Actual source code: baijfact3.c

  1: /*
  2:     Factorization code for BAIJ format.
  3: */
  4: #include <../src/mat/impls/baij/seq/baij.h>
  5: #include <petsc/private/kernels/blockinvert.h>

  7: /*
  8:    This is used to set the numeric factorization for both LU and ILU symbolic factorization
  9: */
 10: PetscErrorCode MatSeqBAIJSetNumericFactorization(Mat fact, PetscBool natural)
 11: {
 12:   PetscFunctionBegin;
 13:   if (natural) {
 14:     switch (fact->rmap->bs) {
 15:     case 1:
 16:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_1;
 17:       break;
 18:     case 2:
 19:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_2_NaturalOrdering;
 20:       break;
 21:     case 3:
 22:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_3_NaturalOrdering;
 23:       break;
 24:     case 4:
 25:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_4_NaturalOrdering;
 26:       break;
 27:     case 5:
 28:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_5_NaturalOrdering;
 29:       break;
 30:     case 6:
 31:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_6_NaturalOrdering;
 32:       break;
 33:     case 7:
 34:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_7_NaturalOrdering;
 35:       break;
 36:     case 9:
 37: #if defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX2__) && defined(__FMA__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
 38:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_9_NaturalOrdering;
 39: #else
 40:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_N;
 41: #endif
 42:       break;
 43:     case 15:
 44:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_15_NaturalOrdering;
 45:       break;
 46:     default:
 47:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_N;
 48:       break;
 49:     }
 50:   } else {
 51:     switch (fact->rmap->bs) {
 52:     case 1:
 53:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_1;
 54:       break;
 55:     case 2:
 56:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_2;
 57:       break;
 58:     case 3:
 59:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_3;
 60:       break;
 61:     case 4:
 62:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_4;
 63:       break;
 64:     case 5:
 65:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_5;
 66:       break;
 67:     case 6:
 68:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_6;
 69:       break;
 70:     case 7:
 71:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_7;
 72:       break;
 73:     default:
 74:       fact->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_N;
 75:       break;
 76:     }
 77:   }
 78:   PetscFunctionReturn(PETSC_SUCCESS);
 79: }

 81: PetscErrorCode MatSeqBAIJSetNumericFactorization_inplace(Mat inA, PetscBool natural)
 82: {
 83:   PetscFunctionBegin;
 84:   if (natural) {
 85:     switch (inA->rmap->bs) {
 86:     case 1:
 87:       inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_1_inplace;
 88:       break;
 89:     case 2:
 90:       inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_2_NaturalOrdering_inplace;
 91:       break;
 92:     case 3:
 93:       inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_3_NaturalOrdering_inplace;
 94:       break;
 95:     case 4:
 96: #if defined(PETSC_USE_REAL_MAT_SINGLE)
 97:     {
 98:       PetscBool sse_enabled_local;
 99:       PetscCall(PetscSSEIsEnabled(inA->comm, &sse_enabled_local, NULL));
100:       if (sse_enabled_local) {
101:   #if defined(PETSC_HAVE_SSE)
102:         int i, *AJ = a->j, nz = a->nz, n = a->mbs;
103:         if (n == (unsigned short)n) {
104:           unsigned short *aj = (unsigned short *)AJ;
105:           for (i = 0; i < nz; i++) aj[i] = (unsigned short)AJ[i];

107:           inA->ops->setunfactored   = MatSetUnfactored_SeqBAIJ_4_NaturalOrdering_SSE_usj;
108:           inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_4_NaturalOrdering_SSE_usj;

110:           PetscCall(PetscInfo(inA, "Using special SSE, in-place natural ordering, ushort j index factor BS=4\n"));
111:         } else {
112:           /* Scale the column indices for easier indexing in MatSolve. */
113:           /*            for (i=0;i<nz;i++) { */
114:           /*              AJ[i] = AJ[i]*4; */
115:           /*            } */
116:           inA->ops->setunfactored   = MatSetUnfactored_SeqBAIJ_4_NaturalOrdering_SSE;
117:           inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_4_NaturalOrdering_SSE;

