Actual source code: minsurf1.c

  1: #include <petsctao.h>

  3: static char help[] = "This example demonstrates use of the TAO package to\n\
  4: solve an unconstrained system of equations.  This example is based on a\n\
  5: problem from the MINPACK-2 test suite.  Given a rectangular 2-D domain and\n\
  6: boundary values along the edges of the domain, the objective is to find the\n\
  7: surface with the minimal area that satisfies the boundary conditions.\n\
  8: This application solves this problem using complimentarity -- We are actually\n\
  9: solving the system  (grad f)_i >= 0, if x_i == l_i \n\
 10:                     (grad f)_i = 0, if l_i < x_i < u_i \n\
 11:                     (grad f)_i <= 0, if x_i == u_i  \n\
 12: where f is the function to be minimized. \n\
 13: \n\
 14: The command line options are:\n\
 15:   -mx <xg>, where <xg> = number of grid points in the 1st coordinate direction\n\
 16:   -my <yg>, where <yg> = number of grid points in the 2nd coordinate direction\n\
 17:   -start <st>, where <st> =0 for zero vector, and an average of the boundary conditions otherwise \n\n";

 19: /*
 20:    User-defined application context - contains data needed by the
 21:    application-provided call-back routines, FormFunctionGradient(),
 22:    FormHessian().
 23: */
 24: typedef struct {
 25:   PetscInt   mx, my;
 26:   PetscReal *bottom, *top, *left, *right;
 27: } AppCtx;

 29: /* -------- User-defined Routines --------- */

 31: static PetscErrorCode MSA_BoundaryConditions(AppCtx *);
 32: static PetscErrorCode MSA_InitialPoint(AppCtx *, Vec);
 33: PetscErrorCode        FormConstraints(Tao, Vec, Vec, void *);
 34: PetscErrorCode        FormJacobian(Tao, Vec, Mat, Mat, void *);

 36: int main(int argc, char **argv)
 37: {
 38:   Vec         x;                    /* solution vector */
 39:   Vec         c;                    /* Constraints function vector */
 40:   Vec         xl, xu;               /* Bounds on the variables */
 41:   PetscBool   flg;                  /* A return variable when checking for user options */
 42:   Tao         tao;                  /* TAO solver context */
 43:   Mat         J;                    /* Jacobian matrix */
 44:   PetscInt    N;                    /* Number of elements in vector */
 45:   PetscScalar lb = PETSC_NINFINITY; /* lower bound constant */
 46:   PetscScalar ub = PETSC_INFINITY;  /* upper bound constant */
 47:   AppCtx      user;                 /* user-defined work context */

 49:   /* Initialize PETSc, TAO */
 50:   PetscFunctionBeginUser;
 51:   PetscCall(PetscInitialize(&argc, &argv, (char *)0, help));

 53:   /* Specify default dimension of the problem */
 54:   user.mx = 4;
 55:   user.my = 4;

 57:   /* Check for any command line arguments that override defaults */
 58:   PetscCall(PetscOptionsGetInt(NULL, NULL, "-mx", &user.mx, &flg));
 59:   PetscCall(PetscOptionsGetInt(NULL, NULL, "-my", &user.my, &flg));

 61:   /* Calculate any derived values from parameters */
 62:   N = user.mx * user.my;

 64:   PetscCall(PetscPrintf(PETSC_COMM_SELF, "\n---- Minimum Surface Area Problem -----\n"));
 65:   PetscCall(PetscPrintf(PETSC_COMM_SELF, "mx:%" PetscInt_FMT ", my:%" PetscInt_FMT "\n", user.mx, user.my));

 67:   /* Create appropriate vectors and matrices */
 68:   PetscCall(VecCreateSeq(MPI_COMM_SELF, N, &x));
 69:   PetscCall(VecDuplicate(x, &c));
 70:   PetscCall(MatCreateSeqAIJ(MPI_COMM_SELF, N, N, 7, NULL, &J));

