Actual source code: mpiaijsell.c
1: #include <../src/mat/impls/aij/mpi/mpiaij.h>
2: /*@C
3: MatCreateMPIAIJSELL - Creates a sparse parallel matrix whose local
4: portions are stored as `MATSEQAIJSELL` matrices (a matrix class that inherits
5: from SEQAIJ but performs some operations in SELL format).
7: Collective
9: Input Parameters:
10: + comm - MPI communicator
11: . m - number of local rows (or `PETSC_DECIDE` to have calculated if `M` is given)
12: This value should be the same as the local size used in creating the
13: y vector for the matrix-vector product y = Ax.
14: . n - This value should be the same as the local size used in creating the
15: x vector for the matrix-vector product y = Ax. (or `PETSC_DECIDE` to have
16: calculated if `N` is given) For square matrices `n` is almost always `m`.
17: . M - number of global rows (or `PETSC_DETERMINE` to have calculated if `m` is given)
18: . N - number of global columns (or `PETSC_DETERMINE` to have calculated if `n` is given)
19: . d_nz - number of nonzeros per row in DIAGONAL portion of local submatrix
20: (same value is used for all local rows)
21: . d_nnz - array containing the number of nonzeros in the various rows of the
22: DIAGONAL portion of the local submatrix (possibly different for each row)
23: or `NULL`, if `d_nz` is used to specify the nonzero structure.
24: The size of this array is equal to the number of local rows, i.e `m`.
25: For matrices you plan to factor you must leave room for the diagonal entry and
26: put in the entry even if it is zero.
27: . o_nz - number of nonzeros per row in the OFF-DIAGONAL portion of local
28: submatrix (same value is used for all local rows).
29: - o_nnz - array containing the number of nonzeros in the various rows of the
30: OFF-DIAGONAL portion of the local submatrix (possibly different for
31: each row) or `NULL`, if `o_nz` is used to specify the nonzero
32: structure. The size of this array is equal to the number
33: of local rows, i.e `m`.
35: Output Parameter:
36: . A - the matrix
38: Options Database Key:
39: . -mat_aijsell_eager_shadow - Construct shadow matrix upon matrix assembly; default is to take a "lazy" approach, performing this step the first
40: time the matrix is applied
42: Level: intermediate
44: Notes:
45: If the *_nnz parameter is given then the *_nz parameter is ignored
47: `m`,`n`,`M`,`N` parameters specify the size of the matrix, and its partitioning across
48: processors, while `d_nz`,`d_nnz`,`o_nz`,`o_nnz` parameters specify the approximate
49: storage requirements for this matrix.
51: If `PETSC_DECIDE` or `PETSC_DETERMINE` is used for a particular argument on one
52: processor than it must be used on all processors that share the object for
53: that argument.
55: The user MUST specify either the local or global matrix dimensions
56: (possibly both).
58: The parallel matrix is partitioned such that the first m0 rows belong to
59: process 0, the next m1 rows belong to process 1, the next m2 rows belong
60: to process 2 etc.. where m0,m1,m2... are the input parameter `m`.
62: The DIAGONAL portion of the local submatrix of a processor can be defined
63: as the submatrix which is obtained by extraction the part corresponding
64: to the rows r1-r2 and columns r1-r2 of the global matrix, where r1 is the
65: first row that belongs to the processor, and r2 is the last row belonging
66: to the this processor. This is a square mxm matrix. The remaining portion
67: of the local submatrix (mxN) constitute the OFF-DIAGONAL portion.
69: If `o_nnz`, `d_nnz` are specified, then `o_nz`, and `d_nz` are ignored.