119:           PetscCall(PetscInfo(inA, "Using special SSE, in-place natural ordering, int j index factor BS=4\n"));
120:         }
121:   #else
122:         /* This should never be reached.  If so, problem in PetscSSEIsEnabled. */
123:         SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "SSE Hardware unavailable");
124:   #endif
125:       } else {
126:         inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_4_NaturalOrdering_inplace;
127:       }
128:     }
129: #else
130:       inA->ops->lufactornumeric  = MatLUFactorNumeric_SeqBAIJ_4_NaturalOrdering_inplace;
131: #endif
132:     break;
133:     case 5:
134:       inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_5_NaturalOrdering_inplace;
135:       break;
136:     case 6:
137:       inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_6_NaturalOrdering_inplace;
138:       break;
139:     case 7:
140:       inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_7_NaturalOrdering_inplace;
141:       break;
142:     default:
143:       inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_N_inplace;
144:       break;
145:     }
146:   } else {
147:     switch (inA->rmap->bs) {
148:     case 1:
149:       inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_1_inplace;
150:       break;
151:     case 2:
152:       inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_2_inplace;
153:       break;
154:     case 3:
155:       inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_3_inplace;
156:       break;
157:     case 4:
158:       inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_4_inplace;
159:       break;
160:     case 5:
161:       inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_5_inplace;
162:       break;
163:     case 6:
164:       inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_6_inplace;
165:       break;
166:     case 7:
167:       inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_7_inplace;
168:       break;
169:     default:
170:       inA->ops->lufactornumeric = MatLUFactorNumeric_SeqBAIJ_N_inplace;
171:       break;
172:     }
173:   }
174:   PetscFunctionReturn(PETSC_SUCCESS);
175: }

177: /*
178:     The symbolic factorization code is identical to that for AIJ format,
179:   except for very small changes since this is now a SeqBAIJ datastructure.
180:   NOT good code reuse.
181: */
182: #include <petscbt.h>
183: #include <../src/mat/utils/freespace.h>

185: PetscErrorCode MatLUFactorSymbolic_SeqBAIJ(Mat B, Mat A, IS isrow, IS iscol, const MatFactorInfo *info)
186: {
187:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ *)A->data, *b;
188:   PetscInt           n = a->mbs, bs = A->rmap->bs, bs2 = a->bs2;
189:   PetscBool          row_identity, col_identity, both_identity;
190:   IS                 isicol;
191:   const PetscInt    *r, *ic;
192:   PetscInt           i, *ai = a->i, *aj = a->j;
193:   PetscInt          *bi, *bj, *ajtmp;
194:   PetscInt          *bdiag, row, nnz, nzi, reallocs = 0, nzbd, *im;
195:   PetscReal          f;
196:   PetscInt           nlnk, *lnk, k, **bi_ptr;
197:   PetscFreeSpaceList free_space = NULL, current_space = NULL;
198:   PetscBT            lnkbt;
199:   PetscBool          missing;

201:   PetscFunctionBegin;
202:   PetscCheck(A->rmap->N == A->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "matrix must be square");
203:   PetscCall(MatMissingDiagonal(A, &missing, &i));
204:   PetscCheck(!missing, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix is missing diagonal entry %" PetscInt_FMT, i);

206:   if (bs > 1) { /* check shifttype */
207:     PetscCheck(info->shifttype != (PetscReal)MAT_SHIFT_NONZERO && info->shifttype != (PetscReal)MAT_SHIFT_POSITIVE_DEFINITE, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only MAT_SHIFT_NONE and MAT_SHIFT_INBLOCKS are supported for BAIJ matrix");
208:   }

210:   PetscCall(ISInvertPermutation(iscol, PETSC_DECIDE, &isicol));
211:   PetscCall(ISGetIndices(isrow, &r));
212:   PetscCall(ISGetIndices(isicol, &ic));

214:   /* get new row and diagonal pointers, must be allocated separately because they will be given to the Mat_SeqAIJ and freed separately */
215:   PetscCall(PetscMalloc1(n + 1, &bi));
216:   PetscCall(PetscMalloc1(n + 1, &bdiag));
217:   bi[0] = bdiag[0] = 0;

219:   /* linked list for storing column indices of the active row */
220:   nlnk = n + 1;
221:   PetscCall(PetscLLCreate(n, n, nlnk, lnk, lnkbt));

223:   PetscCall(PetscMalloc2(n + 1, &bi_ptr, n + 1, &im));

225:   /* initial FreeSpace size is f*(ai[n]+1) */
226:   f = info->fill;
227:   PetscCall(PetscFreeSpaceGet(PetscRealIntMultTruncate(f, ai[n] + 1), &free_space));

229:   current_space = free_space;