 72:   /* The TAO code begins here */

 74:   /* Create TAO solver and set desired solution method */
 75:   PetscCall(TaoCreate(PETSC_COMM_SELF, &tao));
 76:   PetscCall(TaoSetType(tao, TAOSSILS));

 78:   /* Set data structure */
 79:   PetscCall(TaoSetSolution(tao, x));

 81:   /*  Set routines for constraints function and Jacobian evaluation */
 82:   PetscCall(TaoSetConstraintsRoutine(tao, c, FormConstraints, (void *)&user));
 83:   PetscCall(TaoSetJacobianRoutine(tao, J, J, FormJacobian, (void *)&user));

 85:   /* Set the variable bounds */
 86:   PetscCall(MSA_BoundaryConditions(&user));

 88:   /* Set initial solution guess */
 89:   PetscCall(MSA_InitialPoint(&user, x));

 91:   /* Set Bounds on variables */
 92:   PetscCall(VecDuplicate(x, &xl));
 93:   PetscCall(VecDuplicate(x, &xu));
 94:   PetscCall(VecSet(xl, lb));
 95:   PetscCall(VecSet(xu, ub));
 96:   PetscCall(TaoSetVariableBounds(tao, xl, xu));

 98:   /* Check for any tao command line options */
 99:   PetscCall(TaoSetFromOptions(tao));

101:   /* Solve the application */
102:   PetscCall(TaoSolve(tao));

104:   /* Free Tao data structures */
105:   PetscCall(TaoDestroy(&tao));

107:   /* Free PETSc data structures */
108:   PetscCall(VecDestroy(&x));
109:   PetscCall(VecDestroy(&xl));
110:   PetscCall(VecDestroy(&xu));
111:   PetscCall(VecDestroy(&c));
112:   PetscCall(MatDestroy(&J));

114:   /* Free user-created data structures */
115:   PetscCall(PetscFree(user.bottom));
116:   PetscCall(PetscFree(user.top));
117:   PetscCall(PetscFree(user.left));
118:   PetscCall(PetscFree(user.right));

120:   PetscCall(PetscFinalize());
121:   return 0;
122: }

124: /* -------------------------------------------------------------------- */

126: /*  FormConstraints - Evaluates gradient of f.

128:     Input Parameters:
129: .   tao  - the TAO_APPLICATION context
130: .   X    - input vector
131: .   ptr  - optional user-defined context, as set by TaoSetConstraintsRoutine()

133:     Output Parameters:
134: .   G - vector containing the newly evaluated gradient
135: */
136: PetscErrorCode FormConstraints(Tao tao, Vec X, Vec G, void *ptr)
137: {
138:   AppCtx      *user = (AppCtx *)ptr;
139:   PetscInt     i, j, row;
140:   PetscInt     mx = user->mx, my = user->my;
141:   PetscReal    hx = 1.0 / (mx + 1), hy = 1.0 / (my + 1), hydhx = hy / hx, hxdhy = hx / hy;
142:   PetscReal    f1, f2, f3, f4, f5, f6, d1, d2, d3, d4, d5, d6, d7, d8, xc, xl, xr, xt, xb, xlt, xrb;
143:   PetscReal    df1dxc, df2dxc, df3dxc, df4dxc, df5dxc, df6dxc;
144:   PetscScalar  zero = 0.0;
145:   PetscScalar *g, *x;

147:   PetscFunctionBegin;
148:   /* Initialize vector to zero */
149:   PetscCall(VecSet(G, zero));

151:   /* Get pointers to vector data */
152:   PetscCall(VecGetArray(X, &x));
153:   PetscCall(VecGetArray(G, &g));

155:   /* Compute function over the locally owned part of the mesh */
156:   for (j = 0; j < my; j++) {
157:     for (i = 0; i < mx; i++) {
158:       row = j * mx + i;

160:       xc  = x[row];
161:       xlt = xrb = xl = xr = xb = xt = xc;

163:       if (i == 0) { /* left side */
164:         xl  = user->left[j + 1];
165:         xlt = user->left[j + 2];
166:       } else {
167:         xl = x[row - 1];
168:       }