71: When calling this routine with a single process communicator, a matrix of
72: type `MATSEQAIJSELL` is returned. If a matrix of type `MATMPIAIJSELL` is desired
73: for this type of communicator, use the construction mechanism
74: .vb
75: MatCreate(...,&A);
76: MatSetType(A,MPIAIJSELL);
77: MatMPIAIJSetPreallocation(A,...);
78: .ve
80: .seealso: [](ch_matrices), `Mat`, [Sparse Matrix Creation](sec_matsparse), `MATSEQAIJSELL`, `MATMPIAIJSELL`, `MATAIJSELL`, `MatCreate()`, `MatCreateSeqAIJSELL()`, `MatSetValues()`
81: @*/
82: PetscErrorCode MatCreateMPIAIJSELL(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt M, PetscInt N, PetscInt d_nz, const PetscInt d_nnz[], PetscInt o_nz, const PetscInt o_nnz[], Mat *A)
83: {
84: PetscMPIInt size;
86: PetscFunctionBegin;
87: PetscCall(MatCreate(comm, A));
88: PetscCall(MatSetSizes(*A, m, n, M, N));
89: PetscCallMPI(MPI_Comm_size(comm, &size));
90: if (size > 1) {
91: PetscCall(MatSetType(*A, MATMPIAIJSELL));
92: PetscCall(MatMPIAIJSetPreallocation(*A, d_nz, d_nnz, o_nz, o_nnz));
93: } else {
94: PetscCall(MatSetType(*A, MATSEQAIJSELL));
95: PetscCall(MatSeqAIJSetPreallocation(*A, d_nz, d_nnz));
96: }
97: PetscFunctionReturn(PETSC_SUCCESS);
98: }
100: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJSELL(Mat, MatType, MatReuse, Mat *);
102: static PetscErrorCode MatMPIAIJSetPreallocation_MPIAIJSELL(Mat B, PetscInt d_nz, const PetscInt d_nnz[], PetscInt o_nz, const PetscInt o_nnz[])
103: {
104: Mat_MPIAIJ *b = (Mat_MPIAIJ *)B->data;
106: PetscFunctionBegin;
107: PetscCall(MatMPIAIJSetPreallocation_MPIAIJ(B, d_nz, d_nnz, o_nz, o_nnz));
108: PetscCall(MatConvert_SeqAIJ_SeqAIJSELL(b->A, MATSEQAIJSELL, MAT_INPLACE_MATRIX, &b->A));
109: PetscCall(MatConvert_SeqAIJ_SeqAIJSELL(b->B, MATSEQAIJSELL, MAT_INPLACE_MATRIX, &b->B));
110: PetscFunctionReturn(PETSC_SUCCESS);
111: }
113: PETSC_INTERN PetscErrorCode MatConvert_MPIAIJ_MPIAIJSELL(Mat A, MatType type, MatReuse reuse, Mat *newmat)
114: {
115: Mat B = *newmat;
117: PetscFunctionBegin;
118: if (reuse == MAT_INITIAL_MATRIX) PetscCall(MatDuplicate(A, MAT_COPY_VALUES, &B));
120: PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATMPIAIJSELL));
121: PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMPIAIJSetPreallocation_C", MatMPIAIJSetPreallocation_MPIAIJSELL));
122: *newmat = B;
123: PetscFunctionReturn(PETSC_SUCCESS);
124: }
126: PETSC_EXTERN PetscErrorCode MatCreate_MPIAIJSELL(Mat A)
127: {
128: PetscFunctionBegin;
129: PetscCall(MatSetType(A, MATMPIAIJ));
130: PetscCall(MatConvert_MPIAIJ_MPIAIJSELL(A, MATMPIAIJSELL, MAT_INPLACE_MATRIX, &A));
131: PetscFunctionReturn(PETSC_SUCCESS);
132: }
134: /*MC
135: MATAIJSELL - "AIJSELL" - A matrix type to be used for sparse matrices.
137: This matrix type is identical to `MATSEQAIJSELL` when constructed with a single process communicator,
138: and `MATMPIAIJSELL` otherwise. As a result, for single process communicators,
139: MatSeqAIJSetPreallocation() is supported, and similarly `MatMPIAIJSetPreallocation()` is supported
140: for communicators controlling multiple processes. It is recommended that you call both of
141: the above preallocation routines for simplicity.
143: Options Database Key:
144: . -mat_type aijsell - sets the matrix type to `MATAIJSELL`
146: Level: beginner
148: .seealso: [](ch_matrices), `Mat`, `MatCreateMPIAIJSELL()`, `MATSEQAIJSELL`, `MATMPIAIJSELL`, `MATSEQAIJ`, `MATMPIAIJ`, `MATSEQAIJPERM`, `MATMPIAIJPERM`, `MATSEQAIJMKL`, `MATMPIAIJMKL`
149: M*/