231:   for (i = 0; i < n; i++) {
232:     /* copy previous fill into linked list */
233:     nzi   = 0;
234:     nnz   = ai[r[i] + 1] - ai[r[i]];
235:     ajtmp = aj + ai[r[i]];
236:     PetscCall(PetscLLAddPerm(nnz, ajtmp, ic, n, &nlnk, lnk, lnkbt));
237:     nzi += nlnk;

239:     /* add pivot rows into linked list */
240:     row = lnk[n];
241:     while (row < i) {
242:       nzbd  = bdiag[row] + 1;     /* num of entries in the row with column index <= row */
243:       ajtmp = bi_ptr[row] + nzbd; /* points to the entry next to the diagonal */
244:       PetscCall(PetscLLAddSortedLU(ajtmp, row, &nlnk, lnk, lnkbt, i, nzbd, im));
245:       nzi += nlnk;
246:       row = lnk[row];
247:     }
248:     bi[i + 1] = bi[i] + nzi;
249:     im[i]     = nzi;

251:     /* mark bdiag */
252:     nzbd = 0;
253:     nnz  = nzi;
254:     k    = lnk[n];
255:     while (nnz-- && k < i) {
256:       nzbd++;
257:       k = lnk[k];
258:     }
259:     bdiag[i] = nzbd; /* note : bdaig[i] = nnzL as input for PetscFreeSpaceContiguous_LU() */

261:     /* if free space is not available, make more free space */
262:     if (current_space->local_remaining < nzi) {
263:       nnz = PetscIntMultTruncate(2, PetscIntMultTruncate(n - i, nzi)); /* estimated and max additional space needed */
264:       PetscCall(PetscFreeSpaceGet(nnz, &current_space));
265:       reallocs++;
266:     }

268:     /* copy data into free space, then initialize lnk */
269:     PetscCall(PetscLLClean(n, n, nzi, lnk, current_space->array, lnkbt));

271:     bi_ptr[i] = current_space->array;
272:     current_space->array += nzi;
273:     current_space->local_used += nzi;
274:     current_space->local_remaining -= nzi;
275:   }

277:   PetscCall(ISRestoreIndices(isrow, &r));
278:   PetscCall(ISRestoreIndices(isicol, &ic));

280:   /* copy free_space into bj and free free_space; set bi, bj, bdiag in new datastructure; */
281:   PetscCall(PetscMalloc1(bi[n] + 1, &bj));
282:   PetscCall(PetscFreeSpaceContiguous_LU(&free_space, bj, n, bi, bdiag));
283:   PetscCall(PetscLLDestroy(lnk, lnkbt));
284:   PetscCall(PetscFree2(bi_ptr, im));

286:   /* put together the new matrix */
287:   PetscCall(MatSeqBAIJSetPreallocation(B, bs, MAT_SKIP_ALLOCATION, NULL));
288:   b = (Mat_SeqBAIJ *)(B)->data;

290:   b->free_a       = PETSC_TRUE;
291:   b->free_ij      = PETSC_TRUE;
292:   b->singlemalloc = PETSC_FALSE;

294:   PetscCall(PetscMalloc1((bdiag[0] + 1) * bs2, &b->a));
295:   b->j             = bj;
296:   b->i             = bi;
297:   b->diag          = bdiag;
298:   b->free_diag     = PETSC_TRUE;
299:   b->ilen          = NULL;
300:   b->imax          = NULL;
301:   b->row           = isrow;
302:   b->col           = iscol;
303:   b->pivotinblocks = (info->pivotinblocks) ? PETSC_TRUE : PETSC_FALSE;

305:   PetscCall(PetscObjectReference((PetscObject)isrow));
306:   PetscCall(PetscObjectReference((PetscObject)iscol));
307:   b->icol = isicol;
308:   PetscCall(PetscMalloc1(bs * n + bs, &b->solve_work));

310:   b->maxnz = b->nz = bdiag[0] + 1;

312:   B->factortype            = MAT_FACTOR_LU;
313:   B->info.factor_mallocs   = reallocs;
314:   B->info.fill_ratio_given = f;