170:       if (j == 0) { /* bottom side */
171:         xb  = user->bottom[i + 1];
172:         xrb = user->bottom[i + 2];
173:       } else {
174:         xb = x[row - mx];
175:       }

177:       if (i + 1 == mx) { /* right side */
178:         xr  = user->right[j + 1];
179:         xrb = user->right[j];
180:       } else {
181:         xr = x[row + 1];
182:       }

184:       if (j + 1 == 0 + my) { /* top side */
185:         xt  = user->top[i + 1];
186:         xlt = user->top[i];
187:       } else {
188:         xt = x[row + mx];
189:       }

191:       if (i > 0 && j + 1 < my) xlt = x[row - 1 + mx];
192:       if (j > 0 && i + 1 < mx) xrb = x[row + 1 - mx];

194:       d1 = (xc - xl);
195:       d2 = (xc - xr);
196:       d3 = (xc - xt);
197:       d4 = (xc - xb);
198:       d5 = (xr - xrb);
199:       d6 = (xrb - xb);
200:       d7 = (xlt - xl);
201:       d8 = (xt - xlt);

203:       df1dxc = d1 * hydhx;
204:       df2dxc = (d1 * hydhx + d4 * hxdhy);
205:       df3dxc = d3 * hxdhy;
206:       df4dxc = (d2 * hydhx + d3 * hxdhy);
207:       df5dxc = d2 * hydhx;
208:       df6dxc = d4 * hxdhy;

210:       d1 /= hx;
211:       d2 /= hx;
212:       d3 /= hy;
213:       d4 /= hy;
214:       d5 /= hy;
215:       d6 /= hx;
216:       d7 /= hy;
217:       d8 /= hx;

219:       f1 = PetscSqrtScalar(1.0 + d1 * d1 + d7 * d7);
220:       f2 = PetscSqrtScalar(1.0 + d1 * d1 + d4 * d4);
221:       f3 = PetscSqrtScalar(1.0 + d3 * d3 + d8 * d8);
222:       f4 = PetscSqrtScalar(1.0 + d3 * d3 + d2 * d2);
223:       f5 = PetscSqrtScalar(1.0 + d2 * d2 + d5 * d5);
224:       f6 = PetscSqrtScalar(1.0 + d4 * d4 + d6 * d6);

226:       df1dxc /= f1;
227:       df2dxc /= f2;
228:       df3dxc /= f3;
229:       df4dxc /= f4;
230:       df5dxc /= f5;
231:       df6dxc /= f6;

233:       g[row] = (df1dxc + df2dxc + df3dxc + df4dxc + df5dxc + df6dxc) / 2.0;
234:     }
235:   }

237:   /* Restore vectors */
238:   PetscCall(VecRestoreArray(X, &x));
239:   PetscCall(VecRestoreArray(G, &g));
240:   PetscCall(PetscLogFlops(67 * mx * my));
241:   PetscFunctionReturn(PETSC_SUCCESS);
242: }

244: /* ------------------------------------------------------------------- */
245: /*
246:    FormJacobian - Evaluates Jacobian matrix.

248:    Input Parameters:
249: .  tao  - the TAO_APPLICATION context
250: .  X    - input vector
251: .  ptr  - optional user-defined context, as set by TaoSetJacobian()

253:    Output Parameters:
254: .  tH    - Jacobian matrix

256: */
257: PetscErrorCode FormJacobian(Tao tao, Vec X, Mat H, Mat tHPre, void *ptr)
258: {
259:   AppCtx            *user = (AppCtx *)ptr;
260:   PetscInt           i, j, k, row;
261:   PetscInt           mx = user->mx, my = user->my;
262:   PetscInt           col[7];
263:   PetscReal          hx = 1.0 / (mx + 1), hy = 1.0 / (my + 1), hydhx = hy / hx, hxdhy = hx / hy;
264:   PetscReal          f1, f2, f3, f4, f5, f6, d1, d2, d3, d4, d5, d6, d7, d8, xc, xl, xr, xt, xb, xlt, xrb;
265:   PetscReal          hl, hr, ht, hb, hc, htl, hbr;
266:   const PetscScalar *x;
267:   PetscScalar        v[7];
268:   PetscBool          assembled;

