSCreate(PETSC_COMM_WORLD, &ts));
216:   PetscCall(TSSetProblemType(ts, TS_NONLINEAR));
217:   PetscCall(TSSetType(ts, TSROSW));
218:   PetscCall(TSSetIFunction(ts, NULL, (TSIFunction)IFunction, &ctx));
219:   PetscCall(TSSetIJacobian(ts, A, A, (TSIJacobian)IJacobian, &ctx));
220:   PetscCall(TSSetSolutionFunction(ts, (TSSolutionFunction)Solution, &ctx));

222:   {
223:     DM    dm;
224:     void *ptr;
225:     PetscCall(TSGetDM(ts, &dm));
226:     PetscCall(PetscDLSym(NULL, "IFunctionView", &ptr));
227:     PetscCall(PetscDLSym(NULL, "IFunctionLoad", &ptr));
228:     PetscCall(DMTSSetIFunctionSerialize(dm, (PetscErrorCode(*)(void *, PetscViewer))IFunctionView, (PetscErrorCode(*)(void **, PetscViewer))IFunctionLoad));
229:     PetscCall(DMTSSetIJacobianSerialize(dm, (PetscErrorCode(*)(void *, PetscViewer))IFunctionView, (PetscErrorCode(*)(void **, PetscViewer))IFunctionLoad));
230:   }

232:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
233:      Set initial conditions
234:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
235:   PetscCall(Solution(ts, 0, U, &ctx));
236:   PetscCall(TSSetSolution(ts, U));

238:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
239:      Set solver options
240:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
241:   PetscCall(TSSetTimeStep(ts, .001));
242:   PetscCall(TSSetMaxSteps(ts, 1000));
243:   PetscCall(TSSetMaxTime(ts, 20.0));
244:   PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));
245:   PetscCall(TSSetFromOptions(ts));
246:   PetscCall(TSMonitorLGSetVariableNames(ts, names));

248:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
249:      Solve nonlinear system
250:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
251:   PetscCall(TSSolve(ts, U));

253:   PetscCall(TSView(ts, PETSC_VIEWER_BINARY_WORLD));

255:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
256:      Free work space.  All PETSc objects should be destroyed when they are no longer needed.
257:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
258:   PetscCall(VecDestroy(&ctx.initialsolution));
259:   PetscCall(MatDestroy(&A));
260:   PetscCall(VecDestroy(&U));
261:   PetscCall(TSDestroy(&ts));

263:   PetscCall(PetscFinalize());
264:   return 0;
265: }

267: /*TEST

269:    test:
270:      args: -ts_view
271:      requires: dlsym defined(PETSC_HAVE_DYNAMIC_LIBRARIES)

273:    test:
274:      suffix: 2
275:      args: -ts_monitor_lg_error -ts_monitor_lg_solution  -ts_view
276:      requires: x dlsym defined(PETSC_HAVE_DYNAMIC_LIBRARIES)
277:      output_file: output/ex1_1.out

279: TEST*/