316:   if (ai[n] != 0) {
317:     B->info.fill_ratio_needed = ((PetscReal)(bdiag[0] + 1)) / ((PetscReal)ai[n]);
318:   } else {
319:     B->info.fill_ratio_needed = 0.0;
320:   }
321: #if defined(PETSC_USE_INFO)
322:   if (ai[n] != 0) {
323:     PetscReal af = B->info.fill_ratio_needed;
324:     PetscCall(PetscInfo(A, "Reallocs %" PetscInt_FMT " Fill ratio:given %g needed %g\n", reallocs, (double)f, (double)af));
325:     PetscCall(PetscInfo(A, "Run with -pc_factor_fill %g or use \n", (double)af));
326:     PetscCall(PetscInfo(A, "PCFactorSetFill(pc,%g);\n", (double)af));
327:     PetscCall(PetscInfo(A, "for best performance.\n"));
328:   } else {
329:     PetscCall(PetscInfo(A, "Empty matrix\n"));
330:   }
331: #endif

333:   PetscCall(ISIdentity(isrow, &row_identity));
334:   PetscCall(ISIdentity(iscol, &col_identity));

336:   both_identity = (PetscBool)(row_identity && col_identity);

338:   PetscCall(MatSeqBAIJSetNumericFactorization(B, both_identity));
339:   PetscFunctionReturn(PETSC_SUCCESS);
340: }

342: #if 0
343: // unused
344: static PetscErrorCode MatLUFactorSymbolic_SeqBAIJ_inplace(Mat B, Mat A, IS isrow, IS iscol, const MatFactorInfo *info)
345: {
346:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ *)A->data, *b;
347:   PetscInt           n = a->mbs, bs = A->rmap->bs, bs2 = a->bs2;
348:   PetscBool          row_identity, col_identity, both_identity;
349:   IS                 isicol;
350:   const PetscInt    *r, *ic;
351:   PetscInt           i, *ai = a->i, *aj = a->j;
352:   PetscInt          *bi, *bj, *ajtmp;
353:   PetscInt          *bdiag, row, nnz, nzi, reallocs = 0, nzbd, *im;
354:   PetscReal          f;
355:   PetscInt           nlnk, *lnk, k, **bi_ptr;
356:   PetscFreeSpaceList free_space = NULL, current_space = NULL;
357:   PetscBT            lnkbt;
358:   PetscBool          missing;

360:   PetscFunctionBegin;
361:   PetscCheck(A->rmap->N == A->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "matrix must be square");
362:   PetscCall(MatMissingDiagonal(A, &missing, &i));
363:   PetscCheck(!missing, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix is missing diagonal entry %" PetscInt_FMT, i);

365:   PetscCall(ISInvertPermutation(iscol, PETSC_DECIDE, &isicol));
366:   PetscCall(ISGetIndices(isrow, &r));
367:   PetscCall(ISGetIndices(isicol, &ic));

369:   /* get new row and diagonal pointers, must be allocated separately because they will be given to the Mat_SeqAIJ and freed separately */
370:   PetscCall(PetscMalloc1(n + 1, &bi));
371:   PetscCall(PetscMalloc1(n + 1, &bdiag));

373:   bi[0] = bdiag[0] = 0;

375:   /* linked list for storing column indices of the active row */
376:   nlnk = n + 1;
377:   PetscCall(PetscLLCreate(n, n, nlnk, lnk, lnkbt));

379:   PetscCall(PetscMalloc2(n + 1, &bi_ptr, n + 1, &im));

381:   /* initial FreeSpace size is f*(ai[n]+1) */
382:   f = info->fill;
383:   PetscCall(PetscFreeSpaceGet(PetscRealIntMultTruncate(f, ai[n] + 1), &free_space));
384:   current_space = free_space;

386:   for (i = 0; i < n; i++) {
387:     /* copy previous fill into linked list */
388:     nzi   = 0;
389:     nnz   = ai[r[i] + 1] - ai[r[i]];
390:     ajtmp = aj + ai[r[i]];
391:     PetscCall(PetscLLAddPerm(nnz, ajtmp, ic, n, &nlnk, lnk, lnkbt));
392:     nzi += nlnk;

394:     /* add pivot rows into linked list */
395:     row = lnk[n];
396:     while (row < i) {
397:       nzbd  = bdiag[row] - bi[row] + 1; /* num of entries in the row with column index <= row */
398:       ajtmp = bi_ptr[row] + nzbd;       /* points to the entry next to the diagonal */
399:       PetscCall(PetscLLAddSortedLU(ajtmp, row, &nlnk, lnk, lnkbt, i, nzbd, im));
400:       nzi += nlnk;
401:       row = lnk[row];
402:     }
403:     bi[i + 1] = bi[i] + nzi;
404:     im[i]     = nzi;