270:   /* Set various matrix options */
271:   PetscFunctionBegin;
272:   PetscCall(MatSetOption(H, MAT_IGNORE_OFF_PROC_ENTRIES, PETSC_TRUE));
273:   PetscCall(MatAssembled(H, &assembled));
274:   if (assembled) PetscCall(MatZeroEntries(H));

276:   /* Get pointers to vector data */
277:   PetscCall(VecGetArrayRead(X, &x));

279:   /* Compute Jacobian over the locally owned part of the mesh */
280:   for (i = 0; i < mx; i++) {
281:     for (j = 0; j < my; j++) {
282:       row = j * mx + i;

284:       xc  = x[row];
285:       xlt = xrb = xl = xr = xb = xt = xc;

287:       /* Left side */
288:       if (i == 0) {
289:         xl  = user->left[j + 1];
290:         xlt = user->left[j + 2];
291:       } else {
292:         xl = x[row - 1];
293:       }

295:       if (j == 0) {
296:         xb  = user->bottom[i + 1];
297:         xrb = user->bottom[i + 2];
298:       } else {
299:         xb = x[row - mx];
300:       }

302:       if (i + 1 == mx) {
303:         xr  = user->right[j + 1];
304:         xrb = user->right[j];
305:       } else {
306:         xr = x[row + 1];
307:       }

309:       if (j + 1 == my) {
310:         xt  = user->top[i + 1];
311:         xlt = user->top[i];
312:       } else {
313:         xt = x[row + mx];
314:       }

316:       if (i > 0 && j + 1 < my) xlt = x[row - 1 + mx];
317:       if (j > 0 && i + 1 < mx) xrb = x[row + 1 - mx];

319:       d1 = (xc - xl) / hx;
320:       d2 = (xc - xr) / hx;
321:       d3 = (xc - xt) / hy;
322:       d4 = (xc - xb) / hy;
323:       d5 = (xrb - xr) / hy;
324:       d6 = (xrb - xb) / hx;
325:       d7 = (xlt - xl) / hy;
326:       d8 = (xlt - xt) / hx;

328:       f1 = PetscSqrtScalar(1.0 + d1 * d1 + d7 * d7);
329:       f2 = PetscSqrtScalar(1.0 + d1 * d1 + d4 * d4);
330:       f3 = PetscSqrtScalar(1.0 + d3 * d3 + d8 * d8);
331:       f4 = PetscSqrtScalar(1.0 + d3 * d3 + d2 * d2);
332:       f5 = PetscSqrtScalar(1.0 + d2 * d2 + d5 * d5);
333:       f6 = PetscSqrtScalar(1.0 + d4 * d4 + d6 * d6);

335:       hl = (-hydhx * (1.0 + d7 * d7) + d1 * d7) / (f1 * f1 * f1) + (-hydhx * (1.0 + d4 * d4) + d1 * d4) / (f2 * f2 * f2);
336:       hr = (-hydhx * (1.0 + d5 * d5) + d2 * d5) / (f5 * f5 * f5) + (-hydhx * (1.0 + d3 * d3) + d2 * d3) / (f4 * f4 * f4);
337:       ht = (-hxdhy * (1.0 + d8 * d8) + d3 * d8) / (f3 * f3 * f3) + (-hxdhy * (1.0 + d2 * d2) + d2 * d3) / (f4 * f4 * f4);
338:       hb = (-hxdhy * (1.0 + d6 * d6) + d4 * d6) / (f6 * f6 * f6) + (-hxdhy * (1.0 + d1 * d1) + d1 * d4) / (f2 * f2 * f2);

340:       hbr = -d2 * d5 / (f5 * f5 * f5) - d4 * d6 / (f6 * f6 * f6);
341:       htl = -d1 * d7 / (f1 * f1 * f1) - d3 * d8 / (f3 * f3 * f3);

343:       hc = hydhx * (1.0 + d7 * d7) / (f1 * f1 * f1) + hxdhy * (1.0 + d8 * d8) / (f3 * f3 * f3) + hydhx * (1.0 + d5 * d5) / (f5 * f5 * f5) + hxdhy * (1.0 + d6 * d6) / (f6 * f6 * f6) + (hxdhy * (1.0 + d1 * d1) + hydhx * (1.0 + d4 * d4) - 2 * d1 * d4) / (f2 * f2 * f2) + (hxdhy * (1.0 + d2 * d2) + hydhx * (1.0 + d3 * d3) - 2 * d2 * d3) / (f4 * f4 * f4);

345:       hl /= 2.0;
346:       hr /= 2.0;
347:       ht /= 2.0;
348:       hb /= 2.0;
349:       hbr /= 2.0;
350:       htl /= 2.0;
351:       hc /= 2.0;

353:       k = 0;
354:       if (j > 0) {
355:         v[k]   = hb;
356:         col[k] = row - mx;
357:         k++;
358:       }

360:       if (j > 0 && i < mx - 1) {
361:         v[k]   = hbr;
362:         col[k] = row - mx + 1;
363:         k++;
364:       }

366:       if (i > 0) {
367:         v[k]   = hl;
368:         col[k] = row - 1;
369:         k++;
370:       }

372:       v[k]   = hc;
373:       col[k] = row;
374:       k++;

376:       if (i < mx - 1) {
377:         v[k]   = hr;
378:         col[k] = row + 1;
379:         k++;
380:       }

382:       if (i > 0 && j < my - 1) {
383:         v[k]   = htl;
384:         col[k] = row + mx - 1;
385:         k++;
386:       }

388:       if (j < my - 1) {
389:         v[k]   = ht;
390:         col[k] = row + mx;
391:         k++;
392:       }

394:       /*
395:          Set matrix values using local numbering, which was defined
396:          earlier, in the main routine.
397:       */
398:       PetscCall(MatSetValues(H, 1, &row, k, col, v, INSERT_VALUES));
399:     }
400:   }

402:   /* Restore vectors */
403:   PetscCall(VecRestoreArrayRead(X, &x));

405:   /* Assemble the matrix */
406:   PetscCall(MatAssemblyBegin(H, MAT_FINAL_ASSEMBLY));
407:   PetscCall(MatAssemblyEnd(H, MAT_FINAL_ASSEMBLY));
408:   PetscCall(PetscLogFlops(199 * mx * my));
409:   PetscFunctionReturn(PETSC_SUCCESS);
410: }

412: /* ------------------------------------------------------------------- */
413: /*
414:    MSA_BoundaryConditions -  Calculates the boundary conditions for
415:    the region.

417:    Input Parameter:
418: .  user - user-defined application context

420:    Output Parameter:
421: .  user - user-defined application context
422: */
423: static PetscErrorCode MSA_BoundaryConditions(AppCtx *user)
424: {
425:   PetscInt   i, j, k, limit = 0, maxits = 5;
426:   PetscInt   mx = user->mx, my = user->my;
427:   PetscInt   bsize = 0, lsize = 0, tsize = 0, rsize = 0;
428:   PetscReal  one = 1.0, two = 2.0, three = 3.0, tol = 1e-10;
429:   PetscReal  fnorm, det, hx, hy, xt = 0, yt = 0;
430:   PetscReal  u1, u2, nf1, nf2, njac11, njac12, njac21, njac22;
431:   PetscReal  b = -0.5, t = 0.5, l = -0.5, r = 0.5;
432:   PetscReal *boundary;

434:   PetscFunctionBegin;
435:   bsize = mx + 2;
436:   lsize = my + 2;
437:   rsize = my + 2;
438:   tsize = mx + 2;

440:   PetscCall(PetscMalloc1(bsize, &user->bottom));
441:   PetscCall(PetscMalloc1(tsize, &user->top));
442:   PetscCall(PetscMalloc1(lsize, &user->left));
443:   PetscCall(PetscMalloc1(rsize, &user->right));

445:   hx = (r - l) / (mx + 1);
446:   hy = (t - b) / (my + 1);