406:     /* mark bdiag */
407:     nzbd = 0;
408:     nnz  = nzi;
409:     k    = lnk[n];
410:     while (nnz-- && k < i) {
411:       nzbd++;
412:       k = lnk[k];
413:     }
414:     bdiag[i] = bi[i] + nzbd;

416:     /* if free space is not available, make more free space */
417:     if (current_space->local_remaining < nzi) {
418:       nnz = PetscIntMultTruncate(n - i, nzi); /* estimated and max additional space needed */
419:       PetscCall(PetscFreeSpaceGet(nnz, &current_space));
420:       reallocs++;
421:     }

423:     /* copy data into free space, then initialize lnk */
424:     PetscCall(PetscLLClean(n, n, nzi, lnk, current_space->array, lnkbt));

426:     bi_ptr[i] = current_space->array;
427:     current_space->array += nzi;
428:     current_space->local_used += nzi;
429:     current_space->local_remaining -= nzi;
430:   }
431:   #if defined(PETSC_USE_INFO)
432:   if (ai[n] != 0) {
433:     PetscReal af = ((PetscReal)bi[n]) / ((PetscReal)ai[n]);
434:     PetscCall(PetscInfo(A, "Reallocs %" PetscInt_FMT " Fill ratio:given %g needed %g\n", reallocs, (double)f, (double)af));
435:     PetscCall(PetscInfo(A, "Run with -pc_factor_fill %g or use \n", (double)af));
436:     PetscCall(PetscInfo(A, "PCFactorSetFill(pc,%g);\n", (double)af));
437:     PetscCall(PetscInfo(A, "for best performance.\n"));
438:   } else {
439:     PetscCall(PetscInfo(A, "Empty matrix\n"));
440:   }
441:   #endif

443:   PetscCall(ISRestoreIndices(isrow, &r));
444:   PetscCall(ISRestoreIndices(isicol, &ic));

446:   /* destroy list of free space and other temporary array(s) */
447:   PetscCall(PetscMalloc1(bi[n] + 1, &bj));
448:   PetscCall(PetscFreeSpaceContiguous(&free_space, bj));
449:   PetscCall(PetscLLDestroy(lnk, lnkbt));
450:   PetscCall(PetscFree2(bi_ptr, im));

452:   /* put together the new matrix */
453:   PetscCall(MatSeqBAIJSetPreallocation(B, bs, MAT_SKIP_ALLOCATION, NULL));
454:   b = (Mat_SeqBAIJ *)(B)->data;

456:   b->free_a       = PETSC_TRUE;
457:   b->free_ij      = PETSC_TRUE;
458:   b->singlemalloc = PETSC_FALSE;

460:   PetscCall(PetscMalloc1((bi[n] + 1) * bs2, &b->a));
461:   b->j             = bj;
462:   b->i             = bi;
463:   b->diag          = bdiag;
464:   b->free_diag     = PETSC_TRUE;
465:   b->ilen          = NULL;
466:   b->imax          = NULL;
467:   b->row           = isrow;
468:   b->col           = iscol;
469:   b->pivotinblocks = (info->pivotinblocks) ? PETSC_TRUE : PETSC_FALSE;

471:   PetscCall(PetscObjectReference((PetscObject)isrow));
472:   PetscCall(PetscObjectReference((PetscObject)iscol));
473:   b->icol = isicol;

475:   PetscCall(PetscMalloc1(bs * n + bs, &b->solve_work));

477:   b->maxnz = b->nz = bi[n];

479:   (B)->factortype            = MAT_FACTOR_LU;
480:   (B)->info.factor_mallocs   = reallocs;
481:   (B)->info.fill_ratio_given = f;

483:   if (ai[n] != 0) {
484:     (B)->info.fill_ratio_needed = ((PetscReal)bi[n]) / ((PetscReal)ai[n]);
485:   } else {
486:     (B)->info.fill_ratio_needed = 0.0;
487:   }

489:   PetscCall(ISIdentity(isrow, &row_identity));
490:   PetscCall(ISIdentity(iscol, &col_identity));

492:   both_identity = (PetscBool)(row_identity && col_identity);

494:   PetscCall(MatSeqBAIJSetNumericFactorization_inplace(B, both_identity));
495:   PetscFunctionReturn(PETSC_SUCCESS);
496: }
497: #endif