448:   for (j = 0; j < 4; j++) {
449:     if (j == 0) {
450:       yt       = b;
451:       xt       = l;
452:       limit    = bsize;
453:       boundary = user->bottom;
454:     } else if (j == 1) {
455:       yt       = t;
456:       xt       = l;
457:       limit    = tsize;
458:       boundary = user->top;
459:     } else if (j == 2) {
460:       yt       = b;
461:       xt       = l;
462:       limit    = lsize;
463:       boundary = user->left;
464:     } else { /* if  (j==3) */
465:       yt       = b;
466:       xt       = r;
467:       limit    = rsize;
468:       boundary = user->right;
469:     }

471:     for (i = 0; i < limit; i++) {
472:       u1 = xt;
473:       u2 = -yt;
474:       for (k = 0; k < maxits; k++) {
475:         nf1   = u1 + u1 * u2 * u2 - u1 * u1 * u1 / three - xt;
476:         nf2   = -u2 - u1 * u1 * u2 + u2 * u2 * u2 / three - yt;
477:         fnorm = PetscSqrtScalar(nf1 * nf1 + nf2 * nf2);
478:         if (fnorm <= tol) break;
479:         njac11 = one + u2 * u2 - u1 * u1;
480:         njac12 = two * u1 * u2;
481:         njac21 = -two * u1 * u2;
482:         njac22 = -one - u1 * u1 + u2 * u2;
483:         det    = njac11 * njac22 - njac21 * njac12;
484:         u1     = u1 - (njac22 * nf1 - njac12 * nf2) / det;
485:         u2     = u2 - (njac11 * nf2 - njac21 * nf1) / det;
486:       }

488:       boundary[i] = u1 * u1 - u2 * u2;
489:       if (j == 0 || j == 1) {
490:         xt = xt + hx;
491:       } else { /* if (j==2 || j==3) */
492:         yt = yt + hy;
493:       }
494:     }
495:   }
496:   PetscFunctionReturn(PETSC_SUCCESS);
497: }

499: /* ------------------------------------------------------------------- */
500: /*
501:    MSA_InitialPoint - Calculates the initial guess in one of three ways.

503:    Input Parameters:
504: .  user - user-defined application context
505: .  X - vector for initial guess

507:    Output Parameters:
508: .  X - newly computed initial guess
509: */
510: static PetscErrorCode MSA_InitialPoint(AppCtx *user, Vec X)
511: {
512:   PetscInt    start = -1, i, j;
513:   PetscScalar zero  = 0.0;
514:   PetscBool   flg;

516:   PetscFunctionBegin;
517:   PetscCall(PetscOptionsGetInt(NULL, NULL, "-start", &start, &flg));

519:   if (flg && start == 0) { /* The zero vector is reasonable */
520:     PetscCall(VecSet(X, zero));
521:   } else { /* Take an average of the boundary conditions */
522:     PetscInt     row;
523:     PetscInt     mx = user->mx, my = user->my;
524:     PetscScalar *x;

526:     /* Get pointers to vector data */
527:     PetscCall(VecGetArray(X, &x));

529:     /* Perform local computations */
530:     for (j = 0; j < my; j++) {
531:       for (i = 0; i < mx; i++) {
532:         row    = (j)*mx + (i);
533:         x[row] = (((j + 1) * user->bottom[i + 1] + (my - j + 1) * user->top[i + 1]) / (my + 2) + ((i + 1) * user->left[j + 1] + (mx - i + 1) * user->right[j + 1]) / (mx + 2)) / 2.0;
534:       }
535:     }

537:     /* Restore vectors */
538:     PetscCall(VecRestoreArray(X, &x));
539:   }
540:   PetscFunctionReturn(PETSC_SUCCESS);
541: }

543: /*TEST

545:    build:
546:       requires: !complex

548:    test:
549:       args: -tao_monitor -tao_view -tao_type ssils -tao_gttol 1.e-5
550:       requires: !single

552:    test:
553:       suffix: 2
554:       args: -tao_monitor -tao_view -tao_type ssfls -tao_gttol 1.e-5

556: TEST*/